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We introduce an L-series associated with harmonic Maass forms and prove their

functional equations. We establish converse theorems for these L-series and, as an

application, we formulate and prove a summation formula for the holomorphic part

of a harmonic lift of a given cusp form.

1 Introduction

The theory of harmonic Maass forms has been a centre of attention in recent years,

having led to various striking results. To mention just one example, the following

harmonic Maass form with Nebentypus of weight 1/2 for �0(144) was a key to the proof

of the Andrews–Dragonette conjecture and deep insight into Dyson’s ranks [5, 6]:

q−1 +
∞∑

n=0

q24n2−1

(1 + q24)(1 + q48) . . . (1 + q24n)2 +
∫ i∞

−24z̄

θ(τ )dτ√−i(τ + 24z)
. (1.1)
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15730 N. Diamantis et al.

Here q := e2π iz and θ(τ ) is a certain weight 3/2 theta series.

However, in contrast to the classical theory, where the deeper study of holomor-

phic modular and Maass forms is often driven by the study of their L-series, Dirichlet

series have not yet featured prominently in the case of harmonic Maass forms. An

L-series has been associated to special classes of harmonic Maass forms, namely the

weakly holomorphic forms, and interesting results about them have been proved [4],

but this L-series has not been studied as intensely as the modular object themselves.

Also, to our knowledge, the definition has not been extended to all harmonic Maass

forms, that is, for any harmonic Maass forms that are non-holomorphic. In particular,

with the exception of a result in that direction, we will discuss in the next section, a

converse theorem for L-series of general harmonic Maass forms does not seem to have

been formulated and proved.

In this paper, inspired by the ideas in [1], we address this state of affairs

by proposing a definition of L-series of general harmonic Maass forms. With this

definition, we succeed in establishing a converse theorem. To illustrate the idea more

clearly, we will outline it in the special case of weakly holomorphic modular forms on

SL2(Z).

First, we let L be the Laplace transform mapping each smooth function

ϕ : R+ → C to

(Lϕ)(s) =
∫ ∞

0
e−stϕ(t)dt (1.2)

for each s ∈ C for which the integral converges absolutely.

Let f be a weakly holomorphic cusp form of even weight k for SL2(Z) (see §3 for

a definition) with expansion

f (z) =
∞∑

n=−n0
n�=0

a(n)e2π inz. (1.3)

Let Ff be the space of test functions ϕ : R+ → C such that

∞∑
n=−n0

n�=0

|a(n)|(L|ϕ|)(2πn) (1.4)

converges. Because of the growth of a(n) (see (3.11) below), the space Ff contains

the compactly supported smooth functions on R+. Then we define the L-series map
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L-series of Harmonic Maass Forms 15731

Lf : Ff → C by

Lf (ϕ) =
∞∑

n=−n0
n�=0

a(n)(Lϕ)(2πn). (1.5)

The relation of this definition with the L-series associated to holomorphic cusp forms

and weakly holomorphic modular forms will be discussed in the next section.

We will now state our converse theorem in the special case of weakly holomor-

phic cusp forms for SL2(Z). The general statement for all harmonic Maass forms of all

levels (Theorem 5.1) and its proof will be given in §5.

Theorem 1.1. Let (a(n))n≥−n0
be a sequence of complex numbers such that a(n) =

O(eC
√

n) as n → ∞, for some C > 0. For each z ∈ H, set

f (z) =
∞∑

n=−n0
n�=0

a(n)e2π inz. (1.6)

Suppose that the function Lf (ϕ) defined, for each compactly supported smooth

ϕ : R+ → C, by (1.5) satisfies

Lf (ϕ) = ikLf (ϕ̌), (1.7)

where ϕ̌ is given by

ϕ̌(x) := xk−2ϕ(1/x). (1.8)

Then f is a weakly holomorphic cusp form of weight k ∈ Z for SL2(Z).

As an example of the way the functional equations and the converse theorem we

have established can be used, we present an alternative proof of the classical fact that

the (k − 1)-th derivative of a weight 2 − k weakly holomorphic form is a weight k weakly

holomorphic form (Proposition 5.5).

The main application of our constructions and methods is a summation formula

for harmonic lifts via the operator ξ2−k. This operator maps a weight 2 − k harmonic

Maass form f to its “shadow” weight k holomorphic cusp form

ξ2−kf := 2iy2−k ∂f

∂ z̄
, (1.9)
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15732 N. Diamantis et al.

where z = x + iy. As Bruinier and Funke showed in [9], the operator ξ2−k is surjective,

and finding a preimage for a given cusp form is a fundamental problem in the theory

of harmonic Maass forms with many arithmetic applications (see, e.g., [3]). However, it

is not known in general how to compute explicitly a “holomorphic part” (see (1.11)) of a

harmonic Maass form g with a known shadow. Our summation formula then provides

information about the behaviour of that “holomorphic part” upon the action of test

functions, in terms of the given shadow. Here we state in the special case of level 1

and even weight, but in Section 5.3, we will state it in prove it in general.

Theorem 1.2. Let f be a weight k ∈ 2N holomorphic cusp form with Fourier expansion

f (z) =
∞∑

n=1

a(n)e2π inz. (1.10)

Suppose that g is a weight 2 − k harmonic Maass form such that ξ2−kg = f with Fourier

expansion

g(z) =
∑

n≥−n0

c+(n)e2π inz +
∑
n<0

c−(n)�(k − 1, −4πny)e2π inz, (1.11)

where �(a, z) is the incomplete Gamma function. Then, for every smooth, compactly

supported ϕ : R+ → R, we have

∑
n≥−n0

c+(n)

∫ ∞

0
ϕ(y)

(
e−2πny − (−iy)k−2e−2πn/y

)
dy

=
k−2∑
l=0

∑
n>0

a(n)

(
(k − 2)!

l!
(4πn)1−k+l

∫ ∞

0
e−2πnyylϕ(y)dy

+ 2l+1

(k − 1)
(8πn)−

k+1
2

∫ ∞

0
e−πnyy

k
2 −1ϕ(y)M1− k

2 +l, k−1
2

(2πny)dy
)

, (1.12)

where Mκ,μ(z) is the Whittaker hypergeometric function.

As usual with summation formulas (see, e.g., [15] for an overview), the formula-

tion and derivation of our formula is based on the use of L-series, test functions, and

integral transforms, which are the main features of our overall method.
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L-series of Harmonic Maass Forms 15733

As far as we are aware, this is one of the first instances that summation formulas

have appeared in the study of harmonic Maass forms and we are currently working

on possible applications of our formula. The applications we are aiming for include

information about the growth of the individual coefficients c+(n) and asymptotic

formulas for their moments.

2 Context and Previous Work

We comment on the relation of our L-series with the classical L-series of holomorphic

cusp forms. For s ∈ C, let

Is(x) := (2π)sxs−1 1

� (s)
. (2.1)

Then, for u > 0 and 	(s) > 0,

(LIs)(u) = (2π)s

� (s)

∫ ∞

0
e−utts−1dt =

(
2π

u

)s

. (2.2)

Here the Laplace transform of Is continues as an entire function of s. Let f be a

holomorphic cusp form for �0(N) of weight k ∈ Z with Fourier expansion (1.10). Since

a(n) = Of ,ε(n
k−1

2 +ε), for any s ∈ C with 	(s) > k−1
2 , we have Is ∈ Ff and

Lf (Is) =
∞∑

n=1

a(n)

ns , (2.3)

is the usual L-series of f .

The relation with the L-series of a weakly holomorphic cusp form f is more

subtle. In this case, f can be expressed in terms of the Fourier expansion (1.6) where

n0 is the largest integer such that a(−n0) �= 0. The associated L-series is defined in [4,

(1.5)], for any fixed t0 > 0, by

L(s, f ) :=
∑

n≥−n0
n�=0

a(n)�(s, 2πnt0)

(2πn)s + ik
∑

n≥−n0
n�=0

a(n)�
(
k − s, 2πn

t0

)
(2πn)k−s

(2.4)

for all s ∈ C. The value of L(s, f ) is independent of t0. Here �(s, x) is the incomplete

gamma function

�(s, x) =
∫ ∞

x
ts−1e−tdt (	(s) > 0), (2.5)

which continues entirely as a function in s ∈ C for x �= 0.
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15734 N. Diamantis et al.

For a fixed T > 0, we define the characteristic function

1T(x) :=
⎧⎨
⎩1 when x > T,

0 otherwise.
(2.6)

Then, with Is defined as in (2.1), we have, for t0 > 0 and u > 0,

L(Is1t0
)(u) =

∫ ∞

0
e−utIs(t)1t0

(t)dt = (2π)s

� (s)
u−s

∫ ∞

ut0

e−tts−1dt = �
(
s, ut0

)
� (s)

(
2π

u

)s

. (2.7)

Although the integral defining �
(
s, ut0

)
diverges when u < 0, the incomplete gamma

function has an analytic continuation giving an entire function of s, when u �= 0.

