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Implementation of real contact behaviour in the DEM modelling of triaxial 
tests on railway ballast 

Mathias Tolomeo *, Glenn R. McDowell 
Nottingham Centre for Geomechanics, University of Nottingham, Nottingham NG7 2RD, United Kingdom   

H I G H L I G H T S  G R A P H I C A L  A B S T R A C T  

• Classic contact models do not work well 
for rough surfaces. 

• Accounting for lower normal stiffness 
due to contact with asperities and 
plasticity. 

• True contact behaviour implemented in 
numerical DEM simulations of ballast. 

• Contact behaviour can explain small 
strain stiffness degradation.  
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A B S T R A C T   

In the Discrete Element modelling of soils, the micromechanical behaviour at contacts has often been considered 
to have a minor influence on the macromechanical response, leaving basic theoretical models (e.g., Hertz) to 
describe the contact response in the normal direction. A realistic description of the contact response may be 
crucial especially when investigating small strain ranges. Recent experimental inter-particle loading tests on 
gravel suggest that the classic contact models fail to reproduce certain mechanical features, especially when 
roughness is significant. Here, some of these experimental observations, including a softer response than the 
Hertz model under loading in the normal direction, and plasticity on unloading, are implemented in a DEM 
model for the simulation of small strain tests on railway ballast. The influence of these features on small strain 
stiffness is highlighted. A micromechanical analysis is carried out to show how each of the contact-level features 
introduced affects the macroscopic response.   

1. Introduction 

It is well known that granular materials are complex systems for 
which the macroscopic behaviour is affected by a number of microscopic 
parameters. In the context of non-cohesive, frictional granular materials 

such as coarse-grained soils (sand and gravel), extensive research has 
aimed at showing the relation between the macroscopic and mesoscopic 
(fabric, including e.g. average particle and contact orientation and voids 
ratio) responses and microscopic quantities (shape of individual parti
cles, interparticle friction). The relative density of a specimen is known 
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to affect the peak shear strength and the volumetric behaviour; shape 
generally affects both peak and critical state strength [1], with angular 
particles offering a higher resistance because of the potential for inter
locking; interparticle friction also affects the peak strength and, to a 
lower extent, the critical state strength, as shown both from experiments 
on spheres [2] and DEM simulations on different basic particle mor
phologies [3–5]. 

These established considerations have directed the research on the 
numerical modelling of soils with the Discrete Element Method (DEM). 
The main effort in the discrete modelling of tests on soils has been aimed 
at replicating the initial density (voids ratio) of an experimental sample 
and defining a realistic interparticle friction coefficient; only recently, 
the focus has extended to the modelling of real particle shape, which 
requires additional computational effort. 

Contact mechanics, i.e., the modelling of the mechanical interaction 
between two grains when they are in contact, has often been omitted, 
except for the attention to the modelling of interparticle friction. Contact 
interactions in non-cohesive frictional soils are usually modelled by 
separating the response in the direction perpendicular to the contact 
plane (normal direction) from that along the contact plane (shear or 
tangential direction). Normal stiffness mostly affects the small strain 
response, whereas it has less effect on peak and critical state strength, 
and only little influence on the volumetric response at large shear strains 
[6]. Tangential forces become prevalent at larger strains, which is why 
the effort to reproduce realistic features of contact mechanics has 
generally been limited to capturing a realistic interparticle friction 
angle. 

Contact stiffness can be of great relevance when the focus is on the 
small strain behaviour: in this case, both normal and tangential stiff
nesses can significantly affect the macroscopic stiffness. This is partic
ularly important in the initial phase in which contact topology remains 
unchanged and the global behaviour is essentially governed by contact 
deformation [7] rather than by geometrical rearrangements, although 
the influence of contact stiffness may also extend beyond this limit. 

DEM has proven to be an excellent tool for the study of the behaviour 
at small strains, as it allows finer control of the application of deviatoric 
stress and can therefore provide stiffness measurement over a range of 
small strains that is usually difficult to access in static experimental tests 
[8]. 

In DEM, using a correct contact stiffness has the direct effect of 
influencing the small strain behaviour. It has though other indirect ef
fects, e.g., it affects the number of contacts in a specimen: when a given 
confinement pressure is applied, different contact stiffnesses will 
generally result in a different number of contacts, even with little change 
in voids ratio, especially when real particle shape (particularly with 
concavity) is modelled and particles can touch each other at more than 
one contact point. This, in turn, may have an influence on the macro
scopic response. 

