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Time-limited self-sustaining rhythms and state transitions in brain networks
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Resting-state networks usually show time-limited self-sustaining oscillatory patterns (TLSOPs) with the
characteristic features of multiscaled rhythms and frequent switching between different rhythms, but the un-
derlying mechanisms remain unclear. To reveal the mechanisms of multiscaled rhythms, we present a simplified
reaction-diffusion model of activation propagation to reproduce TLSOPs in real brain networks. We find that the
reproduced TLSOPs do show multiscaled rhythms, depending on the activating threshold and initially chosen
activating nodes. To understand the frequent switching between different rhythms, we present an approach of
dominant activation paths and find that the multiscaled rhythms can be separated into individual rhythms denoted
by different core networks, and the switching between them can be implemented by a time-dependent activating
threshold. Further, based on the microstates of TLSOPs, we introduce the concept of a return loop to study the
distribution of the return times of microstates in TLSOPs and find that it satisfies the Weibull distribution. Then,
to check it for real data, we present a method of a shifting window to transform a continuous time series into a
discrete two-state time series and interestingly find that the Weibull distribution also exists in resting-state EEG
and fMRI data. Finally, we show that the TLSOP lifetime depends exponentially on the core network size and
can be explained by a theory of the complete graphs.
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I. INTRODUCTION

To perform various brain functions, the brain network has
a unique small-world, modular, and hierarchical structure [1].
For efficiency, the brain network has been developed into dif-
ferent cognitive subnetworks, and each cognitive subnetwork
is a group of interconnected regions functioning as a circuit
and their collective dynamics may behave as a regular oscil-
lation, i.e., the rhythms measured by electroencephalogram
(EEG) data [2–4]. Thus, brain oscillation is highly rhythmic.
Many experiments have confirmed the association between
dominant brain rhythms and physiologic states. Different
brain rhythms characterize distinct phases of the sleep-wake
cycle [5,6]. For example, θ -band synchronization has been
observed during lexical-semantic retrieval, indicating that θ

synchronization supports the communication among distant
cortical and subcortical regions which are involved in lan-
guage [7–9]. The synchronization of α and β rhythms between
right inferior frontal and primary sensory neocortex has been
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associated with attentional control [10]. And higher frequency
γ rhythms in local synchronization have been observed during
visual responses [11]. Further, it is revealed that even during
sleep, we have a 90-min ultradian cycle, consisting of the
repeated cycles of non-rapid-eye-movement and rapid-eye-
movement sleep, ranging from states of deep unconsciousness
to ordinary wakefulness [12,13].

Concerning dynamics, the performance of a cognitive task
can be considered as the emergence of a dynamical pat-
tern. Thus, understanding the dynamical patterns is a key to
understanding the mechanism of rhythms. For this reason,
many studies have been focused on the topic of self-sustained
oscillations [14–16]. It is found that the existence of a self-
sustained loop takes a key role for the rhythm and can
be considered as a pacemaker loop [17–19]. This kind of
oscillations by pacemaker loops is persistent and has a time-
unlimited lifetime [20]. However, many signals by EEG data
show that the lifetimes of cognitive patterns are generally not
infinite but time-limited. Especially, this kind of time-limited
patterns can be also produced by regional brain stimulations
where the activated site will spread firing signal to its neigh-
bors through the brain network structure and finally form
different patterns of synchronization across predefined cog-
nitive systems [21–24].

On the other hand, it is reported that the brain at rest
displays spatial patterns of correlated activity across differ-
ent brain areas known as resting-state networks (RSNs) with
fewer links than during task performance [13,25]. The rhythm
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of RSNs will be frequently interrupted by the sleep-wake
switch producing stable sleep and wakefulness, i.e., time-
limited periods [26]. Thus, its two characteristic features
are the multiscaled rhythms and frequent switching between
different rhythms. Their mechanism may be essential for un-
derstanding the diversity of patterns in brain networks and
help us to reveal fundamental principles for the organization
of the human brain.

This switching may be more frequent during task states
where the neurons in a network are rhythmically activated and
inhibited. At one moment, many neuronal groups in our brain
are active; while at another moment, other neuronal groups
are active [27]. More examples can be found in pathologies
such as epilepsy, autism spectrum disorders, schizophrenia,
or Alzheimers disease, where there is frequent switching be-
tween diseases and normal states [28,29]. In this work, we
present a framework to study the switching between brain
oscillatory states. The framework is very simple and can be
considered as a reaction-diffusion model where an inactivate
node can be activated once its total input is greater than a given
threshold. We first apply this model to a real brain network and
find that different time-limited self-sustaining oscillatory pat-
terns (TLSOPs) can be generated, depending on the initially
activated nodes and chosen threshold. Then we analyze the
rhythms contained in each TLSOP by presenting an approach
of dominant activation paths. We find that the multiscaled
rhythms can be separated into individual rhythms denoted by
different core networks. Further, we present the concept of
a return loop to study TLSOPs and find that the distribution
of the return times of microstates satisfies the Weibull distri-
bution and the TLSOP lifetime depends exponentially on the
size of core network. After that, we present a shifting window
approach to transform a continuous time series into a discrete
two-state time series of {0, 1} and confirm that a Weibull
distribution also exists in real brain dynamics as observed in
resting-state EEG and functional magnetic resonance imaging
(fMRI) data. Finally, we present a theoretical analysis for the
TLSOP lifetime, based on the complete graphs.