Therefore, we interpret L(Is1t0
)(u) as the analytic continuation of �

(
s, ut0

)
. By (3.9)

and (3.11) below, combined with the asymptotic behaviour of the incomplete gamma

function and the Fourier coefficients a(n), we deduce that, for any t0 > 0,

Lf (Is1t0
) =

∑
n≥−n0

n�=0

a(n)

ns

�
(
s, nt0

)
� (s)

. (2.8)

converges absolutely and gives a non-symmetrised form of the L-series (2.4). Although

the definition of L-series of weak Maass forms given in [4] (see (2.4)) addresses the

problem of the exponential growth of the forms and of their Fourier coefficients, the fact

that the functional equation of the definition (2.4) was “built into” its defining formula

prevented the meaningful formulation of a converse theorem for such L-series.

The construction we present here makes a converse theorem possible by defining

the L-series on a broader class of test functions than on {Is1t0
: s ∈ C} or, equivalently,

the parameter s ∈ C. Furthermore, the dependence on the test function goes through

the Laplace transform, the essential use of which becomes clearer in the applications

(Proposition 5.5, Theorem 5.6). Our approach should be compared to that of Miyazaki

et al. [16] in our respective uses of test functions and of integral transforms (Fourier,

in their work, and Laplace in ours). The results we establish here complement theirs,

because the latter deal with standard Maass forms, whereas we cover functions of

exponential growth and harmonic Maass forms. Our approach seems to be also related

to Miller and Schmid’s philosophy of automorphic distributions (see e.g. [15]), and we

intend to investigate the connection more precisely in future work.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/18/15729/6827514 by guest on 25 Septem
ber 2023



L-series of Harmonic Maass Forms 15735

Recently [11], a converse theorem for harmonic Maass forms was announced, but

again its focus was on the special case of harmonic Maass forms of polynomial growth,

which, in particular, does not cover the function (1.1). Our theorem, by addressing the

case of exponential growth, accounts for the situation of a typical harmonic Maass form.

For the same reason, the techniques introduced here should be more broadly applicable

to the various modular objects of non-polynomial growth that have increasingly been

attracting attention the last several years, including Brown’s real-analytic modular

forms [7, 12] and higher depth weak Maass forms. In relation to the latter, we aim

to investigate the connection of our L-series with the sesquiharmonic Maass forms

associated, in [2], to non-critical values of classical L-functions.

In this paper, we concentrate on foundational analytic aspects of our L-series,

but the theory is amenable to the study of specific invariants, such as their special

values. For example, in [13], the hypothetical “central L-value” attached to the classical

j-invariant in [8] is interpreted as an actual value of the L-series defined here.

Finally, a remark on the unusual lack of reference to meromorphic continuation

both in Theorem 4.5 and in Theorems 5.1 and 5.4. The reason for this is that the L-series

in this paper is defined on a broad family of test functions that contains the compactly

supported functions ϕ. As a result, both ϕ and its “contragredient” ϕ̌ (1.8) belong to the

domain of absolute convergence of the L-series Lf . This cannot happen in the case of

standard L-series of holomorphic cusp forms because there is no value of s for which

both Is (in (2.1)) and Ǐs belong to the domain of absolute convergence of the L-series.

However, it is possible to define our L-series on classes of test functions

for which the above property does not hold automatically. Then, the problem of

meromorphic continuation arises naturally and can lead to many interesting questions

and applications. Theorem 4.6 indicates what form a statement involving meromorphic

continuation can take in our setting. For the initial applications, we are concerned with

here though, the main issues lay in other aspects and thus the problem of continuation

is not relevant.

3 Harmonic Maass Forms

We recall the definition and basic properties of harmonic Maass forms. For k ∈ 1
2Z, we

let �k denote the weight k hyperbolic Laplacian on H given by

�k := −4y2 ∂

∂z

∂

∂ z̄
+ 2iky

∂

∂ z̄
, (3.1)

where z = x + iy with x, y ∈ R.
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For k ∈ Z, we consider the action |k of SL2(R) on smooth functions f : H → C on

the complex upper half-plane H, given by

(f |kγ )(z) := (cz + d)−kf (γ z), for γ =
(

a b

c d

)
∈ SL2(R). (3.2)

Here γ z = az+b
cz+d is the Möbius transformation.

Now we define the action |k for k ∈ 1
2 + Z. We let

( c
d

)
be the Kronecker symbol.

For an odd integer d, we set

εd :=
⎧⎨
⎩1 if d ≡ 1 mod 4,

i if d ≡ 3 mod 4,
(3.3)

so that ε2
d = (−1

d

)
. We set the implied logarithm to equal its principal branch so that

−π <arg(z) ≤ π . We define the action |k of �0(N), for 4|N, on smooth functions f : H → C

as follows:

(f |kγ )(z) :=
( c

d

)
ε2k

d (cz + d)−kf (γ z) for all γ =
(

∗ ∗
c d

)
∈ �0(N). (3.4)

In the case of half-integral weight, Shimura [20] uses the formalism of the full

metaplectic group for the definition of the action. From that more general framework,

in the sequel, we will only need the following special cases (see, e.g., the proof of [20,

Proposition 5.1]): let WM =
(

0 −√
M

−1
√

M 0

)
for M ∈ N. We have

(f |kWM)(z) = (f |kW−1
M )(z) = f (WMz)(−i

√
Mz)−k. (3.5)

For a ∈ R+ and b ∈ R, we have

(
f
∣∣∣
k

(
1
a b

0 a

))
(z) = a−kf

(
z + ba

a2

)
. (3.6)

Notice the extra −i in the formula (3.5) in the half-integral weight case.

With this notation, we now state the definition for harmonic Maass forms.

Definition 3.1. Let N ∈ N and suppose that 4|N when k ∈ 1
2 + Z. Let ψ be a Dirichlet

character modulo N. A harmonic Maass form of weight k and character ψ for �0(N) is

a smooth function f : H → C such that:

i). For all γ = ( ∗ ∗∗ d

) ∈ �0(N), we have f |kγ = ψ(d)f .
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ii). �k(f ) = 0.

iii). For each γ = ( ∗ ∗
c d

) ∈ SL2(Z), there is a polynomial P(z) ∈ C[e−2π iz], such that

f (γ z)(cz + d)−k − P(z) = O(e−εy), as y → ∞, for some ε > 0. (3.7)

We let Hk(N, ψ) denote the space of harmonic Maass forms with weight k and character

ψ for �0(N). On replacing (3.7) with f (γ z)(cz + d)−k = O(eεy), we obtain a space denoted

by Hk(N, ψ)

To describe the Fourier expansions of the elements of Hk(N, ψ), we recall the

definition and the asymptotic behaviour of the incomplete Gamma function. For r, z ∈ C

with 	(r) > 0, we define the incomplete Gamma function as

�(r, z) :=
∫ ∞

z
e−ttr dt

t
. (3.8)

When z �= 0, �(r, z) is an entire function of r (see [18, §8.2(ii)]). We note the asymptotic

relation for x ∈ R (see [18, (8.11.2)])

�(s, x) ∼ xs−1e−x as |x| → ∞. (3.9)

With this notation, we can state the following theorem due to Bruinier and Funke

[9, (3.2)]

Theorem 3.2 ([9]). Let k ∈ 1
2Z. Each f ∈ Hk(N, ψ) has the absolutely convergent Fourier

expansion

f (z) =
∑

n≥−n0

a(n)e2π inz +
∑
n<0

b(n)�(1 − k, −4πny)e2π inz (3.10)

for some a(n), b(n) ∈ C, and n0 ∈ N. Analogous expansions hold at the other cusps.

A subspace of particular importance is the space S!
k(N, ψ) of weakly holomorphic

cusp forms with weight k ∈ 2Z and character ψ for �0(N). It consists of f ∈ Hk(N, ψ),

which are holomorphic and have vanishing constant terms at all cusps.

We finally note (cf. [9, Lemma 3.4]) that

a(n) = O(eC
√

n), b(−n) = O(eC
√

n) as n → ∞ for some C > 0. (3.11)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/18/15729/6827514 by guest on 25 Septem
ber 2023
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4 L-Series Associated to Harmonic Maass Forms

Let C(R,C) be the space of piece-wise smooth complex-valued functions on R. We recall

the notation Lϕ for the Laplace transform of the function ϕ on R+ given in (1.2), when

the integral is absolutely convergent. For s ∈ C, we define

ϕs(x) := ϕ(x)xs−1. (4.1)

Note that ϕ1 = ϕ.

Let M be a positive integer and k ∈ 1
2Z. For each function f on H given by the

absolutely convergent series

f (z) =
∑

n≥−n0

a(n)e2π in z
M +

∑
n<0

b(n)�

(
1 − k,

−4πny

M

)
e2π in z

M , (4.2)

let Ff be the space of functions ϕ ∈ C(R,C) such that the integral defining (Lϕ)(s) (resp.

(Lϕ2−k)(s)) converges absolutely for all s with 	(s) ≥ −2πn0 (resp. 	(s) > 0), and the

following series converges:

∑
n≥−n0

|a(n)|(L|ϕ|)
(
2π

n

M

)
+

∑
n<0

|b(n)|
(

4π |n|
M

)1−k ∫ ∞

0

(L|ϕ2−k|)
(−2πn(2t+1)

M

)
(1 + t)k

dt. (4.3)

This definition expresses the condition required for absolute and uniform convergence

to be guaranteed in the setting we will be working. We note that this construction is

possible for any real k.

