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Abstract
Temporal evolution of a clonal bacterial population is modelled taking into account
reversible mutation and selection mechanisms. For the mutation model, an efficient
algorithm is proposed to verify whether experimental data can be explained by this
model. The selection–mutation model has unobservable fitness parameters, and, to
estimate them, we use an Approximate Bayesian Computation algorithm. The algo-
rithms are illustrated using in vitro data for phase variable genes of Campylobacter
jejuni.

Keywords Stochastic modelling · Population genetics · Phase variable genes ·
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1 Introduction

The objective of this paper is to propose stochastic models for bacterial population
genetics together with their calibration. In other words, our aim is not only to construct
models but also to suggest algorithms which can answer the question as to whether
experimental data can be explained by a model or not. An answer to this question
is the key for establishing which mechanisms are dominant in evolution of bacte-
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ria. The models are deliberately relatively simple though they capture two important
mechanisms of bacterial population genetics: mutation and selection. Simplicity of
the models allows their fast calibration, and it is also consistent with the fact that in
experiments sample sizes are usually relatively small.

The models are derived, calibrated and tested within the context of phase vari-
able (PV) genes, which occur in many bacterial pathogens and commensals (Bayliss
2009; Bayliss et al. 2012). Phase variation has three properties: (i) an on/off or
high/low switch in gene expression; (ii) high switching rates; and (iii) reversible
switching between expression states. Two major mechanisms of phase variation
involve hypermutable simple sequence repeats (SSR) and high-frequency site-specific
recombinatorial changes in DNA topology (Bayliss 2009; Bayliss et al. 2012;
Wisniewski-Dyé and Vial 2008; van der Woude and Bäumler 2004; Moxon et al.
1994). We note that in contrast to phase variation, non-PV mutations have lower rates
and extremely rare reverse mutations, while PV genes have high mutation rates (e.g.
in the case of Campylobacter jejuni they are estimated to fall between 4 × 10−4 and
4×10−3). PV genes can lead to changes in the expression of outer membrane proteins
or structural epitopes of large surface molecules whose functions modulate multiple
interactions between bacteria and hosts including adhesion, immune evasion and iron
acquisition. Consequently, phase variation can influence host adaptation and viru-
lence. Models accompanied by efficient data assimilation procedures are an important
tool for understanding adaptation of bacteria to new environments and ultimately for
determining how some bacteria cause disease.

SSR-mediated phase variation is considered herein as this is the specificmechanism
occurring in genes of C. jejuni which we will use in our illustrative examples. SSR,
otherwise known asmicrosatellites, consist of tandem arrangements ofmultiple copies
of an identical sequence (i.e. the repeat). InC. jejuni, the majority of these SSR consist
of non-triplet repeats, polyG or polyC, present within the reading frame. Between 18
and 39 PV genes are present in each C. jejuni strain (Aidley et al. 2018). SSR tracts
are hypermutable due to a high error rate occurring during DNA replication. Slipped
strand mispairing, the proposed mechanism (Levinson and Gutman 1987), alters gene
expression through parent and daughter strandmisalignment during replication, which
results in deletion or addition of one repeat unit in the newly-synthesized strand.
Changes in repeat number of a non-triplet repeat present within a reading frame alter
the coding sequence of the codon triplets producing switches in gene expression, and
hence the switches in phenotypes referred to as phase variation.

Other modelling approaches to bacterial population genetics can be found in, e.g.
Alonso et al. (2014), Saunders et al. (2003) and Moxon and Kussell (2017) (see
also references therein). These models have explored the interplay between selection,
mutation and population structure for multiple interacting genes with low or high
mutation rates and varying levels of selection (Alonso et al. (2014); Gerrish et al.
(2013); Palmer and Lipsitch (2006); Wolf et al. (2005); Barrick and Lenski (2013);
O’Brien et al. (2013); Raynes and Sniegowski (2014)). A subset of these models have
explicitly focused on hypermutability, where reversion is a defining and important
phenomenon. These models have indicated that evolution of hypermutability is driven
by the strength and period of selection for each expression state but is also influenced by
the frequency of imposition of population bottlenecks (Saunders et al. (2003); Moxon
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and Kussell (2017); Palmer et al. (2013); Acar et al. (2008)). The majority of these
models have considered single-gene phenomena and have not provided approaches or
adjustable, portable models for application to actual experimental observations. An
exception is the use of a model of non-selective bottlenecks of PV genes Aidley et al.
(2017) that was utilized to predict the bottleneck size in observed bacterial populations
Wanford et al. (2018). The aim herein is to develop models that could be used to
examine experimentally observed populations and determine whether mutation rate
alone or mutation rate and selection for changes in expression of one or more loci
were driving changes in bacterial population structure. Our main focus here is on host
adaptation of a clonal population of hypermutable bacteria, for which we propose a
mutation–selectionmodel. Themodel describes collective behaviour of interactive PV
genes and is accompanied by an effective data assimilation procedure.

The rest of the paper is organized as follows. In Sect. 2, we first recall and revise
the mutation model from Bayliss et al. (2012), which is a stochastic discrete-time
discrete-space model describing the mutation mechanism only. It is derived under
the assumptions of infinite (very large) size of the population maintained during the
whole time period of interest, time is measured in generations, and all phasotypes
have the same survival rate (fitness). Then, we introduce a new model (mutation–
selection model) which takes into account both mutation and selection mechanisms.
It generalizes the mutation model by allowing phasotypes to have different fitness
levels. We also discuss properties, including long-time behaviour, of both models.
Then, we turn our attention to calibration of the models. In Sect. 3, we propose a
very efficient algorithm to test whether experimental data can be explained by the
mutation model from Sect. 2 and we illustrate the algorithm by applying it to in vitro
data for three PV genes of C. jejuni. In Sect. 4, we describe general methodology for
estimating fitness parameters (as well as other quantities) in the mutation–selection
model using Approximate Bayesian Computation (ABC), as well as an algorithm
for detecting lack of independence between fitness parameters of different genes. In
Sect. 5, we illustrate the methodology with applications to synthetic and real data from
experiments involving the bacteria C. jejuni. We conclude with a discussion.

2 Models

Assume that a population of bacteria is sufficiently large (for theoretical purposes
“near” infinite). As we will see later in this section, this assumption is used in con-
structing the models to average over branching trees occurring during population
evolution in order to have deterministic dynamics of phasotype distributions. Hence,
the required population size depends on the number of genes considered (the more
genes, the richer the state space of the models and a larger population size is required)
and on transition (mutation) rates. (Rare events need to be “recorded” in the popula-
tion.) This simplifying assumption allows us to have tractable models which can be
efficiently calibrated aswe show in Sects. 3, 4 and 5.Using themodels, we can examine
large bacterial populations, say of size 10,000 or more, which is biologically relevant
when the population is far from extinction (this situation is relevant to weak selection
but may not be applicable to very strong selective pressures that cause high mortality
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rates and significant reductions in population size) and far from so-called bottlenecks
as may occur due to strong selection or during transmission of bacterial populations
between hosts or other environmental niches. The latter deserves a separate modelling
and study (see, e.g. Aidley et al. 2017; Moxon and Kussell 2017).

In modelling, we neglect the continuous-time effect (see, e.g. Crow and Kimura
1970) and measure time as numbers of generations. The number of generations
between two time points is evaluated as the time between the points multiplied by
an average division rate. The rate can be estimated in experiments by measuring how
much time is required for a population to double in the absence of selection. This sim-
plifying assumption neglects effects related to random time of bacterial division. To
compensate the use of average division rate, in calibration (Sects. 3, 4, 5) we assign to
each time point a range of possible numbers of generations occurred since the previous
observation.

We describe each bacteriumvia a status of its �PVgenes each ofwhich can be either
in the state OFF or ON. The OFF and ON states are coded as 0 and 1, respectively.
Hence, we can represent the phasotype of each bacterium as a random vector

ξ = (ξ1, . . . , ξ�) , (1)

where ξi can take only two values, 0 or 1. The random vector ξ has 2� possible values
from the state space

Ω = {
Ai = (ai1, . . . , ai�) with ai j = 0, 1

}
, (2)

where we label each element Ai of Ω by a number i from 1 to 2� in the increasing
order of the corresponding binary numbers: A1 = (0, . . . , 0) , A2 = (0, . . . , 0, 1) ,

. . . , A2� = (1, . . . , 1) .

Remark 2.1 We assume that ξi can take only two values 0 and 1 since this work
is mainly motivated by PV genes as explained in the Introduction. To study more
detailed genome evolution of bacteria (e.g. repeat numbers instead of phasotypes), the
models presented in this section can be easily generalized to the case when the random
variables ξi , i = 1, . . . , �, can take more than two values without need of additional
ideas (see, e.g. Hardwick et al. 2009, where a mutation model analogous to the one
presented in Sect. 2.1 but with multiple values of ξi was used). However, for clarity
of the exposition we restrict ourselves to the binary case here.

In Sect. 2.1, we derive a discrete-time discrete-space stochastic model for evolution
of phasotypes after a fixed number of generations n, taking into account only the
mutationmechanism of genes. (This shall be referred to herein as themutationmodel.)
This model was proposed in Bayliss et al. (2012) (see also Hardwick et al. 2009);
here, we provide more details which are needed for clarity of exposition. In Sect. 2.2,
a discrete-time discrete-space stochastic model is considered for the binary switching
in bacteria which takes into account fitness of genes in addition to mutation. (This
shall be referred to herein as the mutation–selection model.) In Sect. 2.3, it will be
shown when unique stationary distributions exist for both models.
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2.1 Genetic Drift Modelling

Consider a parent bacterium at time n = 0 whose phasotype is x ∈ Ω. At (discrete)
time n = 1 (i.e. after the first cell division) the parent bacterium produces two off-
spring: ξ(1; 1; x) ∈ Ω and ξ(1; 2; x) ∈ Ω, which are assumed to be conditionally
(conditioned on the initial state x) independent random vectors. This conditional inde-
pendence assumption is natural for a mutation process and has been utilized in similar
models (Hardwick et al. 2009; Palmer and Lipsitch 2006; Bayliss et al. 2012). We
introduce the transitional probabilities

pi j = P
(
ξ(1; 1; x) = A j |x = Ai

) = P
(
ξ(1; 2; x) = A j |x = Ai

)
(3)

from which we form the 2� × 2� matrix of transitional probabilities T = {
pi j

}
. It is

natural to assume that
pi j > 0 for all i, j . (4)

Let us make the following assumption which can be interpreted as stationarity of
mutation rates.

Assumption 2.1 Assume that thematrix of transitional probabilities T does not change
with time.

