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Abstract

There is tremendous potential in using neural networks to optimize numerical methods. In this paper, we introduce and
nalyze a framework for the neural optimization of discrete weak formulations, suitable for finite element methods. The main
dea of the framework is to include a neural-network function acting as a control variable in the weak form. Finding the
eural control that (quasi-) minimizes a suitable cost (or loss) functional, then yields a numerical approximation with desirable
ttributes. In particular, the framework allows in a natural way the incorporation of known data of the exact solution, or the
ncorporation of stabilization mechanisms (e.g., to remove spurious oscillations).

The main result of our analysis pertains to the well-posedness and convergence of the associated constrained-optimization
roblem. In particular, we prove under certain conditions, that the discrete weak forms are stable, and that quasi-minimizing
eural controls exist, which converge quasi-optimally. We specialize the analysis results to Galerkin, least squares and minimal-
esidual formulations, where the neural-network dependence appears in the form of suitable weights. Elementary numerical
xperiments support our findings and demonstrate the potential of the framework.
2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).

eywords: Optimal neural control; Artificial neural networks; Data-driven discretization; Weighted finite element methods; Quasi-minimization;
uasi-optimal convergence

1. Introduction

In recent years there has been tremendous interest in the merging of neural networks and machine-learning
lgorithms with traditional methods in scientific computing and computational science [1–4]. In this paper we
emonstrate how neural networks can be utilized to optimize finite element methods. Let us first provide an
lementary motivation as to why finite element methods would benefit from being optimized at all.

In one of its most familiar mathematical forms, the finite element method is a discretization technique for partial
ifferential equations (PDEs) based on a weak formulation using discrete subspaces, i.e., the exact solution u ∈ U

is approximated by uh ∈ Uh , which is the unique solution of the discrete problem:

Find uh ∈ Uh :
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b(uh, vh) = f (vh) , ∀vh ∈ Vh , (1)

here Uh is a discrete subspace of the infinite-dimensional Hilbert or Banach space U (typically a Sobolev space
n a domain Ω ⊂ Rd ), Vh is a subspace of a Hilbert or Banach space V with dimVh = dimUh , b : U×V → R is a
ontinuous bilinear form, f : V → R a continuous linear form, and the exact solution u ∈ U satisfies b(u, v) = f (v)
or all v ∈ V.1

It is well-known that the accuracy of uh can be improved by enlarging Uh (e.g., by refining the underlying
nite element mesh).2 However, for a fixed value of h, the particular uh defined by (1) may be very unsatisfactory.
n fact, there is no reason why a certain quantity of interest of uh is accurate at all,3 or why the approximation
nherits certain qualitative features of the exact solution.4 Indeed, the discrete problem (1) is a rigid statement in
he sense that it identifies a single element in Uh , irrespective of desired attributes, whereas there could be many
ther elements in Uh that are far superior.

.1. Neural optimization of discrete weak forms

The objective of this work is to propose and analyze a framework for the neural optimization of discrete weak
formulations to significantly improve quantitative and qualitative attributes of discrete approximations. In particular,
we consider Galerkin, least squares, and minimal-residual formulations.

The main idea of the framework is that it incorporates a neural-network function ξ as a control variable in the
discrete test space Vh(ξ ). That is, the approximation uh = uh,ξ now depends on ξ and solves the discrete problem:

Find uh = uh,ξ ∈ Uh :

b(uh,ξ , vh) = f (vh) , ∀vh ∈ Vh(ξ ) . (2)

hen, in order to obtain a desired approximation uh,ξ̄ , we aim to find a neural-network function ξ̄ that quasi-
inimizes a desired cost (or loss) functional5:

J (uh,ξ̄ )−→ quasi-min . (3)

The notion of quasi-minimization is critical when aiming to minimize over a (non-closed) set of neural-network
unctions (i.e., the set of functions implemented by neural networks of a fixed architecture); see Section 2.2 for
urther details (in particular, Definitions 2.1 and 2.2).

The quasi-minimization problem (3) is essentially a nonstandard PDE-constrained optimization, with the
onstandard part being the dependence of the state problem (2) on ξ via the discrete test space Vh(ξ ). Importantly,
h(ξ ) will be parameterized by ξ in such a way so as to ensure stability of the discrete problem (2), as well as

mply existence and convergence of corresponding quasi-minimizers of (3). Moreover, as will become clear in the
ollowing sections, the basis functions in Vh(ξ ) need not be computed explicitly, but equivalent formulations to (2)
an be used, which instead incorporate ξ by means of suitable weight functions. These formulations essentially lead
o a PDE-constrained optimization with a nonlinear control-to-state map.

.2. Potential of the methodology

There are two main benefits of having neural control of discrete weak forms:

• Incorporation of data: Knowledge of quantities of the exact solution can be taken into account in a natural
way by setting, for example,

J (uh,ξ ) =
1
2

⏐⏐q(uh,ξ ) − q̄
⏐⏐2 ,

1 When Uh = Vh , this is a Galerkin method, otherwise it is a Petrov–Galerkin method.
2 Indeed, a priori error analysis reveals that ∥u − uh∥U ≤ C infwh∈Uh ∥u − wh∥U, provided b(·, ·) satisfies a discrete inf–sup condition on

Uh × Vh ; see e.g., [5,6].
3 E.g., the value uh (x0) for some point x0 ∈ Ω is generally quite distinct from u(x0).
4 E.g., uh may exhibit spurious oscillations, while u is monotone.
5 We also allow for the inclusion of a regularization term in the cost functional; see Section 2.1.
2
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where q : U → R is a functional measuring the quantity of interest and q̄ ∈ R is known data.6 Minimizing
such a J (·) ensures that the discrete solution uh to (2) is data-driven in the sense that uh becomes constrained
by the data.7 We note that multiple quantities can be taken into account using, for example,

J (uh,ξ ) =
1

Ndata

Ndata∑
i=1

1
2

⏐⏐⏐qi (uh,ξ ) − q̄i

⏐⏐⏐2 ,

or, more generally, using some operator Q : U → Z; see Section 2.
• Incorporation of stabilization mechanisms: Qualitative attributes of the discrete solution can be enhanced by

minimizing a suitably-chosen J (·). In this way, discrete solutions can be enforced to, e.g., satisfy an a priori
known maximum principle, have monotone (or spurious oscillation free) behavior around discontinuities and
layers, or have a certain discrete wave number (i.e., free from pollution). In the past decades, many different
stabilized finite element methods have been proposed (and analyzed) that impose such attributes [8–13]. Within
our framework, such a method is naturally obtained after (quasi-) minimization (i.e., method (2) with ξ = ξ̄ ).
As an example, Guermond [8] advocates the L1-minimization of the residual; in other words, within our
framework, one would choose:

J (uh,ξ ) =
 f − Buh,ξ


L1(Ω) ,

where f − Buh,ξ is the strong form of the residual.

The idea of using neural networks to parameterize the test space was initially proposed in our earlier work [14],
where it was restricted to minimal-residual formulations within a parametric PDE setting. The current work presents
significantly more general settings and formulations as well as analyses of their well-posedness and convergence.

While the above shows examples of J (·) corresponding to unsupervised learning (i.e., there is no need to
know the exact solution u), when the original problem is parametric itself (e.g., a parametric PDE), supervised
learning becomes meaningful. Indeed, in that case, the data may be the exact solution uλi for certain parameters λi ,

= 1, . . . , Ndata. This then allows for the training of finite element discretizations with superior accuracy in
quantities of interest even on very coarse meshes. We refer to our earlier work [14] for the methodology and
illustrative examples in that case.

1.3. Main contributions: Well-posedness, convergent quasi-minimizers, weighted conforming formulations

Let us briefly outline the main contributions of this work. The first main contribution is the analysis of an
abstract constrained-optimization problem associated to (3); see Section 2. In particular, we consider an abstract
state problem equivalent to (2), but in the form of a mixed system with a ξ -dependent bilinear form.8 We prove,
under suitable conditions, that the state problem is well-posed (uniformly with respect to ξ ); see Proposition 2.9.
Furthermore, we present differentiability conditions (on the ξ -dependence) that allow us to prove the existence
of quasi-minimizers (within sets of neural-network functions, of some size n) to the associated constrained
optimization (3), which converge quasi-optimally (upon n → ∞); see Corollary 2.12 for details.

We note that our analysis is based on a fundamental result for the quasi-minimization of strongly-convex and
differentiable functionals (see Theorem 2.A), which is of independent interest and applies, e.g., to the analysis of
deep Ritz methods [17–19] and PINN methods [20–22].

The second main contribution of this work is the application of our framework to certain weak formulations used
by conforming finite element methods; see Section 3. In these applications, the neural-network control variable ξ

will appear by means of suitable weights in the bilinear forms. In particular, we will analyze weighted least squares,
weighted Galerkin, and weighted minimal-residual formulations.

For weighted least squares and weighted minimal-residual formulations, suitable conditions on the weights imply
(via the abstract result of the first main contribution) stability of the discrete problem (uniformly in ξ ). Furthermore,

6 The data q̄ represents q(u), and it could be obtained through experiments, high-fidelity computation, or otherwise.
7 This is somewhat similar in spirit to physics-informed neural networks (PINN) [7], where however a single neural-network function
inimizes a combination of the residual and data misfit.
8 The mixed system is motivated by residual-minimization theory [15,16]: Minimal residual formulations are equivalent to mixed systems,
hich in turn are equivalent to Petrov–Galerkin formulations.
3
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suitable differentiability conditions on the weights imply existence of (quasi-optimally) convergent quasi-minimizers
of the associated constrained minimization.

On the other hand, for weighted Galerkin, it turns out that stability is not immediate, and may require constraints
on ξ depending on the problem at hand.9 Therefore, neural control is far more convenient for least squares and
minimal-residual formulations, the fundamental reason being the inherent stability that comes with their underlying
minimization principle.

We support our findings with numerical experiments in Section 4. While our theoretical results directly apply
to any linear operator, we choose the advection–reaction PDE to illustrate various numerical aspects, viz., the
incorporation of data (Section 4.1), the quasi-optimal convergence of quasi-minimizers (Section 4.2), and the
incorporation of L1-type stabilization (Section 4.3).

1.4. Related work

There are a number of works related to ours.
Optimizing numerical methods: Traditionally, the incorporation of known data or other desired attributes in

numerical PDE approximations is achieved via the method of Lagrange multipliers, see e.g., Evans, Hughes
& Sangalli [11], Kergrene, Prudhomme, Chamoin & Laforest [23], and references therein. The classical idea of
optimizing Petrov–Galerkin methods by using special test spaces was originally motivated by the desire to obtain
stable methods for nonsymmetric problems. It has a long history, with early work going back to, e.g., Brooks &
Hughes [24], Barrett & Morton [25], and Oden [26], which have given rise to modern stabilized, minimal-residual
and DPG methods.

Optimizing numerical methods using neural networks: Much more recent is the use of neural networks for
the optimization of numerical methods, i.e., for the learning of parameters that define a numerical method; see
Ray & Hesthaven [27], Mishra [28] and others [29–33]. Interestingly, a learning methodology for optimizing the
anisotropy of the finite element mesh has been proposed by Fidkowski & Chen [34], while a learning methodology
for adaptive mesh refinement that ensures optimal adaptive convergence has been analyzed by Bohn & Feischl [35].
Within the context of optimizing finite-element formulations, a minimal-residual framework that is guaranteed to be
stable was proposed in our previous work [14]. Our current work contributes to these developments by providing
the analysis of a general framework for neural network optimization of finite element methods.

Neural networks for PDEs: The use of neural networks for approximating directly the solution to PDEs has
received wide-spread interest since the works by E & Yu [36], Sirignano & Spiliopoulos [37], Berg & Nyström [38]
and Raissi, Perdikaris & Karniadakis [7], amongst others. Recently, there have been a number of ideas that propose
an adaptive construction of neural-network approximations; see Ainsworth & Dong [39], Liu, Cai & Chen [40] and
Uriarte, Pardo & Omella [41]. Neural networks can also be used to obtain the coefficients of the basis expansion
used by a standard (linear) approximation [42,43].

Neural networks for inverse PDEs: In the context of inverse problems involving PDEs, the use of neural
networks to represent unknown PDE coefficients (fields) and constitutive models has been explored by, e.g., Teichert,
Natarajan, Van der Ven & Garikipati [44], Berg & Nyström [45], Xu & Darve [46] and You et al. [47]. These
works are similar to the current work in the sense that standard (finite element) methods are used to solve the
PDE, while a neural network is embedded within the discrete formulation. We note that the analysis provided by
our current work can be extended to those inverse problems. Other works involve the use of a neural network to
approximate the parameter-to-solution map (so-called neural operators); see e.g., [41,48,49] and references therein.
These approximations are particularly useful for large-scale problems for which model reduction is essential.

Error analysis for neural-network approximations: There are a number of works containing a priori error analysis
for neural-network based PDE approximations. For those related to the deep Ritz method; see Xu [17, Section 5],
Pousin [18, Section 3], and Müller & Zeinhofer [19]. For those related to physics-informed neural networks (PINN)
and least squares methods; see Sirignano & Spiliopoulos [37, Section 7], Mishra & Molinaro [21,50], Pousin
[18, Section 4], Cai, Chen & Liu [22], and Berrone, Canuto & Pintore [51]. Recently, a posteriori error analysis
has also been studied, in particular goal-oriented analysis using the dual-weighted residual (DWR) methodology;
see, e.g., Roth, Schröder & Wick [52], and Minakowski & Richter [53]. We note that in our current work, while

9 In essence, the reason for instability relates to a discrete inf–sup condition of a weighted bilinear form.
4
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we have in mind the error analysis for neural-control approximations, the abstract analysis presented in Section 2 is
essentially an extension of the above-mentioned a priori analysis to a certain class of problems involving a convex
and differentiable cost functional.