Recently, the need for a deeper understanding of contact behaviour 
has led to several experimental studies making use of specific inter- 
particle loading devices, focusing at first on the measurement of inter
particle friction [9] and normal and tangential behaviour [10] of sands, 
and eventually also on ballast [11]. These experimental observations 
show that the contact behaviour of real soil is complex, and the simple 
models usually employed in numerical simulations cannot capture some 
of its features. Roughness, in particular, can affect not just the tangential 
contact stiffness, but the normal stiffness too, especially at relatively low 
inter-particle loads, where the behaviour is often softer than predicted 
by the classic Hertz theory. This was also observed numerically by [12] 
using a combined discrete finite-element approach to model the contact 
between rough surfaces. Contact behaviour in the normal direction is 
also found to be not perfectly elastic, showing a stiffer response in 
unloading and reloading than first loading. Harkness et al. [13] 
modelled some form of damage at contact by introducing plasticity in 
the behaviour for the normal direction, assuming contact involves 
spherically capped conical asperities whose curvature (and therefore 

stiffness) can be modified if a yield stress is exceeded. 
The aim of this paper is to take into account these experimental 

observations, and some recent attempts to define a more advanced 
contact model for the normal behaviour of ballast, by implementing a 
new contact law for DEM simulations of small strain stiffness probes of a 
large triaxial specimen of railway ballast, where real particle shape is 
also modelled using overlapping spheres (clumps). 

DEM makes it possible to easily isolate the effect of multiple quan
tities on single aspects of the macroscopic response. In this case, small 
strain stiffness may be influenced by several factors, not limited to 
contact stiffness, such as fabric. In this paper, the effect of fabric will be 
separated from that of contact stiffness by replicating the same initial 
sample (and its fabric) and using it for tests with different contact 
models, so that the effect of the latter on the macroscopic response can 
clearly emerge for a given fabric. 

2. Contact model 

2.1. Normal direction: introducing roughness 

At the state of the art, the vast majority of DEM applications on non- 
cohesive, frictional soils employ either a simple linear contact model (a 
spring with constant stiffness) or the classic elastic theory for the contact 
between smooth objects, resulting in the Hertz contact model [14], that 
introduces a pressure dependency in the behaviour, with the contact 
tangent stiffness being a function of the normal force (k ∝ F1/3). The 
Hertz model, however, typically fails to reproduce the macroscopic 
pressure dependency of small strain stiffness, as confirmed by many 
experimental findings, e.g., [15]. Goddard [16] proposes two indepen
dent mechanisms to explain the origin of these discrepancies: surface 
geometrical roughness, i.e. the presence of point-like contacts due to 
asperities when surfaces are not smooth, and particle rearrangements. 
Many researchers have focused on the former in the effort of modelling 
contact behaviour of soils to account for real features. Roughness gets 
immediately associated with the concept of friction, although the in
fluence of roughness on the shearing behaviour is complex [11]; but it 
also affects the response in the normal direction, as contacts between 
rough surfaces will involve high-curvature asperities and occur at mul
tiple contact points rather than cover a continuous surface, as is assumed 
in the classic elastic theory. Several contact models try to account for the 
effect of this reduced contact area on contact stiffness [17–22]. Gener
ally, the proposed models give a lower normal stiffness than the Hertz 
stiffness for low forces, when contacts still involve asperities, followed 
by a transition to the Hertz behaviour at larger forces, when asperities 
get flattened and the contact involves a continuous area. 

Recent experimental findings on the contact behaviour of a granite 
ballast [23], studied by means of the interparticle loading apparatus 
developed by [11], confirm this effect. Among the models proposed for 
contacts of rough surfaces, the Pohrt-Popov model [22] showed the best 
fit with the experimental data, that involved single contact particle- 
particle normal compression tests on ballast grains with several shapes 
(natural and sub-spherical) and surface morphologies (natural or pol
ished). This was therefore chosen to model the contact response in the 
normal direction in the following DEM simulations. 

The law proposed by Pohrt and Popov defines a new power law 
dependency of stiffness on the normal force (k ∝ Fα), where the exponent 
is a function of particle surface morphology (namely of the fractal 
dimension of the surface Df). A threshold can be defined at the smallest 
value of normal force such that full contact happens, and this function 
only applies below such threshold, when contact still involves asperities; 
above the threshold, the behaviour can be assumed to follow the Hertz 
theory (Eq. (1) and Fig. 1): 
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(1)  

where A0 is the contact area when full contact happens, Df and h are 
surface morphology parameters (fractal dimension and root mean 
square height, respectively) and E* is the contact Young’s modulus, 
derived from the Young’s modulus E and Poisson’s ratio ν of the mate
rial, as 1/E* = 2(1 − ν2)/E. These are constants of the material; typical 
values for the Mount Sorrel granite ballast that was used in these ex
periments are E = 60 GPa [24] and ν = 0.25. 