Now we continue with the dynamics so that at time n = 2 the bacteria ξ(1; 1; x)
and ξ(1; 2; x) produce their four offspring, then at time n = 3 we get eight bacteria,
and so on. (For the time being, we assume that no bacteria are dying before producing
offspring.) As a result, we obtain a binary branching tree. Denote by Zk(n|x) the
number of bacteria of type Ak in the population after n divisions starting from the
bacterium of type x at time zero. This number is clearly random as it depends on a
realization ω of the branching tree and its more detailed notation is Zk(n|x)(ω). The
collection

Z(n|x)(ω) =
{
Zk(n|x)(ω), k = 1, . . . , 2�

}

describes a population living on the set Ω and the total amount of bacteria after n
divisions is 2n :

2�∑

k=1

Zk(n|x)(ω) = 2n .

Let us randomly (i.e. independently) draw a member, i.e. a bacterium with a PV state,
from this population and ask the question: what is the probability of the PV state being
Ak? Obviously, for a fixed ω (i.e. for a particular realization of the branching tree),
the probability to pick a bacterium of the type Ak is equal to

ρk(n|x)(ω) = 1

2n
Zk(n|x)(ω). (5)

This is a random distribution which is analogous to random measures appearing in
Wright–Fisher-type models (Crow and Kimura 1970). Since we are interested in the

123



C. D. Bayliss et al.

situation when a population of bacteria is of “near” infinite size, we will characterize
the bacteria population at every time by an average of the distribution ρk(n|x)(ω),

where averaging is done over all possible realizations of the branching trees.
If we put together all possible realizations of the branching trees with the corre-

sponding random unnormalized distributions Z(n|x)(ω1), Z(n|x)(ω2), . . ., then the
proportion of bacteria of the type Ak in this total population of bacteria is equal to

πk(n|x) =
2n∑

j=1

j

2n
P (Zk(n|x) = j) = 1

2n
EZk(n|x) = Eρk(n|x). (6)

The meaning of the average πk(n|x) is as follows. If we consider all possible binary
trees (created via division of bacteria as discussed earlier) which started from a bac-
terium in state x , andwe look at the resulting total bacteria population after n divisions,
then the proportion of bacteria with PV type Ak in this total population is given by the
average πk(n|x). We note that π(n|x) := (π1(n|x), . . . , π2�

(n|x)) is a distribution
defined on the setΩ.The distribution π(n|x) is well suited for modelling in the typical
experimental setting when studying evolution of bacteria. Indeed, in both in vitro and
in vivo experiments with bacteria we usually cannot observe evolution of a particular
bacterium (i.e. a particular binary tree). Instead, a sample is collected from a large
bacteria population at particular time points and data (the motivation for this paper
is PV data) are extracted for this sample. So, in experiments one typically observes
a sample distribution i π̂ at a time point i and, by tending the sample size to infinity,
i π̂ converges (under the standard assumptions for the law of large numbers, and it
is natural to assume that for the considered application these assumptions hold) to
an average distribution iπ, which we model using π(n|x). We will link the models
considered in this Section with experimental data in Sects. 3 and 4.

Now let us show that time evolution of the measures π(n|x) resembles evolution of
the distribution for a (linear) Markov chain. Using the previously stated assumption
of conditional independence between the states of daughters of the parent bacterium,
and the transitional probabilities pi j from (3), we get

EZk(1|x = Ai ) = 0 × (1 − pik)
2 + 2pik(1 − pik) + 2p2ik = 2pik,

then
πk(1|x = Ai ) = pik

and
π(1|x = Ai ) = π(0)T ,

where π(0) is a vector in which all components are equal to zero except the i th
component being equal to 1 (recall that at this stage we assume that at time zero we
had just a single bacterium in the state Ai ). Analogously, we obtain

πk(2|x = Ai ) =
2�∑

j=1

pi j p jk
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and

πk(n|x = Ai ) =
2�∑

j=1

π j (n − 1|x = Ai )p jk .

Hence,
π(n|x = Ai ) = π(0)T n . (7)

We see that the time evolution of the population distribution resembles evolution of a
distribution of states of a linear Markov chain. But we emphasize that the underlying
model is not a Markov chain, since it is obtained by averaging over branching trees
rather than modelling an individual by a Markov chain on the state space. The resem-
blance is in the evolution dynamics (7) of the distribution resulting from our model,
which are the same as the dynamics of a distribution of a Markov chain on the same
state space. As we will see in Sect. 2.3, this resemblance is useful for studying the
time limit of the evolution of π(n).

Three generalizations of model (7) are straightforward. First, instead of starting
with a single bacterium at time n = 0, we can start with a bacteria population having
an initial distribution π(0) of PV states and, consequently, we can write the mutation
model as

π(n;π(0)) = π(0)T n . (8)

In the language of branching trees used above, this generalization can be interpreted in
the following way. The initial state (the seeding node) x ∈ Ω of branching trees is now
a random variable with the distribution π(0), i.e. the initial state for each of the trees
is randomly drawn from π(0). The average distribution π(n;π(0)) in (8) is obtained
by averaging not only over all possible branching trees starting from a particular state
x as in the case of (7) but also by averaging over all possible initial states distributed
according toπ(0).Second, so far we have been assuming that all offspring survive, and
hence the population grows exponentially. However, model (8) remains valid when the
number of bacteria of each type Ak at time n is proportional to π k (n;π(0)) under the
condition that the population size remains sufficiently large. The biologicalmeaning of
this assumption is that all phasotypes have the same survival rate, or in other words, the
same fitness. The case when various phasotypes have different fitness is considered
in Sect. 2.2. We note that since we assume the population size to remain large, it
implies that the mortality rate is relatively low so that either the population size is not
decreasing or decreasing relatively slowly during the time period of interest. Third,
Assumption 2.1 can be relaxed to allow time dependence of the transition probabilities
T , but the standard point of view is that mutation rates for bacteria do not change with
time, and hence we do not consider this generalization here.

For clarity of the exposition, let us summarize what is meant by the mutation model
in this paper, highlighting all the assumptions made during its derivation.

Mutation Model Under the assumptions

– infinite (very large) size of the population maintained during the whole time period
of interest;

– time is measured in generations;
– each gene can be either in state 0 or 1 (i.e. OFF or ON);
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– all phasotypes have the same survival rate (fitness);
– the matrix T of transitional probabilities does not change with time (Assump-
tion 2.1);

we call dynamics (7) of the distribution π(n;π(0)) the mutation model.
It is commonly viewed that mutation of individual genes happens independently of

each other, which in our phase variation context means that on/off switches of individ-
ual genes due to themutationmechanism are independent of each other. Consequently,
we can write the transition probabilities as

pi j =
�∏

m=1

pα(i, j;m;0,1)
m (1 − pm)α(i, j;m;0,0)qα(i, j;m;1,0)

m (1 − qm)α(i, j;m;1,1), (9)

where

pi = P {ξi (1; r; x) = 1|xi = 0} , qi = P {ξi (1; r; x) = 0|xi = 1} ,

r = 1, 2, i = 1, . . . , 2�, (10)

and α(i, j;m; l, k) = 1 if Ai in (2) has themth component equal to l and A j in (2) has
themth component equal to k, otherwiseα(i, j;m; l, k) = 0.Under the independence
assumption, the matrix of transitional probabilities T can therefore be written using
Kronecker tensor products as

T = T1 ⊗ · · · ⊗ T�, (11)

where Ti is a 2 × 2-matrix of transition probabilities for the i th gene

Ti =
[
1 − pi pi
qi 1 − qi

]
. (12)

Let us formalize the independence assumption and also require that all the elements
of the matrix T are positive.

Assumption 2.2 Assume that the matrix of transitional probabilities T for � genes has
form (11) and

0 < pi < 1 and 0 < qi < 1, i = 1, . . . , 2�. (13)

Note that under Assumption 2.2, we have

T n = T n
1 ⊗ · · · ⊗ T n

� . (14)

Further, one can show that model (8) under Assumption 2.2 implies that the evolution
of individual genes is given by

πl(n, πl(0)) = πl(0)T
n
l , l = 1, . . . , �, (15)
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where πl = (π1
l , π2

l ) are marginal distributions for the lth gene, i.e.

π1
l =

2�∑

i=1

α(i; l, 0)π i , π2
l =

2�∑

i=1

α(i; l, 1)π i , (16)

withα( j; l, k) = 1 if A j in (2) has the lth component equal to k, otherwiseα( j; l, k) =
0. We see from (15) that in the case of the mutation model we can study behaviour
of individual genes independently. In particular, we can verify whether data can be
explained by the mutation model (8) by looking at each gene individually using (15).
This will be exploited in Sect. 3.

2.2 Mutation–SelectionModel

In the previous section, we constructed a mutation model in which it was assumed
that all phasotypes have the same fitness. In this section, we will generalize model
(7) to include selection. By selection we mean that bacteria with some phasotypes
grow faster than bacteria with other phasotypes. To take into account both mutation
and selection mechanisms in modelling, we exploit the idea of splitting the dynamics.
Without selection, we model mutation using (8) introduced in the previous section.
Assuming there is no mutation, we can model selection via re-weighting a distribution
of the population at each discrete time. Using the idea of splitting, at each discrete-
time moment we first take into account the mutation mechanism using one step of
(8) and then we re-weight the resulting population distribution to model the selection
mechanism. We now derive the mutation–selection model.

Let us measure time in units of a typical division time for the slowest growing
phasotype Ai of the bacteria.Weassume that the number of bacteriawith this phasotype
changes per time step by a factor

0 < β ≤ 2.

Note that if all offspring survive then β = 2. Bacteria with the other phasotypes A j ,

j �= i, can be fitter and hence can grow faster per division step of the slowest growing
phasotype Ai , with a factor of γ jβ, where γ j ≥ 1. We note that if γ j = 1 then the
phasotype A j has the same growth speed as the slowest phasotype Ai , for which
obviously γi = 1. The parameters γ j are interpreted biologically as relative fitness of
phasotypes A j with respect to the slowest growing phasotype Ai .

Suppose that the total bacteria population at time n has a sufficiently large size N
and its distribution is π̃(n) “before selection”. Then, we have the following amount
of bacteria per type “before selection” :

N j = π̃ j (n)N .

Here, π̃(n) is obtained from population distributionπ sel(n−1) at time n−1 according
to one step of (8):

π̃(n) = πsel(n − 1)T . (17)

123



C. D. Bayliss et al.

Selection can be modelled by re-weighting the distribution according to the relative
fitness coefficients γ j . Hence, “after selection”, we have the amount of bacteria per
type

N sel
j = γ jβπ̃ j (n)N

and the new total size of the population

N sel = Nβ

2�∑

j=1

γ j π̃ j (n).

Therefore, the new distribution which takes selection into account is computed as

π
j
sel(n) = γ j π̃ j (n)

∑2�

j=1 γ j π̃ j (n)
. (18)

Note that our requirement for the population to be of a sufficiently large size ensures
that all N sel

j remain sufficiently large so that the averaging used in Sect. 2.1 to derive
the mutation model (8) can be performed. Thus, the mutation–selection model takes
the form

πsel(n) = πsel(n, π(0), γ ) = π sel(n − 1)T Iγ
γ · πsel(n − 1)T

, (19)

where γ = (γ 1, . . . , γ 2�
) and Iγ = diag(γ ). In future, wewill also use amore detailed

notation
πsel(n) = πsel(n, p, q, π(0), γ ), (20)

where p = (p1, . . . , p�) and q = (q1, . . . , q�).