2. Abstract framework

In this section we present the analysis of the abstract state equation (in the form of a mixed system) and the
ssociated optimization problem. We essentially follow the classical theory of optimal control (PDE-constrained
ptimization) by Lions [54]; see also, [55–57]. Our resulting optimization problem bears similarity to that of
arameter identification of PDE coefficients; see Rannacher & Vexler [58] and references therein for its error
nalysis. While we present our abstract framework within Hilbert spaces (and using a quadratic cost), we note
hat extensions to Banach spaces are feasible, but not within the scope of the current work.

.1. Discrete state problem and associated cost functional

Let X be a Hilbert space for the control variable. We shall think of a control variable ξ ∈ X as being a function
in an infinite-dimensional function space X (for example, X = L2(Ω ) ).10 Let U and V be Hilbert spaces for trial
nd test functions, respectively, Uh ⊂ U be a discrete (finite element) subspace, and V̂ ⊆ V.11 In all that follows,
e think of h (hence Uh) as being fixed. Given ξ ∈ X and f ∈ V∗ (the dual of V), we consider the discrete state

problem given by:⎧⎪⎨⎪⎩
Find (r, uh) ∈ V̂ × Uh :

a(ξ ; r, v) + b(uh, v) = f (v), ∀v ∈ V̂, (a)
b(wh, r ) = 0, ∀wh ∈ Uh , (b)

(4)

where b(·, ·) is a continuous bilinear form on U × V, and for each ξ ∈ X, a(ξ ; ·, ·) is a continuous bilinear form
on V × V. To explicitly indicate the dependence of r and uh on ξ , we use the notation:

(rξ , uh,ξ ) = solution of (4)(a)–(4)(b) for a given ξ .

In Section 2.4, we demonstrate that (4)(a)–(4)(b) is equivalent to (2) for a particular choice of Vh(ξ ); see
Proposition 2.10. The discrete problem in (4)(a)–(4)(b) is essentially a general formulation, which for a specific
choice of a(· ; ·, ·) and V̂ reduces to a (weighted) Galerkin, least-squares or minimal residual method; see Section 3.

Next, let Z be a Hilbert space, and let Q : U → Z be a linear continuous (observation) operator. Then, given an
observation zo ∈ Z and regularization parameter α ≥ 0, we consider the cost (or loss) functional J : Uh × X → R
defined by:

J (wh, ξ ):= J1(wh) + α j2(ξ ) , (5)

where

J1(wh) :=
1
2

Q(wh) − zo
2
Z ,

j2(ξ ) :=
1
2
∥ξ∥

2
X .

The associated reduced cost functional j : X → R is then given by:

j(ξ ):= j1(ξ ) + α j2(ξ ) , (6)

here j1 : X → R is defined by:

j1(ξ ) := J1(uh,ξ ) =
1
2

Q(uh,ξ ) − zo
2
Z ,

hile ideally we would like to minimize j(·) over (the infinite-dimensional) X, we proceed by considering
eural-network approximations.

10 In Section 2.2, we let ξ be a neural network function.
11 Later on, when considering minimal residual formulations, V̂ will be a discrete (finite element) subspace of V, but for the other
ormulations V̂ = V.
5
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2.2. Neural quasi-minimization

To accommodate neural optimization, we consider the subset Mn ⊂ X consisting of all functions implemented by
neural networks of a fixed architecture parameterized by n.12 We shall simply refer to Mn as a set of neural-network
functions, and we think of n as a measure of the size of the architecture (e.g., the total number of neurons, or total
number of parameters).

When aiming to minimize j(·), a significant complication is that the set Mn is not a linear subspace and it may
not be closed (topologically) in X.13 Hence, even though j(·) may have an infimum on Mn , there may not be a

inimizer in Mn . Therefore, one should not aim to completely minimize j(·), but instead use a relaxed notion of
quasi-minimization as used by Shin, Zhang & Karniadakis [20]14 (for which the existence of an infimum implies
the existence of a quasi-minimizer):

Definition 2.1 (Quasi-Minimizers and Quasi-Minimizing Sequences). Let j : X → R be a cost functional.

(i) Let δn > 0 and Mn ⊂ X be a subset of X (not necessarily closed in X). A function ξ̄n ∈ Mn is said to be a
quasi-minimizer of j(·) if the following holds true15:

j(ξ̄n) ≤ inf
ξn∈Mn

j(ξn) +
δn

2
. (7)

(ii) Consider a sequence of subsets (Mn)n∈N of X, with N being a strictly-increasing sequence of natural numbers.
A sequence (ξ̄n)n , with ξ̄n ∈ Mn , is said to be a quasi-minimizing sequence if (7) holds true for all n ∈ N
with δn > 0 such that:

δn → 0 as n → ∞ . □

In summary, the neural optimization problem that we consider is the following:

Definition 2.2 (The Quasi-Minimizing Control Problem). The following statements are equivalent.
educed quasi-minimizing control problem: For j(·) given by (6), we aim to quasi-minimize j(·), i.e., given δn > 0,

⎧⎨⎩
Find ξ̄n ∈ Mn :

j(ξ̄n) ≤ inf
ξn∈Mn

j(ξn) +
δn

2
.

(8)

onstrained quasi-minimizing control problem: For J (·, ·) given by (5), we aim to quasi-minimize J (uh, ξ ) subject
o (4)(a)–(4)(b), i.e., given δn > 0,⎧⎨⎩

Find ξ̄n ∈ Mn :

J (uh,ξ̄n , ξn) ≤ inf
ξn∈Mn

J (uh,ξn , ηn) +
δn

2
.

□ (9)

Example 2.3 (Need for Quasi-Minimizers). Let us discuss a simple example illustrating the non-existence of
minimizers, hence the need for quasi-minimizers.16

12 In the terminology of Petersen, Raslan and Voigt [59], the set Mn consists of the realizations of all possible neural networks of some
fixed architecture (and some given activation function). While a neural network is identified with the set of weight and bias parameters, its
realization is the function implemented by the network.

13 For example, [59, Theorem 3.1] shows that, under mild conditions on the architecture and activation function, Mn is not a
closed subset of L2(Ω ) (or, more generally, L p(Ω ), with 0 < p < ∞), unless, e.g., an upper bound is imposed on the weight

arameters [59, Proposition 3.7].
14 Quasi-minimization can also be thought of as solving the minimization problem up to some optimization accuracy, cf. [19].
15 Observe that if j(·) has an infimum on Mn , then immediately a quasi-minimizer exists (in Mn). This is true simply by the definition

of the infimum.
16 This is essentially an example of a PINN problem, i.e., minimizing a strong residual and boundary condition in least-squares sense. It
is not difficult to construct a similar example for a neural control problem.

6
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Let x = (x1, x2) ∈ Ω = (0, 1)2
⊂ R2. Given z ∈ (0, 1), let χ[z,1] denote the characteristic function of the

ubset [z, 1].17 Consider the following cost functional:

j(ξ ) =
1
2

∫ 1

0

∫ 1

0

(
∂ξ

∂x2

)2

dx1 dx2 +

∫ 1

0

(
ξ (x1, 0) − χ[z,1](x1)

)2
dx1

or ξ ∈ X =

{
η ∈ L2(Ω )

⏐⏐ ∂η

∂x2
∈ L2(Ω )

}
. Minimizing j(·) over X solves a first-order PDE (constant advection in

he direction of the x2-axis) with discontinuous data given by χ[z,1], which is a well-posed problem [60, Section 1
nd 6].

Let Mn be the set of two-layer neural-network functions Ω ↦→ R2
↦→ R using two neurons and the Rectified

inear Unit ReLU(·) := max{0, ·} activation function in the hidden layer, i.e.,

Mn =

{
ξn : Ω → R

⏐⏐⏐ ξn(x) =

2∑
i=1

ai ReLU(wi · x − bi ) , ai , bi ∈ R, wi ∈ R2
}

.

ote that an infimizing sequence of j(·) in Mn is given by:

ξm(x) =

⎧⎪⎪⎨⎪⎪⎩
0 0 ≤ x1 < zm := (1 −

1
m )z ,

x1 − zm

z − zm
zm ≤ x1 < z ,

1 z ≤ x1 ≤ 1 ,

for m = 1, 2, 3, . . ., but whose limit ξm → ξ̄ in X as m → ∞ is a discontinuous function (with j(ξ̄ ) = 0). Therefore
the infimizer ξ̄ does not exist in Mn ⊂ C(Ω ).

On the other hand, quasi-minimizers ξ̄n do exist in Mn , in particular, ξm as defined above is a quasi-minimizer
or m large enough.18 □

.3. Analysis of reduced control problem

We first proceed with the analysis of the reduced control problem (8). Let the state operators Rh : X → V̂ and
Sh : X → Uh be defined by:

Rh(ξ ) := rh,ξ , ∀ξ ∈ X , (10a)

Sh(ξ ) := uh,ξ , ∀ξ ∈ X , (10b)

here rh,ξ and uh,ξ are the first and second component, respectively, of the solution to the mixed system (4). Then,
he reduced cost j(·) given in (6) can be written as follows:

j(ξ ) = j1(ξ ) + α j2(ξ ) = J1
(
Sh(ξ ), ξ

)
+ α j2(ξ )

=
1
2

Q ◦ Sh(ξ ) − zo
2
Z +

α

2
∥ξ∥

2
X . (11)

Our main result depends on the following fundamental theorem, which is of independent interest:

heorem 2.A (Differentiable, Strongly-Convex Quasi-Minimization). Let j : X → R be a cost functional.
Assume that j(·) is Gâteaux differentiable with derivative j ′

: X → X∗ being Lipschitz continuous, i.e., there
is a constant L > 0 such that j ′(ξ ) − j ′(η)


X∗ ≤ L

ξ − η

X , ∀ξ, η ∈ X ,

Furthermore, assume that j(·) is strongly convex, i.e., there is a constant γ > 0 such that⟨
j ′(ξ ) − j ′(η) , ξ − η

⟩
X∗,X

≥ γ
ξ − η

2
X , ∀ξ, η ∈ X . (12)

17 That is, χ[z,1](x1) = 1 if x1 ∈ [z, 1] and = 0 otherwise.
18 Indeed, one can verify by direct calculation that m must be such that 1 (z − z ) ≤

δn , i.e., m ≥
2 zδ−1.
3 m 2 3 n

7
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Then, the following hold true:

(i) j(·) has a unique minimizer ξ̄ ∈ X, which satisfies:

j ′(ξ̄ ) = 0 in X∗ .

(ii) For any subset Mn ⊂ X, j(·) has a quasi-minimizer ξ̄n ∈ Mn that satisfies (7).
(iii) Any quasi-minimizer ξ̄n in Mn satisfies the following quasi-optimal error estimate:ξ̄ − ξ̄n


X ≤

(
L
γ

inf
ξn∈Mn

ξ̄ − ξn
2
X +

δn

γ

)1/2

. □ (13)

Proof. See Appendix A.1. ■

We now analyze when our j(·) satisfies the assumptions of Theorem 2.A.

Theorem 2.B (Reduced Control Problem: Differentiability & Strong Convexity). Let α > 0 and j(·) = j1(·)+α j2(·)
e as in (11). Let Q ∈ L(U,Z). Assume Sh : X → Uh is differentiable, Sh(·) and S′

h(·) are uniformly bounded on
, and S′

h(·) is Lipschitz continuous. Then:

(i) j1, j2, j : X → R are Gâteaux differentiable with j ′

1, j ′

2, j ′
: X → X∗ Lipschitz continuous.

dditionally, assume α is sufficiently large. Then:

(i i) j : X → R is strongly convex, i.e., there is a constant γ > 0 such that (12) holds true.19 □

roof. See Appendix A.2. ■

orollary 2.4 (Reduced Control Problem: (quasi-)Minimizers & Quasi-Optimality). Under the conditions of
heorem 2.B, the statements (i), (ii) and (iii) of Theorem 2.A hold true. □

roof. The results of Theorem 2.B are the assumptions of Theorem 2.A. ■

emark 2.5 (Quasi-Optimal Rates). The first part on the right-hand side of the quasi-optimality result (13) can be
stimated in terms of n using results from neural-network approximation theory; see, e.g., Yarotsky [61], Gühring,
utyniok and Petersen [62], and references therein. Such a result may be useful in finding a proper balance of δn

s n → ∞. Alternatively, the choice of δn may be found through a proper a posteriori estimator, which seems to
e an open problem.20 □

emark 2.6 (Condition on α). The proof of Theorem 2.B reveals that the condition that α is sufficiently large
ay be weakened if j1 has additional structure (e.g., convexity). Indeed, convexity of j1 guarantees that j will be

trongly convex, with strongly convexity constant equal to α > 0. If the case, there is no need of Lipschitzness of
j ′

1 in order to prove only α > 0 will be enough. Furthermore, becomes:

∥ξ̄ − ξ̄n∥X <

(
α + L1

α
inf

ηn∈Mn

ξ̄ − ηn
2
X +

δn

α

)1/2

. □

emark 2.7 (Physics-Informed Neural Networks (PINN)). Theorem 2.A can be applied to PINN [7] (for neural-
etwork approximations to PDEs). Indeed, consider

j(ξ ) =
1
2

 f − Bξ
2
L,

where B : X → L, and f − Bξ is an abstract residual in some abstract Hilbert space L (which may include the
PDE residual, initial condition and boundary conditions, as in [21], as well as a data residual, as in [50]). Note

19 In particular, when α > L1, where L1 is the Lipschitz constant of j ′

1(·), then γ = α − L1.
20 There are some works on a posteriori error analysis for neural networks approximations; see, e.g., [63].
8
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that ξ is an approximation to the PDE solution, and not the underlying trainable parameters of a neural network.
If B : X → L is a linear operator, then the assumptions of Theorem 2.A (Lipschitz continuity and strong convexity)
hold true.21 □

Remark 2.8 (Deep Ritz Method). Theorem 2.A can also be applied to the Deep Ritz method [36]. Indeed, consider

j(ξ ) =
1
2

b(ξ, ξ ) − f (ξ ),

here b : X × X → R is a continuous coercive and symmetric bilinear form, and f ∈ X∗. For such a j(·), the
assumptions of Theorem 2.A (Lipschitz continuity and strong convexity) hold true. □

2.4. Analysis of constrained control problem

We now proceed with the analysis of the constrained control problem (9). We begin by providing conditions
that guarantee the well-posedness of the state problem.