II. A SIMPLIFIED REACTION-DIFFUSION MODEL
OF ACTIVATION PROPAGATION

It is well known that each brain neuron has two states,
i.e., a quiescent or a firing state. The interaction between
two neurons will take effect only when they are connected
by a synapse. However, it is too difficult for us to directly
consider this kind of coupling interaction on the neural level
as the numbers of neurons and links in the human brain are
enormous. To simplify this problem, we may make a coarse-
grained description. A convenient way is to divide the cerebral
cortex into different areas, i.e., regions of interest (ROIs). We
let each ROI be a node and the density of synaptic connections
between two ROIs be the weight of their link, and we thus
obtain a weighted brain network. Depending on the precision
of parcellation, we may obtain brain networks with different
sizes N for a specific individual.

For such a brain network, a general way to study its dy-
namics is by letting each node be a neural oscillator such
as the FitzHugh-Nagumo neuron or Hindmarsh-Rose neuron.
However, this approach may be problematic as each node

represents in fact the collective behaviors of thousands of
neurons in a ROI, i.e., a mean field. For an isolated node with
thousands of neurons, we may expect two kinds of behaviors,
high or low firing rates. For the former, the total input coupling
to each neuron in a ROI is sufficiently high to fire, thus making
the neurons of ROIs insensitive to further input from other
nodes. Consequently, the node may keep its state of high firing
rate for a finite time. We call this state activation. While for the
latter, the total input of each neuron in a ROI is insufficient
to reach the threshold of firing, thus it is possible for the
neurons of a ROI to receive input from other nodes. We call
this state inactivation. Thus, for two connected nodes in brain
network, their interaction can be approximately classified into
three cases: (1) There is no interaction between them when
both nodes are in the state of inactivation. (2) There is a firing
transmission from the activated one to the inactivated one
when one node is in the state of activation while the other
is in the state of inactivation. The firing of an inactivated node
depends on the total input received from all its neighbors. (3)
The interaction will be small and can be ignored when both
nodes are in the state of activation. However, in the case of a
network, there can be a situation where input from multiple
inactive nodes can result in the activation of multiple nodes as
discussed in Refs. [30–32].

Based on this analysis, we here present a reaction-diffusion
model. The model operates in discrete time steps and includes
two steps: reaction and diffusion. The reaction step is only
for the activated nodes and the diffusion step only for the
inactivated nodes. Let xi(t ) be the state of node i at time t .
We assume xi(t ) = 1 for the activated node and xi(t ) = 0 for
the inactivated node. In the reaction step, each activated node
will have a probability p to become inactivated and 1 − p to
remain in activated state. That is, we have

xi(t + 1) =
{

0, with p

1, with 1 − p
(1)

for activated xi(t ) = 1. In the diffusion step, an inactivated
node will become activated when its total input coupling
strength is greater than a threshold wc. The process can be
represented as

xi(t + 1) = �

(
N∑

j=1

Wi jx j (t ) − wc

)
(2)

for inactivated xi(t ) = 0, where � denotes the Heaviside func-
tion.

Equations (1) and (2) constitute the simplified reaction-
diffusion model of activation propagation. This model will go
back to the threshold model of Ref. [33], provided that the
weight matrix Wi j is replaced by the adjacency matrix Mi j .

Without loss of generality, we assume p = 0.5 in this work.
Our purpose is to reveal the mechanism of the rhythms of
human brain networks. For this purpose, we will focus on
whether the initially activated nodes can make TLSOPs, by
considering three kinds of real brain networks with different
scales, i.e., small, middle, and large sizes, respectively.
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FIG. 1. Typical patterns by the reaction-diffusion model of Eqs. (1) and (2) where the “yellow” points represent xi(t ) = 1 and “blue” parts
represent xi(t ) = 0. The threshold wc is chosen as 0.006 in (a), 0.0068 in (b), 0.007 in (c), 0.009 in (d), 0.0066 in (e), and 0.009 in (f), and the
initially activated nodes are chosen from the 76 nodes as follows: randomly choose 10 nodes in (a), choose the 14 nodes ([45−58]) in (b) and
(c), choose the three nodes 10, 34, 45 in (d), and choose the six nodes 38, 52, 54, 75, 56, 57 in (e) and (f).

III. RESULTS

A. Time-limited self-sustaining oscillatory patterns

In numerical simulations, we here show only the results
on the network with small scale and leave the results on the
networks of both middle and large sizes in the Supplemental
Material (SM) [34]. For the network with small scale, we
take the structural connectivity from Refs. [21,35,36] as an
example, which consists of 76 nodes (brain regions) across
nine cognitive systems (resting-state networks). Each cogni-
tive system is defined by regions that coactivate in support
of a generalized class of cognitive functions, and the nine
cognitive systems are named attention, auditory, cingulo-
opercular, frontoparietal, medial default mode, motor and
somatosensory, subcortical, ventral temporal association, and
visual systems, respectively. A node of each cognitive net-
work contains about ten ROIs and thus represents a brain
region [21,36]. As different nodes represent different brain
regions, the interconnections between them will be signifi-
cantly different, resulting in weighted network edges based
on structural connectivity between brain regions. Therefore,
we have to consider different Wi j in Eq. (2). As this network
is constructed by the cognitive functions, it may direct us to
deeply understand the time-limited self-sustaining patterns in
brain networks. These data of link weights Wi j can be taken
from Ref. [35], which come from whole-brain fiber tractog-
raphy and are measured by diffusion MRI analysis [21]. ln
the resulting weighted matrices, Wi j reflects the density of
streamlines connecting different regions, i.e., normalized by
the sum of the regional brain volumes. There are 30 sub-
jects in the data, i.e., 30 networks. Our numerical simulations
show that all the networks have similar results, thus we ran-
domly take one from them, subject 13, and show the results
of other subjects in the SM [34]. We first study the evolu-
tionary processes of Eqs. (1) and (2) by choosing different
initially activated nodes and different thresholds. We find that
there are a variety of dynamical patterns, including both the

self-sustained patterns and TLSOPs or both the stable and
metastable states. Figures 1(a)–1(f) show six typical patterns,
where Fig. 1(a) represents the case of self-sustained patterns
and Figs. 1(b)–1(f) the case of TLSOPs. Moreover, we notice
that in each panel of Fig. 1 the firings from different channels
are sequential or alternative during the evolutionary process,
i.e., the time series of firings in each channel is not continuous
but with a blank from time to time. In this sense, the firings
will run among the channels and form a limit-cycle-like be-
havior.