For clarity of the exposition, let us summarize what is meant by the mutation–
selection model in this paper, highlighting all the assumptions made during its
derivation.

Mutation–selection Model Under the assumptions

– infinite (very large) size of the population maintained during the whole time period
of interest;

– time is measured in generations;
– each gene can be either in state 0 or 1;
– the matrix T of transitional probabilities does not change with time (Assump-
tion 2.1);

– the vector γ of fitness coefficients does not change over time and all γ i ≥ 1;

we call nonlinear dynamics (19) of the distribution πsel(n) the mutation–selection
model.

We remark that model (19) degenerates to the mutation model (8) when all γ j = 1.
Model (19) resembles a nonlinear Markov chain (Kolokoltsov 2010). Indeed, we

can rewrite (19) as
πsel(n) = πsel(n − 1)T (πsel(n − 1)) , (21)
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whereT is a stochastic matrix which gives nonlinear transitional probabilities. We can
choose T as

T
i j (πsel(n − 1)) = γ j ∑�

k=1 πk
sel(n − 1)T kj

γ · πsel(n − 1)T
. (22)

As we will see in Sect. 2.3, this resemblance is useful for studying the time limit of the
evolution of πsel(n). The stochastic representation (21) for the continuous mapping

Φ(π) = (Φ1(π), . . . , Φ2�

(π)) := πT Iγ
γ · πT

(23)

is not unique unless the condition thatTi j = Φ j is imposed underwhich representation
(21), (22), is unique (Kolokoltsov 2010, Ch. 1).

In model (19), it was assumed that the vector of fitness coefficients γ does not
change over time. But it is straightforward to generalize model (19) to the case of
time-dependent fitness parameters γ (n) by just replacing γ in the right-hand side of
(19) by γ (n). This generalization is important for modelling adaptation of bacteria to
different environments, which will be illustrated in Sect. 5.4.

In model (19), we assigned fitness coefficients γ j per phasotypes A j . In our bio-
logical context, Fisher’s assumption about selection (Fisher 1930;Waxman andWelch
2005) implies that each gene contributes independently to fitness of a phasotype. In
other words, if γl = (γ 1

l , γ 2
l ), γ i

l ≥ 1, min γ i
l = 1, describes fitness of the OFF (the

first component γ 1
l ) and ON states (the second component γ 2

l ) of a gene l then the
fitness coefficient γ j for the phasotype A j can be written as the product

γ j =
�∏

l=1

[γ 1
l ]α( j;l;0)[γ 2

l ]α( j;l;1), (24)

where α( j; l, k) was introduced after (16) in the previous section, and we can rewrite
(24) in the tensor form

γ = γ1 ⊗ · · · ⊗ γ�. (25)

Let us formally state this assumption.

Assumption 2.3 Assume that the fitness vector γ can be expressed as the tensor prod-
uct (25).

Note that under Assumption 2.3 the diagonal matrix Iγ can also be written as the
tensor product

Iγ = Iγ1 ⊗ · · · ⊗ Iγ�
, (26)

where Iγi = diag(γi ).
Model (19) with the choice of fitness vector in the form of (25) is clearly a particular

case of model (19) in which fitness coefficients are assigned to each phasotype indi-
vidually. Let us denote this particular case by (19), (25). In comparison with (19), (25),
the general model (19) can describe bacterial population evolution when individual
gene dynamics are dependent on each other. This feature of the selection model is
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important. For instance, in the recent studies (Woodacre et al. 2019; Lango-Scholey
et al. 2019; Howitt 2018) of PV genes of C. jejuni, evidence of small networks of
genes exhibiting dependent evolutionary behaviour was found. Fisher’s assumption,
and hence model (19), (25) with independent contribution of genes to fitness of pha-
sotypes, is open to criticism (see Waxman and Welch 2005 and references therein).
In Sect. 4, we describe an algorithm (Algorithm 4.2) which allows us to test whether
the data can be explained by the simplified model (19), (25) or whether assumption
(25) is not plausible. At the same time, model (19), (25) is simpler than the general
model (19). Model (19) has 2� − 1 (one of the fitness coefficients in (19) is equal to 1
due to normalization used in the model’s derivation) independent fitness parameters,
while (19), (25) has only � independent fitness parameters. In practice, the benefit of
reducing the number of parameters by preferring (19), (25) over (19) must be weighed
against the lack of versatility that arises from multiplying elements of fitness vectors
per gene.

Remark 2.2 Both models, (8) and (19), are implemented in R Shiny and are available
as a web-app at https://shiny.maths.nottingham.ac.uk/shiny/mutsel/. A description of
the web-app is also available in Howitt (2018).

2.3 Long-Time Behaviour of theModels

In this section, we study long-time behaviour of models (8) and (19). We start with
model (8). Owing to the fact that model (8) resembles a linear Markov chain, we can
study the limit of the distribution π(n;π(0)) as n → ∞ using the standard theory of
ergodic Markov chains (see, e.g. Meyn and Tweedie 2009) and prove the following
proposition using the fact that the corresponding Markov chain has a finite number
of states and under Assumption 2.2 all the elements of the matrix of transitional
probabilities T are strictly positive.

Proposition 2.1 Let Assumption 2.2 hold. Then, when n → ∞, the distribution
π(n;π(0)) has the unique limit ∞π which is independent of π(0) and is equal to

∞π = ∞π1 ⊗ · · · ⊗ ∞π�, (27)

where ∞πi are stationary distributions for single genes i and

∞π1
i = qi

pi + qi
, ∞π2

i = pi
pi + qi

.

The proof of (27) is elementary and hence omitted here.
We also note that by standard results (see, e.g. Meyn and Tweedie 2009) π(n;π(0))

converges to ∞π exponentially. The number of time steps ns needed for π(n;π(0)) to
reach a proximity of ∞π, i.e. that for some ε > 0 we have || ∞π − π(n;π(0))|| ≤ ε,

can be estimated (Bayliss et al. 2012) as
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ns ≈ ln (ε/|| ∞π − π(n;π(0))||)
ln max1≤i≤� (1 − pi − qi )

, (28)

where || · || is, e.g. the total variation norm.
Now let us discuss the mutation–selection model (19). Using Proposition 1.2 from

Kolokoltsov (2010, Ch. 1), it is not difficult to prove the following proposition.

Proposition 2.2 Let Assumption 2.2 hold. Then, when n → ∞, the distribution
πsel(n;π(0)) has a limit ∞πsel for any initial π(0).

The next proposition is on uniqueness of the limit∞πsel independent of initialπ(0).

Proposition 2.3 Let Assumption 2.2 hold. Assume that there is a positive constant
c < 1 and a number of steps n ≥ 1 such that for any initial distributions π̆ and π̃ :

|πsel(n; π̆ ) − πsel(n; π̃)|1 ≤ c |π̆ − π̃ |1 . (29)

Then, the limit ∞πsel is unique.

Proof By Proposition 2.2 for any initial distribution π(0), πsel(n;π(0)) tends to a
limit ∞πsel as n → ∞. Suppose there are two different limits ∞π̆sel and ∞π̃sel
corresponding to two different initial distributions. We have πsel(n; ∞π̆ sel) = ∞π̆sel
and πsel(n; ∞π̃sel) = ∞π̃sel for any n. From this and (29), we get

∣∣ ∞π̆sel − ∞π̃sel
∣∣
1 = ∣∣ πsel(n; ∞π̆sel) − πsel(n; ∞π̃sel)

∣∣
1 <

∣∣ ∞π̆sel − ∞π̃sel
∣∣
1

which is not possible, and hence the limit is unique. Proposition 2.3 is proved. 
�
Remark 2.3 Wehave not succeeded in showing that (29) holds for arbitrary parameters
of model (19) but for each particular choice of the parameters p, q, γ it is possible to
verify (29) numerically by solving the constrained optimization problem to find the
upper bound:

sup
π̆ ,π̃∈E
π̆ �=π̃

|πsel(n; π̆) − π sel(n; π̃ )|1
|π̆ − π̃ |1 ,

where E = {π : |π |1 = 1 and all components of π are non-negative}. To solve this
optimization problem, one can, e.g. use the function fmincon in MATLAB or the
nloptr package in R. In all tests we did for particular sets of parameters, condition (29)
was satisfied.

We note that condition (29) with n = 1 (i.e. continuity of the mapping Φ(π)

[see (23)] with Lipschitz constant less than 1) is used in Butkovsky (2014) to prove
uniqueness of invariant measure for nonlinear Markov chains in a general setting. But
this condition is rather restrictive, e.g. it does not hold for our model (19) even in the
case of a single gene when 1 − p − q is positive and close to 1, γ 1

i = 1 and γ 2
i > 1.
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Remark 2.4 In the case of a single gene, � = 1, the uniqueness of the limit ∞πsel
under Assumption 2.2 follows from Lemma A.1 in the Appendix.

In the general case, we were not able to find an explicit expression for ∞πsel but we
obtained such an expression in the case when Assumption 2.3 holds, which is given
in Proposition 2.4 below. In the general case, the stationary distribution ∞πsel for a
particular set of parameters p, q, γ can be found numerically by solving the system
of 2l − 1 quadratic equations.

Proposition 2.4 Let Assumptions 2.2 and 2.3 hold. Then, there is a stationary distri-
bution ∞πsel of the form

∞πsel = ∞πsel,1 ⊗ · · · ⊗ ∞πsel,�, (30)

where ∞πsel,i are stationary distributions for single genes i individually described
by (19) and

∞π1
sel,i = 2γ 1

i qi

(1 − qi )Δγi + γ 1
i (pi + qi ) +

√
(γ 1

i pi + γ 2
i qi )

2 + 2(γ 1
i pi − γ 2

i qi )Δγi + (Δγi )
2

,

∞π2
sel,i = 1 − ∞π1

sel,i , Δγi = γ 2
i − γ 1

i .

The proof of this proposition is given in “Appendix A”.
Result (30) has the interpretation that (assuming that the conditions of Proposi-

tion 2.3 are verified) in the stationary regime genes behave independently. It also
means that if the initial population distribution π(0) is such that genes behave inde-
pendently then they do so for all times. Further, if the initial population distribution
π(0) is such that genes behave dependently then the strength of dependence decays
with time. We know that often in practice (see, e.g. Woodacre et al. 2019; Lango-
Scholey et al. 2019; Howitt 2018) this type of evolution behaviour is not the case,
which demonstrates a limitation of model (19), (25) in being capable of explaining
experimental data. At the same time, the mutation–selection model (19) does not have
this deficiency.