Remark 4.1. In the proof of Theorem 4.5, we will see that, for the functions f , we will

be considering the space Ff contains the compactly supported functions.

With this notation we state the following definition.

Definition 4.2. Let M be a positive integer and k ∈ 1
2Z. Let f be a function on H given

by the Fourier expansion (4.2). The L-series of f is defined to be the map Lf : Ff → C

such that, for ϕ ∈ Ff ,

Lf (ϕ) =
∑

n≥−n0

a(n)(Lϕ)(2πn/M)

+
∑
n<0

b(n)(−4πn/M)1−k
∫ ∞

0

(Lϕ2−k)(−2πn(2t + 1)/M)

(1 + t)k
dt. (4.4)
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Remark 4.3. As mentioned in §2, this definition is related with previously defined

and studied L-series. See page 16 for details on the precise relation. The domain of the

map Lf can be extended to a larger class of test functions ϕ to account more directly for

series such as (2.8). However, for the purposes of this work, Ff is sufficient.

To prove the converse theorem in the case of non-holomorphic elements of

Hk(N, ψ), we will also need the following renormalised version of the partial derivative

in terms of x, where z = x + iy ∈ H:

(δkf )(z) := z
∂f

∂x
(z) + k

2
f (z). (4.5)

The context of this operator is that, in contrast to holomorphic functions, to ensure

vanishing of a general eigenfunction F of the Laplacian, it is not enough to show

vanishing on the imaginary axis. In addition, it is required that ∂F/∂x ≡ 0 on the

imaginary axis. The operator δk enables us to formulate a condition in the converse

theorem that leads to that vanishing.

Recalling the Fourier expansion given in (4.2), we have

(δkf )(z) = k

2
f (z) +

∑
n≥−n0

a(n)
(
2π in

z

M

)
e2π in z

M

+
∑
n<0

b(n)
(
2π in

z

M

)
�

(
1 − k,

−4πny

M

)
e2π in z

M . (4.6)

Although the expansion of δkf is not of the form (4.2), we can still assign a class of

functions Fδkf and an L-series map Lδkf : Fδkf → C to it. Specifically, we let Fδkf consist

of ϕ ∈ C(R,C) such that the following series converges:

2π
∑

n≥−n0

|a(n)n|(L|ϕ2|)(2πn/M)

+ 2π
∑
n<0

|b(n)n|(−4πn/M)1−k
∫ ∞

0

(L|ϕ3−k|)(−2πn(2t + 1)/M)

(1 + t)k
dt. (4.7)

Then, we let Lδkf be such that, for ϕ ∈ Fδkf ,

Lδkf (ϕ) := k

2
Lf (ϕ) − 2π

M

∑
n≥−n0

a(n)n(Lϕ2)(2πn/M)

− 2π

M

∑
n<0

b(n)n(−4πn/M)1−k
∫ ∞

0

(Lϕ3−k)(−2πn(2t + 1)/M)

(1 + t)k
dt. (4.8)

This converges absolutely.
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Lemma 4.4. Let f be a function on H as a series in (4.2). For ϕ ∈ Ff , the L-series Lf (ϕ)

can be given by

Lf (ϕ) =
∫ ∞

0
f (iy)ϕ(y)dy. (4.9)

Similarly, for ϕ ∈ Fδkf ,

Lδkf (ϕ) =
∫ ∞

0
(δkf )(iy)ϕ(y)dy, (4.10)

where δkf is defined in (4.5) and Lδkf in (8).

Proof. By Definition 4.2, for ϕ ∈ Ff ,

Lf (ϕ) =
∑

n≥−n0

a(n)(Lϕ)(2πn/M)

+
∑
n<0

b(n)(−4πn/M)1−k
∫ ∞

0

(Lϕ2−k)(−2πn(2t + 1)/M)

(1 + t)k
dt (4.11)

and this series converges absolutely. Since ϕ ∈ Ff , we can interchange the order

of summation and integration and write the “holomorphic” part of the series Lf (ϕ),

according to

(Lϕ)

(
2πn

M

)
=

∫ ∞

0
ϕ(y)e−2πn y

M dy. (4.12)

For the remaining part, thanks to

�(a, z) = zae−z
∫ ∞

0

e−zt

(1 + t)1−a dt (valid for	(z) > 0) (4.13)

(cf. [18, (8.6.5)]) we can interchange the order of integration to re-write the “non-

holomorphic” part of the series Lf (ϕ), according to

∫ ∞

0
�

(
1 − k, −4πn

y

M

)
e−2πn y

M ϕ(y)dy =
(−4πn

M

)1−k ∫ ∞

0

Lϕ2−k

(−2πn(2t+1)
M

)
(1 + t)k

dt. (4.14)

The same proof works for Lδkf (ϕ). �
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Our goal in the remainder of this section is to state and prove the functional

equation of the L-series Lf (ϕ), when f ∈ Hk(N, ψ).

Let f be a function on H with the given Fourier expansion (4.2) with M = 1.

Let D be a positive integer, and let χ be a Dirichlet character modulo D. We define the

“twist” fχ by the Dirichlet character χ , which has a similar series expansion (17) given

below, with M = D in (4.2), and then we have the corresponding L-series Lfχ (ϕ) as in (18)

below. Then, under the assumption that f is an element of the space Hk(N, ψ) of weight k

harmonic Maass forms for level N and character ψ , we state and prove the functional

equation of the L-series of fχ . Note that χ is not necessarily primitive.

For a Dirichlet character χ modulo D, for each n ∈ Z, we define the generalized

Gauss sum

τχ (n) :=
∑

u mod D

χ(u)e2π in u
D . (4.15)

Let f be a function on H with the Fourier expansion (4.2) with M = 1:

f (z) =
∑

n≥−n0

a(n)e2π inz +
∑
n<0

b(n)�(1 − k, −4πny)e2π inz. (4.16)

Then we define the twisted functions fχ as

fχ (z) := D
k
2

∑
u mod D

χ(u)

⎛
⎝f

∣∣
k

⎛
⎝ 1√

D
u√
D

0
√

D

⎞
⎠

⎞
⎠ (z)

=
∑

n≥−n0

a(n)τχ̄ (n)e2π in z
D +

∑
n<0

b(n)τχ̄ (n)�
(
1 − k, −4πn

y

D

)
e2π in z

D . (4.17)

Then the L-series for fχ and δkfχ are

Lfχ (ϕ) =
∑

n≥−n0

τχ̄ (n)a(n)(Lϕ)(2πn/D)

+
∑
n<0

τχ̄ (n)b(n)(−4πn/D)1−k
∫ ∞

0

L(ϕ2−k)(−2πn(2t + 1)/D)

(1 + t)k
dt (4.18)
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and

Lδkfχ (ϕ) = k

2
Lfχ (ϕ) − 2π

D

∑
n≥−n0

nτχ̄ (n)a(n)(Lϕ2)(2πn/D)

− 2π

D

∞∑
n<0

nτχ̄ (n)b(n)(−4πn/D)1−k
∫ ∞

0

(Lϕ3−k)(−2πn(2t + 1)/D)

(1 + t)k
dt, (4.19)

for ϕ ∈ Ffχ ∩ Fδk(fχ ). By Lemma 4.4, we have

Lfχ (ϕ) =
∫ ∞

0
fχ (iy)ϕ(y)dy, (4.20)

Lδkfχ (ϕ) =
∫ ∞

0
(δkfχ )(iy)ϕ(y)dy. (4.21)

Before stating the functional equation of the Lfχ , we introduce another notation.

For each a ∈ 1
2Z, M ∈ N and ϕ : R+ → C, we define (note the change in sign convention

from earlier in this paper for the action of WM on functions on H)

(ϕ|aWM)(x) := (Mx)−aϕ

(
1

Mx

)
for all x > 0 (4.22)

Here recall that WM =
(

0 −√
M

−1
√

M 0

)
. Since this action applies to functions on R+ and

the action (3.5) to complex functions, the use of the same notation should not cause a

confusion but some caution is advised.

We also define a set of “test functions” we will be using in most of the remaining

results. Let Sc(R+) be a set of complex-valued, compactly supported, and piecewise

smooth functions on R+, which satisfy the following condition: for any y ∈ R+, there

exists ϕ ∈ Sc(R+) such that ϕ(y) �= 0.

We can now prove the functional equation of our L-function Lf (ϕ) and its twists.