The threshold wc in Eq. (2) is a key parameter to influ-
ence the types of patterns. Obviously, a zero threshold (i.e.,
wc = 0) will always make xi(t + 1) = 1, i.e., producing a
time-unlimited pattern, while too large of a threshold will
always make xi(t + 1) = 0, i.e., producing no patterns. Thus,
the thresholds for Fig. 1 are chosen by the conditions that
Fig. 1(a) is a time-unlimited self-sustaining oscillatory pattern
while Figs. 1(b)–1(f) are TLSOPs. That is, the thresholds for
Figs. 1(b)–1(f) should not be too small or too large so as
to avoid either the time-unlimited oscillatory pattern or no
oscillatory pattern. We focus on the cases of Figs. 1(b)–1(f)
and summarize three conclusions: (1) Let T be the lifetime for
a TLSOP to survive. We see that T is significantly different
from Figs. 1(b) to 1(f), indicating the feature of finite time.
(2) Comparing Fig. 1(c) with Fig. 1(d) and Fig. 1(e) with
Fig. 1(f), respectively, we find that Fig. 1(d) is contained in
Fig. 1(c) and Fig. 1(f) is contained in Fig. 1(e), indicating the
feature of multiscaled rhythms. And (3) comparing Figs. 1(c)
and 1(e) with Fig. 1(b), we see that both Figs. 1(c) and 1(e)
are contained in Fig. 1(b), indicating that multiple rhythms
can be contained in a single TLSOP, i.e., in Fig. 1(b). Thus, it
will result in a switching between different rhythms when the
activated nodes change from one rhythm to the other.

Do the results of Fig. 1 depend on the parameter p of
Eq. (1)? To figure out the answer, we have made numerical
simulations for different p and found the similar results, indi-
cating that the existence of TLSOPs is robust to p. We have
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FIG. 2. Application of the approach of dominant activation paths to the three cases of Figs. 1(b)–1(d), where there are 18 nodes in (a),
five nodes in (b), and three nodes in (c). Panels (a)–(c) represent the weight matrix Wi j of connections for the core networks of self-sustained
patterns, corresponding to Figs. 1(b)–1(d), respectively. Panels (d)–(f) represent the dominant activation paths for the self-sustained pattern,
corresponding to (a)–(c), respectively.

shown the results of p = 0.3 and 0.8 in Figs. 2 and 3 of the
SM [34]. Thus, here we fix p = 0.5 in this work.

Do these three conclusions imply some basic principles
hidden in TLSOPs? To figure out the answer, we will develop
several approaches in the following subsections.

B. An approach of dominant activation paths to identify
individual TLSOP rhythms

As all the TLSOPs of Figs. 1(c) to 1(f) are contained in
Fig. 1(b), an interesting question will be how can we identify

FIG. 3. Implementing the switching between different TLSOP
rhythms by a time-dependent threshold. (a) Time-dependent thresh-
old wc where the threshold wc is chosen as 0.006 for t < 100, 0.005
for 100 < t < 200, and 0.008 for 200 < t < 300, respectively. The
insets show their corresponding dominant activation paths, respec-
tively. (b) The evolutionary process of the TLSOP patterns where the
threshold wc is changed according to (a).

them directly from Fig. 1(b)? In other words, suppose we
have only the time series of Fig. 1(b), can we recognize its
individual rhythms? To answer this question, we here present
an approach of dominant activation paths to study the rhythms
contained in TLSOPs, as the patterns observed in experiments
are time-limited [5–9,26]. We will show that the rhythms can
be represented by corresponding core networks with different
sizes.

To illustrate our idea, we take the TLSOPs of Figs. 1(b)–
1(d) as an example, which contain 18 nodes in Fig. 1(b), five
nodes in Fig. 1(c), and three nodes in Fig. 1(d). Figures 2(a)–
2(c) show the final weight matrix Wi j of connections for
the subnetworks of self-sustained patterns, i.e., the core net-
works, corresponding to Figs. 1(b)–1(d), respectively, where
the numbers denote the node numbers in the brain network
and the colors denote the values of Wi j . Three features can
be noticed from Figs. 2(a)–2(c): (1) By the node numbers we
see that the nodes in each TLSOP are not chosen sequentially
from the original order 1, 2, . . . , 76 in Fig. 1, but are noncon-
tinuous at intervals such as 10, 45, and 34 in Fig. 2(c); (2)
all three subnetworks are complete graphs but with different
connection weights; and (3) Fig. 2(b) is contained in Fig. 2(a)
and Fig. 2(c) is contained in Fig. 2(b). Do these features imply
some basic principles hidden in the self-sustained patterns? If
so, the finding of these principles will definitely help us to
understand the rhythms of brain waves and may further help
us to control and regulate the rhythms in brain disorders.