Remark 2.5 The web-app from Remark 2.2 also gives ∞π and an accurate approxi-
mation of ∞πsel.

3 VerifyingWhether Data can be Explained by theMutationModel

Typically (see, e.g. Bayliss 2009; Bayliss et al. 2012; Woodacre et al. 2019; Lango-
Scholey et al. 2019), the following data are available from experiments aimed at
understanding bacteria population genetics:

1. Estimates p̂i , q̂i , i = 1, . . . , �, of the mutation rates together with 95% confidence
intervals [ ∗ pi , p∗

i ] and [ ∗qi , q∗
i ], respectively;

2. Average number of generations n̄k between the time points k − 1 and k together
with the lowest possible ∗nk and the largest possible n∗

k number of generations;
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3. Sample distributions of phasotypes k π̂ at time observation points k = 1, 2, . . . and
sizes Nk of the samples.

Estimates p̂i , q̂i of the mutation rates together with their confidence intervals
are found during specially designed experiments (see, e.g. Bayliss 2009; Bayliss et al.
2012; Aidley and Bayliss 2014 and references therein). They are of order 10−5−10−2

(Saunders et al. 2003; Bayliss et al. 2012). The mutation rates are estimated for repeat
numbers and then mapped to phasotypes (see details in Bayliss et al. 2012 and also
Howitt 2018). Note that these PVmutation rates are higher than those for genes which
are non-phase variable. It is assumed (Saunders et al. 2003; Bayliss et al. 2012) that the
mutation rates stay the same in all in vitro or in vivo experiments with this bacterium
species.

The average number of generations n̄k is computed by multiplying calendar time
between the observation points by average division rate of the bacteria species being
considered. The average division rate depends on the experimental conditions. Simi-
larly, ∗nk and n∗

k are found using the slowest and fastest division rates for the bacteria.
They are introduced to compensate for the use of average division rate and to reflect
the stochastic nature of bacterial division. For example, in in vitro C. jejuni experi-
ments (Woodacre et al. 2019) the average division rate was taken as 20 per 3 days,
slowest—10 and fastest—25 (see also growth rates in caecal material in Battersby
et al. 2016).

Sample distributions of phasotypes k π̂ are derived from sample distributions of
tract lengths of the PV genes under consideration (Bayliss 2009; Bayliss et al. 2012).
The tract length (i.e. the repeat number) is determined by DNA analysis of bacterial
material collected during in vitro or in vivo experiments (see further details, e.g. in
Bayliss 2009; Bayliss et al. 2012; Howitt 2018; Woodacre et al. 2019; Lango-Scholey
et al. 2019). The models and the data assimilation procedures in this paper are aimed
at understanding how a bacteria population evolves during a particular experimental
setting via looking at time evolution of k π̂ . We note that fitness parameters cannot be
measured during a biological experiment.

Due to costs of conducting DNA analysis of bacteria, sample sizes Nk are usually
not big [e.g. of order 30 − 300 (Bayliss et al. 2012; Woodacre et al. 2019; Lango-
Scholey et al. 2019)]. Hence, k π̂ have a sampling error which cannot be ignored. Let
us assume that if Nk → ∞ then k π̂ converges to a distribution k π̄ , i.e. from the
practical perspective, if we get data for a very large sample then the statistical error is
effectively equal to zero.

As discussed at the end of Sect. 2.1, we can check for each gene individually
[see (15)] whether its behaviour can be explained by the mutation model, and hence
determine a subset of PV genes [for C. jejuni strain NCTC11168, there are 28 known
PV genes (Bayliss 2009; Bayliss et al. 2012)] for which evolution can be explained
by the mutation mechanism alone. For the other genes, i.e. those which fail this test,
an alternative model [e.g. (19)] should be used. Thus, we will consider in this section
how to determine whether model (15) is consistent with data for a single gene.

To simplify exposition of the remaining part of this section, we will drop indices
specifying a particular gene in the notation since we will work with a single gene.
More precisely, we will use
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– π = (π1, π2), k π̂ = (k π̂
1,k π̂2) and k π̄ = (k π̄

1,k π̄2) instead of πi , k π̂i and k π̄i ,

respectively;
– p, q, p∗, p∗, q∗, q∗ instead of pi , qi , ∗ pi , p∗

i , ∗qi , q∗
i , respectively.

Further, since we will be working with a single time period, we only have time
points k = 0 and k = 1 and we can simplify the notation as

– n̄, n∗, n∗ instead of n̄1, ∗n1, n∗
1.

Note that this simplification of notation applies only to the remainder of this section.
To quantify the distance between the two distributions, k π̂ and k π̄ , we use the total

variation distance:
|| k π̄ − k π̂ ||T V = | k π̄1 − k π̂

1|. (31)

Conservatively (Noether 1963), we can estimate the above error using the one-sided
Kolmogorov–Smirnov test with 95% confidence level as

|| k π̄ − k π̂ ||T V ≤ εk := 1.2238√
Nk

. (32)

One can use more accurate estimates for the sample error, e.g. exploiting the Hellinger
distance together with χ2 test (Pitman 1979), but we use here the total variation
distance for the sake of simplicity of the algorithm. Inequality (32) implies that with
95% probability

k π̄
1 ∈ [ min(0, k π̂

1 − εk), max(1, k π̂
1 + εk)]. (33)

We use the following to mean that model (15) is consistent with data. Let

iε∗ = max(0, i π̂
1 − εi ) and iε

∗ = min(1, i π̂
1 + εi ).

If there are p ∈ [p∗, p∗], q ∈ [q∗, q∗], n ∈ [n∗, n∗] and π1(0) ∈ [ 0ε∗, 0ε
∗] such

that π1(n;π(0)) ∈ [ 1ε∗, 1ε
∗], with π(n;π(0)) found by (15), then we say that the

data can be explained by the model. Otherwise, model (15) is not consistent with data
for that gene. We note that this test is conservative in the sense that we are using broad
confidence intervals, and if we determine that the data cannot be explained by model
(15), we say so with a large certainty.

3.1 Algorithm

Now we proceed to deriving an algorithm to verify whether one gene data can be
explained by model (15). By simple linear algebra, we obtain from (15):

π1(n;π(0)) = q

p + q
+ (1 − p − q)n

[
π1(0) − q

p + q

]
. (34)
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It is convenient to introduce the change of variables

x := q

p + q
, y := (1 − p − q)n . (35)

Using these new variables, we rewrite (34) as

π1(n;π(0)) − x = y
[
π1(0) − x

]
. (36)

Inwhat follows,wewillmake the following biologically justified assumption (recall
that PV mutation rates are of order 10−5 − 10−2).

Assumption 3.1 Assume that 0 < p + q < 1.

We see that under Assumption 2.2

x ∈ Ix :=
[

q∗
p∗ + q∗ ,

q∗

p∗ + q∗

]
⊂ (0, 1) (37)

and under Assumption 3.1
y ∈ (0, 1). (38)

For a fixed n, (35) defines a map from (p, q) to (x, y). Let Jn be a domain on the
plane (x, y) obtained by this map applied to the rectangular domain [p∗, p∗] × [q∗,
q∗]. We also introduce a domain J on the plane (x, y) which is the minimal connected
closed domain containing all Jn, n ∈ [n∗, n∗]. The map and the domains Jn and J are
illustrated in Fig. 1. Now the question whether model (15) is consistent with data for
a single gene can be reformulated using the new variables: if there is (x, y) ∈ J so
that for u ∈ [ 0ε∗, 0ε

∗] and v ∈ [ 1ε∗, 1ε
∗] the equation

v − x = y [u − x] (39)

has a solution, then the data can be explained by model (15). To answer this question,
we formulate the algorithm below in which the outcome “Yes” means that model (15)
is consistent with given single-gene data and “No” means not consistent.

Algorithm 3.1 Given single-gene data, compute iε∗, iε
∗, i = 1, 2, Ix and J.

Step 1 If there are x ∈ Ix , u ∈ [ 0ε∗, 0ε
∗] and v ∈ [ 1ε∗, 1ε

∗] such that x = u = v

then Yes, otherwise go to Step 2.
Step 2 For all x ∈ Ix and u ∈ [ 0ε∗, 0ε

∗] such that x �= u, and for v ∈ [ 1ε∗, 1ε
∗],

form the parametrized set of functions

y(x; u, v) = v − x

u − x
. (40)

If for x ∈ Ix a curve (x, y(x; u, v)) with y(x; u, v) defined in (40) intersects
the domain J then Yes; otherwise No.
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Fig. 1 The domain Jn (top right), which is obtained from the (p, q) domain (top left), and the corresponding
example of the domain J (bottom) (Color figure online)

We note that if the data satisfy the condition of Step 1 of the above algorithm then,
in addition to the conclusion that model (15) can explain the data, it is also plausible
that evolution of this gene can be stationary (i.e. the distribution is not changing with
time).

Remark 3.1 Algorithm 3.1 verifyingwhether the data can be explained by themutation
model (8) is implemented in R Shiny and is available as a web-app at https://shiny.
maths.nottingham.ac.uk/shiny/gene_algorithm/.

Remark 3.2 We note that we can verify whether one gene data can be explained by
model (15) using an analogue of the ABC algorithms (Algorithms 4.1 and 4.2) from
Sect. 4 in the same spirit as we answer this question in the case of the mutation–
selection model (19) in Sects. 4 and 5. But ABC algorithms are more computationally
expensive as they are sampling based, requiring the use of Monte Carlo techniques,
while Algorithm 3.1 is deterministic and very simple with negligible computational
cost.
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3.2 Illustrations

We illustrate Algorithm 3.1 by applying it to the data for three (cj0617, cj1295 and
cj1342) out of 28PVgenes obtained in in vitro experiments (Woodacre et al. 2019) (see
also Howitt 2018). Statistical analysis of the two genes done inWoodacre et al. (2019)
and Howitt (2018) suggested that cj0617 is a part of a small network of dependent
genes, and hence it is likely to be subject to selection, while both cj1295 and cj1342
did not demonstrate any dependencies with the other 27 PV genes, and hence they are
likely to have evolution which can be explained by the mutation mechanism alone.

The data for these three genes are as follows (Woodacre et al. 2019; Howitt 2018):

cj0617: 0π̂
1 = 0.943, 1π̂1 = 0.262, p∗ = 9.1 × 10−4, p∗ = 22.2 × 10−4, q∗ =

11.0×10−4, q∗ = 40.2×10−4, n∗ = 110, n∗ = 275, N0 = 300, N1 = 145.
cj1295: 0π̂

1 = 0.305, 1π̂1 = 0.174, p∗ = 3.0 × 10−4, p∗ = 5.7 × 10−4, q∗ =
1.4× 10−4, q∗ = 2.8× 10−4, n∗ = 110, n∗ = 275, N0 = 298, N1 = 149.

cj1342 : 0π̂
1 = 0.017, 1π̂

1 = 0.153, p∗ = 11.0 × 10−4, p∗ = 40.2 × 10−4,

q∗ = 9.1 × 10−4, q∗ = 22.2 × 10−4, n∗ = 110, n∗ = 275, N0 = 298,
N1 = 150.