Proposition 2.9 (Stability of the State Problem). For each ξ ∈ X, let a(ξ ; ·, ·) : V × V → R and b : U × V → R
e continuous bilinear forms. For Uh ⊂ U and V̂ ⊆ V, consider the kernel subspace K̂ := {v ∈ V̂ : b(wh, v) =

, ∀wh ∈ Uh}. Then, the following statements hold true:

(i) For each ξ ∈ X, problem (4) is well-posed (for any f ∈ V∗) if and only if there exist constants αh ≡ αh(ξ ) > 0
and βh > 0 such that:22

inf
v1∈K̂

sup
v2∈K̂

a(ξ ; v1, v2)
∥v1∥V∥v2∥V

≥ αh ,{
v2 ∈ K̂ : a(ξ ; v1, v2) = 0, ∀v1 ∈ K̂

}
= {0} ,

⎫⎪⎬⎪⎭ (14a)

inf
wh∈Uh

sup
v∈V̂

b(wh, v)
∥wh∥U∥v∥V

≥ βh . (14b)

(ii) If (14) is satisfied, then the following a priori bound holds true for the solution uh ∈ Uh of problem (4):

∥uh∥U ≤
1
βh

(
1 +

∥a(ξ ; ·, ·)∥L(V;V∗)

αh

)
∥ f ∥V∗ .

(iii) Furthermore, if a(ξ, ·, ·) is an equivalent inner-product on V, with associated norm ∥ · ∥V,ξ :=
√

a(ξ ; ·, ·),
i.e., for some C1,ξ , C2,ξ > 0,

C1,ξ∥v∥V ≤ ∥v∥V,ξ ≤ C2,ξ∥v∥V, ∀v ∈ V, (15)

then αh = (C1,ξ )2 in (14a), and additionally, the following improved a priori bound holds true:

∥uh∥U ≤
C2,ξ

C1,ξ

1
βh

∥ f ∥V∗ . □ (16)

roof. See Appendix A.3. ■

To establish the equivalence between the mixed system (4) and the Petrov–Galerkin statement (2), let us define
he operators A : X → L(V̂; V̂∗) and B ≡ Bh ∈ L(Uh; V̂∗) by:

A(ξ )v̂ := a(ξ ; v̂, ·) ∈ V̂∗, ∀ξ ∈ X, ∀v̂ ∈ V̂; (17a)

Bwh := b(wh, ·) ∈ V̂∗, ∀wh ∈ Uh . (17b)

21 To avoid confusion, let us stress that Lipschitz continuity and strong convexity are required with respect to the Hilbert space X, and
not with respect to the trainable parameters defining a neural network function ξn ∈ Mn ⊂ X. The same applies for Remark 2.8.

22 Only when V̂ is infinite-dimensional, one needs the extra hypothesis in (14a)2. Whenever a(ξ, ·, ·) is an equivalent inner product on
V, then this condition is actually automatically satisfied. Indeed, zero is the only element in V which is orthogonal to itself.
9
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Note that the state Eqs. (4)(a)–(4)(b) can then be written as follows:

A(ξ )r + Buh = f in V̂∗ , (18a)

B∗r = 0 in (Uh)∗ . (18b)

roposition 2.10 (Equivalent Petrov–Galerkin Problem). For each ξ ∈ X, let a(ξ ; ·, ·) : V × V → R and
: U×V → R be continuous bilinear forms. Given V̂ ⊆ V and a discrete trial space Uh ⊂ U, let the discrete test

pace be given by

Vh(ξ ) :=

{
v ∈ V̂

⏐⏐⏐ A(ξ )∗v ∈ BUh

}
, (19)

here A(ξ ) and B are defined in (17a) and (17b) (respectively). Assume the existence of α(ξ ) > 0 such that

inf
v1∈V̂

sup
v2∈V̂

a(ξ ; v1, v2)
∥v1∥V∥v2∥V

≥ α(ξ ) . (20)

hen the state problem (18) is equivalent to the Petrov–Galerkin problem (2). □

roof. See Appendix A.4. ■

Finally, we now present (differentiability) conditions on ξ ↦→ A(ξ ) that guarantee the (differentiability)
equirements on ξ ↦→ Sh(ξ ) in Theorem 2.B and Corollary 2.4. Once in place, existence of (quasi)-minimizers
nd quasi-optimal convergence follow immediately for the constrained control problem.

To anticipate the connection between derivatives A′ and S′

h (as well as R′

h),23 note that a formal differentiation
of (18) (with r = Rh(ξ ) and uh = Sh(ξ )) with respect to ξ in the direction η ∈ X yields:

A(ξ )R′

h(ξ )η + BS′

h(ξ )η = −A′(ξ )η Rh(ξ ) in V̂∗ ,

B∗ R′

h(ξ )η = 0 in (Uh)∗ .

One may therefore expect that suitable conditions on A(·) will imply desired conditions on Sh(·) (and Rh(·)):

Proposition 2.11 (State Differentiability). Let Rh(·) and Sh(·) be the state operators as defined in (10), and let A(·)
e as defined in (17a). Assume the conditions of Proposition 2.9, including the well-posedness conditions (14). Then,
he following statements hold true:

(i) If A(·) has a Gâteaux derivative at ξ ∈ X in the direction η ∈ X, then Rh(·) and Sh(·) have a Gâteaux
derivative at ξ in the direction η.

(ii) If A(·) is Gâteaux-differentiable at ξ , then so are Rh(·) and Sh(·).
(iii) If A(·), A′(·) and α−1

h (·) are uniformly bounded on X, then R′

h(·) and S′

h(·) are also uniformly bounded on
X.

(iv) Additionally, if A′(·) is Lipschitz continuous, then R′

h(·) and S′

h(·) are Lipschitz continuous as well. □

roof. See Appendix A.5. ■

orollary 2.12 (Constrained Problem: (quasi-)Minimizers & Quasi-Optimality). Let J (wh, ξ ) = J1(wh) + α j2(ξ )
s in (5) with Q ∈ L(U;Z). Let the associated j(·) be as in (11). Under the conditions of Propositions 2.9 and
.11, and assuming α is sufficiently large, the statements (i), (ii) and (iii) of Theorem 2.A hold true.

In other words, the constrained control problem (9) has a quasi-minimizer in Mn that converges quasi-optimally
o the unique minimizer in X. □

roof. The results of Propositions 2.9 and 2.11, together with α sufficiently large, are the assumptions of
heorem 2.B, whose results are the assumptions of Theorem 2.A. ■

23 Recall that the Gâteaux derivative of, e.g., A at ξ ∈ X in the direction η ∈ X is given by A′(ξ )η = limt→0
A(ξ+tη)−A(ξ )

t , provided the
limit exists in L(V̂; V̂∗). If the map η ↦→ A′(ξ )η is linear and continuous from X to L(V̂; V̂∗), then A is Gâteaux differentiable at ξ ∈ X.
10
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3. Conforming weak formulations with suitable control

In this section, we study various weighted versions of conforming weak formulations, viz., least squares, Galerkin
nd minimal-residual formulations, and we illustrate these with PDE examples. The aim is to propose suitable
-dependent weighting within the weak forms, in order to be able to prove the assumptions of Propositions 2.9
nd 2.11. By Corollary 2.12, we can then conclude that the corresponding constrained neural-control problem has
esired properties (existence of quasi-minimizers and quasi-optimal convergence).

In what follows, we often consider a (positive) weight function ω(ξ ) : Ω → R. E.g., we consider a mapping
ω : L2(Ω ) → L∞(Ω ), which takes a control ξ ∈ X = L2(Ω ) and generates a function ω(ξ ), which is positive
a.e. in Ω .24 Explicit examples of such mappings are discussed in Remarks 3.6 and 3.7. We shall use the notation
ϖ (ξ ) := 1/ω(ξ ) to indicate the (multiplicative) inverse of ω(ξ ).

3.1. Weighted least squares formulations

Let d ∈ N and Ω ⊂ Rd be an open bounded Lipschitz domain. Let B : HB → L2(Ω ) be a linear differential
operator in strong form, where U = HB denotes a general graph space:

HB :=

{
w ∈ L2(Ω )

⏐⏐⏐ Bw ∈ L2(Ω ) and suitable homogeneous boundary conditions
}
.

Examples of HB are presented below. We assume that HB is a Hilbert space when endowed with the inner product(
w1, w2

)
HB

:=
(
w1, w2

)
L2(Ω) +

(
Bw1, Bw2

)
L2(Ω) , ∀w1, w2 ∈ HB,

and that B is boundedly invertible from HB onto V∗
:= L2(Ω ) =: V = V̂.

Let f ∈ L2(Ω ), and let Uh ⊂ HB be a conforming discrete (finite element) space. Given a mapping
ω : L2(Ω ) → L∞(Ω ), which generates a positive weight function ω(ξ ), we aim to find uh ≡ Sh(ξ ) ∈ Uh , which is
the solution of the weighted least squares problem:

uh = arg min
wh∈Uh

1
2

√ω(ξ )
(

f − Bwh
)2

L2(Ω)
.

The optimality condition of such a minimizer is given by the weighted least squares (LSQ) method:(
ω(ξ )( f − Buh), Bwh

)
L2(Ω)

= 0, ∀wh ∈ Uh . (21)

In particular, notice that we can directly identify the test space in (2) as

Vh(ξ ) = ω(ξ )BUh =
{
v ∈ L2(Ω )

⏐⏐ v = ω(ξ )Bwh for some wh ∈ Uh
}
.

Example 3.1 (Weighted LSQ for Advection–Reaction). Let β ∈ (L∞(Ω ))d be an advection field, and let c ∈ L∞(Ω )
be a reaction coefficient. The inflow boundary is ∂Ω− := {x ∈ ∂Ω : β(x) · n(x) < 0} , where n(x) corresponds to the

nit outward normal. Next, define Bw := β ·∇w+cw and HB :=
{
w ∈ L2(Ω ) : β ·∇w+cw ∈ L2(Ω ) and w|∂Ω−

=}
. Therefore, finding u ∈ HB such that Bu = f , corresponds to the strong form of the advection–reaction PDE

ith homogeneous inflow data, which is well-posed under suitable conditions on β and c (see, e.g., [64]).
The weighted LSQ method (21) translates into finding uh ∈ Uh such that∫

Ω

ω(ξ )
(
β · ∇uh + cuh

)(
β · ∇wh + cwh

)
=

∫
Ω

ω(ξ ) f
(
β · ∇wh + cwh

)
, ∀wh ∈ Uh . □

xample 3.2 (Weighted LSQ for the Strong Laplacian). Set HB :=
{
w ∈ H 1

0 (Ω ) : ∆w ∈ L2(Ω )
}
, where

Bw := −∆w. Finding u ∈ UB such that Bu = f , corresponds to the strong form of the Poisson equation with
omogeneous Dirichlet boundary data. The weighted LSQ problem (21) translates into finding uh ∈ Uh such that∫

Ω

ω(ξ )∆uh ∆wh = −

∫
Ω

ω(ξ ) f ∆wh , ∀wh ∈ Uh . □

24 The rationale behind this mapping is that it generates a desired weight function ω(ξ ) in L∞(Ω ), while keeping an unconstrained Hilbert
setting for the control variable ξ ∈ X = L2(Ω ).
11



I. Brevis, I. Muga and K.G. van der Zee Computer Methods in Applied Mechanics and Engineering 402 (2022) 115716

p
w
c

t

f

e

T

P
s

T

P

R
P
l
w
c

R
(
k

a
f

w

Remark 3.3 (Weighted LSQ for Laplacian in Mixed Form). The above can be extended to least squares of mixed
roblems, e.g., the Laplacian as a first-order system. Let V := L2(Ω ) ×

(
L2(Ω )

)d and HB := H 1
0 (Ω ) × H (div;Ω ),

here B : HB → V is defined by B(u, q⃗ ) := (div q⃗, q⃗ − ∇u). Given g ∈ L2(Ω ), the problem B(u, q⃗ ) = (g, 0⃗ )
orresponds to the Poisson equation in mixed form with homogeneous Dirichlet boundary conditions.