When full contact happens, the force and stiffness of the two models 
are equal, and the contact area A0 is the same as the contact area defined 
in the Hertz law: 

A0 = π
(

3FR
4E*

)
2 /

3 (2) 

The corresponding stiffness is: 

kPohrt− Popov = kHertz = 2E*
̅̅̅̅̅̅̅̅̅̅
A0/π

√
(3)  

and the transition force can be expressed as a function of the area A0 
based on the elastic theory: 

(FHertz)A0
=

4E*

3R

(
A0

π

)
3 /

2 (4) 

Replacing Eqs. (4) and (3) in Eq. (1), and solving for A0, the following 
expression is obtained for the full contact area as a function only of 
known quantities of the contact (R, h, Df): 

A0 =
3
4

π3 /

2 R h

(
20

π3 /

2 Df

)
1
/0.2567Df (5)  

which, by substituting Eq. (5) in Eq. (1), allows an explicit definition of 
kPohrt− Popov as a function only of contact force, particle surface parame
ters and contact geometry. The function is shown in Fig. 1, with Df =

2.13 and h = 2.61 × 10− 5 m obtained from the fitting of experimental 
data on the ballast employed; the Hertz law for the same set of param
eters is also shown for comparison. 

The numerical implementation of the contact law is carried out 
incrementally, i.e., at each time step a normal force increment is 
determined from the contact relative normal displacement δn and the 
stiffness kn = (kn)F′, where F′ is the force at the beginning of the time 
step. The magnitude of the normal force is then updated to F = F′ + knδn. 

2.2. Normal direction: roughness and elasto-plasticity 

Experimental data suggest that the behaviour in normal direction is 
far from elastic even at relatively small forces (~ tens of N). Upon 
unloading, data shows a stiffer response compared to virgin loading. 
When reloading on the same contact point, after having unloaded 
without losing contact, i.e. down to ~1 N, a similar stiffness as in the 
unloading branch is observed. Both branches are well fitted by the Hertz 
law. Therefore, in the simulations, a second, alternative law was also 
introduced, following the Pohrt-Popov equation under virgin loading 
and the Hertz equation under unloading and reloading; when the 
reloading curve reaches the maximum force experienced, it joins the 
curve for virgin loading (i.e. typically the Pohrt-Popov stiffness, unless 
forces are so high that the transition to full contact area with Hertz 
behaviour has occurred). This model, including plastic deformations and 
yielding, will be referred to as elasto-plastic Pohrt-Popov. An example is 
shown in Fig. 2. 

Also in this case, the numerical implementation of the contact law is 
carried out incrementally, in the same way as described in the previous 
section, with an additional condition to limit the minimum force to zero 
and avoid tensile forces when unloading is complete (F = 0), so that 
tensile contacts do not occur if particles move apart. In addition to Eq. 
(1), the model is now defined also by the condition in Eq. (6), where Fmax 
is the largest force experienced by the contact: 

kPohrt− Popov =

⎧
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π
10
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̅̅̅̅̅
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)0.2567 Df

if F = Fmax andΔF > 0

kHertz if F < Fmax or F = Fmax andΔF < 0

(6)  

2.3. Tangential direction 

The Pohrt-Popov model does not provide a theoretical framework for 

Table 1 
Input parameters used for the force-displacement laws in Fig. 1 with 
the Hertz and Pohrt-Popov model. Based on these input parameters, 
the area at full contact A0 and the corresponding force Fn(A0) are 
determined from Eq. (5) and Eq. (4) as A0 = 6.68 × 10− 7 m2 and 
Fn(A0) = 1775 N, respectively.  

Contact radius R* 2.36 mm 
Fractal dimension Df 2.13 
Root mean square height h 2.61 × 10− 5 m 
Young’s modulus E 60 GPa 
Poisson’s ratio ν 0.25  

Fig. 1. a) Normal stiffness against normal force for the classic Hertz model and the rough surfaces Pohrt-Popov model. The parameters of the contact models are 
reported in Table 1. The dotted line shows the transition force (Fn)A0 

above which the same (Hertz) stiffness is used for both models. b) Corresponding force- 
displacement curves. 
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the tangential stiffness, and the classic models (such as Mindlin- 
Deresiewicz) do not apply to the case of surfaces with topographic 
roughness, where contact involves asperities. Therefore, a simplified 
version of the Mindlin-Deresiewicz law was adopted, such that the ratio 
of tangential to normal stiffness kr is assumed constant and equal to the 
ratio of the initial tangent of the force-displacement curve ks = 8G*

̅̅̅̅̅̅̅̅
xR*

√

to Hertz-Mindlin’s normal stiffness kn = 2E*
̅̅̅̅̅̅̅̅
xR*

√
, with x being the 

overlap: 

ks

kn
= kr =

2(1 − ν)
2 − ν

(7) 

Preliminary experimental observations on single contact tests on 
ballast particles show that the actual tangential stiffness is often 
significantly lower than the stiffness predicted by any of the classic 
theories; however, in the absence of a model capturing this behaviour, it 
was decided to restrict the focus of this paper on the influence of the real 
contact mechanics in the normal direction. 

