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Accurate identification of synergistic treatment combinations and their
underlying biological mechanisms is critical across many disease domains,
especially cancer. In translational oncology research, preclinical systems such
as patient-derived xenografts (PDX) have emerged as a unique study de-
sign evaluating multiple treatments administered to samples from the same
human tumor implanted into genetically identical mice. In this paper, we
propose a novel Bayesian probabilistic tree-based framework for PDX data
to investigate the hierarchical relationships between treatments by inferring
treatment cluster trees, referred to as treatment trees (Rx-tree). The frame-
work motivates a new metric of mechanistic similarity between two or more
treatments accounting for inherent uncertainty in tree estimation; treatments
with a high estimated similarity have potentially high mechanistic synergy.
Building upon Dirichlet Diffusion Trees, we derive a closed-form marginal
likelihood encoding the tree structure, which facilitates computationally ef-
ficient posterior inference via a new two-stage algorithm. Simulation stud-
ies demonstrate superior performance of the proposed method in recovering
the tree structure and treatment similarities. Our analyses of a recently col-
lated PDX dataset produce treatment similarity estimates that show a high
degree of concordance with known biological mechanisms across treatments
in five different cancers. More importantly, we uncover new and potentially
effective combination therapies that confer synergistic regulation of specific
downstream biological pathways for future clinical investigations. Our ac-
companying code, data, and shiny application for visualization of results are
available at: https://github.com/bayesrx/RxTree.

1. Introduction According to the World Health Organization, cancer is one of the lead-
ing causes of death globally, with ~10 million deaths in 2020 (Ferlay et al., 2020). Despite
multiple advances over the years, systematic efforts to predict efficacy of cancer treatments
have been stymied due to multiple factors, including patient-specific heterogeneity and treat-
ment resistance (Dagogo-Jack and Shaw, 2018; Groisberg and Subbiah, 2021). Given that
the evolution of tumors relies on a limited number of biological mechanisms, there has been
a recent push towards combining multiple therapeutic agents, referred to as “combination
therapy” (Sawyers, 2013; Groisberg and Subbiah, 2021). This is driven by the core hypoth-
esis that combinations of drugs act in synergistic manner, with each drug compensating for
the drawbacks of other drugs. However, despite higher response rates and efficacy in certain
instances (Bayat Mokhtari et al., 2017), combination therapy can lead to undesired drug-drug
interactions, lower efficacy, or severe side effects (Sun, Sanderson and Zheng, 2016). Con-
sequently, it is highly desirable to advance the understanding of underlying mechanisms that
confer synergistic drug effects and identify potential favorable drug-drug interaction mecha-
nisms for further investigations.

Keywords and phrases: Approximate Bayesian Computation, Dirichlet Diffusion Trees, Patient Derived
Xenograft, Precision Medicine, Tree-Based Clustering.



Given that not all possible drug combinations can be tested on patients in actual clini-
cal trials, cancer researchers rely on preclinical “model” systems to guide the discovery of
the most effective combination therapies (note, models have a different contextual meaning
here). In translational oncology, preclinical models assess promising treatments and com-
pounds, before they are phased into human clinical trials. The traditional mainstay of such
preclinical models has been cell-lines, wherein cell cultures derived from human tumors are
grown in an in vitro controlled environment. However, it has been argued that they do not
accurately reflect the true behavior of the host tumor and, in the process of adapting to in
vitro growth, lose the original properties of the host tumor, thus leading to limited clinical
relevance and successes (Tentler et al., 2012; Bhimani, Ball and Stebbing, 2020). To over-
come these challenges, there has been a push towards more clinically relevant model systems
that maintain a high degree of fidelity to human tumors. One such preclinical model system is
Patient-Derived Xenograft (PDX) wherein tumor fragments obtained from cancer patients are
directly transplanted into genetically identical mice (Hidalgo et al., 2014; Lai et al., 2017).
Compared to traditional oncology models such as cell-lines (Yoshida, 2020), PDX models
maintain key cellular and molecular characteristics, and are thus more likely to mimic human
tumors and facilitate precision medicine. More importantly, accumulating evidence suggests
responses (e.g. drug sensitivity) to standard therapeutic regimens in PDXs closely correlate
with patient clinical data, making PDX an effective and predictive experimental model across
multiple cancers (Topp et al., 2014; Nunes et al., 2015).
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Figure 1: PDX experimental design and tree-based representation. Panel A: an illustrative PDX dataset
with five treatments (row) and eight patients (column). Mice in a given column are implanted with
tumors from the same patient and receive different treatments (across rows). The level of tumor re-
sponses are shown along a color gradient. Panel B: a tree structure that clusters the treatments and
quantifies the similarity among mechanisms. Two treatments (1 and 4) are assumed to have different
but known biological mechanisms (in different colors); the rest three treatments (2,3, and 5) have un-
known mechanisms (in gray). The tree suggests two treatment groups are present ({1, 2} and {3,4,5})
that may correspond to two different known mechanisms. The horizontal position of “A” represents
the divergence time (defined in Section 2.1) and the mechanism similarity for treatments {3,4,5}. In
a real data analysis, the tree (topology and divergence times) is unknown and is to be inferred from
PDX data.

PDX experimental design and key scientific questions. Overall, the PDX experimental de-
sign depends on the purpose of the study and we consider a PDX study of the PDX clinical
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trial that includes a large number of patients (Abdolahi et al., 2022) and tests a set of com-
mon treatments. The PDX experiment then implants the tumor cell to multiple mice and each
treatment is given to multiple mice with tumors implanted from the same (matched) patient
(see conceptual schema in Figure 1(A)). Treatment responses (e.g. tumor size) are then eval-
uated, resulting in a data matrix (treatments X patients) as depicted in the heatmap in Figure
1(A). The PDX-based clinical trial is a powerful tool for detecting the drug efficacy and drug
sensitivity (Abdolahi et al., 2022) and has been adapted in several studies for different can-
cers (e.g. Zhang et al., 2013 for the breast cancer and Bertotti et al., 2011 for the colorectal
cancer). Due to the relatively high fidelity between PDX models and the human tumors (Oh
and Bang, 2020; Abdolahi et al., 2022), a PDX-based clinical trial mirrors a real human clin-
ical trial using mouse “avatars" (Clohessy and Pandolfi, 2015). Thus this protocol serves as a
scalable platform to: (a) identify underlying plausible biological mechanisms responsible for
tumor growth and resistance, and (b) evaluate the effectiveness of drug combinations based
on mechanistic understanding. In this context, the (biological) mechanism refers to the spe-
cific mechanism of action of a treatment, which usually represents a specific target, such as an
enzyme or a receptor (Grant, Combs and Acosta, 2010). From the perspective of treatment
responses as data, responses are the consequences of the downstream biological pathways
from the corresponding interaction between a treatment and the target/mechanism.

Ideally, treatments with the same target/mechanism should induce similar responses and
engender mechanism-related clustering among treatments. Evidently then, a sensible clus-
tering of treatments would not only partition treatments into clusters but also explicate how
the clusters relate to one another; in other words, a hierarchy among treatment clusters is
more likely to uncover plausible mechanisms for combinations of treatments with “similar”
responses when compared to “flat” clusters (e.g., k-means clustering). Such response-based
identification of potential synergistic effects from combinations of treatments will augment
understanding from known mechanistic synergy. In our application, using tree-based clus-
tering, we assume known entities at the leaves, i.e., the different treatments. The treatments
are assumed to act upon potentially distinct biological pathways, resulting in different levels
of responses across the treated mice. In this paper, we use PDX response data on the leaves
to infer a hierarchy over treatments that may empirically characterize the similarity in the
targeted mechanistic pathways. The primary statistical goals are to (i) define and estimate
a general metric measuring the similarity within any subset comprising two or more treat-
ments, and (ii) facilitate (i) by conceptualizing and inferring an unknown hierarchy among
treatments.

Tree-based representations for PDX data. To this end, we consider a tree-based construct
to explore the hierarchical relationships between treatments, referred to as treatment tree (R,-
tree, in short). We view such a tree structure as a representation of clustering of treatments
based on mechanisms that confer synergistic effects, wherein similarities between mecha-
nisms are captured through branch lengths. Hierarchy among treatments can be interpreted
through branch lengths (from the root) that are potentially reflective of different cancer pro-
cesses; this would then help identify common mechanisms and point towards treatment com-
binations disrupting oncological processes if administered simultaneously.

We will focus on rooted trees. The principal ingredients of a rooted tree comprise a root
node, terminal nodes (or, leaves), internal nodes and branch lengths. In the context of the
Rx-tree for PDX data, the leaves are observed treatment responses, whereas internal nodes
and branch lengths are unobserved. Internal nodes are clusters of treatments, and lengths
of branches between nodes are indicative of strengths of mechanism similarities. The root
is a single cluster consisting of all treatments. This leads to the following interpretation:
at the root all treatments share a common target or mechanism; length of path from the
root to the internal node (sum of branch lengths) at which two treatments split into different
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clusters measures mechanism similarity between the two treatments. Thus treatments that
stay clustered “longer” have higher mechanism similarities.

