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1 Introduction

Graviton self-interactions are heavily constrained in exact de Sitter space [1]. The power
of full de Sitter isometries ensures that there are only three contributions to the cubic
part of the Wavefunction of the Universe (WFU): two of these are parity-even and arise
from the Einstein-Hilbert action and a six-derivative correction in the form of a Riemann
cubed operator, while the other is parity-odd and comes from a parity-odd Riemann cubed
operator. In perturbation theory, expectation values of graviton fields at the late-time
boundary of de Sitter space can be extracted from knowledge of the wavefunction coefficients
that appear in the WFU and upon computing the corresponding bispectra, only the two
parity-even contributions survive [2, 3].1 This rigidity of graviton interactions in de Sitter
space very nicely parallels a similar story for the S-matrix in Minkowski space [4–7].

1The parity-odd interaction contributes only a pure phase to the wavefunction so drops out when we
compute expectation values.
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During inflation, however, additional shapes of graviton bispectra can arise due to the
breaking of de Sitter boosts. Indeed, in the Effective Field Theory of Inflation (EFToI) [8]
a scalar field with a time-dependent background profile spontaneously breaks de Sitter
boosts thereby allowing for a richer structure of graviton self-interactions which only need
to be invariant under spatial diffeomorphisms. The graviton action up to cubic order in
the transverse, traceless fluctuation γij is fixed to be that of the Einstein-Hilbert action
to leading order in derivatives with corrections containing at least three derivatives [9, 10].
The leading corrections to the Einstein-Hilbert action, and the resulting bispectra, have
been computed in [11, 12] where there are two new shapes: one comes from a parity-even
operator while the second comes from a parity-odd operator. Some four-derivative operators
have also been explored in [11]. One can go even further and break spatial diffeomorphisms
as in e.g. Solid Inflation [13] to yield even more self-interactions, but now in the presence
of a (small) graviton mass. A zoology of graviton interactions during inflation has been
derived in [14] where it is clear that even a small breaking of maximal symmetries opens up
many new possibilities.

In this work we aim to perform a more general analysis within the EFToI. Working
in perturbation theory, and assuming invariance under spatial translations, rotations and
scale invariance, we construct parity-even graviton bispectra to all orders in derivatives.
Throughout we work within the WFU formalism and derive expectation values only at
the end of our computations, and as a consistency check we verify that our results satisfy
the leading order consistency relations of single-clock cosmologies [15–18]. The highly
constrained parity-odd bispectra in the EFToI have been computed in [11, 12, 19, 20], and
in this work we fill the parity-even gap. For parity-even interactions the number of bispectra
grows unbounded as we increase the number of derivatives, which is in stark contrast to
the parity-odd situation where one can use unitarity methods to prove that only a single
tree-level shape for each helicity configuration is allowed [12].2

Let us explain our motivation for this work. Given that gravitational interactions
are so heavily constrained in exact de Sitter space, it is interesting to carve out the
space of consistent self-interactions during inflation where the most powerful de Sitter
symmetries are broken. The EFToI is the natural place to start given that the unbroken
spatial diffeomorphisms are still expected to provide non-trivial relations between different
operators, and they ensure that the graviton remains massless unlike in Solid Inflation [13]
and massive gravity [22]. Our long-term objective is to gain a solid understanding of
Quantum Field Theory on inflationary backgrounds and graviton n-point functions are
certainly objects of interest. In flat-space, the tree-level four-point scattering amplitude for
massless gravitons at low energies is completely fixed by symmetries, locality and consistent
factorisation (see e.g. [5, 6]) while higher-point amplitudes can be extracted from three-point
ones using BCFW momentum shifts [4, 23]. Boost-breaking amplitudes have also been
constructed in [7, 24]. Striving for a comparable understanding of cosmological n-point
functions is one of the primary goals of the bootstrap approach to constructing cosmological

2Even if we further break spatial diffeomorphism as in e.g. Solid inflation, only three shapes are allowed [12]
(see also [21]).
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observables [1, 7, 25–68], and this endeavour requires theoretical data from which we can
learn about the allowed structures. Ultimately we would like to distinguish between different
inflationary models directly at the level of observables and we hope that our work in this
paper will contribute to this goal.

In some sense our work builds on [12] where graviton bispectra were constructed from
very general principles. Using the aforementioned symmetries (no de Sitter boosts), locality
and unitarity, all possible shapes were derived under the assumption that the graviton
mode functions are the usual massless de Sitter ones. Symmetries and the assumption of a
Bunch-Davies vacuum3 were used to write down a general ansatz for tree-level wavefunction
coefficients which can then be constrained by the Manifestly Local Test (MLT) derived in [30].
This test demands that wavefunction coefficients, when expanded for small energies,4 must
not contain a term linear in any of the energies and follows from a simple property of the mass-
less mode functions. Unitarity, in the form of the Cosmological Optical Theorem (COT) [26],
was used to deduce which part of the wavefunction coefficients contribute to expectation
values and in particular to the bispectra. For parity-even interactions, both rational and log-
arithmic contributions to the wavefunction coefficients also contribute to the bispectra, while
for parity-odd interactions only the coefficients of logarithms contribute. This makes parity-
odd bispectra highly-constrained, since logarithms in the wavefunction are rare, and indeed
only three shapes are allowed with only one linear combination appearing in the EFToI.
In [12] no assumption was made about how de Sitter boosts are spontaneously broken, i.e.
no assumption was made about the details of the underlying inflationary model, and our aim
in this paper is to derive the parity-even EFToI subset of these general graviton bispectra.

To achieve this goal we use a combination of bulk and bootstrap tools. We start with
the general action of the EFToI [8] and show that all on-shell graviton three-point functions
can be derived from corrections to the Einstein-Hilbert action that are built out of the
extrinsic curvature and its covariant derivatives only. We use geometric identities and field
redefinitions to arrive at this conclusion. Operators that can contribute to graviton bispectra
at tree-level are at most cubic in the extrinsic curvature, and we derive all quadratic and
cubic vertices for the transverse, traceless graviton that come from these covariant operators.
Operators that are quadratic in the extrinsic curvature correct both the quadratic and
cubic action, while operators that are cubic in the extrinsic curvature correct only the cubic
vertices. In this latter case the only contributions to the bispectra at tree-level come from
WFU contact diagrams and to compute these diagrams we use the techniques of [12]. We
are able to write down closed form expressions to all orders in derivatives with the freedom
reduced to symmetric polynomials in the external energies with their degrees fixed by scale
invariance. We refer to these bispectra as Type-II. In the former case both contact and
single exchange diagrams can contribute and for reasons that will be explained in detail in
the main body of this paper, we explicitly compute the bulk time integrals to extract the
bispectra in this case. For exchange diagrams we use the representation of [32], which relies
on a neat factorisation property of the bulk-bulk propagator, and present the results in a

3For a discussion on graviton bispectra with non-Bunch-Davies initial states see e.g. [69].
4Even though in cosmology we don’t have time translation symmetry, we follow standard convention and

still refer to the norms of spatial momenta as energies.
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very compact form to all orders in derivatives. We refer to these bispectra as Type-I. Such
single exchange diagrams have also been very recently studied and bootstrapped in the
context of the cosmological collider in [57, 58]. For contact and exchange diagrams alike,
the largest contribution in perturbation theory comes from diagrams that are linear in the
couplings so we focus only on these. As pointed out in [12], Type-II bispectra can be large
thanks to the weaker constraints on their size coming from the validity of perturbation
theory since they do not come with a correction to the graviton two-point function.

Along the way we show that single exchange diagrams that contribute to the Type-I
bispectra are only singular when the total energy goes to zero. This is somewhat surprising
since in general such a diagram could have two singular points arising when the sum of
energies entering either of the two vertices goes to zero. However, the quadratic corrections
in the EFToI are such that the additional singularities are always cancelled. In hindsight
this might have been expected since any other singularities would seem to violate the EFToI
consistency relations, and one could also apply the locality arguments of [41] to arrive at the
same conclusion. We also show that these single exchange diagrams satisfy the MLT. This
is certainly not true for general exchange diagrams that arise due to quadratic mixing, see
e.g. [57, 58], but the vertices in the EFToI ensure that the MLT is always satisfied. These
two facts ensure that all the crucial assumptions of the analysis in [12] remain true for
both contact and exchange diagrams, so both types of bispectra that we will derive in this
paper are captured by that analysis. The easiest way to directly distinguish between Type-I
and Type-II bispectra is to take the soft limit and check the consistency relations [15–18],
since for Type-I the power spectrum needs to be modified to satisfy them, while Type-II
bispectra satisfy the consistency relations without the need for such a correction.

The rest of the paper is organised as follows. In the following section, section 2, we
very briefly review the EFToI and show, for the first time, that all graviton bispectra can
be derived from extrinsic curvature operators only. In section 3 we derive the general
Lagrangian for the transverse, traceless graviton that comes from these operators and can
contribute to wavefunction coefficients and bispectra. In section 4 we comment further
on the Feynman diagrams that contribute to the cubic part of the wavefunction and show
that the exchange diagrams have the same singularity structure as the contact ones, and
that they satisfy the MLT. In this section we also remind the reader how cosmological
correlators are extracted from wavefunction coefficients. In sections 5 and 6 respectively,
we construct the Type-I and Type-II bispectra, present compact expressions to all orders in
derivatives, and verify that the leading order consistency relations are satisfied. Finally, we
conclude in section 7.

Notation and conventions. Throughout we work with the mostly positive metric
signature and our Fourier transformation is defined as

f(x) =
∫

d3k
(2π)3 f(k) exp(ik · x) ≡

∫
k
f(k) exp(ik · x) , (1.1)

f(k) =
∫
d3x f(x) exp(−ik · x) ≡

∫
x
f(x) exp(−ik · x) . (1.2)
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We parameterise the Wavefunction of the Universe Ψ at conformal time η0 in terms of the
graviton’s helicities as

Ψ[η0, γ(k)]

= exp

− ∞∑
n=2

1
n!

∑
hi=±

∫
k1,...,kn

ψh1...hn
n (k1 . . .kn)(2π)3δ3

(∑
ka
)
γh1(k1) . . . γhn(kn)

 .
(1.3)

Here the ever-present momentum conserving delta function is a consequence of the unbroken
spatial translations and we write this explicitly so it is not included in the wavefunction
coefficients ψn. We write the corresponding cosmological correlators as Bn (also with the
delta function dropped). The relations between Bn and ψn will be given in the main body
of the paper. In this WFU expression, γh(k) is the spin-h Fourier mode of the graviton
and is related to the position space graviton by

γij(x, η) =
∫

k
eik·x

∑
h=±

ehij(k)γh(k, η) , (1.4)

and for us γh(k, η) is given by the usual de Sitter mode functions. The graviton polarisation
tensor satisfies the following relations:

ehii(k) = kiehij(k) = 0 (transverse and traceless) , (1.5)
ehij(k) = ehji(k) (symmetric) , (1.6)

ehij(k)ehjk(k) = 0 (lightlike) , (1.7)
ehij(k)eh′ij (k)∗ = 4δhh′ (normalization) , (1.8)

ehij(k)∗ = ehij(−k) (γij(x) is real) . (1.9)

We will often encounter polynomials in the three external energies that are fully symmetric
and we will express these in terms of the elementary symmetric polynomials:

kT = k1 + k2 + k3, (1.10)
e2 = k1k2 + k1k3 + k2k3, (1.11)
e3 = k1k2k3. (1.12)

2 Effective Field Theory of Inflation

We work within the EFToI where the inflationary background is driven by a single scalar
degree of freedom, the inflaton. In the language of symmetry breaking, this set up cor-
responds to the case where only time diffeomorphisms are broken by the background i.e.
we couple a superfluid to gravity [14]. Time diffeomorphisms are nevertheless non-linearly
realised by the inflationary perturbations. The EFToI provides a formalism to capture the
most general action for the graviton and scalar fluctuations on a quasi-de Sitter background,
with operators organised in a derivative expansion and tadpole cancellation guaranteed
to all orders. We begin this section by briefly reviewing the EFToI before showing that
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graviton vertices up to cubic order are captured by operators built out of the extrinsic
curvature only.

Since we are interested in graviton interactions, we work with the following line element

ds2 = −dt2 + a2(t)(eγ)ijdxidxj , (2.1)

where a = a(t) is the scale factor and we define the Hubble parameter H = ȧ/a. For
now we work in cosmological time but later on we will convert to conformal time which is
more suitable for computing late-time cosmological correlators. Relative to the usual ADM
formalism, we have set the lapse variable to unity and the shift together with the curvature
perturbation ζ to zero. Usually we would integrate out the non-dynamical parts of the
metric which would introduce additional interactions for γ and ζ, but up to cubic order this
procedure does not alter the γ interactions so we can safely work with (2.1).5 We fix the
gauge completely by taking the graviton to be transverse and traceless: γii = 0 = ∂iγij .6
This gauge is usually referred to as unitary gauge where all degrees of freedom live in the
metric i.e. the inflaton perturbation has been eaten by the metric. In this gauge the most
general action that we can write down is the one consistent with spatial diffeomorphisms [8]:

S =
∫
d4x
√
−g F (Rµνρσ, g00,Kµν ,∇µ, t), (2.2)

where all free indices are, in general, upper 0’s. For our purposes, however, there are
simplifications. All t dependence will be fixed by scale invariance, since we are working in
the scale invariant approximation, i.e. we assume that H and Ḣ vary slowly and restrict all
t dependence to be that coming from the metric. In practice this means that we work with
a fixed de Sitter background metric, so all correlators we compute are valid up to small
slow-roll corrections [16]. Scale invariance will be most transparent when we convert to
conformal time. This is a technically natural set-up since in the φ language it corresponds
to an approximate shift symmetry for the inflaton. We also take g00 = −1, since we don’t
include the lapse, and this means we can write all temporal indices downstairs. The extrinsic
curvature of constant-t hyper-surfaces, for our metric, is given by Kµν = Γ0

µν with non-zero
components Kij = Γ0

ij = ġij/2. Throughout we will actually work with the perturbed
extrinsic curvature defined by δKµν = Kµν −Hhµν , where hµν = gµν + δ0

µδ
0
ν .