Theorem 4.5. Fix k ∈ 1
2Z. Let N ∈ N, and let ψ be a Dirichlet character modulo N. When

k ∈ 1
2 +Z, assume that 4|N. Suppose that f is an element of Hk(N, ψ) with expansion (4.2)

and that χ is a character modulo D with (D, N) = 1. Consider the maps Lfχ , Lδkfχ : Ffχ ∩
Fδkfχ → C given in (18) and (19). Set

g := f |kWN (4.23)
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and Ff ,g := {
ϕ ∈ Ff ∩ Fδkf : ϕ|2−kWN ∈ Fg ∩ Fδkg

}
. Then Ff ,g �= {0} and we have the

following functional equations. For each ϕ ∈ Ff ,g, if k ∈ Z,

Lfχ (ϕ) = ik
χ(−N)ψ(D)

Nk/2−1
Lgχ̄

(ϕ|2−kWN), (4.24)

Lδkfχ (ϕ) = −ik
χ(−N)ψ(D)

Nk/2−1
Lδkgχ̄

(ϕ|2−kWN). (4.25)

For each ϕ ∈ Ff ,g, if k ∈ 1
2 + Z,

Lfχ (ϕ) = ψD(−1)k− 1
2 ψD(N)

χ(−N)ψ(D)

εDN−1+k/2
Lgχ̄ψD

(ϕ|2−kWN), (4.26)

Lδkfχ (ϕ) = −ψD(−1)k− 1
2 ψD(N)

χ(−N)ψ(D)

εDN−1+k/2
Lδkgχ̄ψD

(ϕ|2−kWN). (4.27)

Here ψD(u) = ( u
D

)
is the real Dirichlet character modulo D, given by the Kronecker

symbol.

Proof. We first note that, exactly as in the classical case, we can show that g ∈
Hk(N, ψ̄), if k ∈ Z and g ∈ Hk(N, ψ̄

(N
•
)
), if k ∈ 1

2 + Z. We further observe that Ff ,g is

non-zero because, clearly, Sc(R+) is closed under the action of WN and each Ff and Fδkf

contains Sc(R+). Indeed, if ϕ ∈ Sc(R+), with Supp(ϕ) ⊂ (c1, c2) (c1, c2 > 0), then, for all

x > 0,

L(|ϕ|)(x) =
∫ c2

c1

|ϕ(y)|e−xydy �c1,c2,ϕ e−xc1 (4.28)

and thus, using (3.11) , we deduce that the series in (4.3) are convergent . We further

note that if ϕ ∈ Ff , then ϕ ∈ Ffχ , for all χ . This follows from (18) and the boundedness

of τχ̄ (n).

Now we prove the functional equations for Lfχ (ϕ) and Lδkfχ (ϕ). Since they depend

on whether k ∈ Z or k ∈ 1
2 + Z, we consider the two cases separately.

Case I: k ∈ Z. As in the classical case, the definition of g = f |kWN and the identity

WN

⎛
⎝ 1√

D
u√
D

0
√

D

⎞
⎠ W−1

N = W−1
N

⎛
⎝ 1√

D
u√
D

0
√

D

⎞
⎠ WN =

(
D −v

−Nu 1+Nuv
D

)⎛
⎝ 1√

D
v√
D

0
√

D

⎞
⎠ , (4.29)
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valid for u, v ∈ Z with gcd(u, D) = 1 and Nuv ≡ −1 mod D, imply that

fχ |kWN = χ(−N)ψ(D)gχ̄ . (4.30)

By (4.20), by changing the variable y to 1
Ny , and then applying the identity (4.30),

Lfχ (ϕ) =
∫ ∞

0
fχ

(
i

1

Ny

)
ϕ

(
1

Ny

)
N−1y−2dy

= χ(−N)ψ(D)ik

N
k
2 −1

∫ ∞

0
gχ̄ (iy)(ϕ|2−kWN)(y)dy = χ(−N)ψ(D)ik

N
k
2 −1

Lgχ̄
(ϕ|2−kWN). (4.31)

This gives the first equality of (4.24).

For the second equality (4.25), we apply the operator δk to both sides of (4.30)

(δk(fχ |kWN))(z) = k

2
(fχ |kWN)(z) + z

∂

∂x
(fχ |kWN)(z) = χ(−N)ψ(D)(δkgχ̄ )(z). (4.32)

For the left hand side, we claim that the differential operator δk and action of WN via |k
almost commute with each other:

(δk(fχ |kWN))(z) = k

2
(fχ |kWN)(z) + z

∂

∂x

(
(
√

Nz)−kfχ

(
− 1

Nz

))
= −((δkfχ )|kWN)(z). (4.33)

Then we get

((δkfχ )|kWN)(z) = −χ(−N)ψ(D)(δkgχ̄ )(z). (4.34)

As above, applying (4.21) and using the identity above, we get

Lδkfχ (ϕ) = ikN− k
2 +1

∫ ∞

0
(δkfχ )|kWN)(iy)(ϕ|2−kWN)(y)dy

= −χ(−N)ψ(D)ikN− k
2 +1

∫ ∞

0
(δkgχ̄ )(iy)(ϕ|2−kWN)(y)dy

= −χ(−N)ψ(D)ikN− k
2 +1Lδkgχ̄

(ϕ|2−kWN). (4.35)

Case II: k ∈ 1
2 + Z. Recall that in this case we assume that 4 | N. We first note that

g = f |kWN is a modular form of weight k with character ψ̄ · (N
•
)

for �0(N). Indeed, for
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each γ = (
a b
c d

) ∈ �0(N), the identity

WNγ =
(

d − c
N

−bN a

)
WN (4.36)

implies

g(γ z)(cz + d)−k = ψ(a)ε−2k
a

(−bN

a

)
(f |kWN)(z) = ψ(d)ε−2k

d

( c

d

) (
N

d

)
g(z) (4.37)

since a ≡ d mod 4, ad ≡ 1 mod (−bN) and −bc ≡ 1 mod d.

Now, according to Shimura’s [20, Proposition 5.1], we have

fχ

(
− 1

Nz

) (
−i

√
Nz

)−k = ψD(−1)k− 1
2 ψD(N)

χ(−N)ψ(D)

εD
gχ̄ψD

(z). (4.38)

With this, we obtain, similarly to Case I, the functional equation (4.26) and the

functional equation (4.27). �

As pointed out in the introduction, meromorphic continuation does not play a

role in Theorem 4.5 and in its converse theorem, Theorem 5.1. However, it is possible,

depending on the application one has in mind, to consider a setting for the theorem

that makes meromorphic continuation relevant. To illustrate this point, we describe

such a setting and prove a theorem where meromorphic continuation is part of the

conclusion.

Specifically, the test functions, for which the series Lf (ϕ) converges absolutely

and the integral
∫ ∞

0 f (iy)ϕ(y)dy converges (absolutely) are different. When f is a

holomorphic cusp form of weight k then ϕ(y) = ys+ k−1
2 −1 makes the series Lf (ϕ)

converge absolutely for 	(s) > 1, but the integral
∫ ∞

0 f (iy)ϕ(y)dy converges and defines

a meromorphic function for any s ∈ C, which gives analytic continuation for Lf (ϕ) to

any s ∈ C. We discuss the analogue of this phenomenon of the L-series in the remainder

of this section.

Recall that ϕs(x) = ϕ(x)xs−1. Then, for y > 0 and s ∈ C with 	(s) > 1
2 , by Cauchy–

Schwarz inequality,

(L|ϕs|)(y) ≤
(
L(|ϕ|2)(y)

) 1
2

y−	(s)+ 1
2 (�(2	(s) − 1))

1
2 . (4.39)
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Now, for a given function f on H with the series expansion (4.2) with M = 1, consider

ϕ ∈ Ff . In particular,

∑
n≥−n0

|a(n)|
(
(L|ϕ|2)(2πn)

) 1
2 +

∑
n<0

|b(n)||(−4πn)|1−k
∫ ∞

0

(
(L|ϕ2−k|2)(−2πn(2t + 1))

) 1
2

(1 + t)k
dt

(4.40)

converges. Then, with (4.39), we have ϕs ∈ Ff for 	(s) > 1
2 .

Theorem 4.6. Let k ∈ Z and f ∈ Hk(N, ψ). Set g = f |kWN and let n0 ∈ N be such that

f (z) and g(z) are O(e2πn0y) as y = �(z) → ∞. Suppose that ϕ ∈ C(R,C) is a non-zero

function such that, for some ε > 0, ϕ(x) and ϕ(x−1) are o(e−2π(n0+ε)x) as x → ∞. We

further assume that series (4.40) converges. Then the series

L(s, f , ϕ) := Lf (ϕs) (4.41)

converges absolutely for 	(s) > 1
2 , has an analytic continuation to all s ∈ C and satisfies

the functional equation

L(s, f , ϕ) = N−s− k
2 +1ikL(1 − s, g, ϕ|1−kWN). (4.42)

Proof. By the assumption on the growth of ϕ(y) we deduce that L(|ϕ|2)(y) converges

absolutely for y ≥ −2πn0. This, combined with the assumption on (4.40) and the remarks

before the statement of the theorem, implies that ϕs ∈ Ff for 	(s) > 1
2 . Therefore,

recalling the integral representation of Lf (ϕs) = L(s, f , ϕ) in (4.9), separating the integral

at
√

N
−1

, and then changing variables, we get

L(s, f , ϕ) =
∫ ∞

√
N

−1
f (i(Nx)−1)ϕ((Nx)−1)(Nx)−s dx

x
+

∫ ∞
√

N
−1

f (ix)ϕ(x)xs dx

x
. (4.43)

Recall that

f (i(Nx)−1) = (f |kWN)(ix)(
√

Nix)k = g(ix)ikN
k
2 xk (4.44)

and

ϕ((Nx)−1) = (ϕ|aWN)(x)(Nx)a (4.45)
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for any a ∈ 1
2Z. With a = 1 − k, we get, for 	(s) > 1

2

L(s, f , ϕ) = ikN− k
2 +1−s

∫ ∞
√

N
−1

g(iy)(ϕ|1−kWN)(x)x1−s dx

x
+

∫ ∞
√

N
−1

f (ix)ϕ(x)xs dx

x
. (4.46)

Because of the growth conditions for ϕ at 0 and ∞, the integrals in the RHS are well-

defined for all s ∈ C and give a holomorphic function.