Throughout, we will use ‘tree’ when describing methodology for an abstract tree (acyclic
graphs with distinguished root node) and ‘treatment tree’ or ‘Ry-tree’ when referring to the
latent tree within the application context.

An illustrative example. A conceptual Ry-tree and its interpretation is illustrated in Figure
1 where five treatments (1 to 5) are applied on eight patients’ PDXs (Figure 1(A)) with the
corresponding (unknown true) Ry-tree (Figure 1(B)) based on the PDX data. Assume two
treatment groups based on different mechanisms — treatments {1, 2} and treatments {3,4,5};
further, suppose treatment 4 is approved by the Food and Drug Administration (FDA). The
heatmap in Panel (A) visualizes the distinct levels of response profiles to the five treatments
so that treatments closer in the tree are more likely to have similar levels of responses. The
Ry-tree captures the mechanism similarity by arranging treatments {1,2} and {3,4,5} to
stay in their respective subtrees longer and to separate the two sets of treatment early in
the tree. Based on the Ry-tree, treatments {3,5} share high mechanism similarity values
with treatment 4; treatment 5 is the closest to the treatment 4, suggesting the most similar
synergistic mechanism among all the evaluated treatments 1 to 5.

Existing methods and modeling background. The Pearson correlation is a popular choice
to assess mechanism similarity between treatments (Krumbach et al., 2011), but is inap-
propriate to examine multi-way similarity. A tree-structured approach based on a (binary)
dendrogram obtained from hierarchical clustering of cell-line data using the cophenetic dis-
tance (Sokal and Rohlf, 1962) was adopted in Narayan et al. (2020); their approach, however,
failed to account for uncertainty in the dendrogram, which is highly sensitive to measurement
error in the response variables as well distance metrics (we show this via simulations and in
real data analyses). Another example with a binary dendrogram of hierarchical clustering
was proposed by Rashid et al. (2020), which also utilizes the same PDX dataset as this paper.
However, their model uses the tree structure to model the individualized treatment rule for
different patients, while our method focuses on the tree structure itself and the correspond-
ing mechanism similarity. In this paper, we consider a model for PDX data parameterized
by a tree-structured object representing the Ry-tree. The model is derived from the Dirichlet
diffusion tree (DDT) (Neal, 2003) generative model for (hierarchically) clustered data. The
DDT engenders a data likelihood and a prior distribution on the tree parameter with support
in the space of rooted binary trees. We can then use the posterior distribution to quantify
uncertainty about the latent Ry-tree.

Summary of novel contributions and organization of the article. Our approach based on
the DDT model for PDX data results in three main novel contributions:

(a) Derivation of a closed-form likelihood that encodes the tree structure. The DDT speci-
fication results in a joint distribution on PDX data, treatment tree parameters and other
model parameters. By marginalizing over unobserved data that correspond to internal
nodes of the tree, we obtain a new multivariate Gaussian likelihood with a special tree-
structured covariance matrix, which completely characterizes the treatment tree (Proposi-
tion 1 and Lemma 1).

(b) Efficient two-stage algorithm for posterior sampling. Motivated by the form of marginal
data likelihood in (a), we decouple the Euclidean and tree parameters and propose a two-
stage algorithm that combines an approximate Bayesian computation (ABC) procedure
(for Euclidean parameters) with a Metropolis-Hasting (MH) step (for tree parameters).
We demonstrate via multiple simulation studies the superiority of our hybrid approach
over approaches based on classical single-stage MH algorithms (Sections 4.2 and 4.1).
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(¢c) Corroborating existing, and uncovering new, synergistic combination therapies. We de-
fine and infer a new similarity measure that accounts for inherent uncertainty in estimating
a latent hierarchy among treatments. As a result, the maximum a posteriori Ry-tree and
the related mechanism similarity show high concordance with known existing biologi-
cal mechanisms for monotherapies and uncover new and potentially useful combination
therapies (Sections 5.3 and 5.4).

Of particular note is contribution (c), where we leverage a recently collated PDX dataset
from the Novartis Institutes for BioMedical Research - PDX Encyclopedia [NIBR-PDXE,
(Gao et al., 2015)] that interrogated multiple targeted therapies across five different cancers.
Our pan-cancer analyses of the NIBR-PDXE dataset show a high degree of concordance
with known existing biological mechanisms across different cancers; for example, a high
mechanistic similarity is suggested between two agents currently in clinical trials: CGM097
and HDM201 in breast cancer and colorectal cancer, known to target the same gene MDM?2
(Konopleva et al., 2020). In addition, our model uncovers new and potentially effective com-
bination therapies. For example, exploiting knowledge of the combination therapy of a class
of agents targeting the PI3K-MAPK-CDK pathway axes — PI3K-CDK for breast cancer,
PI3K-ERBB3 for colorectal cancer and BRAF-PI3K for melanoma — confers possible syner-
gistic regulation for prioritization in future clinical studies.

The rest of the paper is organized as follows: we first review our probabilistic formula-
tion for PDX data based on the DDT model and present the marginal data likelihood and
computational implications in Section 2. In Section 3, we derive the posterior inference al-
gorithm based on a two-stage algorithm. In Section 4, we conduct two sets of simulations to
evaluate the operating characteristics of the model and algorithm. A detailed analysis of the
NIBR-PDXE dataset, results, biological interpretations and implications are summarized in
Section 5. The paper concludes by discussing implications of the findings, limitations, and
future directions.

2. Modeling Ry-tree via Dirichlet Diffusion Trees Given a PDX experiment with [
correlated treatments and J independent patients, we focus on the setting with 1 x 1 x 1 de-
sign (one animal per PDX model per treatment) with no replicate response for each treatment

and patient. A PDX experiment produces an observed data matrix X7y ;= [X71,..., X I]T
where X; = [X;1,...,X; J]T is data under treatment ¢ across J patients; let the observed
response column for each patient be X. ; = [x1,...,z]T €RL j=1,...,J.

In this paper, the observed treatment responses are continuous and we model the responses
through a generative model that results in a Gaussian likelihood with a structured covariance:

(1) X127 2 %N 0,5T), j=1,...,J

where the £7 is a tree-structured covariance matrix that encodes the tree 7. In particular,

»7 = {ZZTZ/, ii'=1,...,1 } encodes the tree 7 through two constraints (Lapointe and Leg-

endre, 1991; McCullagh, 20006):

) >l =%, >0x] >%7,

0,0’ 1,07

(3) 7y >min{X],, , X7} foralli £ #i".

i’ Z//

Each element ZT is the covariance between treatments 7 and i’ and measures their similarity.
The inequality (2) imposes the symmetry of covariance matrix and ensures the divergence of
all leaves. The tree structure is characterized by the ultrametric inequality (3) that ensures 37
bijectively maps to a tree 7; for more details on the relationship between the covariance X7
and the tree 7 see McCullagh (2006) and Bravo et al. (2009). Of note, mean parameterized
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models (e.g. mixed effects models) are inappropriate for uncovering the tree parameter under
the given data structure since the latent tree is completely encoded in covariance matrix X7 .

A Bayesian formulation requires an explicit prior distribution on X7 which satisfies con-
strains (2) and (3); this requirement is far from straightforward since the set of tree-structured
matrices is complicated (e.g., it is not a manifold (McCullagh, 2006)). We instead consider
the Dirichlet Diffusion tree (DDT) model (Neal, 2003) for hierarchically clustered data which
provides two useful ingredients:

1. a prior is implicitly specified on the latent treatment tree, comprising the root, internal
nodes, leaves, and branch lengths;

2. upon integrating out the internal nodes, a tractable Gaussian likelihood on PDX data with
tree-structured covariance is specified.

We first provide a brief description of the DDT model proposed by Neal (2003) and its
joint density on data and tree (Section 2.1). Subsequently, we derive an expression for the
likelihood and demonstrate how it can be profitably employed to develop a generative model
for PDX data and carry out Ry-tree estimation (Section 2.2 and 2.3).

2.1. The Generative Process of DDT The DDT prescribes a fragmentary, top-down
mechanism to generate a binary tree (acyclic graph with a preferred node or vertex referred
to as the root), starting from a root, containing .J-dimensional observed responses X; at
leaves/terminal nodes; each node in the tree has either O or 2 children excepting the root
which has a solitary child. This prescription manipulates dynamics of a system of / indepen-
dent Brownian motions By, ..., B on R’ in a common time interval ¢ € [0,1]. As shown
in Figure 2(A), all Brownian motions B;(t) start at the same point at time ¢ = 0, location
of which is the root 0 € R, and diverge at time points in [0, 1] and locations in R” before
stopping at the time ¢t = 1 at locations X;. The Brownian trajectories and their divergences
engender the tree structure as shown in Figure 2(A).