To answer this question, we recall the method of dominant
phase-advanced driving (DPAD) [37,38], which has revealed
that the existence of a DPAD loop is a key feature for a
self-sustained pattern [17–20]. In this method, the key point is
to figure out a loop of connected nodes where each nonoscil-
latory node can oscillate if and only if it is driven by one or
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few oscillatory interactions with advanced phases. Once this
DPAD loop is determined, the oscillations of this loop will
be constantly transmitted to other nodes and thus form a peri-
odic self-sustained pattern. In this sense, the DPAD loop will
behave as a pacemaker and determine the period of the self-
sustained oscillation. However, we notice from Figs. 1(b)–1(f)
that these TLSOPs are not periodic but irregular, thus we can-
not use the approach of a DPAD loop. To solve this problem,
we here introduce an approach for TLSOPs, based on the spirit
of DPAD. In detail, we introduce an activation matrix M with
its element Mi j representing the frequency of activated link
j → i. Initially, we let all the elements of M be zero, Mi j = 0.
For an evolutionary process related to the node i and its one
neighboring node j, if xi(t − 1) = 0 and xi(t ) = 1, the link
j → i will be considered as an activated link for one time step
and Mi j = Mi j + Wi j , provided x j (t − 1) = 1. In this way, we
can get the accumulated Mi j for a time period. For each node i
in the self-sustained pattern, we pick out the maximum Mi j

from all its neighboring Mi j , i.e., the dominant one. Then
we put a directional link from the dominant node j to the
node i. In this way, every node in TLSOPs will have one
dominant node j and thus only one incoming link. All these
incoming links will form the most significant driving paths
for TLSOPs. We would like to call them the dominant driving
paths as they are based on the statistical frequencies of acti-
vations but not the interaction providing the most significant
activating contribution at a time step as in [37,38]. If some
of these incoming links form a loop, it will be the loop of
dominant activation path. Figures 2(d)–2(f) show the results,
corresponding to Figs. 2(a)–2(c), respectively. We do see that
there is at least one loop of dominant activation paths in each
of Figs. 2(d)–2(f), where the loop is the core topology for the
oscillation serving as the source loop and the unidirectional
links indicate the firing propagation pathways. Therefore, the
loop of dominant activation path significantly simplifies the
connection subnetwork and shows the main flow direction of
firing propagation.

Further, we notice from Fig. 2(d) that its loops of dominant
activation paths are not an entity but separated into four parts,
where each part has an independent loop. In fact, each sep-
arated part also can be considered as connected components
of dominant activation paths as it can make a self-sustained
oscillation by its loop. We would like to call its connection
network the core network, with the loop being its hallmark.
As the four parts have different sizes, their rhythms will be
different and thus make multiscaled TLSOP rhythms, i.e., the
mechanism of multiscales. Take the upper-left part of Fig. 2(d)
as an example. It consists of seven nodes, but its loop consists
of only two nodes, i.e., the two nodes 10 and 34. As this loop
behaves like a pacemaker, the upper-left part of Fig. 2(d) can
have a sustained oscillation. To confirm its independence to
other three parts of Fig. 2(d), Fig. 2(e) shows the TLSOP
from partial nodes of the upper-left part of Fig. 2(d) but
with the loop. Figure 2(f) further shows the case from partial
nodes of Fig. 2(e) but also with the loop. We see from both
Figs. 2(e) and 2(f) that the self-sustained patterns can survive,
provided that the loop exists. Thus, the self-sustained pattern
of Fig. 2(a) is contributed by four core networks.

We have to emphasize that all the sustained activity pat-
terns always have at least one loop in Mi j , which has been

confirmed in all our simulations. The reason is that each
TLSOP has a finite lifetime and thus needs recycles of fir-
ing propagation. Considering the fact that each node in the
dominant driving paths has only one incoming link, thus a
core network will be a directional tree if there is no loop in
Mi j . In this case, the recycles of firing propagation cannot be
implemented.

C. How to implement the switching between different
TLSOP rhythms

Based on the individual TLSOP rhythms identified in
Sec. III B, a key question is how to implement the switch-
ing between them. To solve this problem, we start from the
network of Fig. 2(a), which is a fully connected network with
the weight matrix Wi j from Refs. [21,35,36]. By letting the
threshold wc be time-dependent, we find that the switching
between different TLSOP rhythms can be implemented. Fig-
ure 3 shows such an example where the variation of wc is
given in Fig. 3(a) and the corresponding TLSOP patterns are
given in Fig. 3(b). From Fig. 3(b) we see that it is a pattern
of six nodes for t < 100, 18 nodes for 100 < t < 200, and
five nodes for 200 < t < 300, indicating that the switching
between different TLSOP rhythms has been implemented by
a time-dependent activating threshold. In detail, the insets
of Fig. 3(a) show their corresponding dominant activation
paths, respectively. We see that the middle part is the whole
of Fig. 2(d), while both the left and right parts are only the
subsets of the middle part. From these insets we also see that
each of the left and right patterns has a unique rhythm and
the middle pattern has a multiple rhythms; thus the changing
of TLSOP patterns in Fig. 3(b) represents the switching be-
tween different rhythms of TLSOP. This may be one way to
implement the switching between different TLSOP rhythms,
but other ways are also possible.