The tangential law is complemented by the classic Coulomb condi
tion that sets an upper limit to the magnitude of shear force, as a func
tion of the magnitude of normal force, through the coefficient of 
interparticle friction. Experimental data on ballast [11] confirms that 
particles are generally characterised by a relatively high friction coef
ficient, that can vary as the contact is loaded, especially in the case of 
cyclic loading conditions; for simplicity, a constant value μ = 0.7, which 
fits well the experimental data, is used here. 

3. DEM model, sample preparation and loading conditions 

In order to analyse the effect of different contact models, DEM sim
ulations of small strain stiffness probes were performed, using the 
commercial software PFC3D [25]. The simulations reproduce the setup 
of typical laboratory tests on railway ballast carried out in the large 
triaxial device in use at the University of Nottingham [26]. Cylindrical 
specimens of ballast, with a diameter of 300 mm and a height of 450 
mm, can be tested in this apparatus. Specimens are enclosed laterally by 
a flexible natural rubber membrane with 4 mm thickness, through which 

a constant lateral pressure is applied, and vertically by two stainless steel 
platens; after an isotropic confinement phase, deviatoric loading can be 
applied by moving upwards the lower ram and platen. A standardised, 
three steps vibro-compaction sample preparation procedure is found to 
consistently give a specimen with a voids ratio close to 0.700. The 
particle size distribution (PSD) follows the British Standards for railway 
ballast gradation [27] and can be found in Fig. 3. 

In the simulations, the same voids ratio was targeted, although the 
preparation procedure was not replicated; particles were instead 
generated with random positions and orientations inside the cylindrical 
volume, following a size distribution scaled down from the target PSD, 
and then slowly expanded with no gravity until the target voids ratio 
was reached. This process was kept sufficiently slow so that the final 
sample would be stress-free. 

Real particle shape was modelled through clumps, i.e., clusters of 
overlapping spheres filling the volume of a closed surface that describes 
the morphology of a particle [28]. The shapes modelled in these simu
lations come from a library of three different geometries that were ob
tained through 3D laser scans of ballast particles. The specimen was 

Fig. 2. Force-displacement curves for Hertz and Pohrt-Popov models, obtained with parameters defined in Table 1. The unloading branch of the modified elasto- 
plastic Pohrt-Popov model follows the Hertz stiffness. 

Fig. 3. Particle size distribution for the numerical specimen (solid line) and 
limits defined by the British Standards [27] (dashed lines). 
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generated with a total of 747 particles (Fig. 4), which were uniformly 
distributed in the three different shapes. 

A good accuracy was sought in the reproduction of boundary con
ditions, i.e., the two stainless steel end platens and the lateral flexible 
membrane. End platens were modelled by two cylindrical disks with the 
platens’ real dimensions and mass; their motion was restricted to ver
tical displacements. Rotation out of the horizontal plane was also 
allowed for the top platen, as for experiments where the platen can 
rotate about the contact point with the curved ram tip. A linear contact 
law was assumed for contacts between platens and grains, with an 
arbitrary stiffness kn = 3 × 106 N/m; such contacts were assumed to be 
frictionless, as end lubrication is generally adopted during laboratory 
tests in the large triaxial cell. 

Modelling a flexible membrane in DEM can be a challenging task, but 
it becomes essential when such large particles (compared to the spec
imen size) are used, as in this case, and the lateral deformation of the 
sample is expected to be very heterogeneous, as the membrane follows 
the movement of particles and gets wrapped around them. To reproduce 
the flexibility of the membrane and allow a homogeneous application of 
the lateral pressure, a cylindrical layer of 12,600 bonded monodisperse 
spheres was used (Fig. 4), similar to several previous attempts [29–32]. 
The main properties are summarised in Table 2. In the initial configu
ration, spheres have a little overlap with their neighbours, to help avoid 
gaps; a lower density than that for natural rubber is therefore assigned to 
each sphere, to compensate for this effect as well as the excess thickness, 
so that the total mass matches the true membrane mass. 