Specifics on when and how the Brownian motions diverge are as follows: the first Brown-
ian motion By (t) starts at ¢ = 0 and generates X at t = 1; a second independent Brownian
motion Bsy(t) starts at the same point at t = 0, branches out from the first Brownian motion at
some time ¢, after which it generates X at time 1. The probability of divergence in a small
interval [t,t + dt] is given by a divergence function t — a(t), assumed as in Neal (2003) to
be of the form a(t) = c¢(1 — t)~! for some divergence parameter ¢ > 0. Inductively then, the
vector of observed responses to treatment i, X, is generated by B;(¢), which follows the
path of previous ones. If at time ¢, B;(¢) has not diverged and meets the previous divergent
point, it will follow one of the existing path with the probability proportional to the number
of data points that have previously traversed along each path. Eventually, given B;(t) has
not diverged at time ¢, it will do so in [t,t + dt] with probability a(¢)dt/m, where m is the
number of data points that have previously traversed the current path.

From the illustration in panel (A) of Figure 2, we note that B3 diverges from the B; and
By at time t; at location X and at ¢t = 1 is at location X3, which is the .J-dimensional
response vector for treatment 3; this creates a solitary branch of length ¢; from the root and
an unobserved internal node at location X . Continuing, given three Brownian motions By,
B> and Bs, B4 does not diverge before ¢; and meet the previous divergent point ¢;. By
chooses to follow the path of Bs with probability 1/3 at ¢; and finally diverges from Bsg at
time ¢ > ¢1 at location X §; this results in observation X4 for treatment 4 and an unobserved
internal node at X, and so on. As a consequence, the binary tree that arises from the DDT
comprises of:

(i) an unobserved root at the origin in R” at time ¢ = 0;
(i) observed data X = [X71,..., X7]T € R’*7 situated at the leaves of the tree;
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(iii) unobserved internal nodes X! = [X7, ... ,X}_I]T e RU-DxJ,

(iv) unobserved times ¢ = (t1,...,¢t7_1)" € [0,1]/~! that characterize lengths of branches;

(v) unobserved topology 7 that links (i)-(iv) into a tree structure, determined by the number
of data points X; that have traversed through each segment or branch.

Conceptually, observed data at the leaves X7,..., X collectively form the observed PDX
responses generated through a process involving a few parameters: tree-related parameters
(7,t) and the locations of internal nodes X. The tree 7 clusters I treatments as a hierarchy
of (I — 1) levels (excluding the last level containing leaves). At level 0 < d < I — 1 of the
hierarchy, characterized by the pair (X, ¢4), the I treatments are clustered into d + 1 groups;
a measure of similarity (or dissimilarity) between treatment clusters at levels d and d 4 1 is
given by the branch length ¢4 — 4.

A
5 ‘( ) T (tB'XIS)’;‘\ a.‘(‘)
§ A 2 3 4 5
3 . \;’K"‘{m , t3 tl tl tl
Root H—w i/ 1 4 t4 {4
(0,0) ! t1 1 tz tz
t t, 1 t,
t t, t, 1
t=0 t4 t.2

Figure 2: (A) A binary tree with I = 5 leaves underlying the diffusion dynamics. The observed re-
sponse vector X;,¢ = 1,...,1 is generated by the Brownian motion up to ¢ = 1. The unobserved
response vector X &, d=1,...,(I —1) at the divergence is generated by the Brownian motion at time
tq- (B) A 7t’ree-structured matrix X7 that encapsulates the tree 7. See the Proposition 1 for the defini-
tion of 37 .

We now give a brief description of how the joint density of (X, X, ¢,7) can be derived;
for more details we direct the reader to Neal (2003) and Knowles and Ghahramani (2015). For
a fixed ¢ > 0 that governs the divergence function a(t) = c¢(1 —t) !, probabilities associated
with the independent Brownian motions By, ..., By induce a joint (Lebesgue) density on
the generated tree. Note that the binary tree arising from the DDT is encoded by the triples
{(tq, X}, X;),d=1,...,] —1;i=1,...,I}. An internal node at X/, contains /; and 74
leaves below to its left and right with mg = l; 4 r4. If each of the Brownian motions is scaled
by 02 > 0, then given 7 and a branch with endpoints (t,, X/) and (t,, X)) with 0 < ¢, <
t, < 1, from properties of a Brownian motion we see that X/ ~ N;(X/, o%(t, — t,)I;),
and the (Lebesgue) density of 7 can be expressed as the product of contributions from its
branches. Then the joint density of all nodes, times and the tree topology is given by

“

lo — D(r, — 1!
P(X, X', t,Tle,0?) ZH[u,U]esm( Al )

(ly + 7y —1)! (1 _t”)CJZU'TW_INJ(X;vUQ(tv —tu)1y)
v v .

where S(7) is the collection of branches and X{ I-1)xJ = [(X1,..., X é 1_1)]-'— are unobserved

locations of the internal nodes. On each branch [u,v], the first term %

the chance the branch containing I, and r, leaves to its left and right respectively; c¢(1 —
t, )¢/t~ represents the probability of diverging at ¢, with I, and r, leaves, where .J;, =
Hy yp,—1—Hj,—1 — H,,—1 with H, =" | 1/i is the nth harmonic number.

represents



The joint density is hence parameterized by (c,o?), where ¢ plays a crucial role in deter-
mining the topology 7: through the divergence function a(t), it determines the propensity
of the Brownian motion to diverge from its predecessors; consequently, a small ¢ engenders
later divergence and a higher degree of similarity among treatments in PDX. The latent tree
has two components: (i) topology 7 and (ii) vector of divergence times ¢ determining branch
lengths. We refer to (c,0?) as the Euclidean parameters and (T ,t) as tree parameters.

2.2. Prior on tree and closed-form likelihood The joint density in (4) factors into a prior
P(t,T|c,0%) on the tree parameter through (7,¢) and a density P(X,XI|t, T,c,o?) that
is a product of J-dimensional Gaussians on the internal nodes and leaves. The prior dis-
tribution on the latent tree is thus implicitly defined through the Brownian dynamics and
is parameterized by (77,¢) with hyperparameters (c,o?). In (4) the product is over the set

of branches S(7), and the contribution to the prior P(T,t|c,0?) from each branch [u,v]

Ly—1)!(1y—1)!
Lt 12 (1v+)r571)1) c(1

to P(X,X!|t,T,c,0?) from [u,v] is the J-dimensional N;(X/,,0%(t, — t,)I), which is
independent of c. The likelihood function based on the observed X is thus obtained by in-
tegrating out the unobserved internal nodes X! from P(X,X!|t, T, 0?). Accordingly, our
first contribution is to derive a closed-form likelihood function for efficient posterior com-
putations; to our knowledge, this task is currently achieved only through sampling-based or
variational methods (Neal, 2003; Knowles and Ghahramani, 2015).

Denote as MN;, (M, U, V) the matrix normal distribution of an I x J random matrix
with mean matrix M, row covariance U, and column covariance V', and let I}, denote the k x
k identity matrix. Evidently, X follows a matrix normal distribution since Gaussian laws of
the Brownian motions imply that [X, X!] = [X7,..., X, X],... ,Xélil)]T follow a matrix
normal distribution.

is — tU)Cle‘Tv_l, which is free of o2; on the other hand, the contribution

PROPOSITION 1. Under the assumption that the root is located at the origin in R’ the
data likelihood X|02,T,t ~ MNyy(0,02S7T, I,), where ST = (27 ) is an I x I tree-

0,0’
structured covariance matrix satisfying (2) and (3) with EZ; =1 and ZZ—Z-, =tg, fori £
wherei,i' =1,....ITandd=1,...,1 —1.

Proposition 1 asserts that use of the DDT model leads to a centered Gaussian likelihood
on PDX data X with a tree-structured covariance matrix. Proposition 1 also implies that
each patient independently follows the normal distribution of (1) with an additional scale
parameter (02) from the Brownian motion:

(5) X 157,02 %N (0,022T), j=1,...,J.

By setting 217; =t;,i as the divergence time of ¢ and ¢/, »7 satisfies (2) and (3) and encodes
the tree 7. For example, consider a three-leaf tree with ZZ;, =t; i, inequality (3) implies that
for the three leaves, say, 7,7’ and ", one of the following conditions must hold: (i) ¢; ;» >
Uiy = tigrs (1) ty 50 >t 50 =ty 4oy (101) T 40 > ;50 =ty ;. We then obtain a tree containing
1) a subtree of two leaves with a higher similarity and 2) a singleton clade with a lower
similarity between the singleton leaf and the two leaves in the first subtree. In particular, if
ti i > t; i = t; i holds, the three-leaf tree has leaf 7 diverging earlier before the subtree of

(i, i").
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2.3. Decoupling Tree and Euclidean Parameters for Efficient Sampling. In the full joint
density in (4) the Euclidean and tree parameters are confounded across row and column
dimensions of X, and this may result in slow mixing of chains using traditional MCMC
algorithms (Turner et al., 2013). State-of-the-art posterior inference on (c,02,7,t) can be
broadly classified into sampling-based approaches (e.g., Knowles and Ghahramani, 2015)
and deterministic approaches based on variational message passing (e.g., Knowles, Gael and
Ghahramani, 2011, VMP). Variational algorithms can introduce approximation errors to the
joint posterior via factorization assumptions (e.g.,mean-field) and choice of algorithm is typ-
ically determined by the speed-accuracy trade-off tailored for particular applications. On the
other hand, in classical MCMC-based algorithms for DDT we observed slow convergence
in the sampling chains for ¢ and o2 with high autocorrelations for the corresponding chains,
owing to possibly the high mutual dependence between c in the divergence function and the
tree topology 7 , resulting in slow local movements in the joint parameter space of model
and tree parameters (Simulation II in Section 4.2).