Since g|kWN = f |kW2
N = (−1)kf and ((ϕ|1−kWN)|1−kWN)(x) = N−1+kϕ(x), we

obtain the functional equation (4.42). �

5 The Converse Theorem

To state and prove the converse of Theorem 4.5, we recall some further notation from

previous sections.

For each a, b ∈ R such that a < b, we denote by 1[a,b](x) the characteristic

function of the closed interval [a, b]. Further, for each s ∈ C and ϕ : R+ → C, we have

defined ϕs : R+ → C so that ϕs(x) = xs−1ϕ(x) or all x ∈ R+. Finally, let Sc(R+) be a

set of complex-valued, compactly supported, and piecewise smooth functions on R+,

which satisfy the following condition: for any y ∈ R+, there exists ϕ ∈ Sc(R+) such that

ϕ(y) �= 0.

Theorem 5.1. Let N be a positive integer and ψ be a Dirichlet character modulo N.

For j ∈ {1, 2}, let (aj(n))n≥−n0
for some integer n0 and (bj(n))n<0 be sequences of complex

numbers such that aj(n), bj(n) = O(eC
√|n|) as |n| → ∞ for some constant C > 0. We

define smooth functions fj : H → C given by the following Fourier expansions associated

to the given sequences:

fj(z) =
∑

n≥−n0

aj(n)e2π inz +
∑
n<0

bj(n)� (1 − k, −4πny) e2π inz. (5.1)

For all D ∈ {1, 2, . . . , N2 − 1}, gcd(D, N) = 1, let χ be a Dirichlet character modulo D. For

any ϕ ∈ Sc(R+), for any D and χ , we assume that,

Lf1χ
(ϕ) = ik

χ(−N)ψ(D)

N
k
2 −1

Lf2χ
(ϕ|2−kWN) (5.2)

and

Lδk(f1χ )(ϕ) = −ik
χ(−N)ψ(D)

N
k
2 −1

Lδk(f2χ )(ϕ|2−kWN), (5.3)
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if k ∈ Z, and

Lf1χ
(ϕ) = ψD(−1)k− 1

2 ψD(N)
χ(−N)ψ(D)

εDN
k
2 −1

Lf2χψD
(ϕ|2−kWN) (5.4)

and

Lδk(f1χ )(ϕ) = −ψD(−1)k− 1
2 ψD(N)

χ(−N)ψ(D)

εDN
k
2 −1

Lδk(f2χψD )(ϕ|2−kWN) (5.5)

if k ∈ 1
2 + Z. Here ψD(u) = ( u

D

)
belongs to Hk(�0(N), ψ).

Then, the function f1 is a harmonic Maass form with weight k and Nebentypus

character ψ for �0(N) and f2 = f1|kWN .

Remark 5.2. There is some freedom in the choice of “test functions” ϕ in this theorem.

The compactly supported functions we use in this formulation allow for a cleaner

statement and suffices for our applications. Other choices may be more appropriate

for different goals and then, additional aspects, such as meromorphic continuation (cf.

Theorem 4.6), may become important.

In a different direction, we can reduce the size of the set of the test functions

required in the converse theorem. For instance, we may assume that our functional

equations hold only for the family of test functions ϕs(x) = xs−1ϕ(x) (s ∈ C) for a single

ϕ ∈ Sc(R+). The converse theorem in this setting can be proved in an essentially identical

way as below.

Proof. With the bounds for aj(n), bj(−n) and the asymptotic behaviour of �(s, x) given

in (3.9), we have that fj(z) converges absolutely to a smooth function on H for j ∈ {1, 2}.
By the form of the Fourier expansion, f1 and f2 satisfy condition (ii) and condition (iii)

at ∞ of Definition 3.1. Likewise, for any Dirichlet character χ modulo D, recall that, by

definition

fjχ (z) =
∑

n≥−n0

τχ̄ (n)aj(n)e2π inz/D +
∞∑

n<0

τχ̄ (n)bj(n)�(1 − k, −4πny/D)e2π inz/D (5.6)

and

δk(fjχ )(z) = z
∂

∂x
fjχ (z) + k

2
fjχ (z), (5.7)

for j ∈ {1, 2}, are absolutely convergent.
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Our first aim is to show that those functions satisfy the relation (4.30) (if k ∈ Z):

(f1χ |kWN)(z) = χ(−N)ψ(D)f2χ (z) (5.8)

and (4.38) (if k ∈ 1
2 + Z):

(f1χ |kWN)(z) = ψD(−1)k− 1
2 ψD(N)

χ(−N)ψ(D)

εD
f2χψD

(z). (5.9)

Note that for any s ∈ C and ϕ ∈ Sc(R+), ϕs(y) = ys−1ϕ(y) ∈ Sc(R+). We first show

that ϕs satisfies (4.3) for fjχ and hence belongs to Ff1χ
∩ Ff2χ . Indeed, since ϕ ∈ Sc(R+),

there exist 0 < c1 < c2 and C > 0 such that Supp(ϕ) ⊂ [c1, c2] and |ϕ(y)| ≤ C for any

y > 0. Then, for j ∈ {1, 2} and n > 0,

|aj(n)|(L|ϕs|)
(

2πn

D

)
≤ C|aj(n)|

∫ c2

c1

y	(s)e−2π n
D y dy

y

≤ C|aj(n)|e−2π n
D c1(c2 − c1) max{c	(s)−1

1 , c	(s)−1
2 }. (5.10)

Thus,

∑
n≥−n0

|τχ̄ (n)||aj(n)|(L|ϕs|)(2πn/D) ≤
0∑

n=−n0

|τχ̄ (n)||aj(n)|(L|ϕs|)(2πn/D)

+ C(c2 − c1) max{c	(s)−1
1 , c	(s)−1

2 }
∞∑

n=1

|τχ̄ (n)||aj(n)|e−2π n
D c1 < ∞, (5.11)

for any s ∈ C and for any Dirichlet character χ modulo D. Likewise, for n < 0, t > 0:

(L|ϕs+1−k|)
(−2πn(2t + 1)

D

)
�

∫ c2

c1

e
2πny(2t+1)

D y	(s) dy

yk
� e

2πnc1(2t+1)

D max{c	(s)−k
1 , c	(s)−k

2 }

and therefore

∑
n<0

|τχ̄ (n)||bj(n)|
∣∣∣∣4πn

D

∣∣∣∣ 1−k
∫ ∞

0

(L|ϕs+1−k|)
(
−2πn(2t+1)

D

)
(1 + t)k

dt

� max{c	(s)−k
1 , c	(s)−k

2 }
(∫ ∞

0
e

−4πtc1
D (1 + t)−kdt

) ∑
n<0

|τχ̄ (n)||bj(n)|
(

4π |n|
D

)1−k

e
−2π |n|c1

D

(5.12)
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converge for any s ∈ C and for any Dirichlet character χ modulo D. Thus ϕs ∈ Ff1χ
∩

Ff2χ̄
and by applying Weierstrass theorem, we see that Lfjχ

(ϕs) is an analytic function

on s ∈ C.

This allows us to interchange summation and integration as in Lemma 4.4 and,

with Mellin inversion,

fjχ (iy)ϕ(y) = 1

2π i

∫
(σ )

Lfjχ
(ϕs)y

−sds, (5.13)

for all σ ∈ R. In the same way, we see that Lδk(fjχ )(ϕs) is an analytic function for s ∈ C

and deduce

δk(fjχ )(iy)ϕ(y) = 1

2π i

∫
(σ )

Lδk(fjχ )(ϕs)y
−sds. (5.14)

Now we will show that Lfjχ
(ϕs) → 0 as |�(s)| → ∞, uniformly for 	(s), in any

compact set in C. Indeed, with an integration by parts, we have

Lf1χ
(ϕs) =

∫ ∞

0
f1χ (iy)ϕ(y)ys dy

y
= −1

s

∫ ∞

0

d

dy

(
f1χ (iy)ϕ(y)

)
ysdy (5.15)

since ϕ(y) vanishes in (0, ε) ∪ (1/ε, ∞) for some ε > 0. Then

∣∣∣Lf1χ
(ϕs)

∣∣∣ ≤ 1

|s|
∫ ∞

0

∣∣∣∣ d

dy

(
f1χ (iy)ϕ(y)

)∣∣∣∣ y	(s)dy → 0, (5.16)

as |�(s)| → ∞. The corresponding fact for Lδk(f1χ )(ϕs) is verified in the same way.