The tests that were simulated are small strain stiffness probes, with 
application of a deviatoric loading up to an axial strain of 0.1%, followed 
by unloading (Fig. 5). Before isotropic confinement, gravity is activated 
and the specimen is allowed to settle under its own (and the top platen’s) 
weight, until equilibrium is reached. Isotropic confinement is then 
applied by slowly increasing the applied pressure until the target value p 
= 150 kPa is reached; the pressure is then kept constant until equilib
rium is achieved. 

An axial loading was then applied by imposing a vertical velocity to 
the bottom platen, while preventing the vertical motion of the top 
platen. In order to have accurate and smooth stiffness data in the range 

of small strains (here defined as the strains below 10− 5%), a very small 
velocity v = 10− 8 m/s was applied in the beginning of the probe. 
However, keeping this velocity for the whole probe would require an 
impractically long computational time; therefore, platen velocity was 
linearly increased in a range of deformation εa = ΔH/H0 = 10− 7 %  ÷
10− 2% until reaching a maximum value of 10− 3 m/s to ensure the test 
remained quasi-static [33]. To verify this condition, so that inertial ef

fects could be neglected, the inertial number I = ε̇
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

m/
(

pdD− 2
)√

was 

calculated, where ε̇ is the strain rate applied, m is the typical mass of a 
grain, p = 150 kPa the mean pressure, d the average grain diameter and 
D the dimension of the system. With the maximum platen velocity v =
10− 3 m/s, a value of I~10− 5, largely below the limit of 10− 3, was ob
tained, therefore satisfying the quasi-static nature. Cundall’s local 
damping was safely employed during both isotropic confinement and 
deviatoric loading to help the system reach equilibrium, given the quasi- 
staticity of the problem; the typical value of 0.7 was used for the 
damping coefficient α. 

4. Results 

4.1. Contact model including roughness 

The implementation of experimental observations of contact 
behaviour started with the introduction of roughness, using the model 
presented in Section 2.1 and summarised by Eq. (1). To assess the effect 

Fig. 4. Image of the triaxial sample with randomly colourised clumps to model particles (left) and bonded spheres to model the lateral flexible membrane (right).  

Table 2 
Main parameters of the flexible membrane.  

Number of spheres 12600 
Membrane dimensions (height x internal diameter) 450 × 300 mm 
Membrane normal bond stiffness 103 N/m 
Membrane shear bond stiffness – 
Membrane bond strength virtually unbreakable 
Normal stiffness 106 N/m 
Friction coefficient 0 
Sphere density 248 kg/m3 

Sphere radius 5.4 mm  

M. Tolomeo and G.R. McDowell                                                                                                                                                                                                             



Powder Technology 412 (2022) 118021

6

of the new contact model, two simulations of small strain stiffness 
probes were carried out on the same original sample, one with the Hertz 
model and one with the Pohrt-Popov model, following the procedure 
detailed in Section 3; the macroscopic stiffness was calculated as the 
tangent Young’s modulus in the vertical direction E = Δσa/Δεa, where 
Δεa is the increment of axial deformation over one time step and Δσa =

Δq the corresponding increment of axial stress or deviatoric stress, with 
the lateral stress σr constant. All stress components were determined 
directly from contact forces, with the classic homogenisation expression 

σij =
1
V
∑

Nc

filj [34], where contact quantities f
→

(contact force) and l
→

(branch vector connecting the centroids of the two bodies in contact) are 
summed over all inter-particle contacts Nc lying inside volume V. The 
evolution of E with axial strain is shown in Fig. 6; a typical stiffness 
degradation curve for soils is shown for comparison in Fig. 7. 

While sample preparation was identical for the two samples, the 
different contact model was responsible for a small difference in coor
dination number (number of contacts per particle) at the end of 
confinement: the generally softer contacts of the rough surface model 
caused a slightly higher coordination number compared to the Hertz 
case (5.6 to 5.3), which could potentially have some influence on the 
small strain stiffness (i.e., higher stiffness for higher number of con
tacts). Nevertheless, the small strain macroscopic stiffness for the Pohrt- 
Popov model was found to be sensibly lower than the one using the 
Hertz model, showing that the effect of contact stiffness prevailed with 
respect to a possible influence of the number of contacts. Despite the 
difference in coordination number, the average contact orientation at 
the end of confinement was similar between the two models, as verified 
by calculating the fabric tensor F defined from contact normal vectors uc 

as in [35]: 

G =
1

Nc

∑Nc

c=1
uc ⊗ uc,F =

5
2(1 + e)

(3G − I) (8)  

where c = 1, …, Nc are all internal contacts in the sample, e is the voids 
ratio and I a 3 × 3 identity matrix. Some contact anisotropy, measured as 
the scalar norm of F (F =

̅̅̅̅̅̅̅̅̅̅
F : F

√
), was observed in both samples even 

under isotropic confinement, as the sample’s and platen’s own weights 
added a small amount of deviatoric stress; however, the amount of 
anisotropy (F = 0.226 and 0.228 for the Hertz and Pohrt-Popov test, 
respectively), and more generally the whole fabric tensor, were 

Fig. 5. Schematic representation of the stress path imposed in each probe, 
including a first phase of isotropic confinement up to a pressure p0 = 150 kPa, 
an axial loading phase and a successive unloading. 