D. Statistics of TLSOP microstates by a return-loop approach

To make the study more detailed, we would like to fig-
ure out the basic principles hidden in TLSOPs of Fig. 1.
For this purpose, we present a concept of return loop to
study TLSOP microstates. For a TLSOP, such as the ones
of Figs. 1(b)–1(f), we find that there are many different mi-
crostates during the evolutionary process and each specific
microstate will show up from time to time. That is, we have
only one microstate at each time step but different microstates
at different time steps. To understand how the macroscopic
rhythms come from these microstates, we introduce a variable
S to represent the microstate, which is a m-dimensional vector
with m being the number of nodes in a TLSOP. Take the
TLSOP of Fig. 1(c) as an example. Its m equals 5. As the time
series of each node consists of 0 and 1, S will take the fol-
lowing forms: (1, 1, 1, 1, 1), (1, 0, 1, 1, 0), (0, 1, 0, 0, 1), and
so on. Taking off the microstate (0,0,0,0,0) of death, we have
a total of 2m − 1 different microstates, i.e., 31 for m = 5. For
convenience, we rename these microstates S1, S2, S3, and so
on. In a TLSOP, these microstates will recurrently appear
many times. There will be a return loop once a specific mi-
crostate shows up two consecutive times. Take the microstate
S1 as an example. We will have a return loop once the system
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FIG. 4. The approach of the return loop. Panels (a) and (b) represent two typical TLSOP return loops in Fig. 1(c) with m = 5, based on
the return of S1. Panel (c) represents the frequencies of TLSOP microstates Si(i = 1, 2, . . . , 31) in Fig. 1(c). Panel (d) represents the TLSOP
distribution of τ from Fig. 1(c) with 1000 realizations with the same initial activated nodes, where the red line is produced by the Weibull
distribution with λ = 30, β = 0.8, and C = 1. Panels (e) and (f) are from the TLSOP of Fig. 1(e) with m = 6 where the red line in (f) is
produced by the Weibull distribution with λ = 41, β = 0.9, and C = 1.

goes back to S1. Figures 4(a) and 4(b) show two typical return
loops based on the return of S1, respectively.

Let τ be the return time from a microstate Si to its first
return, i.e., the length of a return loop. Two features can be
found from Figs. 4(a) and 4(b). The first one is that only part
of all the microstates appear in each return loop, indicating
that different Si will have different possibilities to appear in
individual return loops. Let fi be the frequency for Si to appear
in all the individual return loops, i.e., the possibility for Si to
appear in the TLSOP evolutionary process. Figure 4(c) shows
all the frequencies fi of Si(i = 1, 2, . . . , 31) from the TLSOP
of Fig. 1(c). We see that some fi are large but others are small,
implying that some microstates are dominant. The second one
is that τ are different in Figs. 4(a) and 4(b), indicating that the
return times of Si are not constant. That is, we may have many
different τ during the TLSOP evolution. For the same reason,
we also have many different τ for other Si during TLSOP
the evolution. Collecting all these τ from different Si arises
a question: Do these τ satisfy a distribution related to brain
functions? This question is not trivial as a stable distribution
represents the statistics contained in system, i.e., frequency
heterogeneity of different microstate Si. To figure out the
answer, we notice that there is a specific microstate Si at each
TLSOP time step and a corresponding τ can be obtained,
provided that we can find the next Si. In this way, we can find
all the τ of TLSOPs. As a TLSOP is time-limited, we may
not have enough τ for statistics. To solve this problem, we do
1000 realizations to obtain enough τ by choosing the same
initial activated nodes. Figure 4(d) shows the distribution of τ

in a log-log plot and the inset shows it in a log-linear plot. We
see that both are not straight lines, indicating that it is neither
a power-law nor an exponential distribution.

Recalling that a TLSOP is a transient process between the
permanent oscillation and oscillation death, we assume that it
represents the status of brain at criticality. It is well known
that there is a self-organized criticality in equilibrium sys-

tems, leading to emergent collective behavior across scales,
i.e., power laws [39]. Whereas in nonequilibrium systems,
the Weibull distribution is used extensively to model het-
erogeneous distribution of events [40], such as the δ-burst
durations in the sleep-wake cycle [41]. As a TLSOP is a
typical nonequilibrium state, we here use the Weibull distri-
bution to fit the data of Fig. 4(d), described as P(τ, β, λ,C) =
C( β

λ
)( τ

λ
)β−1e( τ

λ
)β where λ is the characteristic timescale, β

the shape parameter, and C the fitting factor. The red line in
Fig. 4(d) is produced by the Weibull distribution with λ = 30,
β = 0.8, and C = 1. We see that the red line fits the data very
well, implying that the distribution of τ satisfies the Weibull
distribution. These two features can be further confirmed by
the TLSOP of Fig. 1(e) with m = 6; see Figs. 4(e) and 4(f),
respectively. More results for other subjects are shown in the
SM [34].

E. TLSOPs of fMRI data by a shifting window approach

It will be of great interest if the above findings can be
supported by real time series. As the reaction-diffusion model
of (1) and (2) describes only the activation propagation of
initial activated nodes but does not consider any cognitive
tasks, its dynamical patterns may correspond to the dynamics
of RSNs, which are especially important in exploring the basic
principles of self-organizing brain dynamics [13,42]. For this
purpose, we here consider the case of fMRI data from RSNs,
but leave the discussion on the case of the EEG data to the
SM [34].