Now it is well-known that the full 20 components of the Riemann tensor are not
independent of the extrinsic curvature. Indeed, only the three-dimensional part of the full
four-dimensional object is independent and we denote this object by R̃ijkl,7 (see e.g. [70]).
A further simplification comes from the fact that the Weyl tensor is identically zero in three
dimensions, so the three-dimensional Riemann tensor is completely determined by the three-
dimensional Ricci tensor R̃ij . This is most easily seen by counting the number of degrees
of freedom of the Weyl tensor. The Riemann tensor in D dimensions has 1

12D
2(D2 − 1)

5Since the graviton does not mix with the non-dynamical modes at linear order, it must appear at least
quadratically in the solutions to the constraint equations. Plugging these solutions back into the action can
therefore only affect the graviton interactions at quartic order and higher.

6Note that in this gauge the metric determinant is independent of γij and is fixed by its background value.
7Throughout we use a tilde to represent three-dimensional objects.
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degrees of freedom, while its trace has 1
2D(D + 1) degrees of freedom. The Weyl tensor is

the traceless part of the Riemann tensor, so in three dimensions it has 6− 6 = 0. We can
also use only the spatial components of δKµν without loss of generality. Our general action
is therefore

S = S0 +
∫
d4x
√
−g F (R̃ij , δKij ,∇0,∇i), (2.3)

where we have separated out S0 which includes the Einstein-Hilbert action plus the terms
required to make the unperturbed metric a consistent solution. This part of the action
describes the minimal set-up of slow-roll inflation with all other operators describing higher
derivative corrections. Any operators not contained in S0 start at quadratic order in γ so
do not affect the tadpole cancellation [8]: they capture all different theories of cosmological
perturbations on the same FRW background. Indeed, δKij is a perturbed object by
construction and R̃ij vanishes on the background. We have [8]

S0 =
M2

pl
2

∫
d4x
√
−g

[
R− 2(Ḣ + 3H2) + 2Ḣg00], (2.4)

and we remind the reader that we are working in the limit where H and Ḣ do not vary
significantly in one Hubble time: all time dependence of the action is slow-roll suppressed.
We note that the perturbed action S − S0 is derivatively coupled: in the general EFToI the
only terms without derivatives are polynomials in g00 and for us these are all trivial.

There is one final simplification we can make before moving onto field redefinitions:
since R̃ij and δKij are three-dimensional objects we only need to use the three-dimensional
covariant derivative ∇̃i. Indeed, out of the non-vanishing Christoffel symbols only the
three-dimensional one Γ̃ijk cannot be expressed in terms of the extrinsic curvature. We can
also treat all temporal covariant derivatives as partial ones ∂t for the same reason. We
therefore have

S = S0 +
∫
d4x
√
−g F (R̃ij , δKij , ∂t, ∇̃i). (2.5)

Of course in some cases it will be wise to use covariant derivatives and only make this final
simplification when we come to expand the action.

2.1 Eliminating the three-dimensional Ricci tensor

We will now show that to construct graviton bispectra it is sufficient to work with the
restricted action that does not depend on R̃ij . Both R̃ij and δKij start at linear order in
perturbations so the graviton action up to cubic order, that comes in addition to the Einstein-
Hilbert part, comes from EFToI operators that are at most cubic in these building blocks.

First consider operators that are constructed out of three building blocks i.e. are of
the schematic form: R̃3, R̃2δK, R̃δK2 and δK3 where we have suppressed indices and
derivatives. Above we have argued that we can always use partial time derivatives, while for
spatial derivatives the difference between using a partial one and a covariant one is captured
by Γ̃ijk which starts at linear order in perturbations. It follows that the difference between
using a partial spatial derivative and a three-dimensional covariant one is O(γ2), which for
three building block operators will only introduce differences at O(γ4). For our interests we

– 7 –



J
H
E
P
1
0
(
2
0
2
2
)
1
5
4

can therefore treat all derivatives as partial ones for three building block operators. Now
such operators do not contribute to the quadratic action for the graviton so to compute the
cubic wavefunction coefficient we only need to consider contact diagrams where all external
lines are on-shell in which case any appearances of ∂2γij are degenerate with γ̇ij , and its
time derivatives, by the graviton equation of motion:

γ̈ij + 3Hγ̇ij − a−2∂2γij = 0. (2.6)

As we will discuss below, the two-derivative quadratic action can be brought into the
Einstein-Hilbert form without loss of generality [9], with higher-derivative corrections that
we treat perturbatively such that (2.6) is always the on-shell relation. Once we remove
all copies of ∂2γij , all remaining interactions can be derived from δKij and its derivatives
since at linear order we have δKij ∼ γ̇ij . So for three building blocks operators we can
safely ignore operators containing R̃ij ∼ ∂2γij , at least when computing the on-shell cubic
vertices. We can also make the redundancy of any operators containing R̃ij manifest with
field redefinitions, as we will show below. We provide more information about the contact
diagrams we will be computing in section 4, and provide the general on-shell action coming
from three building block operators in section 3.

Two and single building block operators are slightly more complicated but nevertheless
we can still reduce the action to one constructed from δKij only using field redefinitions.
Let’s start by considering which operators can contribute to the action up to cubic order.
Since the graviton is transverse all vector quantities start at quadratic order in perturbations:
∇iR̃ij ∼ O(γ2) and ∇iδKij ∼ O(γ2). It follows that all spatial covariant derivatives must
be contracted with other spatial covariant derivatives since any other scalar quantities will
start at quartic order in perturbations. The action for two building block operators is
therefore

S = S0 +M2
pl

∫
d4x
√
−g

(
δKijO(0)δKij + R̃ijO(1)δKij + R̃ijO(2)R̃ij

)
, (2.7)

where O(i) are derivative operators constructed out of ∇0 and ∇̃2 = ∇̃i∇̃i, and we have
integrated by parts to move all derivatives onto a single building block. One might worry
about boundary terms that could affect the wavefunction, but in section 4 we will show that
there are always enough derivatives for the boundary terms to vanish. For O(i), i counts its
negative mass dimension which we can fix using Mpl:

O(i) = 1
M i

pl

∑
m,n

bm,n∇m0 ∇̃2n, (2.8)

where bm,n are constant couplings with mass dimension −(m + 2n) (recall that we are
working with a dimensionless γij). Note that we have not included any terms that depend
on the trace of the extrinsic curvature since this object vanishes to all orders in γ,8 and we
have not included any terms that depend on the three-dimensional Ricci scalar R̃ since a

8This can be most easily seen by writing 2K = gij ġij = g−1ġ where g is the determinant of the spatial
metric gij . Since the graviton is traceless, it drops out of g and therefore drops out of the trace of the
extrinsic curvature.

– 8 –
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linear term can be eliminated by Gauss-Codazzi relations [9],9 while non-linear terms start
at O(γ4) since R̃ ∼ O(γ2).

Now it was shown in [9] that we can set the coefficient of δKijδKij to any value we
like such that the quadratic action takes the canonical form. This is achieved thanks
to conformal and disformal transformations of the metric. We can also go further by
considering additional field redefinitions of the spatial components of the metric of the form

δgij = O(2)R̃
ij +O(1)δK

ij . (2.9)

Note that different copies of Oi with the same i are not necessarily the same derivative
operators. The linear variation of the minimal action can be written in terms of the EFToI
operators R̃ij and δKij . We find

δS0 =
M2

pl
2

∫
d4x
√
−g

[
G̃ij +∇0δKij + 3HδKij

]
δgij , (2.10)

where in computing the variation of the Einstein-Hilbert action we have dropped contribu-
tions that depend on gijδKij since as we mentioned above this object vanishes to all orders
in γ, and we have dropped two building block terms since under our chosen field redefinition
these will only correct three building block operators which we have already considered.
The three-dimensional Einstein tensor is given by G̃ij = R̃ij − 1

2gijR̃. One might wonder
why we have only transformed δS0: this is simply because we are treating all two building
block operators as small corrections to the Einstein-Hilbert action. We have done this such
that we can use the usual on-shell condition (2.6). This means that performing the field
redefinition on two building block operators can only generate even further suppressed
operators. We will discuss perturbation theory in more detail in section 4.

Now from these expressions it is clear that, up to three building block operators which
we have already considered, we can eliminate all R̃ijO(1)δKij and R̃ijO(2)R̃ij operators
from (2.7). Indeed we can first use the product G̃ijO(2)R̃

ij in (2.10) to eliminate R̃ijO(2)R̃ij
operators while renormalising R̃ijO(1)δKij and introducing non-linear terms in R̃ which
don’t contribute to the action up to cubic order. We can then use the product G̃ijO(1)δK

ij

to eliminate all R̃ijO(1)δKij operators while renormalising δKijO(0)δKij and introducing
other operators that don’t contribute to the cubic action. We cannot also eliminate the
δKijO(0)δKij operators since there is not enough freedom in (2.9). Note that in terms of γij ,
these field redefinitions shift γij by terms with derivatives and then scale invariance ensures
that the redefinitions vanish at late-times. So wavefunction coefficients and cosmological
correlators evaluated at the end of inflation are not affected by these field redefinitions.

Now it is clear how we can generalise this discussion to manifestly remove all copies of
R̃ij from three building block operators. We simply need to use field redefinitions of the
schematic form δg = R̃2 + R̃δK + δKδK where we have suppressed indices and derivatives.
Acting on the Einstein-Hilbert action with these field redefinitions allows us to reduce three
building block operators to ones cubic in δKij . It follows that the most general action that

9Eliminating a linear term in R̃ is more involved if we allow for time-dependent couplings but it can still
be done [9, 10].
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can contribute to graviton bispectra at tree-level is

S = S0 +M2
pl

∫
d4x
√
−g

[
δKijO(0)δKij +O(δK3)

]
. (2.11)

For reasons that will become clear a bit later on we keep the coefficient of δKijδKij non-zero
for now.

We have therefore shown in this section that to compute the bispectra for gravitons, in
addition to the minimal action, we only need to consider EFToI actions constructed out of
the extrinsic curvature. Time derivatives can always be taken to be partial ones and spatial
derivatives only need to be covariant for two building block operators and they only need
to be contracted amongst themselves.

3 A general action to cubic order

We can now compute the general action up to cubic order in γij . The Einstein-Hilbert part
of the action yields

Sγ,GR =
M2

pl
8

∫
dtd3xa3(t)[γ̇ij γ̇ij − a−2∂kγij∂kγij + a−2(2γikγjl − γijγkl)∂k∂lγij ] +O(γ4),

(3.1)

and we remind the reader that for γij operators, spatial indices are raised and lowered with
δij so we will not be so careful about the placement of indices. For the corrections to the
minimal action we consider the two and three building block operators separately.

3.1 Two building block operators

Let’s start with operators quadratic in δKij which take the form

S = M2
pl

∫
d4x
√
−g δKijO(0)δKij

= M2
pl

∫
d4x
√
−g

∑
m,n

gn,m∇2n
0 δKij∇̃2mδKij , (3.2)

where we have taken the number of time derivatives to be even such that this operator is
not a total derivative, and we integrated by parts to separate the time and space derivatives.
One might worry about the ordering of the covariant derivatives, but we can guarantee
this ordering up to curvature corrections which we have already dealt with above. The
couplings gm,n are in general dimensionful. Again, in section 4 we will show that any
boundary terms that might arise when we integrate by parts will not contribute to the
late-time wavefunction. As we explained above we can also safely take time derivatives to
be partial ones — the difference can be accounted for by adding appropriate three building
block operators — and we will denote the nth partial time derivative by (δKij)n. Note that
this procedure does not affect the couplings gn,m and only changes the couplings of three
building block operators. We will construct the most general set of bispectra so we can do
this without loss of generality. We would now like to expand the redefined action

S = M2
pl

∫
d4x
√
−g

∑
m,n

gn,m∂
2n
0 δKij∇̃2mδKij , (3.3)
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to find the graviton action up to cubic order which for these two building block operators
we denote by Sγ,2BB. Recall that the metric determinant is independent of γ, while δK
vanishes on the background. So to find the action up to cubic order we always need to
expand one of the δK to linear order and the other to quadratic order.

First consider m = 0 where all derivatives are temporal ones. In this case we see that
by expanding the action there are no corrections at O(γ3). For n = 0 this was noticed
in [16] and it holds true for all n. This can be most easily seen by writing the operators as
(δKi

j)2nδKj
i and by noticing that, for all n, (δKi

j)2n is symmetric at linear order while
anti-symmetric at quadratic order.10 We have

δKi
j = 1

2a
2(t)gil∂t(eγ)lj = 1

2 γ̇
i
j + 1

4(γ̇ilγlj − γilγ̇lj) +O(γ3), (3.4)

and the symmetry properties of this object are not altered when we take the partial
derivative. The action for the graviton perturbation, for m = 0, is then simply the quadratic
one given by

Sγ,2BB ⊃
M2

pl
4

∫
dtd3xa3(t)

∑
n

gn,0(γij)2n+1γ̇ij . (3.5)

As we mentioned above, for n = 0 it looks like the two-derivative action is altered by this
operator but we can always set g0,0 = 0 using field redefinitions [9] (we will comment on
this further below).