Fig. 6. Stiffness degradation curve for two simulations on the same initial sample using respectively the Hertz and Pohrt-Popov contact models for the normal 
direction. The macroscopic Young’s modulus in the axial direction E = Δσa/Δεa is shown, where Δεa is an increment in axial strain and Δσa the corresponding 
increment in axial stress. 
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essentially identical between the two samples, which also shows that the 
excess in the number of contacts should not affect much the mechanical 
response to vertical loading. 

Over the duration of the loading phase up to εa = 0.1%, no contact 
was found to have exceeded the force at which stiffness transitions to the 
Hertzian one. This is typically quite large and is generally exceeded only 
by contacts in the main force chains under large strain deformations. It 
should also be noted that, for strains larger than 10− 2%, large oscilla
tions appear in both stiffness curves; these are due to more intense 
particle rearrangement, whose effect on the macroscopic response tends 
to become predominant at this level of deformation with respect to the 
effect of contact stiffness. 

4.2. Contact model including roughness and elasto-plasticity 

Some plasticity was introduced to account for the stiffer contact 
behaviour during unloading and reloading observed in experiments, as 
described in Section 2.2. The behaviour on virgin loading, on the other 
hand, remained the same as in the previous example, following the 

Pohrt-Popov law. The complete law is defined in Eq. (6). It may seem 
that the macroscopic small strain stiffness should hardly be affected by 
this update of the model, given no change occurs for contacts under
going virgin loading; however, comparing a probe with this modified 
model with the probe using the original (elastic) model as in Section 4.1, 
it becomes clear that simply accounting for this plasticity can signifi
cantly change the macroscopic stiffness even in the loading phase, as 
shown in Fig. 8. The small strain modulus E0, here defined at an axial 
strain εa = 10− 5%, was respectively 128 and 90 MPa in the two cases. 

Fig. 8 also shows the degradation of the modulus for both simula
tions. While stiffness remains essentially constant over a quite large 
range of deformations for the elastic contact model, it starts degrading 
much earlier for the elasto-plastic case, with the two degradation curves 
approaching for deformations in the order of 10− 2%. The micro
mechanical origin for this behaviour can be searched in the evolution of 
the state of contacts, i.e., whether they are in virgin loading, unloading 
or reloading, how many of them are in each group, and how contacts in 
each group are oriented, which will now be explored. 

Fig. 7. a) Characteristic stiffness-strain behaviour of soil with typical strain ranges for structures [36,37]. b) Stiffness degradation of Young’s modulus E, with Et and 
Es as the tangent and secant moduli respectively [38]. 

Fig. 8. Stiffness degradation curve for two simulations on the same initial sample using respectively the elasto-plastic (with stiffer, Hertz unloading/reloading) and 
elastic version of the Pohrt-Popov contact model for the normal direction. Only data from macroscopic loading is shown. 
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4.2.1. Micromechanical analysis 
Fig. 9a shows the same stiffness degradation curve for the elasto- 

plastic case as in Fig. 8, together with the change in number of con
tacts for each contact state (virgin loading, unloading and reloading) 
and the total number of contacts. The data is only shown up to an axial 
strain εa = 10− 2%, since particle rearrangements occur beyond this 
point, and the correlation between micromechanical quantities and 
macroscopic response becomes less clear. Very few contacts are in virgin 
loading in the early stages of the probe, when most contacts appear to be 
reloading. This is because at the end of confinement most contacts are 
not exactly on their virgin loading curve; many of them will be close to 
it, but their current force might be smaller than the maximum force ever 
experienced, because of small oscillations while reaching equilibrium. 
When axial loading starts, such contacts will generally appear as 
reloading until they reach their maximum force and re-join the virgin 
loading curve. As this happens, the number of reloading contacts starts 
decreasing and at the same time the number of loading contacts starts 
increasing. This change starts at an axial strain close to 10− 5% which is 
in line with the start of stiffness degradation. Those contacts switching 
from reloading to loading state will change their stiffness, as they go 
from the stiffer Hertz law to the softer Pohrt-Popov law. The decrease in 
the number of reloading contacts follows very well the shape of the 
stiffness degradation curve, confirming that the change in contact 
stiffness is responsible for bulk stiffness degradation, and also that the 
initially higher modulus was caused by reloading contacts. The total 
number of contacts remains essentially unchanged, leaving the change 
in contact stiffness of individual contacts as the only explanation for 
stiffness degradation. 