Notwithstanding absence of the parameter c in the Gaussian likelihood, the dependence,
and information about, ¢ is implicit: the distribution of divergence times ¢ that populate 37
are completely determined by the divergence function ¢ + ¢(1 — ¢)~!. In other words, ¢ can
indeed be estimated from treatment responses { X. ;} using the likelihood. From a sampling
perspective, however, form of the likelihood obtained by integrating out the internal nodes
X!, suggests an efficient two-stage sampling strategy that resembles the classical collapsed
sampling (Liu, 1994) strategy in MCMC literature: first draw posterior samples of (c, o) and
then proceed to draw posterior samples of (77, ¢) conditioned on each sample of (c, o2).

3. Ry-tree Estimation and Posterior Inference In line with the preceding discussion,
we consider a two-stage sampler for Euclidean and tree parameters. While in principle
MCMC techniques could be used in both stages, we propose to use a hybrid ABC-MH al-
gorithm. Specifically, we use an approximate Bayesian computation (ABC) scheme to draw
weighted samples of (c,c?) in the first stage followed by a Metropolis-Hastings (MH) step
that samples (7',t) given ABC samples of (c,c?) in the second stage. Motivation for using
ABC in the first stage stems from: (i) availability of informative statistics; (ii) generation of
better quality samples of the tree (compared to a single-stage MH); and (iii) better computa-
tional efficiency. We refer to Section 4.2 for more details.

3.1. Hybrid ABC-MH Algorithm ABC is a family of inference techniques that are de-
signed to estimate the posterior density pr(f|D) of parameters 6 given data D when the
corresponding likelihood pr(D|0) is intractable but fairly simple to sample from. Summarily,
ABC approximates pr(6|D) by pr(0|S,ps) where S,ps is a d-dimensional summary statistic
that ideally captures most information about 6. In the special case where S35 is a vector
of sufficient statistics, it is well known that pr(6 | D) = pr(0 | S,ps). To generate a sample
from the partial posterior distribution pr(6 | S,ps), ABC with rejection sampling proceeds
by: (i) simulating N*" values ;,l =1, ..., N¥" from the prior distribution pr(#); (ii) simu-
lating datasets D; from pr(D|6;); (iii) computing summary statistics S;,[ =1,..., N®" from
Dy; (iv) retaining a subset of {0;_,s =1...,k} of size k < N that corresponds to ‘small’
|S1. — Sops|| values based on some threshold. Given pairs {(6;_,.S;,)}, the task of estimating
the partial posterior translates to a problem of conditional density estimation, e.g., based on
Nadaraya-Waston type estimators and local regression adjustment variants to correct for the
fact that S;, may not be exactly Sys; see Sisson, Fan and Beaumont (2018) for a compre-
hensive review. To implement ABC, the choice of summary statistics is central.

We detail the specialization of ABC to the marginal posterior distributions of ¢ and o
in Section 3.1.1. Given any pair of (c,0?), we can sample trees from a density function
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up to an unknown normalizing constant based on an existing MH algorithm (Knowles and
Ghahramani, 2015). Our proposal is to condition on the posterior median of (¢, 02) of ABC-
weighted samples from the first stage, when sampling the trees in the second stage; clearly,
other choices are also available. This strategy produced comparable MAP trees and inference
of other tree-derived results relative to tree samples based on full ABC samples of ¢ and 0.

Pseudo code for the two-stage algorithm is presented in the Supplementary Material Al-
gorithm S1. We briefly describe below its key components.

3.1.1. Stage 1: Sampling Euclidean Parameters (c,0?) using ABC Accuracy and effi-
ciency of the ABC procedure is linked to two competing desiderata on the summary statistics:
(i) informative, or ideally sufficient; (ii) low-dimensional.

Summary statistic for 2. From the closed-form likelihood in Equation (5), a sufficient

statistic of 02X is easily available, using which we construct a summary statistics for 2.

LEMMA 1. With X as the observed data, the statistic T := Zj X-,jXTj is sufficient for
0?27 and follows a Wishart distribution Wi(J,0*E7), where X j = [x1;,...,71,] € R
Then with S°°) := % we have E[S\"")] = 2 and Var[S(®")] = %(?T)Q)

Due to the normality of X in (5), and the Factorization theorem (Casella and Berger,
2001), we see that T is complete and sufficient for ¢2>%7 and T ~ Wi (J,02%7). Well-
known results about the trace and determinant of X (see for e.g. Mathai (1980)) provide
the stated results on the mean and variance of ¢r(7T'). Owing to its unbiasedness, we choose
S(@*) = tr(T)/IJ as the summary statistic for o> and examine its performance through
simulations in Section 4; other choices are assessed in the Supplementary Material Section
S4.1.

Summary statistic for c. Based on the matrix normal distribution of Proposition 1, the
divergence parameter ¢ does not appear in the observed data likelihood. Any statistic based
on the entire observed data set X is sufficient, but not necessarily informative about c. In
DDT, the prior distribution of the vector of branching times ¢ is governed by divergence
parameter c via the divergence function a(t;c). Thus an informative summary statistic for ¢
can be chosen by assessing its information about ¢. For example, tighter observed clusters
indicate small ¢ (e.g., ¢ < 1), where the level of tightness is indicated by the branch lengths
from leaves to their respective parents. We construct summary statistics for ¢ based on a
dendrogram estimated via hierarchical clustering of X based on pairwise distances ¢; ; :=
| X; — X /||, # i’. The summary statistics S(¢) we choose is a ten-dimensional concatenated
vector comprising the 10th, 25th, 50th, 75th and 90th percentiles of empirical distribution
of: (i) d;,4; (ii) branch lengths associated with leaves of the dendrogram. Other candidate
summary statistics for c are examined in Supplementary Material Section S4.1.

3.1.2. Stage 2: Sampling Tree Parameters (T ,t) using Metropolis-Hastings For the sec-
ond stage, we proceed by choosing a representative value (co, o2) chosen from the posterior
sample of (c,0?), which in our case is the posterior median. Then a Metropolis-Hastings
(MH) algorithm to sample from pr((7,¢)|co, 03, X); recall that the Rytree is characterized
by both the topology 7 and divergence times ¢. In particular, after initialization (e.g., the
dendrogram obtained from hierarchical clustering), we first generate a candidate tree (7”,¢)
from the current tree (7,¢) in two steps: (i) detaching a subtree from the original tree; (ii)
reattaching the subtree back to the remaining tree. Acceptance probabilities for a candidate
tree can be computed exactly and directly using the explicit likelihood in (5), without which
they would have to be calculated iteratively (Neal, 2003; Knowles and Ghahramani, 2015).
See Supplementary Material Section S2.2 for details of the proposal function and the accep-
tance probabilities.
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REMARK 1. In order to use the explicit likelihood in (5) from Proposition 1 to generate
observed data X, a tree-structured covariance X7 needs to be specified, whose entries in-turn
depend on the parameter ¢ through the divergence function. It is not straightforward to fix or
sample a X7 since its entries need to satisfy the inequalities (3). It is easier to generate data
X directly using the DDT generative mechanism in the ABC stage, and this is the approach
we follow and is described in Supplementary Section S2.

Summarily, there are three main advantages to using the explicit likelihood from Propo-
sition 1: (i) decoupling of Euclidean and tree parameters to enable an efficient two-stage
sampling algorithm; (ii) direct and exact computation of tree acceptance probabilities in MH
stage; (iii) determination of informative sufficient statistic for o? (Lemma 1).

REMARK 2. From the computational aspect, the calculation of the explicit Gaussian
likelihood of (5) in Proposition 1 through the matrix decomposition is slower (e.g. Cholesky
decomposition with O(I?)) than the message passing (e.g. the belief propagation with O(I)
(Mezard and Montanari, 2009)) in terms of the big O notation (Knuth, 1976). However, the
computation speed also depends on the implementation. For this paper, we implemented our
algorithm in R and found that the matrix decomposition is faster than the message passing on
R. We offer more details with a simulation study in Supplementary Material Section S5.3.