We can therefore move the line of integration in (5.13) from 	(s) = σ to k − σ ,

and then changing the variable s to k − s, and get

f1χ (iy)ϕ(y) = 1

2π i

∫
(k−σ)

Lf1χ
(ϕs)y

−sds = 1

2π i

∫
(σ )

Lf1χ
(ϕk−s)y

−k+sds. (5.17)

Similarly, we also have

δk(f1χ )(iy)ϕ(y) = 1

2π i

∫
(σ )

Lδk(f1χ )(ϕk−s)y
−k+sds. (5.18)

To proceed we separate two cases: k ∈ Z or k ∈ Z + 1
2 .

Case I: k ∈ Z Applying (5.2) to (5.17), we get

f1χ (iy)ϕ(y) = ik
χ(−N)ψ(D)

N
k
2 −1

1

2π i

∫
(σ )

Lf2χ
(ϕk−s|2−kWN)y−k+sds. (5.19)
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We have that ϕk−s|2−kWN ∈ Ff1χ
∩ Ff2χ̄

and, for each y > 0,

(ϕk−s|2−kWN)(y) = (Ny)k−2ϕk−s

(
1

Ny

)
= (Ny)s−1ϕ

(
1

Ny

)
. (5.20)

So we get

Lf2χ̄
(ϕk−s|2−kWN) =

∫ ∞

0
f2χ̄ (iy)(ϕk−s|2−kWN)(y)dy =

∫ ∞

0
f2χ̄ (iy)(Ny)s−1ϕ

(
1

Ny

)
dy.

(5.21)

Then, by the Mellin inversion,

N−1f2χ̄

(
− 1

iNy

)
ϕ(y) = 1

2π i

∫
(σ )

Lf2χ̄
(ϕk−s|2−kWN)ysds. (5.22)

Therefore,

f1χ (iy)ϕ(y) = ik
χ(−N)ψ(D)

N
k
2

y−kf2χ̄

(
− 1

iNy

)
ϕ(y), (5.23)

Similarly, applying (5.3) to (5.18), we get

δk(f1χ )(iy)ϕ(y) = ik+2 χ(−N)ψ(D)

N
k
2

y−kδk(f1χ̄ )

(
− 1

iNy

)
ϕ(y). (5.24)

Therefore, for y ∈ R+ such that ϕ(y) �= 0, we have

f1χ (iy) = ik
χ(−N)ψ(D)

N
k
2

y−kf2χ̄

(
− 1

iNy

)
(5.25)

and

δk(f1χ )(iy) = ik+2 χ(−N)ψ(D)

N
k
2

y−kδk(f2χ̄ )

(
− 1

iNy

)
. (5.26)

Because of the choice of the set of functions Sc(R+), the above relation is true for all

y > 0.

We now define

Fχ (z) := f1χ (z) − χ(−N)ψ(D)(f2χ̄ |kW−1
N )(z). (5.27)
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The equations (5.25) and (5.26) imply that Fχ (iy) = 0 and ∂
∂x Fχ (iy) = 0. Now, Fχ is an

eigenfunction of the Laplace operator because f1χ and f2χ̄ are eigenfunctions of the

Laplace operator with the same eigenvalue. Recall that f1χ and f2χ̄ are eigenfunctions

of the Laplace operator because they are defined as a Fourier series of e2π inz and

�(1 − k, −4πny)e2π inz. Therefore (cf. e.g., [10, Lemma 1.9.2]), the vanishing of F and ∂
∂x F

on the imaginary axis implies that Fχ ≡ 0, and then

f1χ = χ(−N)ψ(D)(f2χ̄ |kW−1
N ). (5.28)

By (4.29) and the identity f1 = f2|kW−1
N (deduced on applying (5.28) with D = 1)

we get

f2χ̄ |kW−1
N =

∑
v mod D

gcd(v,D)=1,−Nuv≡1 mod D

χ(v)f1

∣∣∣∣
k

(
D −u

−Nv 1+Nuv
D

)⎛
⎝ 1√

D
u√
D

0
√

D

⎞
⎠ . (5.29)

With the definition of f1χ and f1 = f2|kW−1
N , we have

f1χ =
∑

u mod D
gcd(u,D)=1

χ(u)f1

∣∣∣∣
k

⎛
⎝ 1√

D
u√
D

0
√

D

⎞
⎠

= ψ(D)
∑

v mod D
gcd(v,D)=1,−Nuv≡1 mod D

χ(u)f1

∣∣∣∣
k

(
D −u

−Nv 1+Nuv
D

) ⎛
⎝ 1√

D
u√
D

0
√

D

⎞
⎠ , (5.30)

for χ(−Nv) = χ(u). By the orthogonality of the multiplicative characters, after taking

the sum over all characters modulo D, we deduce that, for each u and v such that

−Nuv ≡ 1 mod D, we have

f1 = ψ(D)f1

∣∣∣∣
k

(
D −u

−Nv 1+Nuv
D

)
, (5.31)

which is equivalent to

f1

∣∣∣∣
k

(
1+Nuv

D u

Nv D

)
= ψ(D)f1. (5.32)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/18/15729/6827514 by guest on 25 Septem
ber 2023



L-series of Harmonic Maass Forms 15753

This implies that f1 is invariant with the character ψ for the entire �0(N)

because, by [19], the following set of matrices generates �0(N):

N⋃
m=1

Sm ∪ {±I2}, (5.33)

where, for each positive m ∈ Z, Sm is the set consisting of one
(

t s
Nm D

) ∈ �0(N) for each

D in a set of congruence classes modulo Nm. Finally, as in the classical case, we deduce

that f1 is of at most exponential growth at all cusps.

Case II: k ∈ 1
2 + Z. Applying (5.4) to (5.13), we have

f1χ (iy)ϕ(y) = 1

2π i

∫
(σ )

Lf1χ
(ϕs)y

−sds

= ψD(−1)k− 1
2 ψD(N)

χ(−N)ψ(D)

εDN
k
2 −1

1

2π i

∫
(σ )

Lf2χ̄ψD
(ϕk−s|2−kWN)y−k+sds. (5.34)

By (5.20) (holding both for k ∈ Z and k �∈ Z) and Mellin inversion,

f1χ (iy)ϕ(y) = ψD(−1)k− 1
2 ψD(N)

χ(−N)ψ(D)

εDN
k
2

y−kf2χ̄ψD

(
− 1

iNy

)
ϕ(y). (5.35)

This is true for any ϕ ∈ Sc(R+). Because of our choice of Sc(R+), for any y > 0, we have

f1χ (iy) = ψD(−1)k− 1
2 ψD(N)

χ(−N)ψ(D)

εDN
k
2

y−kf2χ̄

(
− 1

iNy

)
(5.36)

= ψD(−1)k− 1
2 ψD(N)

χ(−N)ψ(D)

εD
(f2χ̄ψD

|kW−1
N )(iy).

Similarly, by the functional equation for Lδk(f1χ )(ϕs) given in (5.5), and applying the above

arguments, for any y > 0, we have

δk(f1χ )(iy) = −ψD(−1)k− 1
2 ψD(N)

χ(−N)ψ(D)

εDN
k
2

y−kδk(f2χ̄ψD
)

(
− 1

iNy

)
. (5.37)

We define

Fχ (z) = f1χ (z) − ψD(−1)k− 1
2 ψD(N)χ(−N)ψ(D)ε−1

D (f2χ̄ψD
|kW−1

N )(z). (5.38)
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The equations (5.36) and (5.37) imply that Fχ (iy) = 0 and ∂
∂x Fχ (iy) = 0. As in the Case I

(for k ∈ Z), since Fχ (z) is a Laplace eigenfunction, we deduce that Fχ (z) = 0, for any

Dirichlet character χ modulo D and we get

f1χ = ψD((−1)k− 1
2 N)χ(−N)ψ(D)ε−1

D f2χ̄ψD
|kW−1

N . (5.39)

With similar arguments as in Case I we get

∑
u mod D

gcd(u,D)=1

χ(u)f1

∣∣∣∣
k

⎛
⎝ 1√

D
u√
D

0
√

D

⎞
⎠

= ψ(D)
∑

v mod D
gcd(v,D)=1

−Nuv≡1 mod D

χ(u)f1

∣∣∣∣
k

(
D −u

−Nv 1+Nuv
D

) ⎛
⎝ 1√

D
u√
D

0
√

D

⎞
⎠ . (5.40)

By the orthogonality of the multiplicative characters, after taking the sum over all

characters χ modulo D, we deduce that, for each u and v such that −Nuv ≡ 1 mod D,

f1 = ψ(D)f1

∣∣∣∣
k

(
D −u

−Nv 1+Nuv
D

)
. (5.41)

Therefore

f1

∣∣∣∣
k

(
1+Nuv

D u

Nv D

)
= ψ(D)f1. (5.42)

The fact that the set (5.33) generates �0(N) implies the theorem in this case too. �

Corollary 5.3. With the notation of Theorem 5.1, let (aj(n))n≥−n0
(j = 1, 2) be sequences

of complex numbers such that aj(n) = O(eC
√

n) as n → ∞, for some C > 0. Define

holomorphic functions fj : H → C by the following Fourier expansions:

fj(z) =
∑

n≥−n0

aj(n)e2π inz. (5.43)
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For all D ∈ {1, 2, . . . , N2 − 1}, gcd(D, N) = 1, let χ be a Dirichlet character modulo D. For

each D, χ and any ϕ ∈ Sc(R+), we assume that,

Lf1χ
(ϕ) = ik

χ(−N)ψ(D)

N
k
2 −1

Lf2χ
(ϕ|2−kWN) (5.44)

if k ∈ Z, and

Lf1χ
(ϕ) = ψD(−1)k− 1

2 ψD(N)
χ(−N)ψ(D)

εDN
k
2 −1

Lf2χψD
(ϕ|2−kWN) (5.45)

if k ∈ 1
2 + Z. Then, the function f1 is a weakly holomorphic form with weight k and

character ψ for �0(N), and f2 = f1|kWN .