Now for m 6= 0 we need to compute the spatial covariant derivatives of the extrinsic
curvature, and in this case we cannot simply treat them as partial derivatives since Γ̃ijk
cannot be written in terms of the extrinsic curvature. As we showed above, (δKi

j)2n is
anti-symmetric at quadratic order, while at linear order we can treat covariant derivatives
as partial ones and we have

∇̃2mδKi
j = 1

2a
−2m∂2mγ̇ij +O(γ2), (3.6)

which is symmetric. It follows that the only contribution to the cubic action comes from
taking (δKi

j)2n at linear order and ∇̃2mδKi
j at quadratic order, and only keeping the

symmetric contributions. Let’s now focus on computing ∇̃2mδKi
j . For m = 1 we find, by

direct computation, that up to quadratic order in γij we have

∇̃2δKi
j = 1

2a
−2
(
∂2γ̇ij − γlm∂l∂mγ̇ij +Qs[γ, γ̇]ij

)
+ anti-symmetric, (3.7)

where the symmetric function Qs is given by

Qs[γ, γ̇]ij = −∂iγkl∂kγ̇lj + ∂lγjk∂kγ̇il + (i↔ j), (3.8)

and we leave implicit the O(γ2) anti-symmetric contributions to ∇̃2δKi
j since when con-

tracted with the linear expansion of (δKi
j)2n they will sum to zero. The first term in (3.7)

comes from treating both covariant derivatives as partial ones, the second comes from
10Of course we should raise and lower these indices before we replace covariant derivatives with partial ones.
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expanding the metric that contracts the two spatial derivatives, while the final structure
comes from the Christoffel symbols. With this expression at hand we can now recursively
generalise to any m 6= 0. Again working up to quadratic order, we find

∇̃2mδKi
j = 1

2a
−2m

(
∂2mγ̇ij −mγlk∂2m−2∂l∂kγ̇

i
j +

m−1∑
p

∂2pQs[γ, ∂2m−2−2pγ̇]ij
)
, (3.9)

where again we have dropped anti-symmetric terms. The action up to cubic order, now
with m = 0 included, is therefore

Sγ,2BB =
M2

pl
4

∫
dtd3xa3(t)

∑
n

gn,0(γij)2n+1γ̇ij +
M2

pl
4

∫
dtd3xa3−2m(t)

∑
n,m=1

gn,m(γij)2n+1

×
(
∂2mγ̇ij −mγlk∂2m−2∂l∂kγ̇ij +

m−1∑
p

∂2pQs[γ, ∂2m−2−2pγ̇]ij
)
. (3.10)

This is the most general action, from two building block operators, that can contribute to
the graviton bispectra in the EFToI. It contains a sum of quadratic and cubic terms with
their relative coefficients tied together by the linear realization of spatial diffeomorphisms
and nonlinear realization of time diffeomorphisms. Note that in this section we have freely
added and subtracted three building block operators. We were allowed to do this, because
we are going to consider these operators in their full generality in the next section.

3.2 Three building block operators

Now consider three building block operators which all start at O(γ3). As we discussed
above we can treat all covariant derivatives as partial ones and since δKij ∼ γ̇ij at linear
order, we simply need to write down all independent contractions of three copies of γ̇ij , and
spatial derivatives. This problem was tackled in [12] at the level of polarisation tensors
and spatial momenta but it is simple to convert it into a Lagrangian statement. There are
five independent tensor structures once we use the fact that the graviton is transverse and
traceless, and integrate by parts (which is equivalent to momentum conservation). These
structures are organised by the number of spatial derivatives that are contracted with a
graviton and we denote this number by α. For parity-even interactions this is an even
number and for α = 0, 4, 6 there is a single structure, while for α = 2 there are two. We
cannot have α ≥ 8 since there are only 6 free indices across the three gravitons. For each γij
we can add additional time derivatives, while additional spatial derivatives can be restricted
to two fields only by integration by parts, and two derivatives that are contracted with
each other should act on different fields. Any other contractions can be removed by the
graviton’s equation of motion in favour of time derivatives which we are already adding.
We have

Sγ,3BB =
∑
α

∫
dtd3xLγ,α, (3.11)
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where

Lγ,α=0 =
∑

n1,n2,n3,p

aq(t)h0
n1,n2,n3,p(γij)

1+n1∂i1...ip(γjk)1+n2∂i1...ip(γki)1+n3 , (3.12)

Lγ,α=2 =
∑

n1,n2,n3,p

aq(t)h2
n1,n2,n3,p(γij)

1+n1∂i1...ip∂i(γlm)1+n2∂i1...ip∂j(γlm)1+n3

+
∑

n1,n2,n3,p

aq(t)ĥ2
n1,n2,n3,p(γij)

1+n1∂i1...ip(γlm)1+n2∂i1...ip∂i∂l(γjm)1+n3 , (3.13)

Lγ,α=4 =
∑

n1,n2,n3,p

aq(t)h4
n1,n2,n3,p∂i(γlk)

1+n1∂i1...ip∂j(γmk)1+n2∂i1...ip∂l∂m(γij)1+n3 , (3.14)

Lγ,α=6 =
∑

n1,n2,n3,p

aq(t)h6
n1,n2,n3,p∂m∂k(γil)

1+n1∂i1...ip∂i∂n(γjm)1+n2∂i1...ip∂j∂l(γkn)1+n3 ,

(3.15)

with constant couplings hαn1,n2,n3,p and q = 3 − 2p − α which is fixed by scale invariance.
Despite the complicated looking nature of these interactions, in section 6 we will show that
the resulting bispectra take a very compact form.11

We have therefore written down the most general actions that can contribute to
graviton bispectra, Sγ,2BB and Sγ,3BB. In the following sections we discuss the diagrams
that contribute to the cubic wavefunction and present compact expressions for the bispectra,
but first we close this section by converting our actions to conformal time and addressing
the fact that these general actions can contain higher-order time derivatives.

3.3 Converting to conformal time

Throughout we have been working in cosmological time but when we come to compute
the late-time wavefunction we would like to do so in conformal time η where we evolve
perturbations from the far past at η = −∞ to the boundary of quasi-de Sitter space, or the
end of inflation, at η = 0. We therefore need to change coordinates in the actions we have
just derived so that the background metric is

ds2 = a2(η)[−dη2 + dx2], (3.16)

and we will approximate the scale factor as a(η) = −1/(Hη) which is the de Sitter one in
Poincaré or flat-slicing coordinates.

First consider two building block operators and the action (3.10). When we convert
an object of the form (γij)n to conformal time we will generate a sum of terms with all
derivatives from 1 to n. For m = 0, we can use the fact that the couplings gn,0 are arbitrary,
to simply replace all cosmological time derivatives with conformal ones without loss of
generality, while introducing the required scale factors. We can also now make use our
freedom to fix the coefficient of δKijδKij to anything we like to eliminate any quadratic
terms with two derivatives. This is the statement that the graviton speed of sound can
always be fixed to unity [9], and as expected this statement is true in both cosmological

11When computing the bispectra we will not actually use these explicit Lagrangian expressions, instead
for three-building block operators we will use the MLT [30] to efficiently write down all possibilities.
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and conformal time.12 This procedure will generate terms with an overall odd number of
time derivatives but these can always be integrated by parts in favour of ones with an even
number of derivatives, and as always we can safely drop any boundary terms that may arise
(see section 4). We can therefore write the first line of (3.10) as

Sγ,2BB ⊃
M2

pl
4

∫
dηd3x

∑
n=1

gn,0a
2−2n(η)(γij)2n+1γ′ij , (3.17)

where we keep the same labels for the arbitrary couplings and still use brackets to denote
higher-order time derivatives, with the integration variables informing the reader which
coordinate it refers to. We note that the couplings are now not exactly as they were defined
in the covariant action, instead these new couplings are linear sums of the old ones. We
now start the sum from n = 1 since we have at least four time derivatives, without loss
of generality, and importantly adding δKijδKij does not introduce any additional terms
since it does not contribute to the cubic action for γij . The scale symmetry of the action is
now crystal clear in these coordinates and offers a good consistency check that we have the
correct number of scale factors: we need four scale factors to cancel the scaling of dηd3x

under a scale transformation, then we need to remove a scale factor for each derivative. For
an action like the one above with 2n+ 2 derivatives we therefore need 4− (2n+ 2) = 2− 2n
scale factors.

We can deal with the second line of (3.10) in a similar way. The structure of the
time derivatives is the same for each term so we can simply replace all cosmological time
derivatives with conformal ones, while adding the appropriate number of scale factors, and
redefining the couplings gm,n. Here there is no need to add operators to remove certain
terms so the sums still run from n = 0 and m = 1. However, now that we have cubic
interactions we cannot simply drop all terms with an overall odd number of time derivatives,
or equivalently those with an even number that come from transforming (γij)2n+1 to
conformal time. So for m 6= 0 we must replace 2n with n. In conformal time the full (3.10)
then becomes

Sγ,2BB =
M2

pl
4

∫
dηd3x

∑
n=1

gn,0a
2−2n(η)(γij)2n+1γ′ij+

M2
pl

4

∫
dηd3x

∑
n=0,m=1

gn,ma
q(η)(γij)n+1

×
(
∂2mγ′ij−mγlk∂2m−2∂l∂kγ

′
ij+

m−1∑
p

∂2pQs[γ,∂2m−2−2pγ′]ij
)
, (3.18)

where q = 2 − 2m − n. Now each operator has at least four derivatives meaning that it
is impossible to integrate by parts to generate operators with fewer derivatives. This can
only happen when a time derivative acts on a scale factor, but when there are exactly
four derivatives there are no scale factors. This will have important consequences for the
structure of the corresponding bispectra.

12In fact, we can also bring the two derivative action to its canonical GR form by redefining time, then
redefining γij , then finally redefining all couplings. We can always do this since we only have one field in
the theory.

– 14 –



J
H
E
P
1
0
(
2
0
2
2
)
1
5
4

For the three building block operators we use the same logic such that the vertices take
exactly the same structure as before, but now with a different number of scale factors. We
now have

Sγ,3BB =
∑
α

∫
dηd3xLγ,α, (3.19)

where

Lγ,α=0 =
∑

n1,n2,n3,p

ar(η)h0
n1,n2,n3,p(γij)

1+n1∂i1...ip(γjk)1+n2∂i1...ip(γki)1+n3 , (3.20)

Lγ,α=2 =
∑

n1,n2,n3,p

ar(η)h2
n1,n2,n3,p(γij)

1+n1∂i1...ip∂i(γlm)1+n2∂i1...ip∂j(γlm)1+n3

+
∑

n1,n2,n3,p

ar(η)ĥ2
n1,n2,n3,p(γij)

1+n1∂i1...ip(γlm)1+n2∂i1...ip∂i∂l(γjm)1+n3 , (3.21)

Lγ,α=4 =
∑

n1,n2,n3,p

ar(η)h4
n1,n2,n3,p∂i(γlk)

1+n1∂i1...ip∂j(γmk)1+n2∂i1...ip∂l∂m(γij)1+n3 , (3.22)

Lγ,α=6 =
∑

n1,n2,n3,p

ar(η)h6
n1,n2,n3,p∂m∂k(γil)

1+n1∂i1...ip∂i∂n(γjm)1+n2∂i1...ip∂j∂l(γkn)1+n3 ,

(3.23)

and we have defined r = 1− 2p−n1−n2−n3−α, and have redefined the couplings. These
are the actions we will use to compute the graviton bispectra.

3.4 A comment on higher-order time derivatives

Our actions for both two and three building block operators can contain higher-order time
derivatives which may concern the reader. When treated perturbatively such interactions
should be harmless, however there are other actions that give exactly the same bispectra
as the ones we are going to compute which have at most one time derivative per field. This
should reassure a concerned reader. We use the actions above since they have a very simple
covariant form, and the properties of δKi

j made expanding the action a relatively simple task.
To see how we could remove higher-order time derivatives lets go back to the field

redefinitions we used to eliminate the R̃2 and R̃δK operators (again we are dropping indices
and derivatives). We have three different structures in the action and two different structures
in the field redefinition which is schematically δg = R̃ + δK. So instead of removing the
R̃2 and R̃δK operators leaving us with only δK2 ones, we could remove the δK2 ones and
use the remaining freedom to fix the tuning between R̃2 and R̃δK. Such tunings can be
fixed to remove all higher-order time derivatives in the quadratic corrections to the graviton
action. For example, consider the following operator:

R̃ij∇̃2m∇2n
0 R̃ij ⊃ ∂2γij∂

2m+2(γij)2n, (3.24)

which contains higher-order time derivatives that cannot be integrated by parts for n ≥ 2.
We can cancel these using the operators:

R̃ij∇̃2m+2∇2n−1
0 δKij ⊃ ∂2γij∂

2m+2(γij)2n, (3.25)
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since their coefficients can be chosen freely thanks to the field redefinitions at our disposal.
The resulting action would still contain quadratic corrections but these would only come
from R̃ij∇̃2mR̃ij and so would only contain spatial derivatives. The cubic action is likely
to take a more complicated form than the one we have above, however. Let us emphasise
again that field redefinitions of this form do not change the wavefunction coefficients, and
therefore do not change correlators. For these two building block operators it could still be
the case that the resulting cubic vertices have higher-order time derivatives even though
the quadratic ones do not. This is not an issue for the on-shell action as we can again use
the equation of motion to eliminate them, but off-shell we would not be able to do this. At
this stage we have exhausted all possible field redefinitions at the level of gij , which is the
most sensible way to formulate these field redefinitions. So if the off-shell action was to also
not have higher-order time derivatives, the tuning between the R̃2 and R̃δK operators that
removes higher-order time derivatives at quadratic order must also be enough to remove
them at cubic order.

We can play the same game for three building block operators. At the level of the
expanded action it is clear that we can use the equation of motion to remove all higher-order
time derivatives but it can also be made manifest using covariant field redefinitions. For
three building block operators we have R̃3, R̃2δK, R̃δK2 and δK3. We also have three
different field redefinitions due to the three different bi-products of R̃ and δK. We can use
this freedom to eliminate the R̃δK2 and δK3 operators while tuning the coefficients between
the R̃3 and R̃2δK ones such that there are no higher-order time derivatives. We choose
to not eliminate these higher-order time derivatives since, as we will discuss in section 6,
we can very easily extract the bispectra from (3.20) using the MLT. The bispectra are
invariant under such field redefinitions so it makes sense to work with the action that lends
itself to extracting correlators in the most efficient way.

4 Generalities of contact and single exchange diagrams

Before constructing EFToI bispectra, in this section we will provide more details on the
diagrams that we need to compute. We will work within the WFU approach then extract
expectation values using the usual formula. The WFU has been reviewed in many places
in the recent literature e.g [26, 30], so here we skip such a review and concentrate on the
diagrams of interest which are cubic contact diagrams and single exchange diagrams. The
Feynman rules for computing these diagrams is reviewed in [26, 30], but we will briefly
remind the reader of them in this section too.