3.2. Posterior Summary of R,-Tree, (T,t) While quantifying uncertainty concerning the
tree parameters (7,¢) is of main interest, we note that, from definition of the DDT, this is
influenced by uncertainty in the model parameters. In particular, the first stage of ABC-MH
produces weighted samples and we calculate the posterior median by fitting an intercept-
only quantile regression with weights (see details in the Supplementary Material Section
S2.1). For the Ry-tree, we consider global and local tree posterior summaries that capture
uncertainty in the latent hierarchy among all and subsets of treatments.

Flexible posterior inference is readily available based on L posterior samples of (7,¢t)
from the MH step. It is possible to construct correspond tree-structured covariance matrices
37 from sample (7, t). Instead, we compute:

(a) a global maximum a posteriori (MAP) estimate of the Ry-tree that represents the overall

hierarchy underlying the treatment responses;
(b) local uncertainty estimates of co-clustering probabilities among a subset A C {1,...,I}

of treatments based on posterior samples of the corresponding subset of divergence times.

Posterior co-clustering probability functions. We elaborate on the local summary (b). Sup-
pose A = {i,i’,i"} consists of three treatments. Given a tree topology 7, note that at every
t € [0,1] a clustering of all I treatments is available and the clustering changes only at times
0 <ty <---<tr_1. Consequently, for a given tree topology 7 drawn from its posterior, we
can compute for every level ¢ € [0,1] a posterior probability that ¢,i" and i” belong to the
same cluster. Such a posterior probability can be approximated using Monte Carlo on the L
posterior samples. Accordingly, we define the estimated posterior co-clustering probability
(PCP) function associated with A as,

Zlel H[o,tfz, ) (t)
L ?
where I is the indicator function on the set B and tz(-’lg,’i,, is the divergence time of A =
{4,4',4"} in the [-th tree sample. Essentially, the PCP 4(¢) can be viewed as the proportion of
tree samples with {7,i’,i”} having the most recent common ancestor later than ¢.
For every subset A, the function [0, 1] 5 ¢ — PCP 4(¢) € [0, 1] is non-increasing starting at
1 and ending at 0, and reveals propensity among treatments in .4 to cluster as one traverses

PCP 4(t) =
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down an (estimate of) Ry-tree starting at the root: a curve that remains flat and drops quickly
near 1 indicates higher relative similarity among the treatments in .4 relative to the rest of
the treatments. A scalar summary of PCP 4(¢) is the area under its curve known as integrated
PCP iPCP 4, which owing to the definition of PCP 4(t), can be interpreted as the expected
(or average) chance of co-clustering for treatments in A.

Figure 3 illustrates an example of a three-way iPCP 4 with A = {4,¢’,i"} for a PDX data
with I treatments and J patients (Figure 3(A)). Given L = 3 posterior trees samples (Figure
3(B)) drawn from the PDX data, we first calculate the whole PCP 4(¢) function by moving
the time ¢ from 0 to 1. Starting from time ¢ = 0, no treatment diverges at time ¢ = 0 and
the PCP4(¢) is 1. At time ¢/, treatments diverge in one out of the three posterior trees and
PCP 4(t) therefore drops from 1 to 2/3. Moving the time toward ¢ = 1, treatments diverge in
all trees and the PCP 4(¢) drops to 0. The iPCP 4 then can be obtained by the area under the
PCP 4(t).

(A) ﬂ (B) X4 —
wn |_o j-‘-l
1 .. i e ] < ——ei
1 E 'i” =t
3 X4 —
[T — -
Xij = o — Oi, T2
" ——=0 ¢
i ] 2 t
8 L T
E - O R =1
< PCP4(t) "t
| 1 i
S !
Input PDX Data iPCPj '

>t

~
<
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Figure 3: Posterior tree summaries. (A) The input PDX data with I treatments and J patients, and
treatments A = {4,7’,i"} are of interest. (B) PCP 4(¢) and iPCP 4 for treatments .A based on L = 3
posterior trees. The relevant divergence times are represented by a “/\” in each posterior tree sample.
For example, at time ¢/, the treatments in .4 diverge in one out of the three trees. Because PCP 4 (#') is
defined by the proportion of posterior tree samples in which A has not diverged up to and including
t', it drops from 1 to 2/3.

REMARK 3. In the special case of A = {i,4’} for two treatments, the definition of iPCP 4
can be related to the cophenetic distance (Sokal and Rohlf, 1962; Cardona et al., 2013) and,
moreover, extends definition of the cophenetic distance to multiple trees. Given two treat-
ments ¢ and i’ in a single tree, let t; be the time at which their corresponding Brownian
paths diverge. Then PCP4(t) = Ijg,)(t) and iPCP4 = t,4; this implies that the cophenetic
distance is 2(1 — t4) and thus iPCP 4 and the cophenetic distances uniquely determines the
same tree structure. For L > 1 trees, a Carlo average of divergence times of L trees leads to
the corresponding iPCP 4.
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REMARK 4. Given [ treatments, since pairwise cophenetic distances from one tree de-
termines a tree (Lapointe and Legendre, 1991; McCullagh, 2006), one might consider sum-
marizing and represent posterior trees in terms of an I X I matrix X consisting of entries
iPCPy; ;1 for every pair of treatments of (3, i'), estimated from the posterior sample of trees.
However, 3 need not to be a tree-structured matrix that uniquely encodes a tree. It is possi-
ble to project 3 on to the space of tree-structured matrices (see for e.g., Bravo et al. (2009))
but the projection might result in a non-binary tree structure. We discuss this issue and its
resolution in Supplementary Material Section S3.

4. Simulations Accurate characterization of similarities among any subset of treatments
is central to our scientific interest in identifying the promising treatment subsets for further
investigation. In addition, we have introduced a two-stage algorithm to improve our ability
to efficiently draw tree samples from the posterior distribution (similarly for the Euclidean
parameters). To demonstrate the modeling and computational advantages, we conduct two
sets of simulations. The first simulation shows that the proposed model estimates the sim-
ilarity (via iPCP) better than alternatives, even when the true data generating mechanisms
deviate from DDT assumptions in terms of the form of divergence function, prior distribu-
tion for the unknown tree, and normality of the responses. The second simulation illustrates
the computational efficiency of the proposed two-stage algorithm in producing higher quality
posterior samples of Euclidean parameters, resulting in more accurate subsequent estimation
of an unknown tree and iPCPs, two key quantities to our interpretation of real data results.

4.1. Simulation I: Estimating Treatment Similarities We first show that iPCPs estimated
by DDT are closer to the true similarities (operationalized by functions of elements in the true
divergence times in X7') under different true data generating mechanisms that may follow or
deviate from the DDT model assumptions in three distinct aspects (the form of divergence
function, the prior distribution over the unknown tree, and normality).

Simulation setup. We simulate data by mimicking the PDX breast cancer data (see Section 5)
with I = 20 treatments and J = 38 patients. We set the true scale parameter as the posterior
median 08 and the true tree Ty as the MAP tree that are estimated from the breast cancer
data; We consider four scenarios to represent different levels of deviation from the DDT
model assumptions:

(1) No deviation of the true data generating mechanism from the fitted DDT models: given
03 and 7g, simulate data based on the DDT marginal data distribution (Equation (5));
The true data generating mechanism deviates from the fitted DDT in terms of:

(ii) divergence function: same as in (i), but the true tree is a random tree from DDT with
misspecified divergence function, a(¢;r) = ﬁ, r=10.5;

(iii) prior for tree topology: same as in (i), but the true tree is a random tree from the coales-
cence model (generated by function rcoal in R package ape), and,

(iv) marginal data distribution: same as in (i), but the marginal likelihood is a centered mul-

tivariate ¢ distribution with degree-of-freedom four and scaled by 032%.

For each of four true data generating mechanisms above, we simulate B = 50 replicate data
sets. In the following, we use the DDT model and the two-stage algorithm for all estimation
regardless of the true data generating mechanisms. For DDT, we ran the two-stage algorithm
where the second stage is implemented with five parallel chains. For each chain, we ran
10, 000 iterations, discarded first 9,000 trees and combined five chains with a total of 5,000
posterior tree samples.

First, we compute the iPCPs for all pairs of treatment combinations following the defi-
nition of iPCP4 where A = {i,i'},1 < i < i’ < I. Two alternative approaches to defining
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and estimating similarities between treatments are considered: (i) similarity derived from ag-
glomerative hierarchical clustering, and (ii) empirical Pearson correlation of the two vectors
of responses X; and X/, for ¢ # i’. In particular, for (i), we considered five different linkage
methods (Ward, Ward’s D2, single, complete and Mcquitty) with Euclidean distances. Given
an estimated dendrogram from hierarchical clustering, the similarity for a pair of treatments
is defined by first normalizing the sum of branch lengths from the root to leaf as 1, and then
calculating the area under of the co-clustering curve (AUC) obtained by cutting the dendro-
gram at various levels from O to 1. For three- or higher-way comparisons, (i) can still produce
an AUC based on a dendrogram obtained from hierarchical clustering, while the empirical
Pearson correlation in (ii) is undefined hence not viable as a comparator beyond assessing
pairwise treatment similarities.