Given a pair of conforming discrete subspaces Uh ⊂ HB , a pair of controls ξ = (ξ1, ξ2) ∈ L2(Ω )2
=: X, and

wo mappings ω1, ω2 : L2(Ω ) → L∞(Ω ), a possible weighted LSQ method is to find (uh, q⃗h) ∈ Uh such that∫
Ω

ω1(ξ1) div q⃗h div p⃗h +

∫
Ω

ω2(ξ2) (q⃗h − ∇uh) · ( p⃗h − ∇wh) =

∫
Ω

ω1(ξ1) f div p⃗h ,

or all (wh, p⃗h) ∈ Uh . □

To establish the connection with the general mixed system (4), we set r = ω(ξ )( f − Buh) so that (21) is
quivalent to:(

ϖ (ξ ) r, v
)

L2(Ω) +
(
Buh, v

)
L2(Ω) = ( f, v)L2(Ω), ∀v ∈ V, (22a)(

Bwh, r
)

L2(Ω) = 0, ∀wh ∈ Uh . (22b)

hus, in this case, the continuous bilinear forms a(ξ ; ·, ·) : V×V → R and b : HB ×V → R in (4) are given by

a(ξ ; v1, v2) :=
(
ϖ (ξ ) v1, v2

)
L2(Ω), ∀v1, v2 ∈ V = L2(Ω ), (23a)

b(w, v) := (Bw, v)L2(Ω), ∀w ∈ HB, ∀v ∈ V. (23b)

roposition 3.4 (Weighted Least Squares). Let ϖ : L2(Ω ) → L∞(Ω ) be a differentiable mapping, such that for
ome positive constants ϖmin, ϖmax, ϖ ′

∞
, and ϖL , the application ϖ (·) satisfies

• ϖmin ≤ ϖ (ξ ) ≤ ϖmax, for all ξ ∈ L2(Ω );
• ∥ϖ ′(ξ )∥L(L2(Ω);L∞(Ω)) ≤ ϖ ′

∞
, for all ξ ∈ L2(Ω );

• ∥ϖ ′(ξ1) − ϖ ′(ξ2)∥L(L2(Ω);L∞(Ω)) ≤ ϖL∥ξ1 − ξ2∥L2(Ω), for all ξ1, ξ2 ∈ L2(Ω ).

hen, the following statements hold true:

(i) The bilinear forms in (23) satisfy the inf − sup conditions (14), and thus the weighted least squares
problem (22) is well-posed.

(ii) The state operator Sh(·) (= uh) of the problem (22) is uniformly bounded on X = L2(Ω ) and differentiable.
(iii) The derivative S′

h(·) is uniformly bounded on X = L2(Ω ) and Lipschitz continuous. □

roof. See Appendix A.6 ■

emark 3.5 (Neural Control of Weighted Least Squares). Proposition 3.4 guarantees that the conditions of
ropositions 2.9 and 2.11 are satisfied, hence Corollary 2.12 applies to the neural optimization of the above weighted

east squares formulation. In particular, this means that it can be applied to the PDEs in Examples 3.1 and 3.2 (and
ith minor modifications also to the setting in Remark 3.3), provided the weight ϖ (ξ ) satisfies the three nontrivial

onditions in Proposition 3.4. The next two remarks discuss this in further detail.

emark 3.6 (Suitable Weight Functions: Integral Operators). A general way to obtain a weight function ϖ (ξ )
= 1/ω(ξ )) is when the mapping ϖ : L2(Ω ) → L∞(Ω ) is an integral operator. Indeed, given a kernel function
: Ω × Ω → R, and differentiable real functions f, g : R → R, we can define

[ϖ (ξ )](·) = f
(∫

Ω

k(·, y) g
(
ξ (y)

)
dy
)

, ∀ξ ∈ L2(Ω ). (24)

There are several options to obtain a well-defined expression (24). For instance, we can ask f to be bounded
nd k(x, ·)g(ξ (·)) ∈ L1(Ω ), for all x ∈ Ω . Moreover, if we want to obtain Gâteaux differentiability of ϖ , then the
ollowing expression has to be well-defined for any ξ, η ∈ L2(Ω ):[

ϖ ′(ξ )
]
η = f ′

(∫
Ω

k(·, y) g
(
ξ (y)

)
dy
)∫

Ω

k(·, y) g′(ξ (y)) η(y) dy,

hich additionally requires k(x, ·) g′
(
ξ (·)

)
∈ L2(Ω ), for each x ∈ Ω .
12
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Let us describe a fundamental example for ϖ (ξ ) that satisfies the assumptions in Proposition 3.4. Consider a
positive constant M > 0 and the sigmoid function σ (s) = 1/(1 + e−s). Let χBr be the characteristic function of a

all Br ⊂ Ω of radius r > 0 centered at the origin. Then define

[ϖ (ξ )](x) = 1 + Mσ

(
1

|Br |

∫
Ω

χBr (y − x) ξ (y) dy
)

, (25)

hich has the form of expression (24) for f (s) = 1 + Mσ (s), g(s) = s, and k(x, y) =
1

|Br |
χBr (y − x). To verify

he assumptions in Proposition 3.4, first observe that 1 ≤ ϖ (ξ ) ≤ 1 + M , for all ξ ∈ L2(Ω ). Second,[ϖ ′(ξ )
]
η


L∞(Ω) ≤
M
4

|Br |
−

1
2 ∥η∥L2(Ω) , ∀ξ, η ∈ L2(Ω ),

and thus, ∥ϖ (ξ )′∥L(L2(Ω);L∞(Ω)) ≤
M
4 |Br |

−
1
2 . And third, denoting the Lipschitz constant of σ ′(·) by Lσ ′ > 0,25 we

get ϖ ′(ξ1)η − ϖ ′(ξ2)η


L∞(Ω) ≤ M |Br |
−1Lσ ′∥ξ1 − ξ2∥L2(Ω)∥η∥L2(Ω) ,

or all ξ1, ξ2, η ∈ L2(Ω ), which implies that ϖ ′(·) is Lipschitz continuous. □

emark 3.7 (Practical Weight Functions: Approximation of Integral Operator). For simplicity, let us consider (25)
hen Ω ⊂ R. One can approximate the integral in (25) by (Gaussian) quadrature using points and weights

(xq , wq )}, with xq ∈ (−1, 1), for q = 1, 2, . . . , N . We then have

[ϖ (ξ )](x) = 1 + Mσ

(
1
2r

∫
Ω

χ(−r,r )(y − x) ξ (y) dy
)

(26)

≈ [ϖN (ξ )](x) := 1 + Mσ

(
1
2

N∑
q=1

wq ξ (x + r xq )
)

. (27)

n particular, for a single quadrature point (mid-point rule), we obtain the approximation

[ϖ (ξ )](x) ≈ [ϖ1(ξ )](x) = 1 + Mσ (ξ (x)) , (28)

hich is just a composition of functions, (1 + Mσ ) ◦ ξ (·), hence attractive in practical implementations.
We note however that ϖ1(·) does not satisfy the assumptions of Proposition 3.4,26 hence Corollary 2.12 cannot

e applied. Nevertheless, numerical experiments in Section 4 indicate that the use of ϖ1(ξ ) does not deteriorate
erformance. Therefore, we expect the result of Corollary 2.12 to be valid for a larger class of mappings ϖ (·). □

.2. Weighted Galerkin formulations

Consider a Hilbert space U = V on Ω ⊂ Rd and a continuous bilinear form b : V × V → R satisfying (for
ome constant β > 0) the following conditions

sup
v∈V

b(w, v)
∥v∥V

≥ β∥w∥V , ∀w ∈ V , (29a){
v ∈ V : b(w, v) = 0, ∀w ∈ V

}
= {0}. (29b)

Given f ∈ V∗, Babuška–Brezzi theory (see, e.g., [6]) ensures the existence of a unique u ∈ V such that

b(u, v) = f (v) , ∀v ∈ V . (30)

Now, given a mapping ω : X → W (requirements on the space W are clarified below), a control ξ ∈ X, and a
conforming discrete subspace Uh ⊂ V, consider the following weighted Galerkin discretization of (30):{

Find uh ≡ Sh(ξ ) ∈ Uh :

b
(
uh, ω(ξ )wh

)
= f

(
ω(ξ )wh

)
, ∀wh ∈ Uh .

(31)

25 Indeed, we can use the uniform bound of σ ′′(·).
26 Indeed, one can verify that ϖ ′

1(ξ )(η) =
(
1+ Mσ ′(ξ )

)
η, which is in general not in L∞(Ω ) for ξ, η ∈ L2(Ω ). Thus, the second assumption
in Proposition 3.4 is violated.

13
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Notice that one can directly connect (31) to the form stated in (2) by identifying

Vh(ξ ) = ω(ξ )Uh =

{
vh ∈ V

⏐⏐⏐ vh = ω(ξ )wh for some wh ∈ Uh

}
.

xample 3.8 (Weighted Galerkin for Laplacian). Let V = H 1
0 (Ω ) and f ∈ V∗

= H−1(Ω ). Consider a weight
unction ω(ξ ), where ω : L2(Ω ) → W 1,∞(Ω ) (hence W = W 1,∞(Ω )). Then, the weighted Galerkin formulation for
he Poisson equation with homogeneous Dirichlet boundary conditions is to find uh ∈ Uh ⊂ H 1

0 (Ω ) such that∫
Ω

∇uh ·
(
vh∇ω(ξ ) + ω(ξ )∇vh

)
=

⟨
f , ω(ξ )vh

⟩
, ∀vh ∈ Uh . □ (32)

The above example illustrates that W should be such that the product ω(ξ ) vh is well-defined in V, whenever
(ξ ) ∈ W and vh ∈ Uh ⊂ V. In fact, we shall assume that W is such that, for any w ∈ W, the multiplication
perator Mw : V → V, defined by

Mwv := wv, ∀v ∈ V ,

s a linear and continuous map.

emark 3.9 (Multiplication in H 1). Let V = H 1(Ω ) and W = W 1,∞(Ω ). Then, it is easy to see that Mw : H 1(Ω ) →

H 1(Ω ) is a linear and continuous map, for all w ∈ W 1,∞(Ω ).27 □

To establish the equivalence with the mixed formulation (4) (and thereby fit the weighted Galerkin formulation
ithin the abstract setting of Section 2), we furthermore let W ≡ W(Ω ) consist of measurable functions on Ω , and

ntroduce a particular subset of interest:

W+ :=

{
w ∈ W

⏐⏐⏐ ∃wmin > 0 for which wmin ≤ w(x) ≤
1

wmin
, ∀x ∈ Ω

}
⊂ W.

Notice that 1
w ∈ W+ iff w ∈ W+. We can then define the inverse of multiplication M−1

w := M 1
w

, which is justified
by the fact that

M−1
w (Mwv) = v = Mw(M−1

w v) , ∀v ∈ V. (33)

The adjoint operators of Mw and M−1
w will be denoted by M∗

w and M−∗
w respectively. Using the relations (33), it

is straightforward to see that the adjoint operators satisfy

M−∗

w (M∗

wℓ) = ℓ = M∗

w(M−∗

w ℓ) , ∀ℓ ∈ V∗. (34)

Next, we translate problem (31) into operator notation by means of the operator B ∈ L(V;V∗) such that
V ∋ w ↦→ Bw := b(w, ·) ∈ V∗. Notice that such an operator is invertible thanks to conditions (29). Problem (31)
translates into finding uh ≡ Sh(ξ ) ∈ Uh such that⟨

Buh, M−1
ϖ (ξ )vh

⟩
=

⟨
f, M−1

ϖ (ξ )vh

⟩
, ∀vh ∈ Uh .

Hence, by means of the adjoint relation we get⟨
M−∗

ϖ (ξ )( f − Buh), vh

⟩
= 0 , ∀vh ∈ Uh . (35)

Since B is invertible, so is B∗
: V → V∗ defined by V ∋ v ↦→ b(·, v) ∈ V∗. Therefore, there exists a unique r ∈ V

such that B∗r = M−∗

ϖ (ξ )( f − Buh) in V∗. Thus, multiplying this last equation by M∗

ϖ (ξ ), using (34), (35), and the
definition of r ∈ V, we arrive to the mixed form{⟨

B∗r, Mϖ (ξ )v
⟩
+ b(uh, v) = f (v), ∀v ∈ V, (a)

b(vh, r ) = 0, ∀vh ∈ Uh . (b) (36)

27 Indeed, ∥wv∥H1(Ω) ≤ C∥w∥W 1,∞(Ω) ∥v∥H1(Ω). It is also true for Hilbert spaces V ⊂ L2(Ω ) containing at most first-order (weak)
erivatives in L2(Ω ) (e.g., first-order graph spaces).
14
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Observe that (36) has the structure of (4) for V̂ := V = U, and
a(ξ ; r, v) :=

⟨
B∗r, Mϖ (ξ )v

⟩
= b

(
ϖ (ξ )v, r

)
.

The next proposition establishes the well-posedness of the weighted Galerkin formulation (31).

Proposition 3.10 (Weighted Galerkin Formulation). Let ω : X → W. Assume that for some positive function
αh : X → R, the continuous bilinear form b : V × V → R satisfies the discrete inf − sup condition

sup
vh∈Uh

b(wh, ω(ξ )vh)
∥vh∥V

≥ αh(ξ )∥wh∥V , ∀wh ∈ Uh , ∀ξ ∈ X . (37)

hen, the following statements hold true:

(i) For any f ∈ V∗ and ξ ∈ X, problem (31) is well-posed.
(ii) If there exist uniform constants α > 0 and ω∞ > 0 such that αh(ξ ) ≥ α and ∥ω(ξ )∥W ≤ ω∞ for all ξ ∈ X,

then the solution uh ≡ Sh(·) to problem (31) is uniformly bounded on X.
(iii) Additionally, if ω(·) is differentiable, then Sh(·) is also differentiable. Moreover, if ω′(·) is uniformly bounded

and Lipschitz-continuous, then S′

h(·) is also uniformly bounded and Lipschitz-continuous. □

Proof. See Appendix A.7. ■

Remark 3.11 (Neural Control of Weighted Galerkin). Proposition 3.10 guarantees that the conditions of
Propositions 2.9 and 2.11 are satisfied, hence Corollary 2.12 applies to the neural optimization of the above weighted
Galerkin formulation. □

Remark 3.12 (Inconvenient Condition for Weighted Galerkin). While for the weighted least squares method
the conditions on the weight are explicit (recall Proposition 3.4), for weighted Galerkin the condition (37) is
problem-dependent. This is even true when (37) is replaced by the stronger condition of coercivity:

b
(
vh, ω(ξ )vh

)
≥ αh(ξ )∥vh∥

2
V , ∀vh ∈ Uh . (38)

A more detailed analysis of when (37) or (38) is satisfied in general requires further study and is outside of the
scope of this work. Indeed, for the examples in Remarks 3.13 and 3.14, satisfying (38) may require inconvenient
constraints on ξ . It is therefore much more convenient to have neural control of least squares formulations.
When the continuous setting of the PDE at hand does not fit a least squares formulation (as in the examples
in Remarks 3.13 and 3.14), instead of weighted Galerkin, we then recommend the use of (weighted) dual
minimal-residual formulations; see Section 3.3. □

Remark 3.13 (Weighted Galerkin for Laplacian: Nontrivial Stability). Let us illustrate the difficulty of satisfying
coercivity (38) with an elementary example for the Laplacian. Recall Example 3.8, and consider a 1-D setting,
taking Ω = (0, 1). Assume a Neumann boundary condition at x = 0 and a Dirichlet condition at x = 1. In that
case

V = H 1
0)(Ω ) :=

{
v ∈ H 1(Ω ) | v(1) = 0

}
,

b(u, wv) =

∫ 1

0
u′
(
v w′

+ w v′
)

dx . (39)

Assume Uh ⊂ V is a standard linear finite element space.
Take the weight function as w(x) = cx for any c > 0. Note that w(x) > 0 for all x ∈ (0, 1), hence this weight

seems harmless. However, for any vh ∈ Uh ⊂ V,

b(vh, wvh) = c
∫ 1

0
x (v′

h)2 dx + c
∫ 1

0
vh v′

h dx

= c
(∫ 1

x(v′

h)2 dx −
1
vh(0)2

)
(vh(1) = 0)
0 2
15
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Surprisingly, the right-hand side vanishes for, for example, the left-most half-hat function:

vh(x) =

{
1 −

x
h , x ∈ (0, h), with (h ≤ 1) ,

0 , otherwise .