4.1 Contact diagrams

Contact diagrams, see figure 1, are the easiest to compute. For gravitons they factorise
into a polarisation factor which contains the three polarisation tensors for the external
gravitons which can be contracted with each other or with spatial momenta, and a trimmed
wavefunction that carries information about the time evolution. The general form of a cubic
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γ γγ

Figure 1. Cubic contact diagram.

contact diagram is therefore [12]13

ψ3({k}, {k}) =
∑

contractions
[eh1(k1)eh2(k2)eh3(k3)kα1

1 kα2
2 kα3

3 ]ψtrimmed
3 ({k}), (4.1)

where hi are the helicities of the external fields, we define α = α1 + α2 + α3, and {k}
and {k} collectively denote the external energies and momenta, respectively. Since we are
only interested in massless spin-2 modes, we have hi = ±2, and we will concentrate on
the + + + and + +− configurations as the others can be extracted from these by parity
transformations [12]. The polarisation factors are easily read off from the Lagrangian and
by converting to momentum space, while traditionally the trimmed wavefunction would be
computed by integrating the three bulk-boundary propagators, which can be differentiated
with respect to time, from the far past at η = −∞ to the future boundary at η = 0. In the
far past we Wick rotate such that there is some evolution in Euclidean time which has the
effect of projecting onto the vacuum and damping these early time contributions [16].

Another way of computing ψtrimmed
3 was derived in [30] which doesn’t require any time

evolution, which is anyway completely unobservable in the final answer where it has been
integrated out, and is referred to as the Manifestly Local Test (MLT). The test requires
trimmed wavefunction coefficients to satisfy

∂

∂kc
ψtrimmed

3

∣∣∣
kc=0

= 0 , ∀ c = 1, 2, 3 , (4.2)

which is simply the statement that the trimmed wavefunction does not contain any terms
linear in any of the three external energies (locality also forces there to be no inverse powers
of the energies: at cubic order there are no inverse Laplacians to worry about). Note that
as we send one of the external energies to zero we do so while holding the others fixed which
distinguishes the MLT from soft theorems. The MLT can be used to construct cosmological
correlators as was done in [12, 30, 71], but also to verify that the often complicated final
results have the correct structure as was done in [32]. It was shown in [12] that general
solutions to these equations pick out all possible trimmed wavefunctions, and clearly solving
these equations is simpler than having to evaluate the necessary bulk time integrals. The

13Here and throughout this work we are dropping the momentum conserving delta function that always
appears thanks to the spatial translation symmetry of the theory.
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MLT follows from the fact that the bulk-boundary propagator for massless gravitons (and
scalars) satisfies

Kγ(k, η) = (1− ikη)eikη, ∂Kγ

∂k

∣∣∣
k=0

= 0, (4.3)

and this property is inherited by the trimmed wavefunction since it holds for all η. The
MLT can also be derived by demanding the absence of spurious poles in four-point functions
that arise from gluing together two three-point functions. Indeed, such an exchange diagram
should be regular as the energy of the exchanged field is taken to zero, and the Cosmological
Optical Theorem [26] implies that this is only the case if the constituent three-point functions
satisfy the MLT. We refer the reader to [30] for further details on these two derivations.

Now the assumption of a Bunch-Davies vacuum, which we impose throughout, tells
us that ψtrimmed

3 is a rational function with poles only occurring at kT = k1 + k2 + k3 = 0
which is the kinematical limit where energy is conserved. Interestingly, the residue of
the leading total-energy pole contains the flat-space scattering amplitude for the same
process [1, 26, 72] (in some cases the relationship between correlators and amplitudes is not
so straightforward due to enhanced symmetry in the flat-space limit. This is the case for
DBI as was shown in [73] and confirmed in [74] at the level of boost-breaking amplitudes.).
There can also be logs in the trimmed wavefunction, for low derivative operators, but no
other kinematic singularities unless there is some form of non-locality or different vacuum
conditions [41]. In this paper we will not encounter logs since in the EFToI there are
too many derivatives in the graviton interactions. Indeed the absence of logs in contact
diagrams requires 2n∂η + n∂i > 3 [41], where n∂η and n∂i are respectively the number of
conformal time and space derivatives, and we have seen in section 3 that this condition is
always satisfied in the EFToI.

Now to solve the MLT we simply write down an ansatz and organise the solutions in
terms of the order of the leading total-energy pole which we denote by p and which counts
the number of derivatives in the corresponding vertex [41]. Guidance comes from Bose
symmetry: we fix ψtrimmed

3 to have the same symmetry as the polarisation part and sum
over the remaining permutations once we have constructed ψtrimmed

3 . This is a consistent
thing to do since the MLT is satisfied for all permutations. With the cubic wavefunction
coefficient in hand we can compute the corresponding bispectrum B3. The relationship is
given by [12]14

B3({k}, {k}) = −ψ3({k}, {k}) + ψ?3({k}, {−k})∏3
a=1 2Re ψ2(ka)

, (4.4)

where ψ2 is the quadratic wavefunction coefficient which is perturbatively fixed by the
two-derivative quadratic action coming from GR. We have

ψhh
′

2,GR =
M2

pl
H2 k

3δhh′ . (4.5)

14The COT for cubic contact diagrams is ψ3({k}, {k}) + ψ?3({−k}, {−k} = 0 [26] and this dictates which
part of the wavefunction contributes to expectation values [12].
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We have dropped imaginary terms in this expression, which are actually divergent at
late-times, since they never contribute to correlators. For parity-even interactions, which
are the ones of interest here, the numerator is 2Re ψ3 which follows from having an even
number of spatial momenta. We can also use ehij(k)∗ = ehij(−k), which follows from the
reality of γij(x), to see that the polarisation factor is a common factor on both the left and
right hand side of this equation. We refer the reader to [12] for more details on deriving
this relationship.

We have to compute such contact diagrams for both Type-I and Type-II bispectra. For
Type-II we will explain in section 6 that we can use the MLT to very efficiently write down
all allowed wavefunction coefficients by taking into account the fact that each graviton
is differentiated with respect to time at least once, while for Type-I, in section 5 we will
directly compute the necessary bulk time integrals. As we can see from (3.18), the time
dependence for two building block operators is quite specific so computing the integrals is
more straightforward than finding the necessary subset of MLT solutions. For this reason
let us briefly review the Feynman rules for computing contact diagrams.

It is easiest to illustrate the Feynman rules with an example. Consider the graviton
interaction

Sint = gint

∫
d3xdη a(η)γ′ijγ′jkγ′ki, (4.6)

which we take in addition to the free theory coming from GR. This is the leading parity-even
correction to the Einstein-Hilbert action in the EFToI. To compute the cubic wavefunction
coefficient we convert to momentum space and extract the tensor structure which in this
case is simply eij(k1)ejk(k2)eki(k3). For each graviton we evolve it from time η to the
late-time boundary at η0 by inserting a bulk-boundary propagator Kγ for each field. We
insert an overall (−i) and sum over permutations. This overall factor of (−i) follows from
our definition of the wavefunction coefficients in (1.3). We do this for the two helicity
configurations + + + and + +−. For this example, the + + + configuration wavefunction
coefficient is

ψ+++
3 = 6igint

H
e+
ij(k1)e+

jk(k2)e+
ki(k3)

∫ η0

−∞(1−iε)

dη

η
K ′γ(k1, η)K ′γ(k2, η)K ′γ(k3, η), (4.7)

where the minus sign coming from the Feynman rules has been cancelled by the one coming
from the scale factor (which appears linearly), and we remind the reader that we don’t
include the momentum conserving delta function in the wavefunction coefficient cf. (1.3).
We integrate from the far past to the future boundary and we project onto the vacuum
at early times. In the following we will suppress the iε prescription. Computing the time
integral we find

ψ+++
3 = −12gint

H
e+
ij(k1)e+

jk(k2)e+
ki(k3) e

2
3
k3
T

, (4.8)

where we have written the fully symmetric time integral in terms of the symmetric polyno-
mials given in (1.12). This can be easily generalised to any other contact diagram, and as
we will explain in section 4.4, other helicity configurations can be extracted from the + + +
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γ γ γ

GR QC

Figure 2. Single exchange diagram.

one. We nicely see from this example that the degree of the leading order total-energy pole
is counting the number of derivatives in the bulk vertex.

4.2 Single exchange diagrams

Since we have corrections to the quadratic action, there are other diagrams in addition
to contact ones that can contribute to the cubic wavefunction coefficient at tree-level. In
principle there are infinitely many new diagrams which would ultimately resum into a single
contact diagram with a new propagator which takes into account the quadratic corrections.
However, we are treating these corrections perturbatively in which case only one diagram
contributes at leading order. This diagram is shown in figure 2 and corresponds to a single
exchange process with a single cubic interaction connected to a quadratic correction (QC)
vertex by a bulk-bulk propagator. For two building block operators the largest of these
diagrams comes from taking the cubic vertex to be the GR one [12]. Indeed, we are treating
the corrections to the quadratic action perturbatively so the largest contribution comes
at linear order in these new couplings for which we need to take the cubic vertex to be
independent of this small coupling: the GR vertex scales like 1/Pγ , where Pγ is the power
spectrum of the graviton, while the bulk-bulk propagator scales as Pγ , so the product of
the two is O(1). At this order, this exchange diagram is of a comparable size to the contact
diagram that comes from these two building block operators, and cancellations are required
between these two diagrams for the EFToI consistency relations to be satisfied. This makes
sense since the quadratic and cubic operators in the action are tied together by spatial
diffeomorphisms which is where these consistency relations come from [15–17]. This was
checked explicitly for the parity-odd Chern-Simons term in the EFToI in [12], and we will
check it in section 5 for these parity-even bispectra.

Single exchange diagrams are more complicated to compute compared to contact ones
since there are now nested time integrals. Let us illustrate the Feynman rules for computing
figure 2 by taking the cubic vertex to be GR, and the quadratic mixing vertex to be one
of the terms in (3.17) where we have m = 0. As always we introduce an overall factor of
(−i), a bulk-boundary propagator for each external line, and a bulk-bulk propagator for the
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internal line. We act on these propagators with derivatives according to the bulk vertices,
add the appropriate polarisation tensors, and sum over permutations. For our example of
interest here we have

ψ
(n,m=0)
3,exchange =−i×

M2
pl

8
(
−2eh1

ik e
h2
jl k

3
kk

3
l e
h3
ij +eh1

ij e
h2
kl k

3
kk

3
l e
h3
ij +5 perms

)
×4×

M2
plgn,0

4
×
∫
dηdη′a2(η)a2−2n(η′)Kγ(k1,η)Kγ(k2,η)

×
[
K(2n+1)
γ (k3,η

′) ∂

∂η′
G(k3,η,η

′)+K ′γ(k3,η
′) ∂

2n+1

∂η′2n+1G(k3,η,η
′)
]

+2 perms,

(4.9)

where the factor of 4 in the first line comes from applying (1.8) to the quadratic mixing,
and the bulk-bulk propagator is given by (see e.g. [26])

G(k, η, η′) = 2Pγ(k)[θ(η − η′)K(k, η′)ImK(k, η) + (η ↔ η′)], (4.10)

where ImK(k, η) is the imaginary part of the bulk-boundary propagator which takes the
form

ImK(k, η) = − i2[(1− ikη)eikη − (1 + ikη)e−ikη]. (4.11)

Computing and analysing such time integrals is far simpler when there are no time derivatives
on the bulk-bulk propagator. We can guarantee this by integrating by parts and, as always,
we can drop all boundary terms. We then have

ψ
(n,m=0)
3,exchange

= −
iM4

plgn,0

8
(
2eh1
ik e

h2
jl k

3
kk

3
l e
h3
ij − e

h1
ij e

h2
kl k

3
kk

3
l e
h3
ij + 5 perms

)
In,0(k1, k2, k3) + 2 perms,

(4.12)

where we have defined

In,0(k1, k2, k3) =
∫
dηdη′a2(η)Kγ(k1, η)Kγ(k2, η)G(k3, η, η

′)

×
[
∂

∂η′
(a2−2n(η′)K(2n+1)

γ (k3, η
′)) + ∂2n+1

∂η′2n+1 (a2−2n(η′)K ′γ(k3, η
′))
]
.

(4.13)

A very similar expression also applies when we take quadratic mixing vertices with m 6= 0
from (3.18), and is given by

ψ
(n,m≥1)
3,exchange

=
(−1)m+1iM4

plgn,m

8
(
2eh1
ik e

h2
jl k

3
kk

3
l e
h3
ij −e

h1
ij e

h2
kl k

3
kk

3
l e
h3
ij +5 perms

)
k2m

3 In,m(k1,k2,k3)

+2 perms, (4.14)
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where

In,m(k1, k2, k3) =
∫
dηdη′a2(η)Kγ(k1, η)Kγ(k2, η)G(k3, η, η

′)

×
[
∂

∂η′
(aq(η′)K(n+1)

γ (k3, η
′)) + (−1)n ∂n+1

∂η′n+1 (aq(η′)K ′γ(k3, η
′))
]
. (4.15)

We remind the reader that q = 2− 2m− n ≤ 0. In all cases it is easy to see that every time
integral we need to compute for these single exchange diagrams is of the form

M(α, β) =
∫
dηdη′ a2(η)Kγ(k1, η)Kγ(k2, η)G(k3, η, η

′)aα(η′)K(β)
γ (k3, η

′), (4.16)

with α ≤ 0 and β ≥ 1. We will refer to this integral as the master time integral. For m = 0
we have

In,0(k1,k2,k3) =
∫
dηdη′a2(η)Kγ(k1,η)Kγ(k2,η)G(k3,η,η

′)a2−2n(η′)

×
[
K(2n+2)
γ (k3,η

′)+(2−2n)Ha(η′)K(2n+1)
γ (k3,η

′)+
2n−2∑
k=0

cn,kH
kak(η′)K(2+2n−k)

γ (k3,η
′)
]
,

(4.17)

where we have defined

cn,k = (−1)kk!
(

2n+ 1
k

)(
2n− 2
k

)
, (4.18)

and from this expression we can write

In,0(k1, k2, k3) =M(2− 2n, 2n+ 2) + (2− 2n)HM(3− 2n, 2n+ 1)

+
2n−2∑
k=0

cn,kH
kM(k + 2− 2n, 2 + 2n− k). (4.19)

Similarly, for m 6= 0 we can write

In,1(k1, k2, k3) =M(−n,n+2)−nHM(1−n,n+1)+
n∑
k=0

dn,1,kH
kM(k−n,n+2−k),

(4.20)
In,m(k1, k2, k3) =M(2−2m−n,n+2)+(2−2m−n)HM(3−2m−n,n+1)

+
n+1∑
k=0

dn,m,kH
kM(k+2−2m−n,n+2−k), m≥ 2, (4.21)

where we have defined

dn,m,k = (−1)n+kk!
(
n+ 1
k

)(
n+ 2m− 2

k

)
. (4.22)

We will essentially dedicate section 5.1 to computingM(α, β) and then finding the final
form of these single exchange diagrams, but let us first derive some general properties. We
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will show thatM(α, β) is only singular at kT = 0, and satisfies the MLT for each external
leg. These two properties are enough for us to conclude that single exchange diagrams in
the EFToI have the same structure as cubic contact diagrams and are therefore captured
by the general analysis of [12]. It would be interesting to investigate if this holds for other
cubic diagrams too i.e. those with more bulk-bulk propagators.