Performance metrics. For treatment pairs A = {4, 4’ }, to assess the quality of estimated treat-
ment similarities for each of the methods above (DDT-based, hierarchical-clustering-based,
and empirical Pearson correlation), we compare the estimated values against the true branch-
ing time EE,; similarly when assessing recovery of three-way treatment similarities, e.g.,

A={i,7,i"}, 275, , is defined as the time when {7,4’,4} first branches in the true tree 7.

Z,’i/,i//
In particular, for replication datasetb=1,..., B, let EE? generically represent the pairwise

similarities for treatment subsets (4,7’) that can be based on DDT, hierarchical clustering or
empirical pairwise Pearson correlation. For three-way comparisons, let 25”2, ,» generically
represent the three-way similarities for treatment subset (7,4’,7”) that can be based on DDT,

or hierarchical clustering.

b)

G —
N3

E;ﬁ?, )2, the Frobenious
norm of the matrix in recovering the entire ¥, We compute max; ;- |igbz), i E;r‘;/ ;| the
max-norm of the matrix in recovering the true three-way similarities. For a g’iven method and
treatment subset .4, the above procedure results in B values, the distribution of which can be
compared across methods; smaller values indicate better recovery of the true similarities.
Alternatively, for each method and each treatment subset, we also compute the Pearson
correlation between the estimated similarities and the true branching times across replicates

g Efé,),b: 1,...,B :50>,f0rtreat-

We assess the goodness of recovery by computing \/ Z”/ (f]f

for pairwise or three-way treatment subsets: Cor ((Ez( i

. ./ —_— /\(b) T
ments ¢ < 7' and Cor ((E”Z,ZZ‘;Z

), b= 1,...,B:50), for treatments 7 < i’ < i”. We
refer to this metric as “Correlation of correlations” (the latter uses the fact that the entries in
the true X7° being correlations; see Equation (5)); higher values indicate better recovery of

the true similarities.

Simulation results. We observe that DDT better estimates the treatment similarities even
under misspecified models. In particular, under scenarios where the true data generating
mechanisms deviate from the fitted DDT model assumptions (ii-iv), the DDT captures the
true pairwise and three-way treatment similarities the best by higher values in correlation
of correlations (left panels, Figure 4) and lower matrix/array distances (right panels, Figure
4). In particular, the fitted DDT with divergence function a(t) = ¢/(1 — t) under Scenario i,
ii and iii performed similarly well indicating the relative insensitivity to the DDT modeling
assumptions with respect to divergence function and the tree generative model. Under Sce-
nario iv where the marginal likelihood assumption deviates from Gaussian with heavier tails,
the similarity estimates from all methods deteriorate relative to Scenarios i-iii. Comparing
between methods, the similarities derived from hierarchical clustering with single linkage is
comparable to DDT model when evaluated by correlation of correlation, but worse than DDT
when evaluated by the matrix norm.
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Figure 4: Simulation studies for comparing the quality of estimated treatment similarities based on
DDT, hierarchical clustering, and empirical Pearson correlation. Two performance metrics are used:
(Left) Correlation of correlation (higher values are better); (Right) Matrix distances with Frobenius
norm for pairwise similarity and max norm for three-way similarity (lower values are better). DDT
captures both true pairwise (upper panels) and three-way (lower panels) similarity best under four
levels of misspecification scenarios.

Additional simulations. Another alternative to bring the information of the posterior sam-
ples of ¢ and o2 is to use the whole posterior samples instead of the fixed representative
statistics only. Following the same set-up, we offer another simulation result to empirically
compare the inference performance from the algorithm with the posterior median only and
the the whole posterior samples. See more details in Supplementary Material Section S5.4.

4.2. Simulation I1: Comparison with Single-Stage MCMC Algorithms We have also con-
ducted extensive simulation studies that focus on the computational aspect of the proposed
algorithms and demonstrate the advantage of the proposed two-stage algorithm in producing
higher quality posterior samples of the unknown tree than classical single-stage MCMC al-
gorithms. In particular, we demonstrate that the proposed algorithm produces (i) MAP trees
that are closer to the true tree than alternatives (hierarchical clustering, single-stage MH with
default hierarchical clustering or the true tree at initialization) and (ii) more accurate esti-
mation of pairwise treatment similarities compared to single-stage MCMC algorithms. See
Supplementary Material Section S5 for further details.

Additional simulations and sensitivity analyses. Aside from the simulations above focus-
ing on the tree structure and the divergence time, Supplementary Material S4 offers additional
details for Euclidean parameters including the parameter inference, algorithm diagnostics,
and sensitivity analysis for the number of the synthetic data. In particular, we empirically
show that current S(¢) and S(°*) outperform other candidate summary statistics in terms of
bias in Section S4.1. In Section S4.2, we present additional simulation results that demon-
strate that the two-stage algorithm (i) enjoys stable effective sample size (ESS) for (c,0?);
(ii) leads to similar or better inference on (c,o?), as ascertained using credible intervals. In
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Section S4.3, we check the convergence of MH and the goodness of fit for ABC. A sensitivity
analysis for the number of the synthetic data providing the possible acceleration for ABC is
shown in Section S4.4.

5. Treatment Trees in Cancer using PDX Data

5.1. Dataset Overview and Key Scientific Questions We leverage a recently collated
PDX dataset from the Novartis Institutes for BioMedical Research - PDX Encyclopedia
[NIBR-PDXE, (Gao et al., 2015)] that interrogated multiple targeted therapies across dif-
ferent cancers and established that PDX systems provide a more accurate measure of the
response of a population of patients than traditional preclinical models. Briefly, the NIBR-
PDXE consists of > 1,000 PDX lines across a range of human cancers and usesa 1 x 1 x 1
design (one animal per PDX model per treatment); i.e., each PDX line from a given pa-
tient was treated simultaneously with multiple treatments allowing for direct assessments
of treatment hierarchies and responses. In this paper, we focus on our analyses on a sub-
set of PDX lines with complete responses across five common human cancers: Breast can-
cer (BRCA), Cutaneous Melanoma (CM, skin cancer), Colorectal cancer (CRC), Non-small
Cell Lung Carcinoma (NSCLC), and Pancreatic Ductal Adenocarcinoma (PDAC). After
re-scaling data and missing data imputation, different numbers of treatments, /, and PDX
models, J, presented in the five cancers were, (I, J): BRCA, (20, 38); CRC, (20,40); CM,
(14,32); NSCLC, (21,25); and PDAC, (20, 36). (See Supplementary Material Table S7 for
treatment names and Section S6.1 for details of pre-processing procedures.)

In our analysis, we used the best average response (BAR) as the main response, by taking

the untreated group as the reference group and using the tumor size difference before and af-
ter administration of the treatment(s) following Rashid et al. (2020). Positive values of BAR
indicate the treatment(s) shrunk the tumor more than the untreated group with higher values
indicative of (higher) treatment efficacy. To apply the Proposition 1, we also checked the dis-
tributional assumption for each cancer (see Supplementary Material Section S6.2). The treat-
ments included both drugs administered individually with established mechanisms (referred
to as “monotherapy”’) and multiple drugs combined with potentially unknown synergistic ef-
fects (referred to as “combination therapy”). Our key scientific questions were as follows: (a)
identify plausible biological mechanisms that characterize treatment responses for monother-
apies within and between cancers; (b) evaluate the effectiveness of combination therapies
based on biological mechanisms. Due to a potentially better outcome and lower resistance,
combination therapy with synergistic mechanism is highly desirable (Bayat Mokhtari et al.,
2017).
DDT model setup. For all analyses we followed the setup in the Section 4.1 and obtained
N = 600,000 synthetic datasets from the ABC algorithm (Section 3.1.1) with prior ¢ ~
Gamma(2,2) and 1/0? ~ Gamma(1,1) and took the first 0.5% (d = 0.5%) closest data in
terms of S(¢) and S(°*). We calculated the posterior median of (¢,0?) as described in Section
3.2. For the second-stage MH, we ran five chains of the two-stage algorithm with (c, o2) fixed
at the posterior median by 10,000 iterations and discarded the first 9,000 trees, which resulted
in 5,000 posterior trees in total. Finally, we calculated the Ry-tree (MAP) and iPCP based on
5,000 posterior trees for all subsequent analyses and interpretations. All computations were
divided on multiple different CPUs (see the Supplementary Table S5 for the full list of CPUs).
For the BRCA data with I = 20 and J = 38, we divided the ABC stage into 34 compute cores
with a total of 141 CPU hours and maximum 4.7 hours in real time. For the MH stage and
the single-stage MCMC, we split the computation on 5 compute cores with a total of 8.6 and
12 CPU hours, and a maximum 1.7 and 2.5 hours in real time, respectively.
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Our results are organized as follows: we provide a summary of the Ry-tree estimation
and treatment clusters in Section 5.2 followed by specific biological and translational inter-
pretations in Sections 5.3 and 5.4 for monotherapy and combination therapy, respectively.
Additional results can be accessed and visualized using our companion R-shiny application
(see Supplementary Material Section S6.6 for details).