We consider the public fMRI data of RSNs from Ref. [43],
which consist of 99 healthy participants. For each subject, 90
time series are measured from its 90 brain regions, i.e., one
time series from one brain region. We calculate the Pearson
correlation coefficient between any two of these 90 time series
to obtain a weight matrix. Then we set a threshold to obtain the
functional brain network [44]. When the threshold is large, the
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FIG. 5. Schematic figure for the approach of shifting window.
Panel (a) represents two arbitrary time series and the calculating of
the peak width pwi(t ). Panel (b) represents the transformation of
continuous time series to a discrete time series. Panel (c) represents
the partition of the discrete time series by a shifting window. Panel
(d) represents the final results of a discrete time series.

obtained network will not be a connected one but fragmented
with local clusters. Figures 6(a)–6(c) below show three such
clusters from subjects 1, 7, and 16, respectively. More exam-
ples are given in the SM [34]. We assume that the dynamics
of these clusters correspond to the TLSOPs of Figs. 1(b)–1(f).
However, we face a problem that the fMRI data are continuous
time series, while those by Eqs. (1) and (2) are discrete time
series consisting of 0 and 1. To overcome this problem, we
have to transform the fMRI data into a discrete time series
of {0, 1}. A general way to do this is by simply asking at
each time point whether a region is more or less active than
its average, which yields binary time series with the same
lengths as the original data [45]. Using this approach to the
fMRI data of Fig. 5(a), we will have consecutive 1 for the
part larger than the average and consecutive 0 for the part less
than the average, resulting in highly correlated signals in close
time points. Thus, this approach will not increase the effective

number of samples. For this aspect, we here introduce an
approach of a shifting window, which is shown in Fig. 5 and
consists of the following steps:

(1) For a continuous time series Xi(t ), we first find its max-
imum X max

i and minimum X min
i and then let their average be

the threshold Xth, i.e., Xth = (X max
i + X min

i )/2. See Fig. 5(a).
(2) Calculate all the peak widths above the threshold by

pwi(t1) = t2 − t1, with t1 and t2 being two consecutive times
crossing the threshold Xth, i.e., Xi(t1) < Xth and Xi(t1 + 1) >

Xth and Xi(t2) > Xth and Xi(t2 + 1) < Xth. The average peak
width will be Pwi = 〈pwi(t1)〉t1 . See Fig. 5(a).

(3) Calculate Pw j for all the other time series j in the
connected cluster and choose the minimum of them as our
shifting window Pw, i.e., Pw = min{Pw1, Pw2, . . . }.

(4) Transform all the continuous time series Xi(t ) into a
discrete time series X ′

i (t ) by letting X ′
i (t ) = 1 when Xi(t ) >

Xth, and X ′
i (t ) = 0 otherwise. In this way, there will be many

consecutively 0 or 1 in X ′
i (t ). See Fig. 5(b).

(5) Finally, we use a shifting window to consecutively
cover X ′

i (t ) and let xi(t ) denote the value of the window i,
which will be either 1 or 0. In detail, we let n0 and n1 be the
numbers of X ′

i (t ) = 0 and X ′
i (t ) = 1 in the window i, respec-

tively, and let the majority of the two numbers be the value of
xi(t ), i.e., xi(t ) = 0 if n0 > n1, and xi(t ) = 1 otherwise. See
Figs. 5(c) and 5(d).

By these steps, a continuous time series Xi(t ) will be
transformed into a discrete time series xi(t ) of {0, 1}, but the
length of xi(t ) will be compressed to 1/pw of Xi(t ). Now, xi(t )
corresponds to the discrete time series of Eqs. (1) and (2) and
thus can be used to check our findings.

Taking Fig. 6(a) as an example and doing the same proce-
dure as in Fig. 4(d) and 4(f), Fig. 6(d) shows the distribution
of τ for the TLSOP of Fig. 6(a), where the red line is the fitted
curve by the Weibull distribution with λ = 5, β = 0.95, and
C = 1.2. We see that it fits very well with the data, indicating
that the result of the fMRI data has confirmed the result from
the model of Eqs. (1) and (2). This conclusion has been further

FIG. 6. The core TLSOP networks and their corresponding distributions of τ for the fMRI data. Panels (a)–(c) represent three core networks
from the subjects 1, 7, and 16, respectively. Panels (d)–(f) correspond to (a)–(c), respectively, where the red lines are the fitted curves by the
Weibull distribution with λ = 5, β = 0.95, and C = 1.2 in (d), λ = 4, β = 0.9, and C = 1.3 in (e), and λ = 3.5, β = 0.95, and C = 1.2 in (f).
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FIG. 7. Relationship between lifetime T and core network for w = 0.08 and wc = 0.07. Panels (a)–(d) represent the core networks and
their TLSOPs (i.e., the insets) for m = 2, 3, 4, and 5, respectively. Panel (e) represents T for different realizations for the case of (b) where the
straight line denotes the average 〈T 〉. Panel (f) represents the relationship between log2〈T 〉 and m for m = 1, 2, . . . , 15, where the “circles”
and “triangles” denote the results from numerical simulations and theoretical analysis, respectively.

confirmed by Fig. 6(e) for the TLSOP of Fig. 6(b) and Fig. 6(f)
for the TLSOP of Fig. 6(c).

We have also consider the EEG data of RSNs from
Ref. [46], which comprises 18 healthy participants and each
with 128 time series. Our results show that it is similar to the
case of fMRI data; see the SM [34] for details.

F. A brief theoretical analysis

In general, for a stochastic differential equation, the master
equation formalism is a good choice to make a theoretical
analysis. However, because of the nonlinear Heaviside func-
tion of � in Eq. (2), it is difficult for us to use the master
equation formalism. In this sense, we here would like to
choose an alternative approach to make a theoretical analysis.