To study this master time integral we need expressions for the derivatives of the
bulk-boundary propagator. We have

K(β)(k, η) = ∂β

∂ηβ
K(k, η) = (ik)β(1− β − ikη)eikη. (4.23)

Let’s first ask what singularitiesM(α, β) can have. As has been discussed in the literature
in several places, see e.g. [39], exchange diagrams at tree-level have a restricted set of
singularities: they can be singular when the energy of all external legs sums to zero, and
when the energy of an individual vertex sums to zero. This is a consequence of having local
vertices and Bunch-Davies initial conditions. For a diagram like ours, in general the allowed
singularities are therefore at kT = 0 and k3 = 0. How can k3 = 0 singularities arise? If
we first perform the η integral, meaning that we take the θ(η′ − η) part of the bulk-bulk
propagator, then no k3 = 0 singularities can arise. Indeed, we would integrate from the far
past at η = −∞ up to η′ and in the process singularities can only arise from exponential
factors, and their arguments will always contain a sum of energies. The subsequent η′
integral also cannot yield k3 = 0 poles for the same reason. If we do the η′ integral first,
however, then it does look like inverse powers of k3 are possible. The relevant part of the
integral is

1
k3

3

∫ η

−∞
dη′ kβ3 η

′−α(1− ik3η
′)(1− β − ik3η

′)e2ik3η′ , (4.24)

where the factor of k−3
3 comes from the power spectrum in the bulk-bulk propagator. This

integral contributes various powers of k3 with the smallest power given by (β + α− 4). For
m = 0 we have β + α− 4 = 0 so there are no inverse powers of k3, while for m 6= 0 we have
β + α − 4 = −2m. However, the spatial derivatives in this case introduce an additional
factor of k2m

3 so again there are no inverse powers of k3. No further inverse powers of k3
can be generated when we come to now do the η integral since now all exponents contain
sums of energies. Any folded singularities drop out when we compute the full integral, so
only total-energy poles are allowed. We therefore conclude that in the EFToI there are too
many derivatives for singularities to occur as k3 → 0.

What about logs? We showed in the previous section that contact diagrams in the
EFToI can never have logs since there are too many derivatives in the corresponding vertices.
This analysis does not apply to single exchange diagrams, but again we don’t expect logs
to arise from the corresponding time integrals. If such a log did arise from one of these
single exchange diagrams, it could not be cancelled by a contact diagram and since we are
computing parity-even correlators, it would contribute to the bispectra. This was proven in
generality in [12] where it was shown that only for parity-even interactions can bispectra
have a log. Furthermore, the log would also need to depend on a sum of energies. Indeed, if
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it was to just depend on k3 it would need to come from first integrating with respect to η′
but because we have at least four derivatives, and therefore non-negative powers of η′, that
part of the integral cannot give rise to a log. The presence of a log would be felt in the
leading soft theorem which is given by

〈γhsk−q/2γ
hs
−k−q/2γ

hl
q 〉 ∼

3
2P

hl(q)P hs(k)ehlij k̂ik̂j , (4.25)

for some soft momentum q. The right hand side of this soft theorem does not have a
log dependence so there also cannot be a log on the left.15 This shows that the cubic
wavefunction coefficient, and therefore single exchange diagrams in the EFToI, cannot have
log singularities. We note that the absence of logs might be highly non-trivial, and require
cancellations between different parts of the full integral in (4.16). As an example, consider
the case where m = 2 and n = 0 i.e. the quadratic correction only has spatial derivatives.
If we first compute the θ(η − η′) part of the integral then we find that at late times there is
a log dependence of the form log[(kT + 2k3)/kT ], while the θ(η′ − η) part of the integral
contributes an equal and opposite term such that no logs appear in the final result.

What about the MLT? It is easy to see that the MLT is satisfied for k1 and k2 since
they only appear through the bulk-boundary propagators which as we explained above
ensures that the MLT is satisfied for those energies. Now for k3, the only dependence that
we didn’t take into account above was from ImK(k3, η) which when expanded for small k3
starts at O(k3

3). It follows that the result of this integral (multiplied by any factors coming
from spatial derivatives) always contains a factor of k3

3, from both theta functions, which
in turn ensures that it satisfies the MLT for this leg too. So we conclude that the leading
single exchange diagrams in the EFToI only have poles as kT → 0 and they always satisfy
the MLT for all three legs. It follows that the final result of these diagrams is captured by
the analysis of [12].

Finally, let us outline how one goes from such an exchange contribution to the wave-
function to expectation values. This was worked out in detail in [12] where it was shown
that the correction to the two-point function yields a slightly more complicated relation
compared to the case for contact diagrams. Up to linear order in the correction to the
two-point function, the relationship is

B3 = 1
Π3
i=1P

(0)
2 (ki)

(
−P{λi}3 ({k},{k})+P{λi}3 ({k},{k})

(
δPλ1

2 (k1)
P(0)

2 (k1)
+2 perms

))
, (4.26)

where the permutations are of both momenta and helicity labels, and we have defined the
combination

P{µi}n ({k}, {k}) = ψ{µi}n ({k}, {k}) + ψ{µi}n ({−k}, {k})?. (4.27)

Here P(0)
2 is the GR contribution, with the two-point function given by (4.5), while δP2

comes from the small quadratic corrections. Note that this formula includes all tree-level
contributions to ψ3, so both contact and exchange diagrams are added. In section 5 we will
use this formula to convert our calculations of wavefunction coefficients into bispectra.

15A similar argument can be used to show that there cannot be any singularities at k3 = 0.
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4.3 Boundary terms

Before computing the bispectra, let us first verify that boundary terms evaluated at η = 0
cannot contribute to the late-time wavefunction. Such terms could arise either independently,
or as a consequence of the integration by parts we have performed to arrive at (2.7). The
general forms of boundary contributions from two and three building block boundary
operators are, schematically,

lim
η→0−

(
ηa+b−3O(a)A · O(b)B

)
, lim

η→0−

(
ηa+b+c−3O(a)A · O(b)B · O(c)C

)
, (4.28)

where a, b, c denote the number of derivatives in the corresponding operators, A,B,C ∈
{δKi

j , η
2R̃ij} are scale-invariant objects, and indices in (4.28) have been suppressed. The

powers of η are fixed by scale invariance. In conformal time, the extrinsic curvature is given by

δKi
j = −1

2a
2gilHηγ′mn

δ (eγ)lj
δγmn

, (4.29)

and given that the graviton equation of motion dictates that asymptotically γ′ij ∼ O(η) as
η → 0−, we have

δKi
j ∼ O(η2) as η → 0− . (4.30)

Here we have used the fact that a2gil is constant at late-times. Similarly, for the scale-
invariant Ricci tensor we have

η2R̃ij ∼ O(η2) as η → 0− . (4.31)

This late-time behaviour of the building blocks ensures that the boundary terms in (4.28)
approach zero at the future boundary. Indeed, close to η = 0 we have

ηa+b−3∏
a,b

O(x)A∼O
(
η
a+b−3+

∑
a,b

max{2−x,0}
)
∼O

(
η

1+
∑

a,b
max{0,x−2}

)
∼O(η),

ηa+b+c−3 ∏
a,b,c

O(x)A∼O
(
η
a+b+c−3+

∑
a,b,c

max{2−x,0}
)
∼O

(
η

3+
∑

a,b,c
max{0,x−2}

)
∼O(η3) .

This shows that we can freely integrate by parts at the level of these covariant building
blocks, as we have done in section 2, without having to worry about boundary contributions
to the wavefunction.

A question distinct from the one we have just discussed, is whether we could have
generated any boundary terms when we integrated by parts in section 4.2 to remove all
time derivatives from the bulk-bulk propagator to the bulk-boundary one, cf. (4.16). For
clarity, recall that the nested time integral of interest is

0∫
−∞

dη′α({ki}, η′)
0∫

−∞

dη knG(a)(k; η, η′)K(b)(k; η)ηn+a+b−4 , (4.32)

where a, b > 1, because δKij ∝ γ′ij at linear order so each propagator must include at least
one time derivative. Again the power of η is fixed by scale invariance, and the factor of kn
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originates from n spatial derivatives acting on either line attached to the quadratic vertex.
The η′ vertex is the one coming from GR which won’t affect the below discussion since it
doesn’t contain any time derivatives. Our goal is to use integration by parts to eliminate
all conformal time derivatives from G. We have

0∫
−∞

dη G(a)(η)K(b)(η)ηns+a+b−4 = (−1)a
0∫

−∞

dη G(η)∂aη
(
K(b)(η)ηn+a+b−4

)

+
j=a−1∑
j=0

(−1)j
[
G(a−1−j)(η)∂jη

(
K(b)(η)ηn+a+b−4

)]
η→0

.

(4.33)

What are the necessary and sufficient conditions for the boundary terms in the second line
to vanish? A useful limit is that as η → 0, the bulk-bulk propagator decays as η3:

G(k; η, η′) ∼ 1
2K(k; η′)η3 + η3 · O(kη) as η → 0−. (4.34)

First consider the case a− 1− j 6 3. We have

G(a−1−j)(k; η, η′) ∼ O
(
η4+j−a

)
, (4.35)

∂jη

(
K(b)(k; η)ηns+a+b−4

)
= O(ηns+a+b−4−j), (4.36)

so we conclude that

G(a−1−j)(k; η, η′)∂jη
(
K(b)(k; η)ηn+a+b−4

)
= O(ηn+b). (4.37)

Thus, the boundary term decays at least as fast as ηn+b. Since b > 1 (which must hold for
operators constructed out of δKi

j), this is sufficient for the boundary term to vanish.
Now consider a− 1− j > 3, which implies a > 4 + j > 4. Then for the boundary term

to vanish it is necessary and sufficient that

lim
η→0

K(b)(k; η)ηn+a+b−4 = 0. (4.38)

Since a ≥ 4, the above relation holds for any b.
In conclusion, for quadratic operators that appear in the EFToI we can proceed as we

did in section 4.2 and move all time derivatives in the bulk integrals onto the bulk-boundary
propagators, which significantly simplifies the calculation we will perform in section 5.

4.4 Spinor-helicity formalism

Once we have the final form of the various time integrals, the last step is to account for the
tensor structure. For the single exchange diagram of interest in this paper, the nontrivial
tensor structure comes from the GR vertex, while for contact diagrams this structure
originates from the EFToI cubic interactions beyond GR. The computation and the final
result are much simplified if we work with the de Sitter spinor-helicity formalism developed

– 26 –



J
H
E
P
1
0
(
2
0
2
2
)
1
5
4

in [1]. Here we discuss the subject only very briefly and refer the reader to [1, 12, 39, 75]
for further details, with many useful relations given in [39].

A null four-vector kµ can be represented by a pair of two-component, non-Grassmanian
spinors (λ, λ̃) as follows:

kαα̇ = σµαα̇kµ = λαλ̃α̇ , (4.39)

where we defined kµ = (k,k) and σµ = (1,σ) are the Pauli matrices. Here we have
constructed a null four-vector from the spatial momenta with k = |k|. In contrast to flat-
space, here energy is not conserved so a number of spinor helicity identities in flat-space are
altered in de Sitter. For example, conservation of spatial momenta for three particles yields

〈ab〉[ab] = kT Ic, for a 6= b 6= c, (4.40)
3∑

a=1
λ(a)
α λ̃

(a)
α̇ = kT (σ0)αα̇, (4.41)

where we have defined the spinor brackets

〈ab〉 = εαβλ(a)
α λ

(b)
β , (4.42)

[ab] = εα̇β̇λ̃
(a)
α̇ λ̃

(b)
β̇
, (4.43)

and Ia = kb + kc − ka. The object (σ̄0)α̇α can be used to pick out of the time component of
a vector e.g. (σ̄0)α̇αkαα̇ = 2k. This would not be allowed in a Lorentz invariant theory but
is perfectly fine in our cosmological setting. This allows us to define polarisation vectors
which have a vanishing time component. If we write the polarization tensors for γij as
e±ij(k) = e±i (k)e±j (k), then we have

e+
αα̇(k) =

(
σ0)

αβ̇ λ̃
β̇λ̃α̇

k
, (4.44)

e−αα̇(k) =
(
σ0)

βα̇ λ
βλα

k
. (4.45)

The numerical factors in these expressions follow from ehij(k)eh′ij (k)∗ = 4δhh′ , and the simplic-
ity of these expressions motivates this particular normalisation. One can check that these
polarisation tensors are transverse to the momentum and have a vanishing time component.
For parity-even interactions at three-points, useful formulae for going from polarisations
to spinors are

ea+ · eb+ = − [ab]2
2kakb

, ea− · eb− = − 〈ab〉
2

2kakb
, ea+ · eb− = I2

b

2kakb
〈cb〉2

〈ca〉2
= I2

a

2kakb
[ca]2
[cb]2 ,

(4.46)

ka · eb+ = Ib
2kb

[ab][bc]
[ac] , ka · eb− = Ib

2kb
〈ab〉〈bc〉
〈ac〉

. (4.47)

The wavefunction coefficients can then always be expressed in terms of coupling constants,
the square and angle brackets, and the energies ka, with the linear combinations Ia playing
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a special role. Let us therefore convert all tensor structures into bracket expressions. The
tensor structure part of ψ3,+++ always takes the following form [12](

e+(k1)e+(k2)e+(k3)kα1
1 kα2

2 kα3
3

)
= [12]2[23]2[31]2

k2
1k

2
2k

2
3

hα(ka) ≡ SH+++hα(ka) , (4.48)

where hα is a polynomial in the energies, of dimension α = α1 + α2 + α3. For parity even
interactions, which we are considering here, possible values are α = 0, 2, 4, 6. For each
interaction, hα must be found by an explicit calculation. For example, the GR vertex can
be represented by hα=2. The simplicity of the method lies in the fact that once the + + +
computation is performed, all other helicity configurations come almost automatically. The
time integral part of the wavefunction coefficient is the same as for the + + +, while the
tensor structure part can be found as follows:(

e+(k1)e+(k2)e−(k3)kα1
1 kα2

2 kα3
3

)
= [12]6

[23]2[31]2
I2

1I
2
2

k2
1k

2
2k

2
3
hα(k1, k2,−k3)

≡ SH++−hα(k1, k2,−k3) ,(
e−(k1)e−(k2)e+(k3)kα1

1 kα2
2 kα3

3

)
= 〈12〉6
〈23〉2〈31〉2

I2
1I

2
2

k2
1k

2
2k

2
3
hα(k1, k2,−k3)

≡ SH−−+hα(k1, k2,−k3) ,(
e−(k1)e−(k2)e−(k3)kα1

1 kα2
2 kα3

3
)

= 〈12〉2〈23〉2〈31〉2
k2

1k
2
2k

2
3

hα(k1, k2, k3)

≡ SH−−−hα(ka) . (4.49)

We refer the reader to [12] for a derivation and a more in-depth discussion of this construction.
We will present the final form of graviton bispectra using these spinor variables.