This shows that coercivity (38) can not be satisfied in general without additional conditions on w.28

On the other hand, a condition on w can be found that ensures coercivity. We consider the general case for the
Laplacian, starting from the bilinear form in (32). First notice that, for any w ∈ W 1,∞(Ω ) such that w(x) ≥ wmin
for all x ∈ Ω ,

b(v, wv) ≥ wmin∥∇v∥
2
L2(Ω) − ∥∇w∥L∞(Ω)∥v∥L2(Ω)∥∇v∥L2(Ω)

≥
(
wmin − CΩ∥∇w∥L∞(Ω)

)
∥∇v∥

2
L2(Ω) ,

where a Poincaré inequality was used. Therefore, the constraint CΩ∥∇w∥L2(Ω) < wmin is sufficient to guarantee (38)
(and thereby (37)). Unfortunately, since w = ω(ξ ), such a condition translates into a constraint on ∇ξ , which may
be very inconvenient to impose in practice. □

Remark 3.14 (Weighted Galerkin for Advection: Surprising Stability). While weighted Galerkin may destabilize the
standard Galerkin method, as illustrated in Remark 3.13 for the Laplacian, for other PDEs, the addition of a weight
may also stabilize an otherwise unstable method. In both situations, stability does require a nontrivial condition on
the weight function.

Let us illustrate the stabilizing effect of weighted Galerkin for advection in 1-D for simplicity, i.e., the differential
equation u′

= f in Ω = (0, 1), and u(0) = 0, and the following weak form:

Find uh ∈ Uh : b(uh, wvh) := −

∫
Ω

uh (w vh)′ =
⟨
f , w vh

⟩
∀vh ∈ Uh ,

where Uh ⊂ H 1
0)(0, 1) :=

{
v ∈ H 1(0, 1) : v(1) = 0

}
and f is allowed to be rough, i.e., in [H 1

0)(0, 1)]∗.29 Note that
standard Galerkin has w(x) = 1 for x ∈ Ω , and fails to be coercive on H 1

0)(0, 1).
For weighted Galerkin, the left-hand side of (38) becomes in this case:

b(vh, wvh) = −

∫
Ω

w′ v2
h −

∫
Ω

vh w v′

h = −

∫
Ω

w′ v2
h +

∫
Ω

vh (w vh)′ + w(0) v2
h(0)

herefore,

b(vh, wvh) = −
1
2

∫
Ω

w′ v2
h +

1
2

w(0)v2
h(0) ,

which motivates to assume a (global) inverse inequality30:

∥vh∥
2
L2(Ω) ≥ Cinvh2

∥v′

h∥
2
L2(Ω) ∀vh ∈ Uh ,

and the following conditions on w:

w′(x) ≤ −
2Ĉ
h2 < 0 , ∀x ∈ Ω , and w(0) ≥ 0 , (40)

or some Ĉ > 0. Indeed, we then have coercivity (38) (and thereby (37)):

b(vh, wvh) ≥
Ĉ
h2

∫
Ω

v2
h ≥ CinvĈ

∫
Ω

(v′

h)2 .

The conclusion of Remark 3.13 applies here as well: Since w = ω(ξ ), condition (40) translates into a constraint
n derivatives of ξ , which may be very inconvenient to impose in practice. □

28 We note that this counterexample to coercivity also works for strictly positive weights on [0, 1], in the case of, for example,
quadratic finite elements: Let wmin > 0, and consider w(x) = wmin + cx , with c > 0 to be specified. Taking vh (x) =

1
2 (x − 1)2 yields

(vh , wvh ) = wmin
∫ 1

0 (v′

h )2 dx + c
(∫ 1

0 x (v′

h )2 dx −
1
2 vh (0)2)

=
1
24 (8wmin − c), which is zero for c =

1
8 wmin.

29 A similar analysis also applies to the stronger setting having bilinear form b(uh , w vh ) =
∫
Ω u′

h w vh , f ∈ L2(Ω ), and Uh ⊂ H1
0)(0, 1) :=

w ∈ H1(0, 1) : w(0) = 0
}
.

30 This holds for example when Uh is a quasi-uniform FE space. If quasi-uniformity does not hold, one can extend the analysis by
ssuming element-wise inverse inequalities.
16
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3.3. Weighted dual minimal residual formulations

In this section, we consider weighted minimal residual (MinRes) formulations. These are particularly useful if
he continuous setting of the PDE does not fit a weighted least squares formulation, that is, when the residual is not
n L2(Ω ). As examples, we consider the Laplacian in H 1

0 (Ω ), and weak advection–reaction with solution in L2(Ω ).
Let Uh ⊂ U and Vh ⊂ V be discrete subspaces, and assume:⎧⎪⎨⎪⎩

dim(Vh) > dim(Uh), (a)

∃ βh > 0 : inf
wh∈Uh

sup
vh∈Vh

b(wh, vh)
∥wh∥U∥vh∥V

≥ βh . (b)
(41)

For each ξ ∈ X, we consider an equivalent (weighted) inner product (·, ·)V,ξ on V, i.e., such that its induced norm

V ∋ v ↦→ ∥v∥V,ξ :=
√

(v, v)V,ξ

satisfies (15). The minimal-residual method that we consider is then: Given ξ ∈ X, find rh ∈ Vh and uh ≡ Sh(ξ ) ∈

h such that{(
rh, vh

)
V,ξ

+ b(uh, vh) = f (vh) , ∀vh ∈ Vh , (a)

b(wh, rh) = 0 , ∀wh ∈ Uh . (b)
(42)

his has the structure of (4) for V̂ := Vh and a(ξ ; r, v) := (r, v)V,ξ . Because (·, ·)V,ξ and ∥ · ∥Vh,ξ
depend on ξ , we

efer to the above as a weighted discrete-dual MinRes formulation.

xample 3.15 (Weighted Minres for Weak Advection–Reaction). Recall the advection–reaction PDE β ·∇u+cu = f
nd inflow boundary condition u|∂Ω−

= 0 of Example 3.1. Under suitable conditions on β and c, this admits the
ollowing well-posed weak formulation (see, e.g., [64,65]):

Find u ∈ U := L2(Ω ) :

∫
Ω

(
−u div(β v) + c u v

)
=
⟨
f , v

⟩
, ∀v ∈ V ,

here V := {v ∈ L2(Ω ) : β · ∇v ∈ L2(Ω ) and v|∂Ω+
= 0}, endowed with the norm ∥β · ∇(·)∥L2(Ω), f ∈ V∗, and

he outflow boundary is defined by

∂Ω+ :=
{

x ∈ ∂Ω : β(x) · n(x) > 0
}
.

Consider now a discrete trial/test pairing Uh/Vh satisfying (41), and a mapping ω : L2(Ω ) → L∞(Ω ) such that
(ξ ) is a positive weight function for all ξ ∈ L2(Ω ). A weighted discrete-dual MinRes formulation is then to find

rh, uh) ∈ Vh × Uh such that:∫
Ω

ω(ξ )(β · ∇rh)(β · ∇vh) +

∫
Ω

(
−uh div(βvh) + c u v

)
=
⟨
f , vh

⟩
, ∀vh ∈ Vh ,

−

∫
Ω

wh div(βrh) = 0 , ∀wh ∈ Uh . □

xample 3.16 (Weighted Minres for Poisson Equation). Consider f ∈ H−1(Ω ), a mapping ω : L2(Ω ) → L∞(Ω )
s in Example 3.15, and discrete subspaces Uh ⊂ Vh ⊂ H 1

0 (Ω ). A weighted discrete-dual MinRes formulation for
he Poisson equation with homogeneous Dirichlet boundary conditions is to find uh ∈ Uh and rh ∈ Vh such that∫

Ω

ω(ξ )∇rh · ∇vh +

∫
Ω

∇uh · ∇vh =
⟨
f , vh

⟩
, ∀vh ∈ Vh ,∫

Ω

∇wh · ∇rh = 0 , ∀wh ∈ Uh . □

As shown in [16, Theorem 4.1], the mixed formulation (42) is equivalent to minimizing the residual as measured
y a discrete-dual norm:

uh = arg min
wh∈Uh

(
sup

vh∈Vh

| f (vh) − b(wh, vh)|
∥vh∥Vh ,ξ

)
. (43)
17
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Proposition 3.17 (Weighted MinRes). Let the continuous bilinear form b : U × V → R and the pairing (Uh,Vh)
satisfy (41). Consider a parameterized set of equivalent inner-products

{
(·, ·)V,ξ : ξ ∈ X

}
, whose induced norms

∥ · ∥V,ξ satisfy (15) for some equivalence constants C1,ξ > 0 and C2,ξ > 0. Let A : X → L(V;V∗) be defined by
A(ξ )v := (v, ·)V,ξ ∈ V∗, for all ξ ∈ X and v ∈ V. Then, the following statements hold true:

(i) The mixed discrete formulation (42) is well-posed.
(ii) If there exist uniform constants C̃1 > 0 and C̃2 > 0 such that C1,ξ ≥ C̃1 and C2,ξ ≤ C̃2 for all ξ ∈ X, then

the solution uh ≡ Sh(·) to problems (42) and (43) is uniformly bounded on X.
(iii) Additionally, if A(·) is differentiable, then Sh(·) is also differentiable. Moreover, if A′(·) is uniformly bounded

and Lipschitz-continuous, then also S′

h(·) is uniformly bounded and Lipschitz continuous. □

roof. See Appendix A.8. ■

emark 3.18 (Neural Control of Weighted MinRes). Proposition 3.17 guarantees that the conditions of
ropositions 2.9 and 2.11 are satisfied, hence Corollary 2.12 applies to the neural optimization of the above weighted
inimal-residual formulation. In particular, this means that it can be applied to the PDEs in Examples 3.15 and

.16, provided the weight ω(ξ ) is such that the induced norm ∥ · ∥V,ξ and operator A(ξ ) (defined in Proposition 3.17)
atisfy the stated nontrivial conditions. It turns out that these conditions hold true when ω(·) satisfies the same three
ssumptions as for weighted least squares; recall Proposition 3.4 (and the subsequent Remarks 3.5, 3.6 and 3.7).
he next remark demonstrates this in further detail. □

emark 3.19 (Weighted H 1(Ω ) Inner-Product). In this remark we show that the conditions in Proposition 3.17
old when (·, ·)V,ξ is a suitably-weighted H 1 inner-product.

Consider a differentiable mapping ω : L2(Ω ) → L∞(Ω ), such that, for ωmax > ωmin > 0 and ω′
∞

, ωL > 0,

• ωmin ≤ ω(ξ ) ≤ ωmax, for all ξ ∈ L2(Ω );
• ∥ω′(ξ )∥L(L2(Ω);L∞(Ω)) ≤ ω′

∞
, for all ξ ∈ L2(Ω );

• ∥ω′(ξ1) − ω′(ξ2)∥L(L2(Ω);L∞(Ω)) ≤ ωL∥ξ1 − ξ2∥L2(Ω), for all ξ1, ξ2 ∈ L2(Ω ).

he construction of such mappings was discussed in Remarks 3.6 and 3.7.
Given ξ ∈ L2(Ω ), consider the weighted H 1(Ω ) inner-product

(v1, v2)H1,ξ :=

∫
Ω

ω(ξ )∇v1 · ∇v2 +

∫
Ω

v1v2.

bserve that

min{1, ωmin}∥v∥
2
H1 ≤ (v, v)H1,ξ ≤ max{1, ωmax}∥v∥

2
H1 , ∀v ∈ H 1(Ω ).

ence, statement (ii) of Proposition 3.17 is satisfied with C̃1 =
√

min{1, ωmin} and C̃2 =
√

max{1, ωmax}.
On the other hand, given ξ ∈ L2(Ω ), the operator A(ξ ) is defined by the following action:

A(ξ )v =
(
ω(ξ )∇v, ∇(·)

)
L2(Ω) + (v, ·)L2(Ω) , ∀v ∈ H 1(Ω ).

herefore, is easy to see that A(·) satisfies the statement (iii) of Proposition 3.17. Indeed, observe that A(·) is
ifferentiable and [A′(ξ )η]v =

(
[ω′(ξ )η]∇v, ∇(·)

)
L2(Ω) for any direction η ∈ L2(Ω ). Moreover, A′(·) is uniformly

ounded and Lipschitz-continuous, since ω′(·) is uniformly bounded and Lipschitz continuous.
Of course, for any v1, v2 ∈ H 1(Ω ), we could have chosen the following equivalent inner-products, for which

ne can prove similar results:

(v1, v2)H1,ξ :=
(
∇v1, ∇v2

)
L2(Ω) +

(
ω(ξ )v1, v2

)
L2(Ω) ,

(v1, v2)H1,ξ :=
(
ω(ξ )∇v1, ∇v2

)
L2(Ω) +

(
ω(ξ )v1, v2

)
L2(Ω) .

lso, for H 1
0 (Ω ), one can consider

(
ω(ξ )∇v1, ∇v2

)
L2(Ω), as in Example 3.16. Finally, for the graph space V defined

n Example 3.15, one can consider the weighted inner product
(
ω(ξ ) β · ∇v1 , β · ∇v2

)
L2(Ω) provided ∥β · ∇(·)∥L2(Ω)
s a norm on V. □

18
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4. Numerical results

In this section, we consider numerical examples for the advection–reaction PDE in 1-D and 2-D. We consider
oth weighted least squares (Example 3.1) and weighted residual minimization (Example 3.15).31 We construct

mappings ϖ, ω : L2(Ω ) → L∞(Ω ) as explained in Remarks 3.6 and 3.7.