Therefore, for cj0617 we have Ix = [0.331, 0.815], ε0 = 0.071, ε1 = 0.102,
and hence 0ε∗ = 0.872, 0ε

∗ = 1, 1ε∗ = 0.160, 1ε
∗ = 0.364; for cj1295 we have

Ix = [0.197, 0.517], ε0 = 0.071, ε1 = 0.10, and hence 0ε∗ = 0.234, 0ε
∗ = 0.376,

1ε∗ = 0.074, 1ε∗ = 0.274; and for cj1342 we have Ix = [0.185, 0.669], ε0 = 0.071,
ε1 = 0.10, and hence 0ε∗ = 0, 0ε

∗ = 0.088, 1ε∗ = 0.053, 1ε
∗ = 0.253.

Application of Algorithm 3.1 to the data for cj0617 gene gives us:

Step 1 Since [0.331, 0.815] ∩ [0.872, 1] ∩ [0.160, 0.364] = ∅, we get No and we
go to Step 2.

Step 2 We have under x ∈ [0.331, 0.815], u ∈ [0.872, 1], and v ∈ [0.160, 0.364]:

ymin(x) ≤ y(x; u, v) ≤ ymax(x),

where

ymin(x) = 0.160 − x

1 − x
and ymax(x) = 0.364 − x

0.872 − x
,

and we observe in Fig. 2 that the curves (x, ymin(x)) and (x, ymax(x)) do
not intersect the domain J, and hence we conclude that the mutation model
cannot describe evolution of this gene.

Application of Algorithm 3.1 to the data for cj1295 gene gives us

Step 1 Since [0.197, 0.517] ∩ [0.234, 0.376] ∩ [0.074, 0.274] �= ∅, we conclude
that this gene can be described by the mutation model and it is possible that
its evolution is stationary.

Application of Algorithm 3.1 to the data for cj1342 gene gives us

Step 1 Since [0.185, 0.669] ∩ [0, 0.088] ∩ [0.053, 0.253] = ∅, we get No and we
go to Step 2.
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Fig. 2 Application of Algorithm 3.1 to the data for gene cj0617. The domain J is shown by black dashed
lines; the blue dashed curves are ymin(x) and ymax(x); the solid blue curve is y(x; 0π

1, 1π
1) (Color

figure online)

Step 2 We have under x ∈ [0.185, 0.669], u ∈ [0, 0.088], and v ∈ [0.053, 0.253]:

ymin(x) ≤ y(x; u, v) ≤ 1, (41)

where

ymin(x) = x − 0.253

x
(the bounds in (41) are achievable) and observe in Fig. 3 that the curve
(x, ymin(x)) intersects the domain J, and hence we conclude that themutation
model can describe evolution of this gene.

Further illustrations for Algorithm 3.1 are available in Howitt (2018).

4 Estimation of Fitness Parameters in theMutation–SelectionModel

In this section, we describe our general methodology for the estimation of fitness
parameters. We will illustrate the use of this methodology using data from C. jejuni
experiments in Sect. 5. We adopt a Bayesian approach, whereby uncertainty in any
unknown parameters is summarized by probability distributions. We illustrate how
uncertainty in random quantities can be incorporated very naturally in the Bayesian
framework, using prior information from previous experiments where available, and
show how estimates in all quantities can be obtained in light of the observed data.

4.1 Bayesian Statistics

In general terms, we have a sample of data x (realizations of a random variable
X ), whose distribution depends on some vector of parameters Θ . Upon adopting
some probability model for the data-generating process, the likelihood function is
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Fig. 3 Application of Algorithm 3.1 to the data for cj01342 gene. The domain J is shown by black dashed
lines; the blue dashed curve is ymin(x); the solid blue curve is y(x; 0π

1, 1π
1). The blue cross-hatched

region shows the domain covered by y(x; u, v) as described in the text (Color figure online)

fX |Θ(x |θ), the distribution of X given Θ . In the Bayesian setting, the parameter Θ is
considered a random variable, and uncertainty in this parameter is initially described
by a prior distribution, fθ (θ). Upon observing x , Bayes theorem gives

fΘ|X (θ |x) = fX |Θ(x |θ) fθ (θ)

fX (x)
, (42)

the posterior distribution of Θ given x , which completely describes uncertainty in Θ

after learning x . The posterior distribution can then be used to compute any summaries
of interest, such as probability intervals for components of Θ or point estimates such
as the mean of the posterior distribution. For ease of exposition, in what follows we
will drop the subscripts denoting the random variable a distribution refers to, which
is clear from the context. For example, we will simply write f (θ |x) for fΘ|X (θ |x).
For an account of Bayesian methodology with an emphasis on applications, see, e.g.
Gelman et al. (2013) or Wilkinson (2012), where the latter has a biological focus.

Computing summaries from the posterior distribution requires integration, which in
practice is not possible analytically except for simplemodels. One can adopt numerical
procedures, but the performance of these degrades quite rapidly as the dimension of
Θ increases. A powerful alternative is to use simulation methods, which also have the
major advantage of not requiring the normalizing constant f (x) in (42), the so-called
marginal likelihood, which again requires an integration which is typically computa-
tionally expensive. If one can draw independent samples directly from f (θ |x), then
Monte Carlo techniques can be used to estimate posterior quantities of interest. For
complex, typically high-dimensional, models, this itself may be difficult, but powerful
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techniques such as Markov chain Monte Carlo (MCMC) can be employed (Gelman
et al. 2013; Gilks et al. 1996; Wilkinson 2012). MCMC itself can be difficult to imple-
ment effectively in some complex scenarios, and it can be computationally demanding.
An important recent development is the Integrated Nested Laplace Approximation
(INLA) method (Rue et al. 2009), which as the name suggests, is based on Laplace
approximations to the required integrals. The Laplace method itself is a well-known
tool for approximating integrals in general (de Bruijn 1981) and has been used effec-
tively in Bayesian statistics to compute posterior summaries (Tierney and Kadane
1986). INLA extends this idea to models with a general latent Gaussian structure and
allows comparatively fast and simple approximations, which can either be used as an
alternative to, or in conjunction with, simulation methods such as MCMC.

However, a further complication, which arises in our case, is that it may not even be
possible to evaluate the likelihood f (x |θ), which is necessary for the simulation meth-
odsmentioned above. In this case, so-called likelihood-freemethods can be employed,
an example of which is Approximate Bayesian Computation (ABC) (Beaumont 2010),
which we use here. This assumes the ability to simulate from the model f (·|θ) rela-
tively easily, even if evaluation of the likelihood itself is not possible.

4.2 Approximate Bayesian Computation

Suppose it is straightforward to sample from f (x |θ), but evaluation of f (x |θ) itself is
not possible. Recall that the objective is to simulate samples from f (θ |x), in order to
performMonte Carlo inference about θ . This can be done via the following algorithm
(Beaumont 2010):

1. Simulate θ ∼ f (θ);
2. Simulate y ∼ f (x |θ);
3. Accept θ if y = x , else return to step 1.

This returns a sample θ from f (θ |x), and the process can be repeated until the
desired number of samples is obtained. However, if the data are continuous and/or
high-dimensional, then the event y = x in the above algorithm will occur with zero,
or very small, probability. Hence, in most practical situations, the condition that y = x
is replaced with the condition that d(x, y) ≤ ε, for some distance function d and tol-
erance ε > 0. Hence, accepted samples θ are not from the exact posterior distribution
of interest, but from some approximation f̃ (θ |x) to the true posterior distribution.
Informally, we would expect that the approximation is better the smaller the value
of ε, and under quite mild conditions, Monte Carlo estimators of posterior quantities
converge to unbiased estimators as ε → 0 (Barber et al. 2015).

4.3 General Algorithm

As discussed in Sect. 3, our data are the observed sample phasotype distributions
i π̂ , where i = 0 is the initial timepoint and i = 1 is the final timepoint. Our main
question of interest is whether the proposedmutation–selectionmodel (19) can explain
the observed data, that is, are there values of the unknown quantities which are both
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biologically plausible and for which the final distribution obtained by model (19) is
consistent with the observed sample? Recall that model (19) has input parameters
θ = (n, p, q,0 π̂ , γ ), where n is the number of generations, p and q are the vectors of
mutation rates, 0π is the initial distribution, and γ is the vector of fitness parameters. In
general, wewill treat all elements of θ as random, andwewriteΘ = (η, P, Q,0 Π,Γ )

for the corresponding random vector. Then, in general, the random variables are the
elements ofΘ together with the final distribution 1Π (a realization of which we denote
by 1π ); here, 1Π plays the role of X in (42), i.e. the output of the probabilistic model.

Considering first all quantities other than Γ to be fixed, another way to phrase our
main question is: is there a value of Γ for which the final distribution obtained from
model (19) is “close to” the observed sample final distribution? In this case, there
would be no evidence to reject the hypothesis that our proposed model is a plausible
description of the evolution of phasotypes. The estimate of Γ is also of interest in
its own right, for biologists to understand which phasotypes or genes benefit from
advantageous selection.

While there may be estimates or observations of the various quantities we con-
sider random, there is often uncertainty. For instance, in our applications discussed
in Sect. 5, there are estimates and plausible ranges available for P , Q and η. For
the observed sample distributions i π̂ , we have only a relatively small sample from
a larger population, and hence our observations are subject to sampling variation. In
both cases, uncertainty can be handled very naturally in the Bayesian framework, by
encoding our existing knowledge in prior distributions. Our question then becomes:
while accounting for uncertainty in all unknown quantities, can themutation–selection
model explain the evolution of phasotypes given our observed data?

Let f (θ) = f (n) f (p) f (q) f (0π) f (γ ) be the prior distribution on Θ . Thus, we
assume independence between these quantities a priori, and we also assume that the
elements of P , Q and Γ are all mutually independent so that, e.g. f (p1, . . . , pl) =
f (p1) . . . f (pl), etc. This independence assumption for the prior is natural from the
microbiology point of view.

Theprior distributionsweuse and themethods for sampling from themare discussed
below. Assuming for now that we can simulate from these priors, then Algorithm 4.1
gives the steps taken to simulate from the ABC posterior distribution.We write πsel(θ)

for the output of the mutation–selection model (19), replacing (n, p, q,0 π, γ ) with θ .

Algorithm 4.1 (ABC algorithm for the mutation–selection model)

Step 1 Propose a candidate value θ∗ ∼ f (θ).
Step 2 Obtain πsel(θ

∗) by mutation–selection model (19).
Step 3 Accept θ∗ if d(1π̂ , π sel(θ

∗)) ≤ 1ε, where d is a distance function and 1ε is
a tolerance. Otherwise, discard θ∗.