Proof. The proof is identical to that of the theorem except that, thanks to the

holomorphicity of f and g, (5.26) is not necessary and thus we do not need the functional

equations of Lδk(fjχ )(ϕ). �

In the case of N = 1 and the trivial character ψ mod 1, this corollary becomes

Theorem 1.1.

5.1 Alternative converse theorem for integral weight.

In the case of integer weight, it is possible to formulate the converse theorem so

that only primitive characters are required in the statement. However, the number of

primitive characters needed would be infinite and the extension to half-integral weights

less transparent. We state this theorem and prove it with emphasis on the parts it

differs from Theorem 5.1. In particular, we will use the recent method of “three circles”

[17], which extends to real-analytic functions, the classical vanishing result under a

condition about the action of infinite order elliptic elements.

We first introduce the following notation for the Gauss sum of a character χ

modulo D:

τ(χ) :=
∑

m mod D

χ(m)e2π i m
D . (5.46)

We recall that, when χ is primitive, we have τχ̄ (n) = χ(n)τ (χ̄).

Theorem 5.4. Let k ∈ Z, N ∈ N and ψ be a Dirichlet character modulo N. For j ∈ {1, 2},
let (aj(n))n≥−n0

for some integer n0 and (bj(n))n<0 be sequences of complex numbers
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such that aj(n), bj(n) = O(eC
√|n|) as |n| → ∞ for some constant C > 0. We define smooth

functions fj : H → C given by the following Fourier expansions associated to the given

sequences:

fj(z) =
∑

n≥−n0

aj(n)e2π inz +
∑
n<0

bj(n)� (1 − k, −4πny) e2π inz. (5.47)

For all D ∈ N (gcd(D, N) = 1), all primitive Dirichlet characters χ modulo D and all

ϕ ∈ Sc(R+), we assume that,

Lf1χ
(ϕ) = ik

χ(−N)ψ(D)

N
k
2 −1

Lf2χ
(ϕ|2−kWN) and

Lδk(f1χ )(ϕ) = −ik
χ(−N)ψ(D)

N
k
2 −1

Lδk(f2χ )(ϕ|2−kWN).

(5.48)

Then, the function f1 belongs to Hk(�0(N), ψ).

Proof. The deduction of (5.28) in the proof of Theorem 5.1 does not depend on whether

the character χ is primitive. Therefore, since the other assumptions of the theorems are

the same, we deduce

(f1χ |kWN)(z) = χ(−N)ψ(D)f2χ̄ (z). (5.49)

Applying this with Dz instead of z, we obtain

f̃1χ |kWND2 = χ(−N)ψ(D)
τ (χ)

τ(χ̄)
f̃2χ̄ ,

where, for j = 1, 2, f̃jχ (z) := χ(−1)τ (χ)
D fjχ (Dz). This coincides with equation [10, (5.13)],

which, by matrix operations, implies that, for each map on c(r) on the non-zero classes

modulo D such that
∑

c(r) = 0, we have

∑
r mod D
(r,D)=1

c(r)f2|k
(

D −r

−Nm t

)(
1 r

D

0 1

)
=

∑
r mod D
(r,D)=1

c(r)ψ(D)f2|k
(

1 r
D

0 1

)
, (5.50)

where, for each r, the integers t and m are such that Dt−Nmr = 1. We note that, once we

have such an identity for a given choice of the parameters r, t and m, then it will hold

for any other r, t such that Dt − Nmr = 1. In the proof of [10, Theorem 1.5.1 ], equation
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(5.50) implies that

g := f2|kγ − ψ(D)f2 where γ =
(

D r

Nm t

)
(5.51)

satisfies g = g|kM, for the elliptic element of infinite order

M =
(

1 2r
D

−2Nm
t −3 + 4

Dt

)
. (5.52)

Since the argument in [10] relies exclusively on algebraic manipulations in C[�0(N)], it

applies in our case as well. Therefore, g1 := g|kγ −1 = f2 − ψ(D)f2|kγ −1 satisfies

g1 = g1|kγ Mγ −1. (5.53)

As mentioned above, this holds for any r and t such that Dt − Nmr = 1. Let h1 :=
f2 − ψ(D)f2|kγ̃ −1 where

γ̃ =
(

D r + D

Nm t + Nm

)
= γ T. (5.54)

Here T = (
1 1
0 1

)
is the usual translation matrix. Let

M̃ =
(

1 2(r+D)
D

− 2Nm
(t+Nm)

−3 + 4
D(t+Nm)

)
. (5.55)

Then we have

h1 = h1|kγ̃ M̃γ̃ −1. (5.56)

Now, since f2 satisfies f2 = f2|kT, we have that

h1 = f2 − ψ(D)f2|kT−1γ −1 = g1. (5.57)

We claim that the elliptic elements of infinite order γ̃ M̃γ̃ −1 and γ Mγ −1 do not have any

fixed points in common. Clearly, this is equivalent to the claim that TM̃T−1 and M do

not share any fixed points. Indeed, the former has fixed points

1

DmN

(
1 − Dt ±

√
1 − D(2 + mNr)(mN + t) + D2t(mN + t)

)
(5.58)
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and the latter:

1

DmN

(
1 − Dt ±

√
1 − D(2 + mNr)t + D2t2)

)
. (5.59)

Their discriminants differ by DNm �= 0.

Therefore, the real-analytic function g1 is invariant under two infinite order

elliptic elements with distinct fixed points and, by [17, Theorem 3.11], it vanishes. The

completion of the proof is identical to that of [10, Theorem 1.5.1]. �

5.2 Example of using the converse theorem

Using the above two theorems, we can give an alternative proof of the classic fact that, if

k ∈ N and f is a weight 2−k weakly holomorphic cusp form, then the (k−1)-th derivative

of f is weakly holomorphic cusp form of weight k. [3, Lemma 5.3] Our purpose is to give

a “proof of concept” of the way our constructions work.

Proposition 5.5. Let k ∈ 2N, and let f ∈ S!
2−k for SL2(Z) with Fourier expansion (1.3).

Then the function f1 given by

f1(z) =
∞∑

n=−n0
n�=0

a(n)(2πn)k−1qn (5.60)

is an element of S!
k.

Proof. Since f ∈ S!
2−k, nk−1a(n) = O(eC

√
n) as n → ∞ for some C > 0. For ϕ ∈ Sc(R+),

Lf1
(ϕ) =

∞∑
n=−n0

n�=0

(2πn)k−1a(n)(Lϕ)(2πn) =
∞∑

n=−n0
n�=0

a(n)(L(α(ϕ))(2πn) = Lf (α(ϕ)) (5.61)

where

α(ϕ)(x) := L−1(uk−1(Lϕ)(u))(x). (5.62)

Now, we note that [14, 4.1(8)] gives

(Lϕ(k−1))(u) = uk−1(Lϕ)(u) − uk−2ϕ(0) − uk−3ϕ′(0) − · · · = uk−1(Lϕ)(u)
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since ϕ is supported in (c1, c2) ⊂ R>0. Then

α(ϕ) = L−1(uk−1(Lϕ)(u)) = L−1(Lϕ(k−1)) = ϕ(k−1) (5.63)

and hence, α(ϕ) ∈ Ff . Therefore, Theorem 4.5 applies, to give (for f ∈ S!
2−k)

Lf1
(ϕ) = Lf (α(ϕ)) = i2−kLf (α(ϕ)|kW1). (5.64)

Here, recall that (α(ϕ)|kW1)(x) = x−kα(ϕ)(x−1). On the other hand,

Lf1
(ϕ|2−kW1) = Lf (α(ϕ|2−kW1)) (5.65)

We claim that

α(ϕ)|kW1 = −α(ϕ|2−kW1), (5.66)

which is equivalent to

− uk−1(L(ϕ|2−kW1))(u) = L(α(ϕ)|kW1)(u). (5.67)

Since both sides are holomorphic in u, it suffices to prove the above identity for u > 0.

To this end, we let p�(x) = x�, for � ∈ Z, � ≥ 1. By [14, 4.2(3)], for u > 0, we have
1
�! (Lp�)(u) = p−�−1(u) = u−�−1. By (5.62), we have

ϕ(x) = L−1(
p−k+1 · Lα(ϕ)

)
(x) = 1

(k − 2)!
L−1(

Lpk−2 · Lα(ϕ)
)
(x). (5.68)

By applying the convolution theorem, we get

ϕ(x) = 1

(k − 2)!