.1. Quantities of interest (point values)

The examples in this section aim to incorporate knowledge of data, in particular, the imposition of the exact
alue of the solution at some point in the domain.

.1.1. Weighted least squares
Let Ω = (0, 1) ⊂ R and c > 0. Consider the advection–reaction problem{

u′
+ c u = c in Ω ,

u(0) = 0 .
(44)

ince the exact solution to (44) is u(x) = 1 − exp(−cx), we observe that u(x) → 1 when r → +∞, for all x > 0.
ence, for c > 0 sufficiently large, the exact solution has a boundary layer in the neighborhood of x = 0.
Let Uh ⊂ H 1

(0(Ω ) = {w ∈ H 1(Ω ) : w(0) = 0} be the lowest-order conforming subspace of continuous piecewise
linear functions on the uniform mesh of N elements of size h = 1/N . We use the weighted least squares method
rom (21), with practical weight function

ω
(
ξ (x)

)
:= 1 +

M
1 + exp(−ξ (x))

, M > 0, (45)

hich fits (28) in Remark 3.7 with

σ (·) =
1

1 + exp(−(·))
. (46)

It is well known that the standard least squares solution (i.e., the one with ω(ξ ) ≡ 1) will exhibit overshoots
around the boundary layer. Aiming to remedy this situation, and assuming prior knowledge of the value that the
exact solution takes at x = h, we choose a cost functional that measures the distance to the exact solution at the
point value x = h. In fact, we consider

j(ξ ) :=
1
2

(
u(h) − uh,ξ (h)

)2
+

α

2
∥ξ∥

2
L2 , α ≥ 0.

Let M8 be the set of neural network functions with one hidden layer, 8-neurons, and ReLU activation, i.e.,

M8 :=

{
η8(x) =

8∑
j=1

c j ReLU(W j x + b j )
⏐⏐⏐ c j , W j , b j ∈ R

}
. (47)

e then consider the neural optimization of j(·); see Definition 2.2.
For our first experiment, we choose a finite element space Uh consisting of N = 16 elements of size h = 1/16.

e set c = 160 and α = 0. We compute least squares approximations (1-D version of formulation in Example 3.1)
or several configurations of the weight function (45), varying the M constant. Fig. 1 (left) shows that the weight
eeds to have enough room for variability (M = 100) in order to pull down the cost functional to zero (see also
he associated weight functions at the right panel). Fig. 1 (middle) shows that our strategy is effective in reducing
he overshoots of the finite element solution.

For the second experiment of this section, we fix M = 100 and we investigate variations of the α-parameter.
ig. 2 (left) suggest that the L2-norm of ξ has to be able to reach high values (case when α = 0) in order to
ull down to zero the cost functional. This is also related to allowing the weight to have more variability. Fig. 2
middle) shows the impact of α reducing the overshoots of the finite element solution (the smaller α, the better).
he associated weight functions are depicted in Fig. 2 (right).

31 Weighted Galerkin is not considered in view of Remark 3.12.
19
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Fig. 1. Point value control for weighted least squares. Minimization of the cost functional for several values of M (left). Overshoot control
of the discrete solutions (middle). Associated weight functions (right).

Fig. 2. Point value control for weighted least squares. Minimization of the cost functional for several values of α (left). Overshoot control
of the discrete solutions (middle). Associated weight functions (right).

For the third experiment, we investigate the use of the integral operator (26) for the mapping ω : L2(Ω ) →

L∞(Ω ), with σ (·) given by (46). We use a sufficiently large number of quadrature points (i.e., (27) with N = 4),
hen computing the integral in ω(ξ ). We vary the kernel width r , and are particularly interested in r → 0, upon
hich ω(ξ ) converges to the practical weight function (45) as used above. Fig. 3 shows a very minor effect of r on

he results (left and middle of Fig. 3). There is only a minor deviation visible for the result of ω(ξ8) with r = 10−1,
hich is attributed to the use of a tolerance in the optimizer. Furthermore, the results for the neural networks

hemselves (right of Fig. 3) seem to converge upon r → 0 (note that the large variations in ξ are not at all noticed
n the discrete solutions, because ω(ξ8) enters the method).

Finally, we study the convergence upon varying the number of quadrature points, i.e., N = 1, 2, 3, and 4 in (27).
ecall that N = 1 coincides with the practical weight function (45) as used above. We fix the kernel width
t r = 10−3 (similar results (not shown) are obtained for other values of r ). Fig. 4 shows again a very minor
ependence on N . The results for the discrete solutions (left) and for ω(ξ8) (middle) are all nearly the same, while
here is very quick converge for ξ8 itself as N → 1.

These latter numerics show that practical weight functions perform equally well compared to the integral
perators as covered by theory. This supports our conjecture stated at the end of Remark 3.7, that the results of the
heory may apply to practical weight functions. (The remainder of the numerical experiments are performed with
ractical weight functions.)

.1.2. Weighted MinRes
This experiment has exactly the same configuration of the previous experiment in Section 4.1.1, except that Sh(ξ )

s computed with the discrete-dual minimal residual methodology. First, the approximation (trial) space U ⊂ L2(Ω )
h
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Fig. 3. Point value control for weighted least squares using an integral operator for the weight function (approximated with 4 Gaussian
quadrature points (GP)). Convergence study as kernel r → 0. Discrete solutions (left). Associated weight functions (middle). Associated

eural network functions (right).

Fig. 4. Point value control for weighted least squares using an integral operator for the weight function (with fixed kernel width r = 10−3).
onvergence study for number of Gaussian quadrature points (GP). Discrete solutions (left). Associated weight functions (middle). Associated
eural network functions (right).

orresponds to the lowest-order space of piecewise constants functions over the mesh. Additionally, we make use of
discrete test space Vh ⊂ H 1

0)(Ω ) := {v ∈ H 1(Ω ) : v(1) = 0} consisting in conforming piecewise linear functions
ver the refined uniform mesh of 2N = 32 elements. The weighted discrete-dual residual minimization formulation
hat computes Sh(ξ ) is as follows (1-D version of formulation in Example 3.15): Find rh ∈ Vh and uh ≡ Sh(ξ ) ∈ Uh

uch that⎧⎪⎪⎨⎪⎪⎩
∫ 1

0
ω(ξ )r ′

hv
′

h −

∫ 1

0
uh(v′

h − c vh) = c
∫ 1

0
vh , ∀vh ∈ Vh ,

−

∫ 1

0
wh(r ′

h − c rh) = 0 , ∀wh ∈ Uh .

(48)

As in the previous Section 4.1.1, the computation of Sh is carried out for several configurations of the weight
unction ω(ξ ) (see (45)), varying its M constant. Fig. 5 (left) shows that larger values of M allow to pull down
aster the cost functional in the training procedure (see also the associated weight functions at the right panel).

ig. 5 (middle) shows how the overshoots of the finite element solutions are controlled.
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Fig. 5. Point value control for weighted discrete-dual residual minimization. Optimization of the cost functional for several values of M
(left). Overshoot control of the discrete solutions (middle). Associated weight functions (right).

Fig. 6. Point value control for weighted discrete-dual residual minimization. Optimization of the cost functional for several values of α

(left). Overshoot control of the discrete solutions (middle). Associated weight functions (right).

The second experiment investigates variations of the α-parameter. Fig. 6 (left) suggests that the smaller α, the
better for faster minimization of j(·). Fig. 6 (middle) shows the impact of α reducing the overshoots of the finite
element solution; while Fig. 6 (right) exposes the associated weight functions.

4.2. Convergence of artificial neural networks

In this section, we study the quasi-optimal convergence behavior expected from theory as neural networks become
larger.

Let Ω := (0, 1) ⊂ R and consider{
u′

= f in Ω ,

u(0) = 0 ,
(49)

with f (x) := π sin(πx). Notice the exact solution to (49) is u(x) = 1 − cos(πx).
Let H 1

(0(Ω ) = {w ∈ H 1(Ω ) : w(0) = 0} and let Uh ⊂ H 1
(0(Ω ) be the finite element subspace of continuous

piecewise linear functions on a uniform mesh consisting of N elements of size h = 1/N . We consider the weighted
22
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Fig. 7. As n → +∞, convergence of: ω(ξn) → ω̄ (left); ξn → ξ̄ (middle); and ∥ξn − ξ̄∥L2 → 0 (right).

east squares formulation (1-D version of Example 3.1):⎧⎨⎩
Find uh ≡ Sh(ξ ) ∈ Uh :∫ 1

0
ω(ξ )

(
f − u′

h

)
w′

h = 0 , ∀wh ∈ Uh ,
(50)

here the weight function is similar as used in Section 4.1.1:

ω
(
ξ (x)

)
:=

1
2

+
2

1 + exp(−ξ (x))
. (51)

Let Mn be the set of neural network functions with one hidden layer, n-neurons, and ReLU activation, i.e.,

Mn :=

{
ηn(x) =

n∑
j=1

c j ReLU(W j x + b j )
⏐⏐⏐ c j , W j , b j ∈ R

}
.

onsider the cost functional

j(ξ ) :=
1
2

∫ 1

0
ω̄(x)

(
f (x) − u′

h,ξ (x)
)2

dx , (52)

where we choose ω̄(x) as smooth function, i.e.,

ω̄(x) = 1 + sin(πx/2) ,

to allow for optimal convergence behavior as n → ∞. Indeed, since the minimization of the cost functional and
the discrete problem (50) are both weighted least squares formulations of the same problem (49), we expect that
ω(ξn(·)) → ω̄(·) as n → ∞, which is confirmed in Fig. 7 (left). Additionally, solving for ξn we get (see Fig. 7
middle))

ξn(x) −→ ξ̄ (x) = − ln
(

2
sin(πx/2) + 1/2

− 1
)

, as n → +∞.

To initialize the minimization algorithm, we have chosen ξ (0)
n ∈ Mn as the neural network function that (linearly)

nterpolates ξ̄ on a uniform mesh of n −1 subintervals of Ω (i.e., having n uniformly distributed nodal points). The
pace Uh has been fixed to N = 16 uniform elements.

The error ∥ξ̄ −ξn∥L2 is depicted in Fig. 7 (right), which confirms quasi-optimal convergence behavior; indeed the
symptotic rate is O(n−1/2), which is expected for our single-hidden-layer ReLU neural network approximations
continuous piecewise-linear polynomials).

.3. L1-based controls

We now consider numerical experiments that incorporate a stabilization mechanism. We note that the employed
ost functionals use an L1-type norm, and hence do not fit within the currently presented theory. However, our
umerics show that desirable quasi-minimizers have been computed.
23
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Fig. 8. Total variation control. Minimization of the cost functional for several values of α (left). Overshoot control of the discrete solutions
(middle). Associated weight functions (right).

4.3.1. Minimizing the total variation
In this section we work exactly with the same problem of Section 4.1.1, but we introduce a modification in

the cost functional. Instead of minimizing the distance to the exact solution of a particular point value (supervised
training), we take an unsupervised approach by minimizing the total variation of uh (i.e., the L1-norm of u′

h).32

Hence, we consider the cost functional:

j(ξ ) :=
u′

h,ξ


L1 +

α

2
∥ξ∥

2
L2 , α ≥ 0.

or a fixed value of M = 100, Fig. 8 (left) shows the behavior of the cost functional for different values of α,
indicating that this value has to be chosen small enough to speed up the minimization process. Fig. 8 (middle)
shows the quality of overshoot reduction for several values of α; while Fig. 8 (right) exposes the associated weight
functions.

4.3.2. Minimizing the L1 residual (1D domain)
This experiment is inspired by the example of Guermond [8, Section 4.6.2]. As usual Ω = (0, 1) ⊂ R. The idea

is to interpret the following overconstrained problem:{
u′

+ u = 1 in Ω ,

u(0) = u(1) = 0 ,
(53)

as the limiting case of a vanishing viscosity regime (i.e., an equivalent problem having an extra −εu′′ term that
vanishes as ε → 0+). Of course, the exact solution that we want to approach (u(x) = 1 − e−x ) only satisfies
one of the boundary conditions. However, any discrete solution in a H 1

0 (Ω )-conforming space must satisfy both
constraints. In this case, it is well-known that the standard least squares solution to this problem does not deliver
satisfactory results. To remedy this drawback, we propose a cost functional that mimics the L1 residual minimization
as proposed in [8]. Thus, our (unsupervised) cost functional will be

j(ξ ) :=
 1 − uh,ξ − u′

h,ξ  
residual


L1 +

α

2
∥ξ∥

2
L2 , α ≥ 0.

We consider the weighted least squares formulation for uh,ξ , solved on a uniform mesh of N = 8 elements.
For a fixed M = 1000 constant in the weight function (45), we compute the discrete solution for several values of
the α-parameter. Large values of α allow for small values of ∥ξ∥L2 , and thus the weight becomes almost constant
close to the standard least squares approach). On the other hand, small values of α allow for more variability of
he weight (see Fig. 9, right), and thus, we observe that we can recover a discrete solution mimicking the vanishing
iscosity case (see Fig. 9, left).