5.2. R.-Tree Estimation and Treatment Clusters We focus our discussion on three can-
cers: BRCA, CRC and CM here — see Supplementary Materials Section S6.5 for NSCLC
and PDAC. In Figure 5, Ry-tree, pairwise iPCP and (scaled) Pearson correlation are shown
in the left, middle and right panels, respectively. Focusing on the left two panels, we observe
that the Ry-tree and the pairwise iPCP matrix show the similar clustering patterns. For ex-
ample, three combination therapies in CM form a tight subtree and are labeled by a box in
the Ry-tree of Figure 5 and a block with higher values of iPCP among three combination
therapies also shows up in the corresponding iPCP matrix with a box labeled. In our analysis,
the treatments predominantly target six oncogenic pathways that are closely related to the
cell proliferation and cell cycle: (i) phosphoinositide 3-kinases, PI3K; (ii) mitogen-activated
protein kinases, MAPK; (iii) cyclin-dependent kinases, CDK; (iv) murine double minute 2,
MDM?2; (v) janus kinase, JAK; (vi) serine/threonine-protein kinase B-Raf, BRAF. We label
targeting pathways above for monotherapies with solid dots and further group PI3K, MAPK
and CDK due to the common downstream mechanisms (e.g., Repetto et al., 2018; Kurtze-
born, Kwon and Kuure, 2019). Roughly, the Ry-tree from our model clusters monotherapies
targeting oncogenic processes above and largely agrees with common and established biol-
ogy mechanisms. For example, all PI3K-MAPK-CDK inhibitors (solid square) belong to a
tighter subtree in three cancers; two MDM?2 monotherapies (solid triangle) are closest in both
BRCA and CRC. While visual inspection of the MAP Ry-tree agrees with known biology,
iPCP further quantifies the similarity by assimilating the information across multiple trees
from our MCMC samples. For the ensuing interpretations in Sections 5.3 and 5.4, we focus
on iPCP and verify our model through monotherapies with known biology, since our a priori
hypothesis is that monotherapies that share the same downstream pathways should exhibit
higher iPCP values. Furthermore, we extend our work to identify combination therapies with
synergy and discover several combination therapies for each cancer.

5.3. Biological Mechanisms in Monotherapy Our estimation procedure exhibits a high
level of concordance between known biological mechanisms and established monotherapies
for multiple key signalling pathways. From the Ry-tree in Figure 5, aside from the onco-
genic process (solid dots) introduced above, monotherapies also target receptors (hollow
circles) or other non-kinase targets (e.g. tubulin; crosses). We summarize our key findings
and interpretations along with their implications in monotherapy across different cancers for
PI3K-MAPK-CDK in this section and list the rest signaling pathways and their regulatory
axes, namely, MDM?2 from cell cycle regulatory pathways, human epidermal growth factor
receptor 3 (ERBB3) from receptor pathways, and tubulin from non-kinase pathways in Sup-
plementary Material Section S6.4. For the following sections, because we wish to conduct
fully-exploratory analyses where we do not assume prior knowledge about treatment mech-
anism, we set the threshold of the co-clustering at the 75-th percentile of all pairwise iPCPs.
Specifically, we set the cut-off at 0.753, 0.687 and 0.801 for BRCA, CRC and CM, respec-
tively. See Supplementary Material Section S6.3 for more details about cut-off choices under
full and partially exploratory settings related to prior knowledge about monotherapies.
PI3K-MAPK-CDK inhibitors. For treatments targeting PI3K, MAPK and CDK, treatments
have the same target share high iPCP. In the NIBR-PDXE dataset, three PI3K inhibitors
(BKM120, BYL719 and CLR457), two MAPK inhibitors (binimetinib and CKX620) and
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Figure 5: The Ry-tree and iPCP for breast cancer (BRCA, top row), colorectal cancer (CRC, middle
row) and melanoma (CM, lower row). Three panels in each row represent: (left) estimated Ry-tree
(MAP); distinct external target pathway information is shown in distinct shapes for groups of treat-
ments on the leaves; (middle) estimated pairwise iPCP, i.e., the posterior mean divergence time for
pairs of entities on the leaves (see the result paragraph for definition for any subset of entities); (right)
scaled Pearson correlation for each pair of treatments. Note that the MAP visualizes the hierarchy
among treatments; the iPCP is not calculated based on the MAP, but based on posterior tree samples
(see definition in Section 3.2)

one CDK inhibitor (LEEO11) were tested, but different cancers contain different numbers
of treatments. Specifically, all three PI3K inhibitors present in BRCA and CRC, but only
BKM120 is tested in CM; CRC contains two MAPK inhibitors while BRCA and CM only
have binimetinib; LEEO11 is tested in all three cancers. In Figure 6, BKM120, BYL719 and
CLR457 share high pairwise iPCPs (box (1)) and all target PI3K for BRCA and CRC (BRCA,
(BKM120, CLR457): 0.8986, (BKM120, BYL719): 0.8002, (BYL719, CLR457): 0.8002;
CRC, (BKM120, CLR457): 0.7555, (BKM120, BYL719): 0.8041, (BYL719, CLR457):
0.7597); MAPK (box (2)) inhibitors, binimetinib and CKX620, show a high pairwise iPCP
in CRC (0.7792). Asides from the pairwise iPCPs, our model also suggests high multi-way
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iPCPs among PI3K inhibitors in BRCA (0.8002) and CRC (0.7513). Among these inhibitors,
PI3K inhibitor of BYL719 was approved by FDA for breast cancer; MAPK inhibitor of
binimetinib was approved by FDA for BRAF mutant melanoma in combination with en-
corafenib; and CDK inhibitor of LEEO11 was approved for breast cancer.

Our model suggests treatments targeting different pathways also share high iPCP val-
ues across different cancers. Monotherapies targeting different cell cycle regulatory path-
ways (PI3K, MAPK and CDK) exhibit high iPCPs. CDK inhibitor, LEEO11, and MAPK
inhibitors share high pairwise iPCP values in BRCA ((LEEO11, binimetinib): 0.7709), CRC
((LEEO11, binimetinib): 0.8617, (LEEO11, CKX620): 0.7820) and CM ((LEEO11, binime-
tinib): 0.8210) in the Figure 6 with box (3). High iPCP among MAPK and CDK in-
hibitors agree with biology, since it is known that CDK and MAPK collaboratively regulate
downstream pathways such as Ste5 (Repetto et al., 2018). High pairwise iPCP values be-
tween PI3K and MAPK inhibitors were observed in box (3) in the Figure 6. Specifically,
our model suggests high pairwise iPCPs as follows: (i) BRCA, (binimetinib, BKM120):
0.7427, (binimetinib, BYL719): 0.7441, (binimetinib, CLR457): 0.7427)); (ii) CRC, (binime-
tinib, BKM120): 0.7374, (binimetinib, BYL719): 0.7388, (binimetinib, CLR457): 0.7541,
(CKX620, BKM120): 0.7366, (CKX620, BYL719): 0.7357, (CKX620, CLR457): 0.7676));
(iii) CM, (binimetinib, BKM120): 0.8882. Aside from the pairwise iPCPs above, high multi-
way iPCPs in BRCA (0.7422), CRC (0.7300) and CM (0.8882) also show the similar in-
formation. From the existing literature, both PI3K and MAPK can be induced by ERBB3
phosphorylation (Balko et al., 2012) and it is not surprising to see high iPCPs between PI3K
and MAPK inhibitors.

5.4. Implications in Combination Therapy Based on the concordance between the
monotherapy and biology mechanism, we further investigate combination therapies to iden-
tify mechanisms with synergistic effect. In NIBR-PDXE, 21 combination therapies were
tested and only one of them includes three monotherapies (BYL719 + cetuximab + enco-
rafenib in CRC) and the rest contain two monotherapies. Out of 21 combination therapies,
only three do not target any cell cycle (PI3K, MAPK, CDK, MDM2, JAK and BRAF) path-
ways (see Supplementary Material Table S8 for the full list of combination therapies). From
the Ry-tree in Figure 5, combination therapies tend to form a tighter subtree and are closer
to monotherapies targeting PI3K-MAPK-CDK, which implies that the mechanisms under
combination therapies are similar to each other and are closer to the PI3K-MAPK-CDK
pathways. We identified several combination therapies with known synergistic effects and
provide a brief description for each of the cancers in the following paragraphs.

Breast cancer. Four combination therapies were tested in BRCA and three therapies targeting
PI3K-MAPK-CDK (BYL719 + LIM716, BYL719 + LEEO11 and LEEO11 + everolimus)
form a subtree in Ry-tree with a high three-way iPCP (0.8719). Among these combination
therapies, PI3K-CDK inhibitor, BYL719 + LEEO11, suggests a possible synergistic regu-
lation (Vora et al., 2014; Bonelli et al., 2017; Yuan et al., 2019). Based on the high iPCP
between BYL719 + LEEQO11 and the rest two therapies, we suggest synergistic effect for com-
bination therapies targeting PI3K-ERBB3 (BYL719 + LIM716), and CDK-MTOR (LEEO11
+ everolimus) for future investigation.