We notice from Figs. 1(b)–1(f) that their lifetimes T are
different from each other and also notice that their final pat-
terns are stable and are not exactly the initially activated
nodes. Take Fig. 1(c) as an example. Its final pattern consists
of five nodes, which is much less than the 14 initially activated
nodes. Further, by checking the network connections we find
that the final pattern of the five nodes is a complete graph, i.e.,
a core network. We have confirmed the existence of a single
core network in Figs. 1(c)–1(f) and multiple core networks
in Fig. 1(b). Thus, T is closely related to the core TLSOP
networks. To figure out the relationship between T and core
network, we here design four core networks with two, three,
four, and five nodes, respectively; see Figs. 7(a)–7(d). We let
all the links have the same weight w and let w be slightly
greater than the threshold wc. The insets of Figs. 7(a)–7(d)
show their TLSOPs, respectively. We see that the lifetime
T continuously increases from Fig. 7(a) to 7(d), implying
more nodes in a core network and longer T . Considering the
randomness in making the lifetime, we make a large number
of realizations and take their average 〈T 〉. Take the case of
Fig. 7(b) as an example. Figure 7(e) shows its T for different
realizations, with the average 〈T 〉 ≈ 26.01 (see the straight

line). By this way, we can get 〈T 〉 for core networks with
different numbers of nodes, i.e., m. The “circles” in Fig. 7(f)
show the results for the relationship between log2〈T 〉 and m.

To present a theoretical analysis to the observed results in
Fig. 7, we here focus on some specific TLSOP core networks,
i.e., those complete graphs with m nodes. We let the weights
of all the links be slightly greater than the threshold wc.
More specifically, we let 〈T 〉 be the average lifetime when
all the m nodes are initially activated, i.e., with initial state of
(1, 1, . . . , 1). When m = 1, the only activated node will have
the possibility p to become inactivated, thus its lifetime will
be 〈T 〉 = 1/p. For the case of p = 1/2, we have 〈T 〉 = 2.

When m = 2, Fig. 7(a) shows its TLSOP core network. For
the two nodes 1 and 2, there are three possible initial activation
states 01, 10, and 11, and each of them may have four possible
outputs 00, 01, 10, and 11. Following Eqs. (1) and (2), Table I
shows the probabilities of the four outputs from each initial
activation state, where the first line represents the three initial
activation states and the first column denotes the four possible
outputs.

Let the average lifetimes of the initial activation states
01, 10, and 11 be y1, y2, and y3, respectively. We will have

y1 = p(y2 + 1) + (1 − p)(y3 + 1) (3)

where the first term p(y2 + 1) represents the lifetime for the
initial state 01 to become 10 and the second term (1 − p)(y3 +

TABLE I. The initial activation states of Fig. 7(a) vs their outputs.

State 01 10 11

00 0 0 p2

01 0 p p(1 − p)
10 p 0 p(1 − p)
11 1 − p 1 − p (1 − p)2
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TABLE II. The initial activation states of Fig. 7(b) vs their outputs.

State 001 010 100 011 101 110 111

000 0 0 0 0 0 0 p3

001 0 0 0 0 0 p2 p2(1 − p)
010 0 0 0 0 p2 0 p2(1 − p)
100 0 0 0 p2 0 0 p2(1 − p)
011 0 0 p 0 p(1 − p) p(1 − p) p(1 − p)2

101 0 p 0 p(1 − p) 0 p(1 − p) p(1 − p)2

110 p 0 0 p(1 − p) p(1 − p) 0 p(1 − p)2

111 1 − p 1 − p 1 − p (1 − p)2 (1 − p)2 (1 − p)2 (1 − p)3

1) for the initial state 01 to become 11. In the same way, we
may have

y2 = p(y1 + 1) + (1 − p)(y3 + 1) (4)

and

y3 = p2 + p(1 − p)(y1 + 1) + p(1 − p)(y2 + 1)

+ (1 − p)2(y3 + 1). (5)

The solutions of Eqs. (3)–(5) can be obtained as y1 = y2 =
1+p−p2

p2(1−p) and y3 = 1+2p
p2 . For the case of p = 1/2, we have

y1 = y2 = 10 and y3 = 8. As y3 represents the case of all the
initially activated m nodes, we have 〈T 〉 = y3 = 8, which is
consistent with Fig. 7(f).

Then we consider the motif of Fig. 7(b). For the three
nodes 1–3, there are seven possible initial activation states
001, 010, 100, 011, 101, 110, and 111, and each of them may
have eight possible outputs 000, 001, 010, 100, 011, 101, 110,
and 111. Table II shows the probabilities for each initial
activation, where the first line represents the seven initial ac-
tivation states and the first column denotes the eight possible
outputs.

Let the average lifetimes of the initial activation states
001, 010, 100, 011, 101, 110, and 111 be y1, y2, y3, y4, y5, y6,
and y7, respectively. We will have

y1 = p(y6 + 1) + (1 − p)(y7 + 1),

y2 = p(y5 + 1) + (1 − p)(y7 + 1),

y3 = p(y4 + 1) + (1 − p)(y7 + 1),

y4 = p2(y3 + 1) + p(1 − p)(y5 + 1)

+p(1 − p)(y6 + 1) + (1 − p)2(y7 + 1),

y5 = p2(y2 + 1) + p(1 − p)(y4 + 1)

+p(1 − p)(y6 + 1) + (1 − p)2(y7 + 1),

y6 = p2(y1 + 1) + p(1 − p)(y4 + 1)

+ p(1 − p)(y5 + 1) + (1 − p)2(y7 + 1),

y7 = p3 + 3p2(1 − p) + p2(1 − p)(y1 + y2 + y3)

+ 3p(1 − p)2 + p(1 − p)2(y4 + y5 + y6)

+ (1 − p)3(y7 + 1). (6)

With Eq. (6) we obtain the solutions y1 = y2 = y3 =
1+p+2p4−p2−p5

p3(1+2p2−2p−p3 ) , y4 = y5 = y6 = 1+p+3p4−p2−2p5

p3(1+2p2−2p−p3 ) , and y7 =
1+3p+3p2

p3 . For the case of p = 1/2, we have y1 = y2 = y3 =

86/3, y4 = y5 = y6 = 88/3, and y7 = 26. As y7 represents the
case of initially activated m nodes, we have 〈T 〉 = y7 = 26,
which is also consistent with Fig. 7(f).