32 It is well-known that minimizing the total variation translates into a reduction of overshoots; see, e.g., [66].
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Fig. 9. Discrete weighted least squares solutions (left) and associated weight functions (right), with L1 residual minimization control, for
several values of the α-parameter.

Fig. 10. Overconstrained weighted least squares for advection–reaction, with L1 residual minimization control. From left to right: exact
solution; standard overconstrained least-squares, controlled weighted least-squares, and associated weight function.

4.3.3. Minimizing L1 residual (2D domain)
This is the two-dimensional version of the previous example in Section 4.3.2. Let Ω = (0, 1)2

⊂ R2. For an
advection field β⃗ = (1, 0), we consider the over-constrained problem:{

β⃗ · ∇u + u = 1 in Ω ,

u = 0 on {(x1, x2) ∈ ∂Ω : x1 = 0 or x1 = 1} .
(54)

We approach (54) using a coarse (and over-constrained) finite element space of piecewise linear functions of the
form

Uh ⊂ {w ∈ H 1
0 (Ω ) : w(0, x2) = w(1, x2) = 0, ∀x2 ∈ [0, 1]}.

We use the weighted least squares method given in Example 3.1 using the weight (45) with M = 1000. On the
other hand, the cost functional j(·) for this case is defined as

j(ξ ) :=
1 − uh,ξ − β · ∇uh,ξ


L1 +

α

2
∥ξ∥

2
L2 , α ≥ 0.

The discrete neural network space where we minimize j(·) will be M8 (see (47)). Results for the α = 0 case are
depicted in Fig. 10. We observe a strong correlation with the results in [8, Figure 9].

5. Concluding remarks

The objective of this work was to introduce and analyze the neural optimization of finite element methods. We
proposed a notion of quasi-minimization to enable the consideration of neural network functions as control variables,
and proved a general theorem on the existence and convergence of quasi-minimizers. We applied our theory to the
optimization of least squares, Galerkin, and minimal residual finite element methods, where the neural network

function entered as a suitable weight within the discrete weak forms.
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The notion of quasi-minimization is critical, since sets of neural-network functions are generally not closed.
f instead, one aims to minimize over a (closed) linear space of classical approximations,33 the standard notion
f minimization is adequate. We have been motivated to explore the use of neural networks as these generate
new class of functions that have shown recent success in situations where classical approximations may not
ork (e.g., high-dimensional problems [2]). Although there are many open questions (e.g., those related to

obust and efficient optimization algorithms, hence training of the neural network), there is currently a growing
iterature providing deeper mathematical understanding, proposing new algorithms and developing accessible
elevant software.

While this paper has explored the neural optimization of finite element methods from a mostly theoretical
erspective, there remain many avenues that require further work to enable a practical methodology. For example,
erivatives with respect to the trainable parameters would need to be computed to utilize a gradient-based algorithm,
nd further work would be required to better understand the role of parameters used within the methodology (such
s α in (6), M in (45) and r in (25)), and the approximation of integral-operator weight functions by practical
lternatives.

Furthermore, the idea of a weighted Galerkin formulation, while straightforward, exposes itself to instability,
nless the involved weight function is suitable constrained. Optimizing methods to control their stability is an
nteresting avenue for further research. On the other hand, weighted least squares and weighted residual minimization
re without such cumbersome constraints, and seem to be the only (conforming) weighted formulations for which
tability is guaranteed.
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Appendix. Proofs

A.1. Proof of Theorem 2.A

(i) Strong convexity of j implies coercivity, i.e., j(ξ ) → +∞ when ∥ξ∥X → +∞. Moreover, j is continuous
in the strong topology since it is differentiable. Additionally, we know that convexity plus continuity implies
that j is weakly lower semicontinuous (see, e.g. [67, Corollary 3.9]). We thus satisfy all the hypothesis of the
theorem of existence of minimizers for coercive and sequentially weakly lower semicontinuous functionals [68,
Theorem 9.3-1]. Moreover, strong convexity ensures that such a (global) minimizer ξ̄ ∈ X is unique. Besides,
global differentiability of j implies the first-order necessary optimality condition j ′

(
ξ̄
)

= 0.

33 That is, those spanned by a basis such as a finite element space, b-spline approximations, etc.
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(ii) We know that j has a global lower bound. Thus, by the infimum property, for any δn > 0 there must exist
ξ̄n ∈ Mn such that

j(ξ̄n) < inf
ηn∈Mn

j(ηn) +
δn

2
. (55)

(iii) Let ξ̄ ∈ X be the global minimizer and let ξ̄n ∈ Mn satisfy (7). By characterization of strong convexity, we
have for all t ∈ (0, 1)

j
(
ξ̄
)

≤ j
(
t ξ̄ + (1 − t)ξ̄n

)
≤ t j

(
ξ̄
)
+ (1 − t) j

(
ξ̄n
)
−

γ

2
t(1 − t)∥ξ̄ − ξ̄n∥

2
X .

Thus, for all t ∈ (0, 1) and ηn ∈ Mn we get

γ

2
t∥ξ̄ − ξ̄n∥

2
X ≤ j

(
ξ̄n
)
− j

(
ξ̄
)

< j
(
ηn
)
− j

(
ξ̄
)
+

δn

2
. (56)

On the other hand, using the facts that j ′ is L-Lipschitz and j ′
(
ξ̄
)

= 0, we deduce [68, cf. proof of Thm. 7.7-3,
page 488]

j
(
ηn
)
− j

(
ξ̄
)

=

∫ 1

0

⟨
j ′
(
sηn + (1 − s)ξ̄

)
, ηn − ξ̄

⟩
ds

=

∫ 1

0

⟨
j ′
(
sηn + (1 − s)ξ̄

)
− j ′

(
ξ̄
)
, ηn − ξ̄

⟩
ds

≤ L∥ηn − ξ̄∥
2
X

∫ 1

0
s =

L
2

∥ηn − ξ̄∥
2
X. (57)

Hence, combining (56) with (57), taking the limit when t → 1 and the infimum over all ηn ∈ Mn , we get the
stimate

γ ∥ξ̄ − ξ̄n∥
2
X < L inf

ηn∈Mn

ξ̄ − ηn
2
X + δn,

rom which (13) is deducted.

.2. Proof of Theorem 2.B

We proceed to prove each one of the statements.

(i) Since Z and X are a Hilbert spaces, the quadratic maps Z ∋ z ↦→
1
2∥z∥2

Z and X ∋ ξ ↦→
1
2∥ξ∥

2
X are

differentiable. On the other hand, Sh and Q are also differentiable (Q is linear), and thus j1 is differentiable
by means of the chain rule (see, e.g. [56, Theorem 2.20]). Moreover,

j ′

1(η)(·) =
(

QSh(η) , QS′

h(η)(·)
)
Z =

(
S′

h(η)⋆ Q⋆ QSh(η) , ·
)
X.

Thus, we conclude that j1 is Lipschitz since j ′

1(η) − j ′

1(ζ )

X∗ =

S′

h(η)⋆ Q⋆ QSh(η) − S′

h(ζ )⋆ Q⋆ QSh(ζ )

X

≤
S′

h(η)⋆ Q⋆ Q
(
Sh(η) − Sh(ζ )

)
X

+
(S′

h(η) − S′

h(ζ )
)⋆ Q⋆ QSh(ζ )


X

≤ ∥Q∥
2
L(U;Z)

(
M2

S′ + L S′ MS
)
∥η − ζ∥X ,

where we have used the mean value theorem together with

• the boundedness of S′

h , with bounding constant MS′ ;
• the Lipschitzness of S′

h , with Lipschitz constant L S′ ;
• the boundedness of Sh , with bounding constant MS .

Finally, by making L1 := ∥Q∥
2
L(U;Z)

(
M2

S′ +L S′ MS
)
, it is straightforward to see that L1 +α will be a Lipschitz

′
constant for j .
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(ii) Just observe that⟨
j ′(η) − j ′(ζ ), η − ζ

⟩
X∗,X =

⟨
j ′

1(η) − j ′

1(ζ ), η − ζ
⟩
X∗,X + α∥η − ζ∥

2
X

≥ (−L1 + α)∥η − ζ∥
2
X .

Thus, j is strongly convex whenever α > 0 is sufficiently large.

A.3. Proof of Proposition 2.9

The statements (i) and (ii) are classical from Babuška–Brezzi theory (see, e.g., Ern & Guermond [6, Theorem
49.13]). To prove statement (iii), first observe that

sup
v2∈K̂

a(ξ ; v1, v2)
∥v1∥V∥v2∥V

≥
a(ξ ; v1, v1)
∥v1∥V∥v1∥V

≥
a(ξ ; v1, v1)

∥v1∥V,ξ∥v1∥V,ξ

(C1,ξ )2
= (C1,ξ )2,

which confirms αh = (C1,ξ )2 in (14a). For the a priori bound, since a(ξ ; ·, ·) is an equivalent inner-product on V̂,
consider ẑ ∈ V̂ such that

a(ξ ; ẑ, v̂) = b(uh, v̂), ∀v̂ ∈ V̂.

Hence,

sup
v̂∈V̂

b(uh, v̂)
∥v̂∥V,ξ

= sup
v̂∈V̂

a(ξ ; ẑ, v̂)
∥v̂∥V,ξ

=
a(ξ ; ẑ, ẑ)
∥ẑ∥V,ξ

=
b(uh, ẑ)
∥ẑ∥V,ξ

. (58)

Moreover,

a(ξ, r̂ , ẑ) = a(ξ, ẑ, r̂ ) = b(uh, r̂ ) = 0. (59)

Next, observe that

∥uh∥U ≤
1
βh

sup
v̂∈V̂

b(uh, v̂)
∥v̂∥V

≤
C2,ξ

βh
sup
v̂∈V̂

b(uh, v̂)
∥v̂∥V,ξ

(by (14) and (15))

=
C2,ξ

βh

b(uh, ẑ)
∥ẑ∥V,ξ

=
C2,ξ

βh

(
f (ẑ) − a(ξ, r̂ , ẑ)

)
∥ẑ∥V,ξ

(by (58) and (4))

≤
C2,ξ

C1,ξ

1
βh

f (ẑ)
∥ẑ∥V

, (by (15) and (59))

from which (16) can be easily deducted.

A.4. Proof of Proposition 2.10

Assumption (20) implies two important facts: A(ξ )∗ is surjective, and the range of A(ξ ) is closed (see,
.g., [67, Theorem 2.21]). Therefore, by Banach closed range theorem, the range of A(ξ ) must be characterized
y
(
ker A(ξ )∗

)⊥.
Assume that Eq. (2) is satisfied. Hence, f − Buh ∈ Vh(ξ )⊥. On another hand, observe that ker A(ξ )∗ ⊂ Vh(ξ ).

n particular, f − Buh ∈ (ker A(ξ )∗)⊥, which means that f − Buh is in the range of A(ξ ). Thus, there exists an
∈ V̂ such that A(ξ )r = f − Buh , which is Eq. (18a). Next, given any wh ∈ Uh , there must be vh ∈ V̂ such that

A(ξ )∗vh = Bwh (by surjectivity of A(ξ )∗). Hence, vh ∈ Vh(ξ ) by definition of this last space (see (19)). Besides,⟨
r, Bwh

⟩
=
⟨
r, A(ξ )∗vh

⟩
=
⟨
A(ξ )r, vh

⟩
=
⟨
f − Buh, vh

⟩
= 0,

hich proves Eq. (18b).
Conversely, let (r, uh) ∈ V̂×Uh solve the state problem (4), or equivalently (18) in operator form. Testing with

lements in vh ∈ Vh(ξ ), we get

⟨ f, vh⟩ = ⟨A(ξ )r, vh⟩ + ⟨Buh, vh⟩ (by (18a))⟨
∗
⟩

= r, A(ξ ) vh + ⟨Buh, vh⟩ (using the adjoint property)
28
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= ⟨r, Bwh⟩ + ⟨Buh, vh⟩ (by definition of Vh(ξ ))

= ⟨Buh, vh⟩ . (by (18b))

Thus, (2) is satisfied.