Steps 1–3 are then repeated until the desired number of samples from (the approx-
imation to) the posterior distribution f (θ |x) is obtained. The choices of d and 1ε are
discussed below.

The samples can then be used to form Monte Carlo estimates of the required quan-
tities. In our applications, we use the mean of the samples to form point estimates
and denote the estimates by γ̂ , etc. When accounting for sampling variability in the
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initial sample distribution, we denote an estimate of the true population distribution
by 0 ˆ̇π (to distinguish this from the observed sample which we denote by 0π̂)—this is
the (normalized) element-wise mean of the sampled initial distributions. To quantify
uncertainty in the estimated parameters, we give 95% posterior probability intervals;
these are simply the 2.5th and 97.5th percentiles of the accepted samples, which are
estimates of the true percentiles of the (marginal) posterior distribution for a given
parameter.

Note that, in terms of model (19) itself, there is a certain non-identifiability sur-
rounding the fitness parameters, since γ and kγ , for some k > 0, give the samemodel.
Recall from Sect. 2.2 that we interpret the fitness parameters as relative fitness and
remove this non-identifiability by taking the smallest fitness parameter to be 1, which
is natural. In all our simulations, normalization is applied at the final stage. Specif-
ically, let γ̂ ∗ be an unnormalized vector, formed by taking the element-wise mean
of all sampled fitness vectors (which are themselves un-normalized). Then, we set
γ̂ = γ̂ ∗/k, where k = min(γ̂ ∗), so that γ̂ is the required estimate of relative fitness
parameters.

4.4 Simulation from Priors

In general, prior distributions are chosenwhich reflect the current knowledge about the
unknownparameters.Here,we illustrate the choice of priorswe use in our applications,
but other prior distributions could be used when relevant.

Fitness parameters As discussed in Sect. 2.2 , the quantities of interest are the relative
fitness parameters γ . We assign independent uniform priors to the fitness parameters,
i.e. γ i ∼ U [ai , bi ], i = 1, . . . , 2l , where ai ≥ 1, since γ = 1 for the slowest growing
phasotype (see Sect. 2.2).

Number of generations For the number of generations η, we have from microbiology
knowledge (see Sect. 3) an estimate n̄ and interval [n∗, n∗] in which η lies. The interval
[n∗, n∗] is typically not symmetric around n̄. We construct a prior for η from a skew-
normal distribution, with mean n̄, such that P(n∗ − 1

2 ≤ η ≤ n∗ + 1
2 ) = 0.95—this

is then discretized to give a probability mass function, since η is integer-valued.

Mutation rates For themutation rates p and q, as with the number of generations, there
are estimates ( p̄ and q̄ ) and 95% confidence intervals available ([p∗, p∗] and [q∗, q∗])
from specially designed experiments (Bayliss et al. 2012). We form analogous prior
distributions for these quantities via the same process as for η, minus the discretization
as these quantities are continuous.

Observed sample distributions We account for sampling variability in distributions
using probabilistic results for the distribution of distances. Specifically, we use the
Hellinger distance to measure distance between two probability distributions and use
the relationship between this distance and the χ2 distribution to ascertain plausible
discrepancies between two distributions if they are still to be considered the same after
accounting for statistical variation.
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The Hellinger distance between two discrete probability distributions φ0 and φ1
over a finite sample space Ω is

H(φ0, φ1) = 1√
2

∥∥∥
√

φ0 − √
φ1

∥∥∥
2

= 1√
2

√
∑

x∈Ω

(√
φ0(x) − √

φ1(x)
)2

, (43)

where || . ||2 is the Euclidean metric and φi (x) = P(X = x) if random variable
X ∼ φi .

Now, let φ0 be a specified discrete probability distribution, corresponding to a
random variable X with state spaceΩ and |Ω| = k < ∞. Also, let φ1 be the empirical
distribution formed from N realizations of X . Then,

8NH2(φ0, φ1) ∼ χ2
k−1, (44)

where χ2
k−1 is the chi-squared distribution with k − 1 degrees of freedom (Pitman

1979). Thus, one cannot reject the null hypothesis that the observed samples are from
φ0, (at the significance level ofα), if 8NH2(φ0, φ1) < χ2

k−1(1−α), whereχ2
k−1(1−α)

is the 100(1 − α)% critical value of the χ2
k−1 distribution. We use this relationship in

reverse in order to obtain a tolerance ε, where

ε =
√

χ2
k−1(0.95)

8N
. (45)

Thus, if H(φ0, φ1) < ε, there is no evidence to suggest that φ1 is statistically different
to φ0 at the 0.05 significance level.

We also use this idea to account for sampling variability in an observed sample
distribution φ̂, based on a sample size N , as follows. We first obtain a tolerance

ε =
√

χ2
k−1(0.95)

8N , such that any distribution within (Hellinger) distance ε of φ̂ defines a

95% confidence region for the true population distribution φ of which φ̂ is an empirical
estimate. We then construct a Dirichlet distribution, centred on φ̂, with parameter α =
α012l , α0 ∈ R+, α ∈ R

2l+ such that P(H(Φ, φ̂) < ε) = 0.95 where Φ ∼ Dir(α). To
account for sampling variability in the observed distribution, we sample an observation
φ∗ from this Dirichlet distribution and accept φ∗ if H(φ∗, φ̂) < ε . Thus, we can think
of an accepted φ∗ as a plausible sample distribution which could have been observed
instead of φ̂.

Finally,weuse the sameprocedure to obtain the toleranceused in theABCalgorithm
(step 3 of Algorithm 4.1). Specifically, if the observed final distribution is based on a
sample size of N , then the tolerance used is that given by (45).
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4.5 Dependence of Gene Fitness Parameters

Recall the earlier discussion in Sect. 2.2 regarding dependence between the selec-
tion/fitness parameters of different genes. Specifically, under the assumption of
independence (Assumption 2.3), γ is written as the tensor product (25). We intro-
duce below an algorithm which can be used to test this assumption. In Sect. 5.1, we
illustrate this on experimental data and show that the independence assumption does
not hold for these data.

Recall that the fitness parameters for a gene l are γ 1
l and γ 2

l , and γl = (γ 1
l , γ 2

l ).
In short, we estimate the full vector of fitness parameters, γ , under the assumption of
independence, and then assess whether the distance between the observed sample final
distribution and that obtained from model (19), with γ = γ̂ , is less than the tolerance
given by (45). This is detailed in Algorithm 4.2. Note that here we focus on how to
handle the fitness parameters, and assume the other elements of θ are available—these
could be fixed estimates, or estimated (with uncertainty incorporated) as part of steps
1 and 2 in Algorithm 4.2.

Algorithm 4.2 (Verification of independence of fitness parameters)

Step 1 Estimate γl , l = 1, . . . , � (and other elements of θ if required), using Algo-
rithm 4.1 for each gene separately.

Step 2 Form γ̂ ind = γ̂1 ⊗ · · · ⊗ γ̂� and θ̂ .
Step 3 Obtain the final distribution under the independence assumption, π ind

sel (θ̂),
from (19).

Step 4 Compute d(1π̂ , π ind
sel (θ̂)).

Given a tolerance 1ε, computed from (45), then there is evidence to reject the
assumption of independent fitness per gene if d(1π̂ , π ind

sel (θ̂)) > 1ε. This test is of
obvious microbiological importance since if Assumption 2.3 is rejected, this means
that selection acts on phasotypes rather than only on a state of a particular gene, i.e. that
bacterial adaptation to the environment is regulated by a number of dependent genes.

5 Results

We now illustrate our methodology with applications to data on the bacteria C. jejuni,
using data from two in vitro experiments. Full experimental details for these exper-
iments can be found in Woodacre et al. (2019) and also in Howitt (2018). We focus
attention on three genes of interest, for which preliminary investigation has found
evidence of dependent switching from one PV state to another (Woodacre et al. 2019;
Howitt 2018). These genes are labelled cj0617, cj0685 and cj1437; note that the sam-
ple space of phasotypes is labelled according to the conventions described in Sect. 2
and Eq. (2), and in what follows, the ordering is with respect to the ordering of the
genes as listed above. We first investigate whether the assumption of independence of
fitness parameters is justifiable, using Algorithm 4.2, and show that there is evidence
this assumption does not hold. We then illustrate the ability of our methodology to
successfully estimate fitness parameters using synthetic data, before obtaining esti-
mates of fitness parameters for our experimental data. We conclude this section with
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Table 1 Single-gene data,
estimates and results for the
independence of fitness
parameters investigation

Gene 0π̂ 1π̂ γ̂

cj0617 (0.9433, 0.0567) (0.2621, 0.7379) (1, 1.016)

cj0685 (0.0567, 0.9433) (0.8267, 0.1733) (1.02, 1)

cj1437 (0.0533, 0.9467) (0.8288, 0.1712) (1.02, 1)

an experiment which provides evidence that switching of phasotypes occurs quickly
when bacteria are subject to new environmental conditions, which suggests an interest-
ing direction for futurework involving time-dependent fitness parameters. Throughout
this section, we used 500,000 Monte Carlo samples for all inferences based on ABC
simulation, except for the single-gene results given in Table 1, which are based on
100,000 samples.

Remark 5.1 Sinceweare onlydealingwith a relatively small number of genes, theABC
algorithm in the form proposed here is feasible in terms of computational complexity.
As the dimension of the state space is 2l , then clearly the dimension of the parameter
space grows exponentially with the number of genes, and it would not be practical to
apply the ABC algorithm for many genes, say more than 6. However, we emphasize
that our overall procedure is a two-stage process. Firstly,we reduce the number of genes
on which to focus, by using the fast and efficient algorithm of Sect. 3 to determine
which genes can be explained by the mutation model. Secondly, we then apply the
mutation–selection model to the small number of remaining genes.