We notice from these two cases of m = 2 and 3 that
their solutions yi depend only on the numbers of the initially
activated nodes. In the case of m = 2, the initial activation
states of 01 and 10 have the same y1 = y2. While in the case
of m = 3, the initial activation states of 001, 010, and 100
have the same y1 = y2 = y3 and the initial activation states of
011, 101, and 110 have the same y4 = y5 = y6. Based on this
observation, we now derive a general formula for the average
lifetime 〈T 〉 with different m. For this purpose, we let the num-
ber of initially activated nodes represent the state of system.
Table III shows the probabilities for each initial activation,
where the first line represents the m initial activation states, the
first column denotes the m + 1 possible outputs, and q(i, j)
represents the probability from j initially activated nodes to
become i activated nodes at the next step.

For each specific m, the expression of q(i, j) can be deter-
mined as in Tables I and II. Then we can obtain its 〈T 〉 by
the similar derivative processes as in the cases of m = 2 and
3. We find that 〈T 〉 = (4p3 + 6p2 + 4p + 1)/p4 for the case
of Fig. 7(c) with m = 4, 〈T 〉 = (5p4 + 10p3 + 10p2 + 5p +
1)/p5 for the case of Fig. 7(d) with m = 5, and so on. It is
very interesting to note that we find that all the formulas of
〈T 〉 for different m can be unified into

〈T 〉 =
m∑

i=1

Ci
m pm−i/pm. (7)

It gives 〈T 〉 = 80 for m = 4, 〈T 〉 = 242 for m = 5, and so
on, when p = 1/2. The “triangles” in Fig. 7(f) show the theo-
retical results for m = 1, 2, . . . , 15. Comparing them with the
corresponding “circles” from simulations, we see that they are
are very consistent.

Moreover, because of p < 1, the numerator of Eq. (7) will
be O(1), thus 〈T 〉 is proportional to 1/pm. We have 〈T 〉 ∼
2m when p = 1/2, which is just what we have observed in
Fig. 7(f).

IV. DISCUSSION AND CONCLUSIONS

So far, we have discussed the multiscaled rhythms of RSNs
from the angle of microstates. These results are based on the
cognitive brain network, but they can be extended to other
brain networks such as the brain network of the cerebral
cortex [22,47] and personalized brain networks [48]; see the
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TABLE III. The m initial activation states vs their outputs.

State 1 2 · · · m − 1 m

0 q(0, 1) q(0, 2) · · · q(0, m − 1) q(0, m)
1 q(1, 1) q(1, 2) · · · q(1, m − 1) q(1, m)
2 q(2, 1) q(2, 2) · · · q(2, m − 1) q(2, m)
...

...
...

...
...

...

m − 1 q(m − 1, 1) q(m − 1, 2) · · · q(m − 1, m − 1) q(m − 1, m)
m q(m, 1) q(m, 2) · · · q(m, m − 1) q(m, m)

SM [34] for details. Thus, these findings may be general in
brain networks. As the brain is usually considered to work
at the edge of a critical point, our results may reveal some
principles of cognitive functions in the following aspects: (1)
the TLSOP contains one or a few core networks, which is the
reason for the multiscaled rhythms of RSNs. For example,
Fig. 1(b) contains all the core networks of Figs. 1(c)–1(f).
However, the core networks of Figs. 1(c)–1(f) may not be
the whole in Fig. 1(b). (2) The rhythm of a core network
is determined by a weighted or ensemble average on all
its microstates, i.e., some microstates are dominant. (3) The
return times of microstates satisfy the Weibull distribution,
i.e., not a purely power-law or exponential distribution but
in between. It is well known that power-law distributions are
usually connected with the criticality of the brain, while expo-
nential distributions are related to random processes [49,50].
This finding of a Weibull distribution implies that a TLSOP
depends on both the criticality of the brain and noise, which
is consistent with the features of RSNs [13,51].

In conclusion, based on the fact that biological rhythms
are usually related to finite time series or transient processes,
we systematically study TLSOPs and their mechanisms. We
first present a simplified reaction-diffusion model and find
that it can reproduce various TLSOP patterns, indicating that
the TLSOP mechanisms may be very simple. Then we make
further studies step by step. The first step is how to identify the
individual rhythms from multiscaled TLSOPs. To solve this
problem, we present an approach of dominant activation paths

and find the core network for each individual rhythm. More-
over, based on this approach, we show a way to implement
the switching between different TLSOP rhythms . The second
step is to study the statistics of TLSOP microstates. For this
purpose, we present a return-loop approach and find that the
return times of microstates satisfy the Weibull distribution,
marking the feature of nonequilibrium state. The third step is
to check the discovered Weibull distribution with the real data
of RSNs. To do it, we consider the cases of both fMRI and
EEG data and show that they do satisfy the Weibull distribu-
tion, where a byproduct, i.e., the shifting window approach, is
presented. In the final step, we present a brief theory to explain
the dependence of lifetimes on the sizes of core networks,
based on the complete graphs.
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