A.5. Proof of Proposition 2.11

Let us start proving statements (i), (ii), and (iii) at the same time.
Recall the definition of the kernel space K̂ := ker B∗

⊂ V̂. For any ξ ∈ X, consider the restricted operator
A(ξ )

⏐⏐
K̂ : K̂ → K̂∗, as well as the restriction f

⏐⏐
K̂ ∈ K̂∗. Observe that the inf − sup condition (14) ensures that

A(ξ )
⏐⏐
K̂ is a boundedly invertible linear operator. Thus, given a direction η ∈ X and t ∈ R, from the first equation

f the mixed system (18) (restricted to K̂) we obtain that

A(ξ + tη)
⏐⏐
K̂Rh(ξ + tη) = f

⏐⏐
K̂ (60a)

A(ξ )
⏐⏐
K̂Rh(ξ ) = f

⏐⏐
K̂ . (60b)

In particular, continuity of A(·) implies continuity of Rh(·). Moreover, using the inf − sup condition (14), it is clear
that

∥Rh(·)∥V ≤
∥ f ∥V̂∗

αh(·)
. (61)

ext, adding the term A(ξ )
⏐⏐
K̂Rh(ξ + tη) on both sides of Eq. (60a), rearranging it, and subtracting Eq. (60b) we

et

Rh(ξ + tη) − Rh(ξ ) =
[
A(ξ )

⏐⏐
K̂
]−1 (A(ξ )

⏐⏐
K̂ − A(ξ + tη)

⏐⏐
K̂
)

Rh(ξ + tη),

rom which, if A′(ξ )η exists, it implies that Rh(·) has a Gâteaux derivative and

R′

h(ξ )η = −
[
A(ξ )

⏐⏐
K̂
]−1 A′(ξ )η

⏐⏐⏐
K̂

Rh(ξ ). (62)

inally, if A(·) is Gâteaux-differentiable at ξ , then using the inf − sup condition (14), the boundedness of the linear
perator A′(ξ ), and the estimate (61), we obtain

∥R′

h(ξ )η∥V ≤
∥A′(ξ )η∥L(V̂;V̂∗)∥Rh(ξ )∥V

αh
≤

∥A′(ξ )∥∥ f ∥V∗

α2
h

∥η∥X , (63)

hich proves that Rh(·) is Gâteaux-differentiable at ξ . Besides, if A′(·) and α−1
h (·) are uniformly bounded on X,

hen R′

h(·) is uniformly bounded on X.
Now is the turn of Sh . From the mixed system (18), we deduce

BSh(ξ + tη) = f − A(ξ + tη)Rh(ξ + tη)
BSh(ξ ) = f − A(ξ )Rh(ξ ).

ince B is boundedly invertible onto its closed range, we get

Sh(ξ + tη) − Sh(ξ ) = B−1
(

[A(ξ ) − A(ξ + tη)]Rh(ξ + tη) + A(ξ )[Rh(ξ ) − Rh(ξ + tη)]
)
.

herefore, if A′(ξ )η exists, then we already know that R′

h(ξ )η exists, and thus

S′

h(ξ )η = B−1
(
−[A′(ξ )η]Rh(ξ ) − A(ξ )R′

h(ξ )η
)
. (64)

oreover, if A(·) is Gâteaux-differentiable, then using the inf − sup condition (14) and the estimate (63), we get

∥S′

h(ξ )η∥U ≤
1
βh

∥B[S′

h(ξ )η]∥V̂∗

≤
∥A′(ξ )∥∥Rh(ξ )∥V + ∥A(ξ )∥L(V̂;V̂∗)∥R′

h(ξ )∥L(X;V̂)

βh
∥η∥X

≤
∥A′(ξ )∥∥ f ∥V∗

(
1 +

∥A(ξ )∥L(V̂;V̂∗)
)

∥η∥X ,

(65)
αhβh αh
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H

R

H

W

c
o
t
t

A

which proves that Sh(·) is Gâteaux-differentiable. Besides, it is clear from (65) that ∥S′

h(·)∥L(X;U) will be uniformly
bounded on X whenever ∥A(·)∥L(V̂;V̂∗) and ∥A′(·)∥ are uniformly bounded on X, as well as α−1

h (·).
(iv) Let us prove Lipschitzness. Using (62), observe that for any ξ1, ξ2, η ∈ X we have

A(ξ2)
⏐⏐
K̂
(
R′

h(ξ1) − R′

h(ξ2)
)
η =

[
A′(ξ2) − A′(ξ1)

]
η

⏐⏐⏐
K̂

Rh(ξ2) +
[
A(ξ2) − A(ξ1)

]⏐⏐⏐
K̂

R′

h(ξ1)η

+ A′(ξ1)η
⏐⏐⏐
K̂

[
Rh(ξ2) − Rh(ξ1)

]
.

ence,

∥R′

h(ξ1) − R′

h(ξ2)∥L(X;V̂) ≤
∥Rh(ξ2)∥V

αh(ξ2)
∥A′(ξ1) − A′(ξ2)∥ (66a)

+
∥R′

h(ξ1)∥L(X;V̂)

αh(ξ2)
∥A(ξ1) − A(ξ2)∥L(V̂;V̂∗) (66b)

+
∥A′(ξ1)∥
αh(ξ2)

∥Rh(ξ1) − Rh(ξ2)∥V . (66c)

ecall that under our hypothesis, α−1
h (·), Rh(·), R′

h(·), and A′(·) are all uniformly bounded on X. Therefore, the first
term on the right hand side (expression (66a)) is Lipschitz by the Lipschitz assumption on A′(·); the second term
(expression (66b)) is Lipschitz as a consequence of the mean value theorem on A(·) and the uniform boundedness
of A′(·); while the last term (expression (66c)) is Lipschitz by the mean value theorem on Rh(·) and the uniform
boundedness of R′

h(·).
Finally, to prove the Lipschitzness of S′

h(·), we use (64) to write

B
(
S′

h(ξ1)η − S′

h(ξ2)η
)

=[A′(ξ2)η]
(
Rh(ξ2) − Rh(ξ1)

)
+ A(ξ2)

[
R′

h(ξ2)η − R′

h(ξ1)η
]

+
[
(A′(ξ2) − A′(ξ1))η

]
Rh(ξ1) +

[
A(ξ2) − A(ξ1)

]
R′

h(ξ1)η .

ence,S′

h(ξ1) − S′

h(ξ2)

L(X;U) ≤

∥A′(ξ2)∥
βh

∥Rh(ξ1) − Rh(ξ2)∥V (67a)

+
∥A(ξ2)∥L(V̂;V̂∗)

βh
∥R′

h(ξ1) − R′

h(ξ2)∥L(X;V̂) (67b)

+
∥Rh(ξ1)∥V

βh
∥A′(ξ1) − A′(ξ2)∥ (67c)

+
∥R′

h(ξ1)∥L(X;V̂)

βh
∥A(ξ1) − A(ξ2)∥L(V̂;V̂∗) . (67d)

e recall again that Rh(·), R′

h(·), A(·), and A′(·) are all uniformly bounded on X. Therefore, the Lipschitzness of
S′

h(·) is implied by the following facts: the Lipschitzness of the first term on right hand side (expression (67a)) is a
onsequence of the mean value theorem applied to Rh(·) and the uniform boundedness of R′

h(·); the Lipschitzness
f the second term (expression (67b)) is due to the previously proved Lipschitzness of R′

h(·); the Lipschitzness of
he third term (expression (67c)) is implied by the assumed Lipschitzness of A′(·); and the Lipschitzness of the last
erm (expression (67d)) is consequence of the mean value theorem applied to A and the uniform boundedness of
A′(·).

.6. Proof of Proposition 3.4

Let us prove item by item.

(i) Observe that in this case, the bilinear form a(ξ, ·, ·) defines a weighted inner product in L2(Ω ), for which its
induced norm ∥v∥V,ξ :=

√
(ϖ (ξ )v, v)L2 satisfies

√
ϖmin ∥v∥L2 ≤ ∥v∥V,ξ ≤

√
ϖmax ∥v∥L2 , ∀v ∈ V = L2(Ω ).

Hence, the first inf − sup condition in (14) is satisfied with α = ϖ ; see Proposition 2.9(iii) and Footnote 22.
h min
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A

On the other hand, we are under the assumption that the operator B : HB → V∗ is boundedly invertible.
Hence, there must be a uniform constant β > 0 such that

sup
v∈V

b(wh, v)
∥v∥V

= ∥Bwh∥V∗ ≥ β∥wh∥HB , ∀wh ∈ Uh,

which implies the second inf − sup condition in (14).
(ii) Uniform boundedness of Sh(·) is a consequence of Proposition 2.9(iii). Indeed, in our particular case we get

∥Sh(ξ )∥HB ≤
ϖmax

ϖmin

1
β

∥ f ∥L2 , ∀ξ ∈ L2(Ω ).

To show differentiability of Sh(·), let us recall the operator A : X → L(V;V∗) defined in Section 2.4, which
in this particular case takes the form

A(ξ )v := (ϖ (ξ )v, ·)L2 , ∀v ∈ L2(Ω ).

Furthermore, we have the uniform bound

∥A(ξ )∥ = sup
v∈L2(Ω)

∥ϖ (ξ )v∥L2

∥v∥L2
= ∥ϖ (ξ )∥L∞ ≤ ϖmax . (68)

Since ϖ (·) is differentiable, it is straightforward to check that A(·) is also differentiable, and given ξ, η ∈

L2(Ω ), we have

[A′(ξ )η]v =
(
[ϖ ′(ξ )η]v, ·

)
L2 , ∀v ∈ L2(Ω ).

Moreover, we can verify

∥A′(ξ )∥ = sup
η∈L2(Ω)

∥ϖ ′(ξ )η∥L∞

∥η∥L2
= ∥ϖ ′(ξ )∥L(L2(Ω);L∞(Ω)) ≤ ϖ ′

∞
. (69)

Thus, the differentiability of Sh(·) is a consequence of Proposition 2.11(ii).
(iii) Uniform boundedness of S′

h(·) is a consequence of Proposition 2.11(iii), using the fact that A(·), A′(·), and
α−1

h ≡ ϖ−1
min are all uniformly bounded (see the above expressions (68) and (69)).

On the other hand, the Lipschitz-continuity of S′

h(·) relies on the Lipschitz-continuity of A′(·) (by Proposi-
tion 2.11(iv)). The latter is true since

∥A′(ξ1) − A′(ξ2)∥ = sup
η∈L2(Ω)

∥ϖ ′(ξ1)η − ϖ ′(ξ2)η∥L∞

∥η∥L2
≤ ϖL∥ξ1 − ξ2∥L2 .

.7. Proof of Proposition 3.10

(i) This is a well-known result from Babuška–Brezzi theory (see, e.g., [6]).
(ii) Observe that uh ≡ Sh(·) satisfies

∥uh∥V ≤
1

αh(ξ )
sup

vh∈Uh

b(uh, ω(ξ )vh)
∥vh∥V

=
1

αh(ξ )
sup

vh∈Uh

f (ω(ξ )vh)
∥vh∥V

≤
ω∞

α
∥ f ∥V∗ .

(iii) Let ξ, η ∈ X, t ∈ R, and notice that for all vh ∈ Uh we have

b
(

Sh(ξ + tη) − Sh(ξ ), ω(ξ + tη)vh

)
= f

((
ω(ξ + tη) − ω(ξ )

)
vh

)
− b

(
Sh(ξ ),

(
ω(ξ + tη) − ω(ξ )

)
vh

)
.

Thus, the derivative of Sh at ξ in the η direction is the solution of

b
(
S′

h(ξ )η, ω(ξ )vh
)

= f
(
ω′(ξ )η vh

)
− b

(
Sh(ξ ), ω′(ξ )η vh

)
, ∀vh ∈ Uh .

Moreover,

∥S′

h(ξ )η∥V ≤
∥ f ∥V∗ + ∥B∥L(V,V∗)∥Sh(ξ )∥V

α
∥ω′(ξ )∥L(X,W)∥η∥L2(Ω),

which implies that Sh(·) is differentiable and S′

h(·) is uniformly bounded, whenever ω(·) is differentiable with
′
uniformly bounded ω (·).
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A

R

On the other hand, observe that for all ξ1, ξ2, η ∈ X, and all vh ∈ Uh , we have

b
(

S′

h(ξ1)η − S′

h(ξ2)η, ω(ξ1)vh

)
= f

((
ω′(ξ1) − ω′(ξ2)

)
ηvh

)
+ b

(
Sh(ξ2) − Sh(ξ1), ω′(ξ2)ηvh

)
+ b

(
Sh(ξ1),

(
ω′(ξ2) − ω′(ξ1)

)
ηvh

)
+ b

(
S′

h(ξ2)η,
(
ω(ξ2) − ω(ξ1)

)
vh

)
.

Therefore,

∥S′

h(ξ1) − S′

h(ξ2)∥L(X,V) ≤
1
α
∥ f ∥V∗ ∥ω′(ξ1) − ω′(ξ2)∥L(X,W)

+
1
α
∥B∥L(V,V∗) ∥Sh(ξ2) − Sh(ξ1)∥V ∥ω′(ξ2)∥L(X,W)

+
1
α
∥B∥L(V,V∗) ∥Sh(ξ1)∥V ∥ω′(ξ2) − ω′(ξ1)∥L(X,W)

+
1
α
∥B∥L(V,V∗) ∥S′

h(ξ2)∥L(X,V) ∥ω(ξ2) − ω(ξ1)∥W.

Thus, the Lipschitz-continuity of S′

h relies on: the Lipschitz-continuity of ω′; the mean value theorem; and the
uniform boundedness of Sh , S′

h , and ω′.

.8. Proof of Proposition 3.17

(i) Making the identification V̂ ≡ Vh and a(ξ ; ·, ·) ≡ (·, ·)V,ξ , we observe that the well-posedness of (42) is a
direct consequence of Proposition 2.9, using the fact that (·, ·)V,ξ is an equivalent innerproduct, together with
assumption (41)(b).

(ii) Using the hypothesis of this statement and the estimate (16) in Proposition 2.9(iii), we get the uniform bound

∥Sh(ξ )∥U ≤
1
βh

C̃2

C̃1
∥ f ∥V∗ , ∀ξ ∈ X.

(iii) Direct application of Proposition 2.11, noticing also that α−1
h (ξ ) ≤ C̃−2

1 and

∥A(ξ )∥L(V;V∗) = sup
v1∈V

∥(v1, ·)V,ξ∥V∗

∥v1∥V

≤ sup
v1∈V

C̃2
2

∥v1∥V,ξ

(
sup
v2∈V

|(v1, v2)V,ξ |

∥v2∥V,ξ

)
= C̃2

2 .
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