5 Type-I bispectra

We now start computing the graviton bispectra in the EFToI. We begin with the Type-I
bispectra that arise from two building block operators. In this case both single exchange
and contact diagrams contribute and we deal with them in turn. We then write down the
final form of the bispectra which requires us to convert our wavefunction expressions into
expectation values. Finally we check that our results satisfy the consistency relations which
relate the soft limit of a three-point function to the two-point function [15–17], which now
receives corrections. This provides a non-trivial check of our final result.

5.1 Single exchange diagram

We begin with the exchange contributions to the wavefunction which arise due to the
quadratic corrections to the free theory in (3.18). We have computed these contributions
when we gave examples of the Feynman rules for exchange diagrams, and they are given
by (4.12) and (4.14). If we write the polarisation tensors in such a way that we have full
symmetry in particles 1 and 2, then for the + + + configuration we have

4eh1
ik e

h2
jl k

3
kk

3
l e
h3
ij − e

h1
ij e

h2
kl k

3
kk

3
l e
h3
ij − e

h2
ij e

h1
kl k

3
kk

3
l e
h3
ij = − 1

16SH+++
(
4I1I2 + I2

1 + I2
2

)
. (5.1)
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Using this expression in (4.12) and (4.14), for the + + + configuration, we find

ψ+++
2BB, exchange =

∑
n=1

iM4
plgn,0

64 SH+++k
2
TIn,0(k1,k2,k3)+2 perms,

+
∑

n=0,m=1

(−1)miM4
plgn,m

64 SH+++k
2
Tk

2m
3 In,m(k1,k2,k3)+2 perms. (5.2)

Notice how once we summed over the remaining two permutations in the tensor structure,
the contribution reduced simply to k2

T . Recall that here we are using the tensor structure
of GR where this factor of k2

T is familiar [1] and cancels the 1/k2
T that comes from the time

integral when computed in pure gravity. This means that the + + + configuration for pure
gravity in de Sitter space does not have a total-energy pole which can be traced back to the
fact that the corresponding amplitude for this configuration is zero. We will see that this
behaviour is unique to pure gravity: the EFToI corrections to the bispectrum do indeed
have total-energy poles for the + + + configuration. As we explained above we can now
easily extract the + +− configuration which is given by

ψ++−
2BB, exchange =

∑
n=1

iM4
plgn,0

64 SH++−I
2
3 (In,0(k1,k2,k3)+2 perms) ,

+
∑

n=0,m=1

(−1)miM4
plgn,m

64 SH++−I
2
3

(
k2m

3 In,m(k1,k2,k3)+2 perms
)
, (5.3)

where we have used the fact that k2
T → I2

3 as we send k3 → −k3. We remind the reader
that In,0 and In,m are defined in (4.13) and (4.15), which can be compactly written
as (4.19), (4.20) and (4.21) in terms of the master time integral (4.16). Our focus now is
on computing this master time integral.

To compute this integral we use the formalism developed in [32] to write down a
dispersion formula in terms of discontinuities of the bulk-boundary propagator. In order to
ensure a Bunch-Davies vacuum in the infinite past requires the use of the iε prescription,
k → k − iε, where the norm of k is given a negative imaginary part, i.e. −k → −k + iε. In
polar coordinates, k2 = eiθ, this becomes the condition θ ∈ (−2π, 0). If θ is in this interval,
then the Feynman integrals converge. It is therefore natural to place the k2 branch cut on
the positive real axis. We then define the following monodromy operation

discp2f(k2) = f((e−iπk)2)−f(k2) = f((−k+iε)2)−f((k−iε)2) = f((−k∗)2)−f(k2), (5.4)

i.e. the argument of the term on the left hand side comes from rotating k in the complex
plane by θ = −π. By utilising the Hermitian analyticity of the bulk-boundary propagator,
we can express the discontinuity of the bulk-boundary propagator as16

discp2K(p, η) = K(e−iπp, η)−K(p, η) = K∗(p, η)−K(p, η) = −2i ImK(p, η). (5.5)

16A function is described to be Hermitian analytic provided it satisfies the relation f∗(−k∗) = f(k). We
refer the reader to [26, 28] for further discussion on this topic.
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We can write a general bulk-bulk propagator Gν(k, η, η′) in terms of a dispersion formula [32]

Gν(k, η, η′) = 1
2πi

∫ +∞

0

dp2

p2 − k2 + iε
discp2Gν(p, η, η′), (5.6)

where ν is the usual order of the Hankel function related to the mass of the bulk field by

ν =

√
9
4 −

m2

H2 . (5.7)

The discontinuity of the bulk-bulk propagator can then be expressed in terms of the
discontinuities of the bulk-boundary propagator as

discp2Gν(p, η, η′) = iPν(p)discp2K(p, η)discp2K(p, η′) , (5.8)

where Pν is the power spectrum. Given that we are working with massless gravitons in the
EFToI, we can take ν = 3/2, allowing us to rewrite (4.16) as

M(α,β) = 1
2πi

∫ +∞

−∞

dp

p2−k2
3 +iε

iH2

2M2
pl p

2

∫ 0

−∞
dη(−Hη)−2K(k1,η)K(k2,η)[K∗(p,η)−K(p,η)]

×
∫ 0

−∞
dη′ (−Hη′)−αK(β)(k3,η

′)[K∗(p,η′)−K(p,η′)] . (5.9)

Two comments are in order. First, we have switched the order of the integrals. This is
typically not allowed: the behavior of discp2K(p, η) in the infinite past is such that the η
integral converges only for particular values of p2. One can carry out the integral for these
values and then analytically continue: the final result is that the nested integral becomes an
integral in p2 of the product of the discontinuities of single integrals. The second observation
is that the product of these discontinuities is an even function of p. We can then change
variables from p2 to p, and take advantage of the fact that the whole integrand is even in p
to extend the range of integration from −∞ to +∞ [32]. Carrying out the integrals in dη
and dη′ we find

M(α, β) = 1
2πi

∫ +∞

−∞
dp N (k1, k2, k3, p) , (5.10)

where we have dropped the iε for simplicity of notation. The function N is given by

N (k1, k2, k3, p) = − iH
−α

M2
pl

p(k2
1 + 4k1k2 + k2

2 − p2)
(p2 − k2

3)(k1 + k2 − p)2(k1 + k2 + p)2

× (ik3)β(−α)!iα
[((k3 − p)(k3 + p)α − (k3 + p)(k3 − p)α) (β − 1)

k2
3 − p2

+ (−α+ 1)
(
(k3 − p)α−2(k3 + βp− p)− (k3 + p)α−2(k3 − βp+ p)

)
− (−α+ 2)(−α+ 1)k3p

(
(k3 − p)α−3 + (k3 + p)α−3)] , (5.11)

which is manifestly symmetric under p → −p. We also see that the integrand in (5.11)
vanishes as p→∞ in the complex plane, and therefore we can close the p-contour in either
the upper or lower half-plane.
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The poles in p are located at

p = ±k3

p = ±(k1 + k2). (5.12)

When evaluating the contour integral, we should recall that the Bunch-Davies boundary
condition implies that the ka have a small, negative imaginary part. Finally, we can close
the contour in the lower half-plane to find

M(α, β) = −
(

Resp=(k1+k2)

[
N (k1, k2, k3, p)

]
+ Resp=k3

[
N (k1, k2, k3, s)

])
. (5.13)

The residue at (k1 + k2) can be computed for generic n,m but the same is not true for the
residue at k3, for which we cannot find a closed-form expression. In any case we notice that,
taken separately, the residues at k3 and (k1 + k2) both present a divergence at k1 + k2 = k3.
It is only when combined that such divergence cancels, as it was expected from the analysis
of section 4.2.

Let us end this section by writing down some expressions for the time integrals of
interest so we can see the expected properties explicitly. Since in all cases the result must
be symmetric in the exchange of k1 and k2, we write the integrals in terms of the symmetric
polynomials in two variables: ê1 = k1 + k2, ê2 = k1k2. We still use kT = ê1 + k3. We have:

I1,0 = ik3
3

2M2
plk

5
T

(7ê3
1 + 14ê1ê2 + 11ê2

1k3 − 2ê2k3 + 5ê1k
2
3 + k3

3), (5.14)

I2,0 = 3iH2k3
3

2M2
plk

7
T

[15ê5
1 + 30ê3

1ê2 + k3(25ê4
1 − 30ê2

1ê2)

+ k2
3(26ê3

1 + 34ê1ê2) + k3
3(22ê2

1 − 2ê2) + 7k4
3 ê1 + k5

3], (5.15)

I0,1 = ik3
2M2

plk
5
T

(−ê3
1 − 2ê1ê2 + 3ê2

1k3 + 14ê2k3 + 5ê1k
2
3 + k3

3), (5.16)

I1,1 = iHk3
4M2

plk
5
T

(−ê3
1 − 2ê1ê2 + 3ê2

1k3 + 14ê2k3 + 5ê1k
2
3 + k3

3), (5.17)

I2,1 = 12iH2k2
3

M2
plk

7
T

(ê4
1 + 3ê2

1ê2 − 7ê1ê2k3 − ê2
1k

2
3 + 2ê2k

2
3). (5.18)

We note that the expressions for I0,1 and I1,1 are proportional which was to be expected.
This is a consequence of the fact that for m 6= 0 and odd n, we can integrate by parts to
write the quadratic mixing in terms of operators with lower values of n. As we explained
before, it is still useful to keep our current labelling and definition of n however, since we
expect the contact contributions to be different for all n. For larger values of n, it will
remain the case that for odd n we can write the result in terms of expressions with lower
and even n. As another example, we have I3,1 = 9H

2 I2,1 − 3H2I1,1. As expected, we see
that only total-energy poles arise, and once we include the factors of k2m

3 the MLT will be
satisfied for each external leg.
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5.2 Contact diagram

In addition to the exchange contributions we have just computed, for Type-I bispectra there
are also contact diagrams that contribute to the bispectra at the same order in perturbation
theory. These arise due to the cubic interactions in (3.18) which take the form

Sγ,2BB ⊃
M2

pl
4

∫
dηd3x

∑
n,m=1

gn,ma
q(η)(γij)n+1

×

−mγlk∂2m−2∂l∂kγ
′
ij +

m−1∑
p=0

∂2pQs[γ, ∂2m−2−2pγ′]ij

 , (5.19)

where q = 2 − 2m − n and m ≥ 1. Each contribution contains one γij with n + 1 time
derivatives, one with a single time derivative, and one without any. Up to permutations
and overall factors, the time integral that we therefore need to compute is

Jn,m(k1, k2, k3) =
∫
dη ηn+2m−2K(n+1)(k1, η)K ′(k2, η)K(k3, η). (5.20)

With the result of this integral we can multiply it by the tensor structure dictated by the
cubic interactions, then sum over permutations. Given that n+ 2m− 2 ≥ 0, the result of
this integral will only have poles at kT = 0, and no logs. Using (4.23) and

lim
η→0

∫
dη ηzeikT η = z!(−i)1−z

k1+z
T

+O(ηz+1), (5.21)

for z ≥ 0, we find that at late times the bulk time integral yields

J 123
n,m = (−1)m−nin(n+ 2m− 1)!k

n+1
1 k2

2
kn+2m
T

+ (−1)1+m−ni(n+ 2m)!k
n+1
1 k2

2(k1 − nk3)
kn+2m+1
T

+ (−1)1+m−ni(n+ 2m+ 1)!k
n+2
1 k2

2k3

kn+2m+2
T

, (5.22)

where we have introduced a more compact notation with J 123
n,m ≡ Jn,m(k1, k2, k3). We see

that the degree of the leading total-energy pole is equal to the number of derivatives in the
cubic vertices, as expected [41], and one can check that this expression satisfies the MLT
for each external energy.