Colorectal cancer. Our model suggests a high three-way iPCP (0.7437) among PI3K-EGFR
(BYL719 + cetuximab), PI3K-EGFR-BRAF (BYL719 + cetuximab + encorafenib) and
PI3K-ERBB3 (BYL719 + LIM716) inhibitors. Since the triple therapy (BYL719 + cetux-
imab + encorafenib) enters the phase I clinical trial with synergy (Geel et al., 2014), our
model proposes the potential synergistic effect for PI3K-ERBB3 based on iPCP for future
investigation. Of note, we found a modest iPCP (0.6280) between the FDA-approved combi-
nation therapy EGFR-BRAF (cetuximab + encorafenib) and PI3K-EGFR-BRAF (BYL719 +
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Figure 6: Bar plot of iPCPs for pairs of combination therapies (red bars) and pairs of monotherapies
(green bars): (A) breast cancer, (B) colorectal cancer and (C) melanoma. The bar plots are sorted by
the iPCP values (high to low); pairs of treatments are shown only if the estimated iPCP is greater than
0.7. Monotherapies have different known targets which are listed in the bottom-right table (see Section
5.3 for more details and discussion on monotherapies).

cetuximab + encorafenib) and the modest iPCP can be explained by an additional drug-drug
interaction between BYL719 and encorafenib in triple-combined therapy (van Geel et al.,
2017).

Melanoma. In NIBR-PDXE, three combination therapies were tested in CM, and all of
them consist one monotherapy targeting PI3K-MAPK-CDK and the other one targeting
BRAF. A tight subtree is observed in the Ry-tree and our model also suggests a high iPCP
(0.9222) among three combination therapies. Since PI3K, MAPK and CDK work closely
and share a high iPCP (0.8204) among monotherapies in CM, a high iPCP (0.9222) among
three combination therapies is not surprising. Since two combination therapies of BRAF-
MAPK (dabrafenib + trametinib and encorafenib + binimetinib) are approved by FDA for
BRAF-mutant metastatic melanoma (Dummer et al., 2018a,b; Robert et al., 2019), we recom-
mend the synergy for BRAF-PI3K (encorafenib + BKM120) and BRAF-CDK (encorafenib
+ LEEO11) inhibitors.

Comparison to alternative approaches. Unlike the probabilistic generative modeling ap-
proach proposed in this paper, standard distance-based agglomerative hierarchical cluster-
ing and Pearson correlation can also be applied to the PDX data to estimate the similarity.
However, simple pairwise similarities can be potentially noisy and the uncertainty in the es-
timation is not fully incorporated due to the absence of a generative model. As we showed
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in the Section 4.1 (Simulation I) that agglomerative hierarchical clustering and the Pearson
correlation leads to inferior recovery of the true branching times and the true tree structure
under different data generating mechanisms mimicking the real data. As further evidence,
we compute pairwise similarities based on Pearson correlation (other distance metrics show
similar patterns) in the right panel of Figure 5. By mapping the original Pearson correlation
p € [—1,1] through a linear function %, we make the range of iPCP and Pearson correla-
tion comparable. We observe that pairwise iPCP estimated through the DDT model is less
noisy than Pearson correlation. For example, both iPCP and Pearson correlation in CM show
higher similarities among combination therapy framed by a box, but iPCP exhibits a clearer
pattern than Pearson correlation.

6. Summary and Discussion In translational oncology research, PDX studies have
emerged as a unique study design that evaluates multiple treatments when applied to sam-
ples from the same human tumor implanted into genetically identical mice. PDX systems are
promising tools for large-scale screening to evaluate a large number of FDA-approved and
novel cancer therapies. However, there remain scientific questions concerning how distinct
treatments may be synergistic in inducing similar efficacious responses, and how to iden-
tify promising subsets of treatments for further clinical evaluation. To this end, in this paper,
we propose a probabilistic framework to learn treatment trees (Ry-trees) from PDX data to
identify promising treatment combinations and plausible biological mechanisms that confer
synergistic effect(s). In particular, in a Bayesian framework based on the Dirichlet Diffu-
sion Tree, we estimate a maximum a posteriori rooted binary tree with the treatments on the
leaves and propose a posterior uncertainty-aware similarity measure (iPCP) for any subset
of treatments. The divergence times of the DDT encode the tree topology and are profitably
interpreted within the context of an underlying plausible biological mechanism of treatment
actions.

From the class of probabilistic models with an unknown tree structure component, we
have chosen the DDT mainly owing to the availability of a closed-form marginal likelihood
that directly links the tree topological structure to the covariance structure of the observed
PDX data, which additionally decouples the Euclidean and tree parameters; to the best of
our knowledge this method has not been proposed or explored hitherto for the DDT. The de-
coupling leads to efficient posterior inference via a two-stage algorithm that confers several
advantages. The algorithm generates posterior samples of Euclidean parameters through ap-
proximate Bayesian computation and passes the posterior medians to a second stage classical
Metropolis-Hastings algorithm for sampling from the conditional posterior distribution of the
tree given all other quantities. Through simulation studies, we show that the proposed two-
stage algorithm generates better posterior tree samples and captures the true similarity among
treatments better than alternatives such as single-stage MCMC and naive Pearson correla-
tions. The posterior samples of trees are summarized by iPCP, which we propose to measure
the empirical mechanistic similarity for multiple treatments incorporating uncertainty.

Using the proposed methodology on NIBR-PDXE data, we estimate Ry-trees and iPCPs
for five cancers. Among the monotherapies, iPCP is highly concordant with known biology
across different cancers. For example, BKM 120 and BYL719 show a high iPCP value among
treatments in breast and colorectal cancer, which corroborates known mechanisms, since both
monotherapies target the same biological pathway, PI3K, and BYL719 was approved by FDA
for breast cancer. The proposed iPCP can also suggest improvements upon an existing com-
bination therapy. We first identify a combination therapy with known synergy (not based
on the our data) and then determine which additional therapies (monotherapies or combi-
nation therapies) have high iPCPs when considered together with the existing combination
therapy. Based on the NIBR-PDXE data, for each cancer, we suggest potential synergies be-
tween PI3K-ERBB3 and CDK-MTOR for breast cancer, PI3K-ERBB3 for colorectal cancer,
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and BRAF-PI3K and BRAF-CDK for melanoma that could be potentially explored in future
translational studies.

Our current analysis infers treatment trees based on the drug responses from the NIBR-
PDXE dataset which provides treatment similarity information that may be used to guide
potential treatment strategies. However, there are a few limitations. First, the PDX experi-
ments may fail to capture the difference in the microenvironment between the human and
the immunodeficient mouse (Dobrolecki et al., 2016), which must be considered in disease
contexts when findings are generalized to human. As PDX technology matures, this can be
compensated by better PDX experiments that capture the tumor microenvironment more pre-
cisely. For example, one can use the genetically engineered mice to reconstruct the human
immune system (Abdolahi et al., 2022), and some studies have started to adapt this method in
the context of immunotherapies (Zhao et al., 2018). Second, on experimental design, current
literature points to the potential advantage of designs with multiple animals per treatment and
patient (Abdolahi et al., 2022). We can incorporate the random effects in the current model of
(4) for the multiple-animal-per-patient design and we refer the reader to the Supplementary
Material Section S7 for more details. Also, to evaluate PDX designs with fewer treatments
and patients that is common in co-clinical trials (e.g., Koga and Ochiai, 2019), we conducted
a simulation for two datasets with a smaller dimension ((/, J) = (5,5) and (10, 15)) which
confirmed the advantage of the proposed method in terms of recovering treatment similar-
ities (see Supplementary Material Section S5.5). Finally, from a statistical perspective, we
have assumed independent patients without using the underlying patient-specific genomic
information that is also available in the NIBR-PDXE. By including patient-specific genomic
information, we may further improve our ability to identify synergistic treatments that may
be specific to a subset of patients. One approach to utilizing genomic information could be
to extend the DDT model to incorporate patient-specific genomic information in the mean
structure or the column covariance of the marginal likelihood of Equation (4). In addition,
models with non-Gaussian marginal likelihood and non-binary treatment tree in principle
can be defined by considering generative tree models based on general diffusion processes
(Heaukulani, Knowles and Ghahramani, 2014; Knowles and Ghahramani, 2015). Both ex-
tensions raise significant, non-trivial methodological and computation issues (e.g., deriving
tractable likelihoods; finding low-dimensional summary statistics for new parameters) and
constitute the foundation for future work.

Code and data availability We also provide a general purpose code in R that accompanies
this manuscript along with all the necessary documentation and datasets required to repli-
cate our results (see https://github.com/bayesrx/RxTree). Furthermore, to aid
access and visualization of the results, we have also developed an R-shiny application (see
Supplementary Material Section S6.6).
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