5.1 Independence Assumption

In Table 1, we give the data for the single-gene runs of Algorithm 4.1, required in
step 1 of Algorithm 4.2, and the (normalized) estimates γ̂l , l = 1, 2, 3. In Table 2,
we give the resulting input γ̂ ind for the three-gene model under Assumption 2.3, the
corresponding output π ind

sel (θ̂), and the distance between the model output distribu-
tion and observed final distribution. In the same table, we also present the analogous
results for the general model, i.e. when Algorithm 4.1 is applied to the three genes
simultaneously, without applying Assumption 2.3—the fitness parameter estimates
and model output are denoted γ̂ gen and π

gen
sel (θ̂), respectively. Note that throughout

this subsection we have kept all quantities other than the fitness parameters fixed at
their observed/estimated values. Also, other required quantities not in Tables 1 and 2
can be found in Tables 5 and 6, as explained in full in the caption to Table 2. The cru-
cial observation is that, under the independence assumption, the distance between the
observed final distribution and that predicted by the model using the estimated fitness
parameters is greater than the tolerance allowing for ABC sampling error. In contrast,
when Assumption 2.3 is relaxed, the distance is comfortably under the tolerance (see
Table 2). We therefore reject the independence assumption here, and all the biological
conclusions and interpretation which follow relate to results obtained using the more
general model (19) without applying Assumption 2.3.
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Table 2 Three-gene model input (fitness parameters) and results, with and without application of Assump-
tion 2.3

γ̂ ind π ind
sel (θ̂ ) γ̂ gen π

gen
sel (θ̂ )

(1.040400, 1.020000, (0.099859, 0.000256, (1.018, 1.007, (0.143176, 0.011395,

1.020000, 1.000000, 0.002181, 0.000143, 1.009, 1.000, 0.009522, 0.056227,

1.057046, 1.036320, 0.877841, 0.000756, 1.026, 1.027, 0.685888, 0.033098,

1.036320, 1.016000) 0.018654, 0.000311) 1.019, 1.004) 0.036405, 0.024289)

Here, and for the single-gene results in Table 1, pl , ql and n are fixed at the values p̄l , q̄l and n̄ given in
Table 5, where the prior settings for the fitness parameters can also be found. The values of 0N (0ε) and
1N (1ε) required for the three-gene runs are as in Table 6. We obtain the distances d(1π̂ ,π

ind
sel (θ̂)) = 0.290

and d(1π̂ ,π
gen
sel (θ̂) = 0.067; since 1ε = 0.112, we reject the independence assumption

Table 3 Inputs for the synthetic data experiment

0N 0ε 0π̂ [ai , bi ] for Γ 1N 1ε 1π̂

300 0.0766 (0.003, 0.010, 0.007, [1.005, 1.04] 150 0.108 (0.13013, 0.01044, 0.01129,

0.924, 0.043, [1, 1] 0.13676, 0.63192, 0.00608,

0, 0, 0.013) [1, 1] 0.03386, 0.03951)

[1, 1]

[1.005, 1.04]

[1.005, 1.04]

[1.005, 1.04]

[1.005, 1.04]

5.2 Synthetic Data

Before analysing experimental data, we first test our inference procedure using syn-
thetic data which mimic the data to be considered in Sect. 5.3 in important respects.
Specifically, 0π̂ and γ were chosen such that the mutation–selection model produces
a final distribution which is close to that observed in the real experimental data. We
then assess our ability to recover γ . The sample data and prior settings are given in
Table 3, except for the mutation rates p and q, for which the settings are the same
as in Table 5. (Note that we use the same labelling of genes in our synthetic data as
in the first experimental dataset of Sect. 5.3, since the synthetic data are constructed
based on characteristics of the experimental data.) Upon obtaining our estimates for
all random quantities, we use the mutation–selection model with these estimates as
inputs to obtain the final distribution predicted by the model. The distance between
the predicted and actual final distribution is 0.0457 (see Table 4), which in particular
is less than the tolerance of 0.108 which allows for sampling error [from (45)]. The
estimate γ̂ is given in Table 4, which shows that it is close to the truth. From this
we conclude that our inferential procedure is successful in recovering the true fitness
parameters.
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Table 4 Results for the synthetic data experiment

True γ γ̂ πsel(θ̂ )

(1.014, 1.002, 1.007, 1, 1.022 (1.0162, 1, 1, 1, 1.0252, (0.12607, 0.00664, 0.00495, 0.11870,

1.01, 1.015, 1.001) 1.0164, 1.0175, 1) 0.67638, 0.00745, 0.03145, 0.02837)

The distance d(1π̂ , πsel(θ̂ )) = 0.0457

Table 5 Prior settings for dataset 1

Gene p̄l [pl∗ , p∗
l ] ×10−4 q̄l [ql∗ , q∗

l ] ×10−4 n̄[n∗, n∗] [ai , bi ] for Γ

cj0617 12.30 [9.1, 22.2] 17.88 [11.0, 40.2] 220 [110, 275] [1, 1.04]

cj0685 4.23 [3.0, 5.7] 2.15 [1.4, 2.8] [1, 1.04]
cj1437 0.0725 [0.0388, 0.2597] 0.0045 [0.0029, 0.0107] [1, 1.04]

[1, 1]
[1.005, 1.06]
[1.005, 1.06]
[1, 1.04]
[1, 1.04]

5.3 Experimental Data and Results

We now turn our attention to analysis of experimental data from two in vitro datasets,
where the raw data are in the form of repeat numbers. For different genes, the repeat
numbers, which determine whether the gene is ON or OFF, are different, but this
is known and hence phasotypes can be determined from repeat numbers. The esti-
mates/confidence intervals for mutation parameters p and q, available from Bayliss
et al. (2012), relate to mutation rates between repeat numbers, from which mutation
rates for phasotypes can again be deduced. For example, if repeat numbers of 8/9
correspond to a certain gene being OFF/ON, then the mutation rate from OFF to ON
is simply the mutation from the repeat number 8–9.

From the first data set we have initial (inoculum) and final sample distributions, with
an estimated 220 generations between the two. We run our inferential procedure with
the prior settings, sample data and inputs detailed in Tables 5 and 6. Note that the priors
for the mutation rates for cj1437 imply these are much smaller than those for the other
two genes; this is because the phasotype switches present in the observed data require
a mutation of two tract lengths, so the rates for each mutation of one tract length are
multiplied. The other two genes require only one tract length mutation. The vector of
estimates is θ̂ = (0 ˆ̇π, n̂, p̂, q̂, γ̂ ); evaluating model (19) at θ̂ , we obtain the predicted
final distribution πsel(θ̂), and we find that d(1π̂ , πsel(θ̂)) = 0.0656, which is less than
the tolerance 1ε = 0.112 (from (45) with N = 141). The point estimate of the vector
of fitness parameters is γ̂ = (1.023, 1.008, 1.013, 1, 1.030, 1.034, 1.022, 1.005).

The second dataset is another in vitro dataset, where the conditions of the experi-
ment were the same as the first experiment; hence, it is expected that inferences from
the second experiment will reinforce those from the first. However, the time period
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Table 6 Sample data for dataset 1

0N 0ε 0π̂ 1N 1ε 1π̂

300 0.0766 (0.00333, 0.01, 0.00667, 141 0.112 (0.15603, 0.00709, 0.01418,

0.92333, 0.04333, 0.09220, 0.63121, 0.04255,

0, 0, 0.01333) 0.04255, 0.01418)

Table 7 Sample data and prior settings for dataset 2. Also, 0N = 84, 1N = 87, 0ε = 0.145, 1ε = 0.142

p̄l [pl∗ , p∗
l ]

(× 10−4)
for cj1437

q̄l [ql∗ , q∗
l ]

(× 10−4)
cj1437

n̄ [n∗, n∗] [ai , bi ] for Γ 0π̂ 1π̂

17.88 12.30 20 [10, 25] [1, 1.6] (0.0119, 0.0476, (0.0115, 0.0230,

[11.0, 40.2] [9.1, 22.2] [1, 1.6] 0.0000, 0.7738, 0.0230, 0.0690,

[1, 2] 0.1548, 0.0000, 0.7586, 0.0805,

[1, 1] 0.0119, 0.0000) 0.0345, 0.0000)

[1.1, 1.8]

[1.05, 2.2]

[1, 2.2]

[1, 1.6]

between initial and final distributions is an estimated 20 generations, as opposed to
220 generations for the first dataset, so this dataset can also be used to answer ques-
tions about what happens in the early stages, such as whether most selection happens
in the early stages (e.g. fast adaptation to changes in the environment when bacteria
are moved from storage to plates). The data and prior settings for this experiment are
given in Table 7 where they differ from the previous dataset—the priors for p and q
are the same as before for cj0617 and cj0685, but for cj1437, the relevant switch in
the observed data is of only one tract length; hence, the ON–OFF mutations for this
gene in this experiment have higher associated rates than in the previous dataset.

Again, we formed the vector of estimates θ̂ and evaluated the predicted final distri-
bution πsel(θ̂). We find that d(1π̂ , πsel(θ̂)) = 0.0925, which is less than the tolerance
1ε = 0.142 (from (45) with N = 87). As with dataset 1, we conclude that the
mutation–selection model is a plausible description of the evolution mechanism for
these three genes. For this second dataset, the point estimate of the vector of fitness
parameters is γ̂ = (1.180, 1.172, 1.328, 1, 1.380, 1.575, 1.354, 1.150). Notably, the
fitness parameters are larger than those of the first dataset, suggesting that selection
advantage may be more prominent in the early stages of the experiment. We explore
this further in the following section.

5.4 Time Dependence

The estimated fitness parameters for the second dataset (which correspond to a much
shorter period of approximately 20 generations) were larger than those obtained from
the first dataset. This leads to a hypothesis of biological interest, namely that selection
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Table 8 Results for the time-dependence experiment. Here 1ε = 0.112

1π̂ πsel(θ̂) d(1π̂ , πsel(θ̂))

(0.15603, 0.00709, 0.01418, 0.09220, (0.15034, 0.02545, 0.03451, 0.07191, 0.0830

0.63121, 0.04255, 0.04255, 0.01418) 0.59554, 0.05478, 0.04457, 0.02289)

advantage has a larger influence in the initial stages, when the bacteria are adapting to
changes in the environment. Thus, the estimates from the first dataset (corresponding
to a much longer period of approximately 220 generations) are averaged over a longer
period, for most of which the selection advantage is less important. This is a plausible
explanation for the lower estimates seen in the first dataset.

To investigate this further, we conducted the following experiment. First, we used
the initial distribution from the first dataset as input for the mutation–selection model
and ran for 20 generations; for the mutation rates we used the point estimates p̄ and q̄
as for the first dataset, given in Table 5, and for the fitness parameters we used the point
estimates obtained from the second experiment. This provides an interim distribution,
0.5π̂ say. We then apply Algorithm 4.1 using 0.5π̂ as initial distribution and the final
distribution taken to be that from the first dataset. The aim is to see if the model
can explain this final distribution, and whether the estimates of the fitness parameters
are lower (as per our hypothesis). We used the following as inputs for the remaining
parameters: the priors for themutation rates, and the tolerances used, are given inTables
5 and 6. We chose n̄ = 200 with [n∗, n∗] = [100, 250] because 200 is the difference
between the expected lengths of the second and first experiments. Initial investigation
showed that the mutation-only model could not explain the observed final distribution,
and hence there is still evidence of selection advantage over this time period. However,
as we expect this advantage to be smaller, we use narrower priors for the selection
parameters. Specifically, we used uniform priors over the interval [1, 1.01] for each
fitness parameter, which also reflects no preference for a particular phasotype a-priori.

As can be seen fromTable 8, the observed and predictedfinal distributions arewithin
the sampling-variability tolerance. Once again, this shows the ability of our model to
explain the observed data and also to provide insight into the switching behaviour
and the nature of the selection advantage. Results for the fitness parameters, mutation
rates and number of generations are given in Tables 9, 10 and 11, including both
point estimates and 95% probability intervals. For example, we see that the posterior
probability interval of the number of generations is approximately (210–213), whereas
the prior estimatewas 200 generations; this also shows the power of using theBayesian
framework to handle uncertainty in such parameters, allowing the model to adapt and
provide additional information of interest to biologists beyond point estimates.