Now for the tensor structure we have

Qs[γ, γ′]ij = −∂iγkl∂kγ′lj + ∂lγjk∂kγ
′
il + (i↔ j), (5.23)

and in the final term in (5.19) we can integrate by parts to move all ∂2p terms onto the
first γij such that

Sγ,2BB ⊃ −
M2

pl
4

∫
dηd3x

∑
n,m=1

aq(η)mgn,m(γij)n+1γlk∂2m−2∂l∂kγ
′
ij

+
M2

pl
4

∫
dηd3x

∑
n,m=1

aq(η)
m−1∑
p=0

gn,m∂
2p(γij)n+1Qs[γ, ∂2m−2−2pγ′]ij . (5.24)
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From the first line, once we convert to momentum space using (1.4), we will find tensor
structures of the form k2m−2

2 eh1
ij (k1)eh2

ij (k2)k2
l k

2
ke
h3
lk (k3), and if we convert this expression

into one with spinors, for the + + + configuration we find

k2m−2
2 e+

ij(k1)e+
ij(k2)k2

l k
2
ke

+
lk(k3) = 1

16k
2m−2
2 I2

3SH+++. (5.25)

We remind the reader that the + + − configuration can be extracted from this expres-
sion, as we explained above. For the second line, the tensor structures are of the form
k2p

1 k
2m−2−2p
2 eh1

ij (k1)[eh2
il (k2)eh3

jk(k3)k2
kk

3
l − eh2

lj (k2)eh3
kl (k3)k2

kk
3
i ], which when converted to

spinors for the + + + configuration yields

k2p
1 k

2m−2−2p
2 e+

ij(k1)[e+
il (k2)e+

jk(k3)k2
kk

3
l −e+

lj(k2)e+
kl(k3)k2

kk
3
i ] =−1

8k
2p
1 k

2m−2−2p
2 k3I3SH+++.

(5.26)

We can now collect everything together. By multiplying these tensor structures by the
result of the time integral, and including all constant factors as dictated by the Feynman
rules we reviewed in section 4, for the + + + helicity configuration we find

ψ+++
2BB,contact

=
iM2

pl
64 SH+++

∑
n,m=1

(−1)n+mgn,mH
n+2m−2m

[
k2m−2

2 I2
3J 123

n,m + 5 perms
]

+
iM2

pl
16 SH+++

∑
n,m=1

(−1)n+mgn,mH
n+2m−2

m−1∑
p=0

[
k2p

1 k
2m−2p−2
2 k3I3J 123

n,m + 5 perms
]
.

(5.27)

We have summed over the remaining permutations to find an object with the correct
symmetry. The symmetrisation in the expression for Qs simply yields a factor of 2. Now to
extract the wavefunction coefficient for the + +− helicity configuration we need to send
k3 → −k3 and SH+++ → SH++− for each term, while keeping Jn,m fixed. This yields

ψ++−
2BB,contact =

iM2
pl

64 SH++−
∑

n,m=1
(−1)n+mgn,mH

n+2m−2m
[
k2m−2

2 k2
TJ 123

n,m + k2m−2
1 k2

TJ 213
n,m

+ k2m−2
1 I2

1J 312
n,m + k2m−2

3 I2
1J 132

n,m + k2m−2
2 I2

2J 321
n,m + k2m−2

3 I2
2J 231

n,m

]
+
iM2

pl
16 SH++−

∑
n,m=1

(−1)n+mgn,mH
n+2m−2

m−1∑
p=0

[
− k2p

1 k
2m−2p−2
2 k3kTJ 123

n,m

− k2p
2 k

2m−2p−2
1 k3kTJ 213

n,m − k
2p
1 k

2m−2p−2
3 k2I1J 132

n,m

− k2p
3 k

2m−2p−2
1 k2I1J 312

n,m − k
2p
2 k

2m−2p−2
3 k1I2J 231

n,m − k
2p
3 k

2m−2p−2
2 k1I2J 321

n,m

]
.

(5.28)

We note that for both helicity configurations these contributions to the wavefunction are
real since the overall factor of i is cancelled by the i in Jn,m. This ensures that these
contributions do indeed contribute to the bispectra since for parity-even interactions only
the real part contributes (cf. (4.4)).
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5.3 Putting everything together

Now that we have all contributions to the cubic wavefunction coefficient, to leading order in
new couplings, we can now convert these into expressions for the bispectra. In perturbation
theory expectation values are algebraically related to wavefunction coefficients with the
relations derived in a number of places e.g. [12, 22, 76]. When there is a small correction to
the two-point function, as is the case here, the general expression is given by (4.26) which
for parity-even interactions becomes

B
{λi}
3 = 1

Π3
i=12Re (ψ2,GR)

−2Re
(
ψ
{λi}
3,total

)
+ 2Re

(
ψ
{λi}
3,GR

)Re
(
δψλ1

2

)
Re (ψ2,GR) + 2 perms

 ,
(5.29)

where ψ2,GR is the GR contribution to the two-point function, while δψ2 is a small correction
due to our higher-derivative corrections to the quadratic action. Since we are working up
to linear order in new couplings, we take the first term in the square brackets to be all
contributions we have computed in this section i.e. ψ3,total = ψ2BB,exchange + ψ2BB,contact,
while the ψ3 in the second term must be the GR contribution since δψ2 is already linear
the new couplings. In addition to ψ3,total, we now also need the GR wavefunction up to
cubic order, and the small corrections to ψ2.

We have essentially already computed the GR cubic wavefunction coefficient when we
computed the Type-I exchange diagrams so let us simply write the result here. We have17

ψ+++
3,GR =

M2
pl

64H2SH+++
k2
T

k2
T

(e3 + kT e2 − k3
T ), (5.30)

ψ++−
3,GR =

M2
pl

64H2SH++−
I2

3
k2
T

(e3 + kT e2 − k3
T ). (5.31)

For the corrections to the two-point function, we need to compute a Feynman diagram that
is analogous to the one in figure 1 but with two rather than three external legs. Since this
is a small correction to the quadratic wavefunction, we compute it in the way we compute
any contact diagram: we insert a bulk-boundary propagator for each external line, add
tensor structures and time derivatives as dictated by corresponding the bulk vertex, and
use the Feynman rules we discussed above. For example, for m = 0 we have

δψhh
′

2 = −i
∑
n=1

gn,0M
2
plH

2n−2

4

∫
dη η2n−2K(2n+1)

γ (k, η)K ′γ(k, η)× 4δhh′ × 2 (5.32)

=
∑
n=1

(2n)!
4n gn,0M

2
plH

2n−2k3δhh′ , (5.33)

where we have used momentum conservation and summed over the two possible permutations.
The computation for m 6= 0 is very similar and in total we have

δψhh
′

2 =
∑
n=1

(2n)!
4n gn,0M

2
plH

2n−2k3δhh′

+
∑

n=0,m=1

(2m+ n− 1)!(n− 2m)
2n+2m gn,mM

2
plH

n+2m−2k3δhh′ . (5.34)

17As we did with the quadratic wavefunction, here we are dropping any imaginary contributions to the
GR cubic wavefunction coefficient.
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We now have all the ingredients to compute the bispectra. Below we write down their final
forms at linear order in the new couplings for a few choices of n and m. We define

δP = −PGRδψ2
ψ2,GR

= − H4

2M4
plk

6 δψ2. (5.35)

We have, for the examples with the lowest degree leading total-energy poles,

GR : B+++
3 = H4

256M4
ple

3
3
SH+++(k3

T−kT e2−e3) (5.36)

B++−
3 = H4

256M4
ple

3
3
SH++−

I2
3
k2
T

(k3
T−kT e2−e3), (5.37)

P hh
′

GR = H2

2M2
plk

3 δhh′ . (5.38)

n= 1,m= 0 : δB+++
3 =− H6g1,0

256M4
ple

3
3
SH+++

k6
T−k4

T e2−k3
T e3+24e2

3
k3
T

, (5.39)

δB++−
3 =− H6g1,0

256M4
ple

3
3
SH++−

I2
3
k2
T

k6
T−k4

T e2−k3
T e3+24e2

3
k3
T

, (5.40)

δP hh
′ =− H

4g1,0
4M2

plk
3 δhh′ . (5.41)

n= 2,m= 0 : δB+++
3 =− 3H8g2,0

256M4
ple

3
3
SH+++

k8
T−e2k

6
T−e3k

5
T +80e2

3k
2
T−240e2e

2
3

k5
T

, (5.42)

δB++−
3 =− 3H8g2,0

256M4
ple

3
3
SH++−

I2
3
k2
T

k8
T−e2k

6
T−e3k

5
T +80e2

3k
2
T−240e2e

2
3

k5
T

,

(5.43)

δP hh
′ =−3H6g2,0

4M2
plk

3 δhh′ . (5.44)

n= 0,m= 1 : δB+++
3 = H6g0,1

256M4
ple

3
3
SH+++

k6
T−k4

T e2−k3
T e3+72e2

3
k3
T

(5.45)

δB++−
3 = H6g0,1

256M4
ple

3
3
SH++−

Poly8a(ê1, ê2,k3)
k5
T

(5.46)

δP hh
′ = H4g0,1

4M2
plk

3 δhh′ . (5.47)

n= 1,m= 1 : δB+++
3 = H7g1,1

512M4
ple

3
3
SH+++

k8
T−k6

T e2−k5
T e3+24k2

T e
2
3+384e2e

2
3

k5
T

(5.48)

δB++−
3 = H7g1,1

512M4
ple

3
3
SH++−

Poly8b(ê1, ê2,k3)
k5
T

(5.49)

δP hh
′ = H5g1,1

8M2
plk

3 δhh′ , (5.50)
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where we have defined the polynomials

Poly8a(ê1, ê2, k3) = ê8
1 + 3ê7

1k3 − ê6
1(ê2 − 2k2

3)− 3ê5
1k3(ê2 + k2

3)− 6ê4
1k

4
3 + ê3

1(6ê2k
3
3 − 3k5

3)
+ ê2

1(72ê2
2k

2
3 + 3ê2k

4
3 + 2k6

3) + 3ê1(80ê2
2k

3
3 − ê2k

5
3 + k7

3)
+ (72ê2

2k
4
3 − 2ê2k

6
3 + k8

3), (5.51)
Poly8b(ê1, ê2, k3) = Poly8a(ê1, ê2, k3)− 48ê2

2k
2
3(ê2

1 − 8ê2 + 6ê1k3 + k2
3), (5.52)

using the symmetric polynomials in two variables: ê1 = k1 + k2, ê2 = k1k2.
Perhaps surprisingly we see that for these four examples the bispectra for both helicity

configurations can be written as a linear sum of the GR bispectra and those that we will
introduce in the following section, namely, the Type-II bispectra. Indeed, once we subtract
the GR contributions from these Type-I bispectra, we are left with contributions that
contain an overall e2

3 which is the defining property of Type-II bispectra as we will show.
This does not mean that the two building blocks operators are completely degenerate
with the three building block ones since observables could still differ at higher order in
perturbations e.g. the corresponding trispectra could be different. However, this observation
certainly motivates us to construct these bispectra directly using consistency relations which
may shed light on why this apparent degeneracy arises. Our result here suggests that if
there is no correction to the power spectrum, then to satisfy the consistency relations we
require an overall e2

3 and it would be nice to prove this in generality. We will come back to
this in the future.

5.4 Checking the consistency relations

Given that we are working within the EFToI, our bispectra should satisfy the consistency
relations of single-clock cosmologies which relate the soft limit of n-point functions to lower
point ones [15–17]. They arise from the unbroken spatial diffeomorphisms and offer a good
consistency check of our results. The leading order graviton soft theorem is

〈γh1
q γh2

k−q/2γ
h3
−k−q/2〉

′ ∼ 3
2(εh1

ij (q)k̂ik̂j)P h1h1
γ (q)P h2h3

γ (k) as q

k
→ 0, (5.53)

where we have introduced the notation 〈. . .〉′ to denote a correlator with the momentum-
conserving delta function stripped off.

We will focus on the consistency relation for the + + + configuration which is enough
to verify that our results are correct. We first need to compute the tensor structures that
appear on both sides of the soft theorem. In both cases we can write these solely in terms of
the three external energies by picking a basis for the vectors and polarisation tensors. Using
momentum conservation and SO(3) invariance, we can make each of the three external
vectors lie in the (x, y) plane and we choose k1 = k1(1, 0, 0) without loss of generality. We
can then write the corresponding polarisation tensor as

e±(k1) =

0 0 0
0 1 ±i
0 ±i −1

 , (5.54)
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which is traceless, transverse to the momentum and has the correct normalisation. The
other vectors and polarisation tensors can easily be extracted from these by performing
rotations and using momentum conservation (see e.g. [12]). It is then straightforward to
see that18

SH+++ = −8eh1
ij e

h2
jke

h3
ki = −k

3
T

e2
3

(
8e3 − 4kT e2 + k3

T

)
, (5.55)

with a similar expression for SH++− [12].19 Similarly, we have

eh1
ij k̂

2
i k̂

3
j = −k2

k3

(
1− (k2

1 + k2
2 − k2

3)2

4k2
1k

2
2

)
. (5.56)

With these expressions, and the bispectrum and power spectrum of GR given in (5.36)
and (5.38) respectively, we can easily see that the soft theorem is satisfied in pure gravity.
Using the general consistency relation at zeroth order in the new EFToI couplings, we can
then obtain a simplified relation at first order in terms of the new bispectra and change in
the power spectrum given by

δB+++(q, |k− q/2|, |k + q/2|) ∼ 2B+++
GR (q, |k− q/2|, |k + q/2|)

δP++
γ (k)

P++
γ,GR(k)

. (5.57)

It is then simple to see that this relationship holds for the examples we wrote above at
leading order in the soft momentum i.e. at O(1/q3). We have also checked that the + +−
configuration satisfies the appropriate soft limits. If we take ~k3 soft then the bispectrum
contributes to the left-hand side of the soft theorem and the correction to the power
spectrum ensures that it is satisfied, while if we take either ~k1 or ~k2 soft then to leading
order there is no contribution to the left-hand side of the correlator which is comforting
since the right-hand side would only be non-zero at leading order if the + and − modes were
correlated, which is not the case. In checking this we see the welcome appearance of I2

3 in
the + +− bispectrum: at leading order in the soft momentum (~k1 or ~k2) this combination
of energies vanishes thereby ensuring that there is no contribution to the left-hand side of
the soft theorem.

6 Type-II bispectra

Let’s now turn our attention to Type-II bispectra that come from three building block
operators. In this case our Lagrangian contains all tensor structures derived in [12] with the
freedom to add additional derivatives. The only constraint coming from the fact these are
EFToI operators is that each γij must come with at least one time derivative, as we showed
in section 3. This makes sense from the point of view of symmetries: the theory should be

18Despite the overall factor of e−2
3 , this object is not singular in the soft limit thanks to the tunings

between terms in the numerator.
19We note that the polarisation tensors are matrices of rank 1 which ensures that we can use the spinor

helicity formalism without loss of generality. We can therefore use this expression for SH+++ to easily write
all tensor structures in terms of the energies.
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invariant under spatial diffeomorphisms and if we write these symmetry transformations as
a Taylor expansion in xi, γij (and ζ) [15], then the operators with the fewest powers of γij
must be invariant under the field-independent part of the symmetry transformation which
would simply be a sum of polynomials in xi under which γ′ij is invariant. Here there are no
corrections to the power spectrum, and therefore the cubic terms are those with the fewest
powers of γij .