It can be interesting to look at the orientation of contacts in each 
group. To define a preferential orientation for the contacts in one group, 
a separate contact fabric tensor F was computed for each group (loading, 
unloading, reloading) based on Eq. (8), and its principal direction was 
determined as the eigenvector corresponding to the largest eigenvalue of 
the tensor. The angle between this eigenvector and the horizontal plane 
was then taken as a measure of the average orientation of contacts for 
each group, as shown in Fig. 9b. 

Based on the external loading condition applied, contacts undergo
ing compression (loading and reloading contacts) are expected to align 
along the vertical direction. The orientation of contacts in the virgin 
loading group is close to 90◦, corresponding to the vertical direction. 
Reloading contacts also show a vertical preferential orientation in the 
early stage of deformation; then, as more and more contacts shift to the 
loading group, those still reloading no longer show a clear preferential 
orientation. The average orientation of unloading contacts is close to the 
horizontal plane, where separation is most likely to occur, for the whole 

duration of the probe. 
As previously mentioned, the state of a contact, and in particular the 

ratio of the current normal force to the largest force ever experienced, 
can be affected by the loading conditions. During confinement, as the 
confining pressure is gradually increased, normal forces at single con
tacts will also generally increase, reaching a steady value only after the 
target pressure is reached and then kept constant while the whole 
sample approaches equilibrium. The duration of the confinement phase 
can influence the state of single contacts: to show this, the test with 
elasto-plastic Pohrt-Popov model as in Fig. 9, for which the confining 
pressure had been gradually increased over 0.5 s, was repeated with 
slower confinement phases (respectively 4 and 10 times slower, 
Fig. 10a). With a slower confinement, while the number of contacts in 
each state (loading, unloading, reloading) at the start of the axial 
loading is essentially unchanged, the average ratio of current to 
maximum normal force for reloading contacts is slightly higher (0.89 for 
the original test and 0.90 and 0.93 respectively for the tests with 4 and 
10 times slower confinement). The effect of this on the macroscopic 
behaviour is that the modulus starts degrading earlier (i.e., for smaller 
axial deformations) as the transition from reloading to virgin loading 
also starts earlier; apart from this difference, the behaviour is consistent 
both from a qualitative and a quantitative (essentially the same E0 for 
the three tests) point of view. Fig. 10b compares stiffness degradation 
and evolution of the state of contacts for the case with slowest 
confinement (similarly to Fig. 9a), showing again a good correlation 
between stiffness degradation and change of contact state. 

Even at small strains, the highly irreversible nature of deformations 
in granular materials clearly emerges when including the unloading 
phase of the probe (Fig. 5). A comparison of the two contact models 
(Fig. 11a) shows that higher unloading stiffness when using the elasto- 
plastic model is associated with larger plastic deformations. Similarly 
to the loading phase, for unloading the origin of this difference in 
macroscopic stiffness can be attributed to the difference in contact 
stiffness: with the elasto-plastic model, as soon as the direction of the 
macroscopic loading is inverted, most vertical contacts that were in 
virgin loading will immediately undergo unloading, with a consequent 
increase in contact stiffness. In contrast to the loading phase, where the 
amount of reloading contacts in the vertical direction (responsible for 
the higher stiffness) starts degrading early, here it is the unloading 
contacts in the vertical direction that are responsible for higher stiffness, 
and these will remain in this state for the whole duration of macroscopic 
unloading. Therefore, the effect on macroscopic stiffness will last for 
longer, as shown in Fig. 11b. The number of contacts in each state and 
their preferential orientations during the unloading phase are shown in 
Fig. 12a-b, confirming that the number of contacts (mostly vertical) 

Fig. 9. a) Stiffness degradation curve for the elasto-plastic Pohrt-Popov model, normalised by the modulus E0 at εa = 10− 5%. The evolution of the number of contacts 
in each state for the normal direction (virgin loading, unloading, reloading) and the total number of contacts are also shown, with scale on the right axis. Only data 
from the loading part of the probe is shown. b) Evolution of the angle between the principal orientation of the contact fabric tensor and the horizontal plane, for the 
same groups of contacts as in the left figure. 
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undergoing virgin loading during the first phase, which was still sig
nificant towards the end of the loading phase (Fig. 9a), drops as soon as 
the load direction changes, whereas unloading contacts, that used to be 

aligned in the horizontal plane, are now mainly vertical, essentially 
replacing those virgin loading contacts. Unloading contacts then remain 
mostly vertical for the whole duration of this phase. Some of the 

Fig. 10. a) Stiffness degradation curves for the elasto-plastic Pohrt-Popov model (red curve, same as in Fig. 9a) and for two more tests with the same model and 
sample but slower confinement phases (respectively 4 and 10 times slower). E0 values are 128, 131 and 130 MPa respectively. b) Stiffness degradation curve for the 
test with slowest confinement with evolution of the number of contacts in each state for the normal direction. (For interpretation of the references to colour in this 
figure legend, the reader is referred to the web version of this article.) 