6 Discussion and Conclusions

In thiswork,we consider twomodels (mutation andmutation–selection) for describing
time evolution of a bacteria population. The models are accompanied by algorithms
for determining whether they can explain experimental data and for estimating unob-
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Table 9 The minimum, maximum and 95% posterior probability intervals for fitness parameters from
time-dependence experiment

γ̂ i min γ i max γ i 95% posterior probability intervals for γ i

1.004021 1 1.00998 [1, 1.00925]

1.001056 1 1.00869 [1, 1.00618]

1.000296 1 1.00586 [1, 1.00410]

1.006620 1.00228 1.00994 [1.00425, 1.00961]

1.007894 1.00610 1.00999 [1.00708, 1.00982]

1.000000 1 1.00552 [1, 1.00341]

1.002977 1 1.00986 [1, 1.00895]

1.002558 1 1.00941 [1, 1.008791]

Table 10 The minimum, maximum and 95% posterior probability intervals (× 10−4) for mutation rates
from time-dependence experiment

Gene p̂l min pl max pl 95% interval (pl ) q̂l min ql max ql 95% interval (ql )

cj0617 12.308 9.135 17.580 9.534,15.762 16.257 11.084 25.958 [11.727, 21.948]

cj0685 4.126 3.002 5.619 3.112,5.248 2.152 1.405 2.800 [1.580, 2.723]

cj1437 0.0724 0.0389 0.127 0.0423,0.109 0.00453 0.00294 0.00775 [0.00310, 0.00627]

Table 11 The minimum, maximum and 95% posterior probability interval for the number of generations
from the time-dependence experiment

n̂ min gη̃(n) max gη̃(n) 2.5/97.5 percentiles from gη̃(n)

212 145 250 168, 246

servable parameters such as fitness. In the case of the mutation–selection model, we
propose an algorithm inspired by Approximate Bayesian Computation (ABC) to link
the model and data. The approach considered gives microbiologists a tool for enhanc-
ing their understanding of the dominant mechanisms affecting bacterial evolution
which can be used, e.g. for creating vaccines. Here, we limit ourselves to illustrative
examples using in vitro data for phase variable (PV) genes ofC. jejuni aimed at demon-
strating how the methodology works in practice; more in depth study of PV genes will
be published elsewhere.Wenote that themodels togetherwith themethodology linking
the models and the data can be applied to other population dynamics problems related
to bacteria. In particular, it is straightforward to adjust the methodology presented if
considering repeat numbers instead of phasotypes.

The calibration of themodels is split into two steps. First, the very efficient algorithm
from Sect. 3 is applied to verify whether data for particular genes can be explained
by the mutation model. This allows us to reduce the number of genes to which the
mutation–selection model should be applied. The second step is calibration of the
mutation–selectionmodel for the remaining genes using theABC-type algorithm from
Sect. 4. In both steps, we take into account experimental errors and sample sizes. We
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note that, due to its computational complexity, the ABC algorithm is realistic to apply
in the case of relatively small number of genes (2–6). We also note that if one wants
to model simultaneously a large number of genes with dependent behaviour (e.g. if
one needs to simultaneously model all 28 PV genes of C. jejuni strain NCTC11168,
where the state space is of order 1017) then a space-continuous model should be
used instead of discrete-space models considered here. Development of such space-
continuous models together with calibration procedures for them is a possible topic
for future research.

Further development of the presented approach can include enhancing themodels by
adding a description of bottlenecks and, consequently, proposing algorithms to answer
questions about the presence of bottlenecks during bacterial evolution. It is also of
interest to consider continuous-time counterparts of the discrete-time models studied
here and thus take into account random bacterial division times. (For this purpose, e.g.
ideas from Caravagna et al. (2013) and D’Onofrio (2013) can be exploited.) It will
lead to models written as differential equations for which the discrete models of this
paper are approximations.

The proposedABCalgorithm for estimating fitness parameters can be further devel-
oped in a number of directions. For instance, the computational costs of this algorithm
grow quickly with an increase in the number of genes, and recent improvements
to ABC, such as adaptive methods based on importance sampling using sequential
Monte Carlo (e.g. Beaumont et al. 2009; del Moral et al. 2012) could potentially be
exploited to make the algorithm more efficient. We also left for future work analysis
of convergence of the considered ABC-type algorithm.

One of the assumptions we used is that mutations of individual genes happen
independently of each other [see (11)] and that mutation rates do not change with
time/environment, which are commonly accepted hypotheses in microbiology. At the
same time, it is interesting to test the environmentally directed mutation hypothesis
(see Lenski et al. 1989 and references therein), i.e. to verify whether upon relaxing
assumptions on the transitional probabilities the mutation model can explain the data
for the three genes considered in our experiments of Sect. 5. It is clear from our study
(see also Bayliss et al. 2012) that under assumption (11) the mutation model cannot
explain the data. Herein, we then test whether these three genes can be explained
by a combination of mutation and selection. However, it is formally possible that
the observed patterns could be explained by allowing for dependence of mutations.
The data assimilation approach of Sect. 4 can be modified to test for dependence of
mutations.

Though themain objective of the paperwas to propose tractablemodels for bacterial
population evolution together with their robust calibration, a number of biologically
interesting observations were made. First, we saw in Sect. 3.2 that in the considered in
vitro experiment some of the PV genes can be explained by the mutation model and
some are not and hence were subject of further examination via themutation–selection
model. A plausible explanation, and indeed an expected outcome, is that genes vary in
their responses to selection with the mutation-only genes not contributing to bacterial
adaptation in this particular experimental set up. In Sect. 5, we studied three genes
which did not pass the test of Sect. 3. We started by verifying whether the data can
be explained by the mutation–selection model with fitness parameters being assigned
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to the individual genes (Assumption 2.3) rather than to specific phasotypes. (Note
that three genes can generate eight phasotypes; 111, 110, 100, etc.) This hypothesis
was rejected implying an important biological consequence namely that selection
acts on phasotypes and there is a dependence between the three genes, i.e. adaptivity
to a new environment in this case relies on a particular, coordinated configuration
of states of the three genes. Next (Sect. 5.3) we estimated fitness parameters of the
mutation–selection model (without imposing Assumption 2.3) and thus showed that
the data can be explained by this model, i.e. these genes’ behaviour can be described
using a combination of the selection and mutation mechanisms but not mutations
alone. The treatment encompassed by the in vitro experiment had only one change
of environment when bacteria were moved from a storage environment to sequential
replication on plates. It was then natural to expect that adaptation happens soon after
bacteria are placed on plates resulting in a requirement for rapid adaptation to this
major environmental shiftwhereas sequential replicationonplatesmaintains a constant
selective regime. Using the mutation–selection model with time-dependent fitness
coefficients, in Sect. 5.4 we confirmed this hypothesis using data at an intermediate
time point. This is a remarkable demonstration of the usefulness of the approach
proposed in this paper.
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A Proof of Proposition 2.4

We first prove the following lemma which gives the stationary distribution for the
mutation model (19) for a single gene.

Lemma A.1 Let Assumption 2.2 hold. Then, the unique stationary distributions∞πsel,i

for single genes i individually described by (19) are equal to

∞π1
sel,i = 2γ 1

i qi

(1 − qi )Δγi + γ 1
i (pi + qi ) +

√
(γ 1

i pi + γ 2
i qi )

2 + 2(γ 1
i pi − γ 2

i qi )Δγi + (Δγi )
2
,

∞π2
sel,i = 1 − ∞π1

sel,i , Δγi = γ 2
i − γ 1

i . (46)

Proof It follows from (19) with � = 1 that the first component of the stationary
distribution for an i th gene ∞π1

sel,i of
∞πsel,i = (∞π1

sel,i ,
∞ π2

sel,i ) should satisfy the
following quadratic equation
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(pi+qi−1)Δγi

[∞π1
sel,i

]2+
[
(1 − qi )Δγi + γ 1

i (pi + qi )
] ∞π1

sel,i−γ 1
i qi = 0. (47)

By simple algebra, it is not difficult to establish that under Assumption 2.2 (also recall
that all γ j

i > 0) Eq. (47) always has only one solution which is between 0 and 1 and
that it is equal to the expression from (46). Lemma A.1 is proved. 
�

Proof of Proposition 2.4 We need to check that ∞πsel from (30) satisfies the equation
for the stationary distribution

∞πsel =
∞πselT Iγ

γ · ∞πselT
(48)

or equivalently

∞πsel

[∞πselT γ �]
− ∞πselT Iγ = 0, (49)

which we prove by induction. By Lemma A.1, (49) is true for � = 1. Assume that
(49) is true for all � ≤ k. Consider � = k + 1. Using (25), (26), and (11 ), we obtain

∞πsel[∞πselT γ �] − ∞πselT Iγ
= ( ∞πsel,1 ⊗ · · · ⊗ ∞πsel,k+1)

[( ∞πsel,1 ⊗ · · · ⊗ ∞πsel,k+1)(T1 ⊗ · · · ⊗ Tk+1)(γ1 ⊗ · · · ⊗ γk+1)
�]

− ( ∞πsel,1 ⊗ · · · ⊗ ∞πsel,k+1)(T1 ⊗ · · · ⊗ Tk+1)(Iγ1 ⊗ · · · ⊗ Iγk+1).


�

By the mixed-product and bilinear properties of the Kronecker product, we get

∞πsel[∞πselT γ �] − ∞πselT Iγ

= ∞πsel,1[ ∞πsel,1T1(γ1)
�] ⊗ · · · ⊗ ∞π sel,k+1[ ∞πsel,k+1Tk+1(γk+1)

�]
− ∞πsel,1T1 Iγ1 ⊗ · · · ⊗ ∞πsel,k+1Tk+1 Iγk+1

= ( ∞πsel,1[ ∞πsel,1T1(γ1)
�] ⊗ · · · ⊗ ∞π sel,k[ ∞πsel,kTk(γk)

�]
− ∞πsel,1T1 Iγ1 ⊗ · · · ⊗ πkTk Iγk ) ⊗ ∞πsel,k+1[ ∞πsel,k+1Tk+1(γk+1)

�]
+ ∞πsel,1T1 Iγ1 ⊗ · · · ⊗ ∞πsel,kTk Iγk

⊗ (∞πsel,k+1[∞πsel,k+1Tk+1(γk+1)
�] −∞ πsel,k+1Tk+1 Iγk+1),

where the difference in the first term on the right-hand side is zero because of the
induction assumption and the difference in the second term is zero due to Lemma A.1.
Hence, ∞πsel from (30) satisfies (48) for � = k + 1, and therefore (30) is proved for

any �. It is also not difficult to check that
∑2�

i=1 π i
sel = 1. Proposition 2.4 is proved.
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