Now as was explained in detail in [12], to construct bispectra we take one of the
allowed tensor structures and multiply it by a solution to the MLT before summing over
permutations. In terms of polarisation tensors and spatial momenta, the five allowed tensor
structures, up to permutations, are (these also follow from the action in (3.20))

α = 0 : eh1
ij e

h2
jke

h3
ki , (6.1)

α = 2 : eh1
lme

h2
lme

h3
ij k

i
1k
j
2 and eh1

lme
h2
il e

h3
jmk

i
1k
j
1, (6.2)

α = 4 : eh1
lk e

h2
mke

h3
ij k

i
1k
j
2k
l
3k
m
3 , (6.3)

α = 6 : eh1
il e

h2
jme

h3
knk

m
1 k

k
1k

i
2k
n
2 k

l
3k
j
3. (6.4)

As we discussed in the previous section, wavefunction coefficients and bispectra are actually
more compactly presented by converting to the spinor helicity formalism. In this case a
general parity-even wavefunction coefficient for the + + + configuration can be written as

ψ+++
3 ({k}, {k}) = SH+++

∑
permutations

hα({k})ψtrimmed
3 ({k}), (6.5)

where the parity-even choices for hα are [12]

h0 = 1, (6.6)
h2 = k2

1 and k1k2, (6.7)
h4 = I2

1I2I3, (6.8)
h6 = I2

1I
2
2I

2
3 , (6.9)

and we remind the reader that the symmetries of the trimmed part of the wavefunction
are dictated by hα, and Ia = kb + kc − ka, with a 6= b 6= c. The trimmed wavefunction is
the contribution that comes from time evolution. These five structures follow directly from
converting the tensor structures in (6.1) into spinor variables, however there is a further
simplification that was noted in [12]. Consider the k2

1 possibility for h2. In the bispectra this
factor would be multiplied by a solution to the MLT and then summed over permutations.
However, k2

1 is by itself also a solution to the MLT so in fact this α = 2 possibility is already
captured by α = 0. Here we are aiming to construct a complete set of Type-II bispectra so
we can therefore work with the restricted set

h0 = 1, (6.10)
h2 = k1k2, (6.11)
h4 = I2

1I2I3, (6.12)
h6 = I2

1I
2
2I

2
3 , (6.13)
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with only a single possibility for each α. From these expressions we can extract the + +−
configuration, as we explained in section 4.4. We have

ψ++−
3 ({k}, {k}) = SH++−

∑
permutations

hα(k1, k2,−k3)ψtrimmed
3 ({k}) . (6.14)

Now the trimmed wavefunction can be a rational function of the three energies, can contain
a log divergence in −η0kT and can also contain poles at η0 = 0 of at most cubic degree.
These allowed structures follow from the combination of scale invariance and the assumption
of a Bunch-Davies vacuum [12, 41]. As we mentioned above, in our EFToI operators there
are too many derivatives for log divergences to arise, and any η0 = 0 poles drop out of the
correlator, which can be shown in complete generality using a combination of the MLT and
the COT [12]. They drop out since their coefficients are always imaginary and only real
wavefunction coefficients contribute to the bispectra. In any case, the fact that each γij is
differentiated at least once is enough to rule out η0 = 0 poles in the wavefunction. For our
interests we can therefore restrict the trimmed wavefunction to be a rational function with
poles only occurring when kT = 0. We therefore have

ψtrimmed
3 ({k}) = 1

kpT
Poly3+p−α(k1, k2, k3), (6.15)

with p the order of the leading total-energy pole, and 3 + p−α the degree of the polynomial
which is fixed by scale invariance.

Now, given the form of (3.20), in our case the trimmed wavefunction would arise from
bulk time integrals of the form∫

dη η−rK(1+n1)(k1, η)K(1+n2)(k2, η)K(1+n3)(k3, η), (6.16)

with each bulk-boundary propagator differentiated at least once and r ≤ 1. We have

K ′(k, η) = k2ηeikη, (6.17)

so each external energy will appear at least quadratically in ψtrimmed
3 . We can therefore

update our ansatz to20

ψtrimmed
3 ({k}) = e2

3
kpT

Polyp−3−α(k1, k2, k3), (6.18)

which by virtue of the factor of e2
3 satisfies the MLT for each external energy and for all

choices of Polyp−3−α(k1, k2, k3). In [12] it was shown that all solutions to the MLT come
from a bulk time integral, so (6.18) reproduces precisely the desired trimmed wavefunctions
that follow from (3.20). This can also been seen from the fact that K ′(k, η) = k2KCC(k, η),
where KCC is the bulk-boundary propagator for a conformally coupled scalar. The MLT
for such a field is trivial [30], so all rational functions are admissible and can be generated
by taking the necessary time derivatives of KCC. Without having to compute any time

20This overall factor of e2
3 is enough to rule out η0 = 0 poles since by scale invariance any negative powers

of η0 would also require negative powers of kT but no such structures are allowed [41].
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integrals we can now construct ψtrimmed
3 for each α, and use these expressions to compute

the bispectra B+++
3BB,α and B++−

3BB,α. Note that when we convert wavefunction coefficients to
correlators we pick up a factor of 1/e3

3 from the inverse powers of ψ2 in (4.4), and in the
following we absorb all constant factors, such as H and Mpl, into the arbitrary polynomials.

Let’s start with α = 0 where the trimmed wavefunction should be fully symmetric in
the external energies since the tensor structure is. We can therefore write the polynomial
as a function of kT , e2 and e3. The general bispectra are then

B+++
3BB,0 = e2

3SH+++
e3

3k
p
T

Polyp−3(kT , e2, e3), (6.19)

B++−
3BB,0 = e2

3SH++−
e3

3k
p
T

Polyp−3(kT , e2, e3), (6.20)

where in all cases the degree of the polynomial must be a non-negative number so for α = 0
we need p ≥ 3. Now for α = 2 we have h2 = k1k2, so the trimmed wavefunction only needs
to be symmetric in the exchange of k1 and k2. We therefore have

B+++
3BB,2 = e2

3SH+++
e3

3k
p
T

[k1k2Polyp−5(kT , e2, k3) + k1k3Polyp−5(kT , e2, k2)

+ k2k3Polyp−5(kT , e2, k1)], (6.21)

B++−
3BB,2 = e2

3SH++−
e3

3k
p
T

[k1k2Polyp−5(kT , e2, k3)− k1k3Polyp−5(kT , e2, k2)

− k2k3Polyp−5(kT , e2, k1)]. (6.22)

We would naturally write the arguments of the polynomial, for the k1k2 permutation, as
ê1 = k1 + k2, ê2 = k1k2 and k3 given its symmetries but we can replace ê1 with kT and ê2
with e2 without loss of generality since kT = ê1 + k3 and e2 = ê2 + k3ê1. The case of α = 4
is very similar to α = 2 since the symmetries of h4 are the same as h2. We have

B+++
3BB,4 = e2

3SH+++
e3

3k
p
T

[I2
3I1I2Polyp−7(kT , e2, k3) + I2

2I1I3Polyp−7(kT , e2, k2)

+ I2
1I2I3Polyp−7(kT , e2, k1)], (6.23)

B++−
3BB,4 = e2

3SH++−
e3

3k
p
T

[k2
T I1I2Polyp−7(kT , e2, k3)− I2

1I2kTPolyp−7(kT , e2, k2)

− I2
2I1kTPolyp−7(kT , e2, k1)], (6.24)

where we have used that under k3 → −k3 we have I3 → kT and I1 → −I2. Finally, for
α = 6 we again have a symmetric h6 so the bispectra are

B+++
3BB,6 = e2

3SH+++
e3

3k
p
T

I2
1I

2
2I

2
3Polyp−9(kT , e2, e3), (6.25)

B++−
3BB,6 = e2

3SH++−
e3

3k
p
T

I2
1I

2
2k

2
TPolyp−9(kT , e2, e3). (6.26)

The above structures give the most general graviton bispectra coming from three building
block operators in the EFToI, to all orders in derivatives (or equivalently to all orders in p).
Compared to the general Lagrangian (3.20), the resulting bispectra take a very compact form.
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For Type-I bispectra we checked that the consistency relations of the EFToI are satisfied
by our results. This provides a non-trivial check. For these Type-II bispectra we see that
the consistency relation is clearly satisfied: there is no correction to the power spectrum
since these shapes come from three building block operators and indeed these shapes do
not contribute in the leading soft limit thanks to the overall factor of e2

3. So the consistency
relation is also satisfied here. These Type-II bispectra therefore represent the most general
tree-level subset that satisfy the consistency relation without a need to correct the graviton
power spectrum.

7 Conclusions and outlook

In this paper we have computed late-time inflationary three-point functions for massless
gravitons in the Effective Field Theory of Inflation (EFToI). At tree-level, and to leading
order in the field theory couplings, there are two Feynman diagrams that contribute to the
cubic wavefunction coefficient of massless gravitons: one is a contact diagram due to cubic
self-interactions of the graviton, while the second is an exchange diagram that perturbatively
accounts for possible corrections to the graviton power spectrum. Computationally we
have concentrated on these wavefunction coefficients, but have used standard techniques to
extract expectation values, namely bispectra, from these objects.

We have, for the first time, shown that the quadratic and cubic action for massless
gravitons, that appears in addition to the Einstein-Hilbert part, can be derived by considering
covariant operators constructed out of the extrinsic curvature only. We arrived at this
conclusion by performing various field redefinitions to eliminate operators that contain the
three-dimensional Ricci tensor. At the level of covariant operators we have distinguished
between those that are quadratic or cubic in the extrinsic curvature. The former contribute
to both the quadratic and cubic operators for the transverse traceless fluctuation, and
we refer to the corresponding bispectra as Type-I, while the latter only contribute to the
cubic operators and we refer to these bispectra as Type-II. In both cases we computed
these bispectra to all orders in derivatives, and have shown that our results are a consistent
sub-set of the general graviton bispectra constructed in [12].

For Type-I bispectra, both types of Feynman diagrams contribute and they are tied
together by spatial diffeomorphisms and the non-linear realisation of time diffeomorphisms.
For the exchange diagram the leading order contribution comes from taking the cubic inter-
action to be that of GR and with the quadratic mixing coming from expanding two building
block operators to quadratic order. We use the techniques of [32] to efficiently compute the
necessary bulk time integrals. The contact diagram arises from the self-interactions coming
from expanding two building block operators to cubic order. Such interactions only arise in
the presence of spatial derivatives: in the absence of spatial derivatives the symmetries of
the extrinsic curvature ensure that there are no cubic corrections. In this case we explicitly
compute the necessary bulk time integrals. Both diagrams contribute to the bispectra and we
have checked that our bispectra satisfy the leading order consistency relation of the EFToI.

For Type-II bispectra, only contact diagrams contribute since there are no corrections
to the quadratic action. In this case we have used the techniques of [12] to write down the
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most general allowed wavefunction coefficients. Since each contribution to the cubic action
contains three gravitons differentiated with respect to conformal time at least once, the
wavefunction coefficients always contain an overall factor of (k1k2k3)2 which ensures that
the MLT [30] is trivially satisfied. We have again extracted bispectra from our wavefunction
expressions and the overall factor of (k1k2k3)2 ensures that the leading order consistency
relations are again satisfied.

The bispectra that we have derived should be taken in addition to those of GR which
were first computed in [1]. All of the corrections we have derived have leading order
total-energy poles that are of a higher degree than that of pure gravity which makes sense
since they all come from operators with more than two derivatives. A consequence of this
is that pure gravity is the only case where the bispectrum for + + + configuration does
not have a total-energy pole. The Type-I bispectra will always have a smaller amplitude
compared to their GR counter-parts since we treated the corrections to the power spectra
perturbatively, however the restrictions on the size of Type-II bispectra are weaker since
there is no correction to the two-point function.

There are avenues for future work:

• In this work we have been using a combination of bulk and bootstrap tools. It would
be great to be able to derive this collection of EFToI graviton bispectra purely using
bootstrap methods. Consistency relations could be very useful in this regard, and
we plan to use these soft theorems to construct these shapes directly. Clearly the
leading order soft theorems will not be sufficient as these don’t have the power to
constrain the full shapes, so rather one would need to use a collection of sub-leading
soft theorems. Such relations will also require knowledge of correlators that mix the
graviton and the curvature perturbation ζ [15].

• Given the previous point, it would be very interesting to construct mixed correlators.
Writing down the general EFToI action and doing the computation will not be very
efficient so one would need to develop bootstrap tools to construct these correlators. It
is not yet clear how to do this in complete generality. Indeed, we expect ζ correlators to
violate the MLT since the corresponding self-interactions are not manifestly local. One
can again use soft theorems [41], but another option would be to find a generalisation
of the MLT that applies directly to ζ correlators. Such a generalisation should be
possible given that the time integrals one needs to compute are the same as those
of a spectator scalar, but one needs to effectively deal with the inverse Laplacians
that arise when integrating out the non-dynamical parts of the metric. This perhaps
requires a better understanding of locality in the presence of dynamical gravity.

• More ambitiously, one might expect that three-point functions can be constrained by
demanding consistency of higher-point functions such as the trispectrum. This is a
familiar technique for scattering amplitudes where cubic couplings, and the spectrum,
can be constrained by demanding that four-point amplitudes have only simple poles
and factorise consistently on such poles [5–7]. Thanks to efforts of recent years we
now have a solid understanding of the analytic properties of four-point cosmological
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correlators and such consistency conditions could be used to constrain the three-point
functions that contribute to four-point functions. For the EFToI one would need
to impose that the spectrum contains a single scalar and a massless graviton as the
dynamical modes, and the Cosmological Optical Theorem [26] could provide a useful
tool to yield constraints on three-point functions.
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