Fig. 11. a) Deviatoric stress against axial strain for the original (elastic) and modified (elasto-plastic) Pohrt-Popov model. The Hertz case is also shown for com
parison. Both macroscopic loading up to εa = 0.1% and macroscopic unloading down to q = q0 are shown. It should be noted that at the start of the probe the 
deviatoric stress q is larger than zero due to the sample’s and top platen’s own weight. b) Stiffness in the macroscopic unloading phase for the original (elastic) and 
modified (elasto-plastic) Pohrt-Popov model. The inset shows a sketch of the unloading stress path applied. 

Fig. 12. a) Number of contacts in each state (loading, unloading, reloading) for the elasto-plastic Pohrt-Popov model during the unloading phase of the probe. b) 
Evolution of the angle between the principal orientation of the contact fabric tensor and the horizontal, during the unloading phase of the probe, for the same groups 
of contacts as in the left figure. The two insets show a sketch of the unloading stress path applied. 

M. Tolomeo and G.R. McDowell                                                                                                                                                                                                             



Powder Technology 412 (2022) 118021

10

unloading contacts eventually separate (i.e., zero force), which explains 
the small decrease in their number; however, they remain the predom
inant group for the whole duration of the unloading phase. The rela
tively few contacts undergoing virgin loading now lie close to the 
horizontal plane. Reloading contacts show a preferential horizontal 
orientation in the beginning of unloading, similarly to virgin loading 
contacts, but then become more scattered, showing a less clear trend, as 
particle rearrangement intensifies. 

5. Conclusions 

Experimental observations on contact mechanics between railway 
ballast particles were implemented in a DEM model by means of a 
contact law for rough surfaces and applied to the simulation of small 
strain stiffness probes on ballast in a large triaxial cell, for which real 
shape was also modelled. Preliminary results show a significant change 
in small strain stiffness, that can be attributed to the different contact 
normal stiffness between the rough surface model and the classic Hertz 
model. Plasticity was also implemented to account for the experimental 
stiffer response on unloading and reloading; this surprisingly showed a 
significant influence on the response in the macroscopic loading phase, 
as well as in the unloading phase. Micromechanical observations of the 
behaviour of single contacts during each phase have explained the 
macroscopic observations, giving a rational explanation of the degra
dation of modulus in the small strain region: it is the increase in the 
number of virgin contacts as the contact force exceeds its maximum 
previous value and the contact stiffness transitions from the stiffer Hertz 
value to the softer Pohrt-Popov one for rough particles. All these results 
show the importance of a correct description of contact mechanics fea
tures when creating a DEM model of a coarse-grained soil. This is part of 
the effort towards more physically based DEM simulations that may 
complement, and eventually replace, standard laboratory tests, partic
ularly for materials such as railway ballast for which experimental tests 
can be impractical. 

While the focus of this work was restricted to the comparison of 
different contact models in numerical simulations, in the future a com
parison with experimental data will be needed, not just from a quanti
tative point of view (e.g., to determine small strain stiffness moduli) but 
also from a qualitative one (e.g., focusing on the shape of the stiffness 
degradation curve). For a quantitative comparison, a more realistic 
geometrical description of a laboratory sample is needed, including 
measurement of all particle shapes, positions and orientations (i.e. 
fabric), to finally create a numerical “avatar” of a laboratory specimen. 

In addition, further refinements of the contact behaviour may be 
considered in the future, to include other experimental observations and 
build a more advanced contact model. This may include contact damage 
under normal force, so that a softer response occurs under high loads as 
local breakage occurs, before bulk breakage of the particle. Other forms 
of damage could be considered, such as abrasion, that can have both a 
mechanical effect (e.g., change of interparticle friction) and a geomet
rical effect (e.g., flattening of asperities, as already modelled in DEM by 
[39]). The response in the tangential direction also needs further un
derstanding and a better description, to account for preliminary exper
imental observations showing a much lower stiffness than the stiffness 
predicted by any of the classic theories. 
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