∫ x

0
(x − t)k−2α(ϕ)(t)dt. (5.69)
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Then, by two changes of variables,

L(ϕ|2−kW1)(u) =
∫ ∞

0
xk−2ϕ(x−1)e−uxdx = 1

(k − 2)!

∫ ∞

0

∫ x−1

0
(1 − tx)k−2α(ϕ)(t)dte−uxdx

= 1

(k − 2)!

∫ ∞

0

∫ 1

0
x−1(1 − t)k−2α(ϕ)(tx−1)dte−uxdx

= 1

(k − 2)!

∫ ∞

0
x−1α(ϕ)(x−1)

(∫ 1

0
(1 − t)k−2e−uxtdt

)
dx. (5.70)

With [18, 8.2.7] and [18, 8.4.7], we deduce

L(ϕ|2−kW1)(u) =
∫ ∞

0
x−1α(ϕ)(x−1)(−ux)−k+1e−ux

(
1 − eux

k−2∑
j=0

(−ux)j

j!

)
dx

= (−u)−k+1L(α(ϕ)|kW1)(u) −
k−2∑
j=0

(−u)−k+1+j

j!

∫ ∞

0
xk−2−jα(ϕ)(x)dx. (5.71)

Since ϕ is compactly supported we have
∫ ∞

0 ϕ(�)(x)dx = 0 for � ≥ 1. Since α(ϕ) = ϕ(k−1),

for each j ∈ [0, k − 2], by applying integration by parts, we get

∫ ∞

0
α(ϕ)(x)xjdx = 0. (5.72)

Then, since k is even, we have shown (5.67) and thus, (5.66). Combining this with (5.64)

and (5.65), we deduce Lf1
(ϕ) = ikLf1

(ϕ|2−kW1), which, by Corollary 5.3, implies that f1 is

a weakly holomorphic form with weight k for SL2(Z). �

5.3 A summation formula for harmonic lifts

Let N be a positive integer, χ a Dirichlet character modulo N, and χ̄ the complex

conjugate of the character χ . We restrict to integers k ≥ 2 and let Sk(N, χ̄ ) denote

the space of standard holomorphic cusp forms of weight k for �0(N) and the central

character χ̄ . We recall [9] that the “shadow operator” ξ2−k : H2−k(N, χ) → Sk(N, χ̄ ) is

given by

ξ2−k := 2iy2−k ∂̄

∂ z̄
. (5.73)

It is an important fact, first proved in [9], that ξ2−k is surjective. The main object in the

next theorem is the inverse image of a given element of Sk(N, χ̄ ).
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Theorem 5.6. Let k ∈ 2N and let f ∈ Sk(N, χ̄ ) with Fourier expansion

f (z) =
∞∑

n=1

af (n)e2π inz. (5.74)

Suppose that g is an element of H2−k(N, χ) such that ξ2−kg = f with Fourier expansion

g(z) =
∑

n≥−n0

c+
g (n)e2π inz +

∑
n<0

c−
g (n)�(k − 1, −4πny)e2π inz. (5.75)

Then, for every ϕ in the space C∞
c (R,R) of piecewise smooth, compactly supported

functions on R with values in R, we have

∑
n≥−n0

c+
g (n)

∫ ∞

0
ϕ(y)e−2πnydy − N

k
2 −1

∑
n≥−n0

c+
g|2−kWN

(n)

∫ ∞

0
ϕ(y)(−iy)k−2e−2πn/(Ny)dy

=
k−2∑
l=0

∑
n>0

af (n)
( (k − 2)!

l!
(4πn)1−k+l

∫ ∞

0
e−2πnyylϕ(y)dy

+ 2l+1

(k − 1)
(8πn)−

k+1
2

∫ ∞

0
e−πnyy

k
2 −1ϕ(y)M1− k

2 +l, k−1
2

(2πny)dy
)

(5.76)

where Mκ,μ(z) is the Whittaker hypergeometric function. For its properties, see

[18, §13.14]).

Remark 5.7. Directly from the definition of ξ2−k we see that af (n) = −c−
g (−n)(4πn)k−1,

for each n ∈ N.

Proof. We can also check that C∞
c (R,R) ⊂ Ff ∩ Fg. With (4.14), we deduce that the

L-series of g can be written, for each ϕ ∈ C∞
c (R,R) as

Lg(ϕ) = L+
g (ϕ) −

∑
n>0

af (n)(4πn)1−k
∫ ∞

0
�(k − 1, 4πny)e2πnyϕ(y)dy (5.77)

where L+
g denotes the part corresponding to the holomorphic part of g:

L+
g (ϕ) :=

∑
n≥−n0

c+
g (n)Lϕ(2πn). (5.78)
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The second sum in (5.77) can be written as

∑
n>0

af (n)L(�(ϕ))(2πn) = Lf (�(ϕ)) (5.79)

where

�(ϕ) = L−1
(

(2u)1−k
∫ ∞

0
�(k − 1, 2uy)euyϕ(y)dy

)
. (5.80)

Therefore,

Lg(ϕ) = L+
g (ϕ) − Lf (�(ϕ)) = L+

g (ϕ) − Lξ2−kg(�(ϕ)). (5.81)

It is clear from its derivation, that this identity holds for any weight k harmonic Maass

form g and, in particular, also for g|2−kWN .

Now, Theorem 4.5 applied to Lg implies that Lg(ϕ) = i2−kNk/2Lg|2−kWN
(ϕ|kWN).

Therefore

L+
g (ϕ) − Lf (�(ϕ)) = i2−kNk/2

(
L+

g|2−kWN
(ϕ|kWN) − Lξ2−k(g|2−kWN )(�(ϕ|kWN))

)
. (5.82)

Similarly, Theorem 4.5 and the identity

ξ2−k(g|2−kWN)|kWN = ξ2−k(g)|kWN |kWN = (−1)kf (5.83)

imply that

Lξ2−k(g|2−kWN )(�(ϕ|kWN)) = i−kN1−k/2Lf (�(ϕ|kWN)|2−kWN). (5.84)

Therefore, (5.82) becomes

L+
g (ϕ) − Lf (�(ϕ)) = i2−kNk/2L+

g|2−kWN
(ϕ|kWN) + NLf (�(ϕ|kWN)|2−kWN)). (5.85)
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To simplify Lf (�(ϕ|kWN)|2−kWN)), we first note that a change of variables followed by

an application of [14, 4.1(4)] gives

L−1
(

(2u)1−k
∫ ∞

0
�(k − 1, 2uy)euyϕ

(
1

Ny

)
dy

(Ny)k

) (
1

Nx

)

= N−kL−1
(

(2u/N)1−k
∫ ∞

0
�(k − 1, 2(u/N)y)e(u/N)yϕ

(
1

y

)
dy

yk

)(
1

x

)

= N1−kL−1
(

(2u)1−k
∫ ∞

0
�(k − 1, 2uy)euyϕ

(
1

y

)
dy

yk

) (
1

x

)
. (5.86)

Then, with [14, 4.1(25)], we obtain

L
(
�(ϕ|kW)|2−kWN)

)
(2πn)

= L
(

(Nx)k−2L−1
(

(2u)1−k
∫ ∞

0
�(k − 1, 2uy)euyϕ

(
1

Ny

)
dy

(Ny)k

) (
1

Nx

))
(2πn)

= (2πn)
1−k

2

N

∫ ∞

0
u

k−1
2 Jk−1(

√
8πnu)(2u)1−k

∫ ∞

0
�(k − 1, 2uy)euyϕ(1/y)y−kdydu

= 21−k(2πn)
1−k

2

N

∫ ∞

0
ϕ(y)yk−2

∫ ∞

0
u

1−k
2 Jk−1(

√
8πnu)�(k − 1, 2u/y)eu/ydudy. (5.87)

The formula [18, (8.4.8)] for the incomplete Gamma function implies that the last

expression equals

(8πn)
1−k

2

N

k−2∑
l=0

2l(k − 2)!

l!

∫ ∞

0
ϕ(y)yk−2−l

∫ ∞

0
u

1−k
2 +lJk−1(

√
8πnu)e−u/ydudy

= (8πn)
1−k

2

N

k−2∑
l=0

2l+1(k − 2)!

l!

∫ ∞

0
ϕ(y)yk−2−l

∫ ∞

0
u2−k+2lJk−1(

√
8πnu)e−u2/ydudy

= (8πn)
−k
2

N
√

8πn(k − 1)

k−2∑
l=0

2l+1
∫ ∞

0
ϕ(y)y

k
2 −1e−πnyM1− k

2 +l, k−1
2

(2πny)dy

(5.88)

where, for the last equality we used [14, 6.8(8)].
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Finally, with [18, (8.4.8)] again, we deduce

Lf (�(ϕ)) =
∑
n>0

af (n)L(�(ϕ))(2πn)

=
k−2∑
l=0

∑
n>0

af (n)
(k − 2)!

l!
(4πn)1−k+l

∫ ∞

0
e−2πnyylϕ(y)dy.

(5.89)

Replacing (5.88) and (5.89) into (5.85), we derive the theorem. �
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