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Abstract 1 

Due to the rapid industrialization of the Yangtze River Delta (YRD) region in China, heavy 2 

air pollution episodes have occurred frequently over the past five years which are of great 3 

concern due to their environmental and health impacts. To investigate the chemical 4 

characteristics of the highly polluted aerosols in this region, a sampling campaign had been 5 

conducted in Ningbo from 3 December 2012 to 27 June 2013, during which a month long 6 

high pollution episode had been captured. Daily average PM2.5 concentrations during high 7 

and low pollution periods were 111 μg m-³ and 53 μg m-³, respectively. The most polluted 8 

day was 8 January 2013 with a PM2.5 concentration up to 175 μg m-3. To understand the 9 

origin of the highly polluted aerosols, meteorological conditions, air mass backward 10 

trajectories, distribution of fire spots in surrounding areas and various categories of aerosol 11 

pollutants were analysed, including trace metals, inorganic species, PAHs and anhydrosugars. 12 

Total metal concentrations were 3.8 and 1.6 μg m-³ for the high and low pollution episodes, 13 

respectively, accounting for 3.4% and 3.1% of the total PM2.5 mass. Total concentrations of 14 

ionic species accounted for more than 50.0% of the PM2.5 by mass, with dominant ions 15 

(nitrate, sulphate, ammonium) accounting for over 42.0% of the PM2.5 mass concentrations in 16 

both periods. During the high pollution episode, enhanced Cd – Pb and biomarker 17 

(levoglucosan, mannosan) levels indicated the contributions from coal combustion, traffic 18 

and biomass burning to fine aerosol PM2.5. The average diagnostic ratio of Fla/(Fla+Pyr) was 19 

0.54 in high pollution episode, which was intermediate between that for wood (>0.50) and 20 

coal combustion (0.58). BaP/Bpe was 0.49 and 0.30 for the highly and lightly polluted 21 

aerosols respectively, associated with the significant non-traffic emissions (<0.60). In 22 

addition, stagnant weather conditions during the high pollution period and long-range 23 

transport of air masses from heavy industries and biomass burning from northern China to 24 

Ningbo could be considered as the main factors for the formation of the aerosols during high 25 

pollution period. 26 

Keywords: aerosol, PM2.5, PAHs, levoglucosan, mannosan, Ningbo 27 
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1. Introduction  28 

Atmospheric aerosols can greatly affect the Earth’s radiation budget and climate change 29 

along with greenhouse gases (Gkikas et al., 2016; Xin et al., 2016), and they have been 30 

verified to have significant impacts not only on visibility/haze, but also on air quality and 31 

public health, particularly those fine particles with aerodynamic diameters less than or equal 32 

to 2.5 μm (PM2.5) (Wang et al., 2014). Highly polluted aerosols can potentially lead to lung 33 

cancer, respiratory diseases and cardiopulmonary mortality for long term exposure (Pope Iii 34 

et al., 2002; Tie et al., 2009). Generally, atmospheric aerosols can be divided into primary 35 

ones directly emitted from various sources and secondary ones formed through gas-to-36 

particle transformation processes. In recent decades, many regions have encountered heavy 37 

aerosol pollution, including Indonesia (Field et al., 2004; Forsyth, 2014; Langmann, 2007), 38 

United States (Odman et al., 2009; Park et al., 2006; Schichtel et al., 2001), Northern Europe 39 

(Toledano et al., 2012), and China (Tao et al., 2014; Wang et al., 2015c; Zhang et al., 2015a). 40 

In China, a number of cities have experienced severe aerosol pollution with an Air Pollution 41 

Index (API) higher than 500 that is categorized as the unhealthiest level by China’s Ministry 42 

of Environmental Protection (MEP). Less than 1% of the top 500 cities in China can meet the 43 

World Health Organization air quality standards (Li and Zhang, 2014). Power plants, heavy 44 

industry and vehicles were reported to be mainly responsible for the occurrence of severe 45 

aerosol pollution episode especially in winter when domestic coal consumption increased 46 

significantly (Li and Zhang, 2014). From satellite observations, northern and eastern China 47 

was reported to be affected by hazardous dense aerosol pollution the most frequently (Tie et 48 

al., 2006). The Yangtze River Delta (YRD), located at the eastern coast of China bordering 49 

the East China Sea, has experienced many aerosol pollution events due to its remarkable 50 

economic growth and accelerated urbanization over the past 30 years (Liao et al., 2014), 51 

especially the rapid development of heavy industries, such as iron and steel, automobile 52 

manufacturing, oil and gas (Cheng et al., 2014). Additionally, another significant contributor 53 

of severe aerosol pollution in this area could be the open burning of biomass including 54 

agricultural waste which tends to be a common practice for land clearance by local farmers 55 

(Cheng et al., 2014). Previous studies have revealed high levels of aerosol pollution and 56 

extremely low visibilities in the YRD (Fu et al., 2008; Gao et al., 2011). Meteorological 57 

stations observed the average visibility of this region has shown a trend of 2.4 km decrease 58 

per decade from 25 to < 20 km in the period of 1981 ~ 2005 (Gao et al., 2011). A few studies 59 

have been conducted to investigate the  aerosol pollution episodes occurring in megacities of 60 
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the YRD including Nanjing, Shanghai and Hangzhou (Cheng et al., 2013b; Wang et al., 61 

2014), but non of these studies have reported detailed information on partriculate 62 

compostions. 63 

Located at the south of YRD region, Ningbo is adjacent to Hangzhou and Shaoxing, about 64 

15km to the west coast of the East China Sea. As the second largest city of Zhejiang Province, 65 

it has a population of approximately 8 million and covers an area of around 10,000 km2. 66 

Before 2000, the number of days affected by severe aerosol pollution in Ningbo was reported 67 

to be less than 15 per year. The visibility of Ningbo ranged from 8.6 to 14.9 km in 1980. 68 

However, the number of heavy aerosol pollution days was rapidly increased to 50 per year 69 

after 2001 and the visibility observed in 2003 ranged from 3.8 to 11.7 km, which was an 70 

obvious decrease compared to that of 1980 (Cheng et al., 2013b). In January 2013, a long 71 

lasting aerosol pollution episode occurred in central and eastern China and it was considered 72 

as the most severe aerosol pollution since 2000. However, only a few studies have reported 73 

this particular event (Andersson et al., 2015; Cheng et al., 2013b; Ji et al., 2014; Wang et al., 74 

2014). The previous studies mostly focused on the study of aerosol number concentrations, 75 

visibility, OC and EC in YRD. Only one report discussed the source apportionment of 76 

combustion-derived black carbon aerosols by using carbon isotopes (Andersson et al., 2015). 77 

Their results preliminarily show that biomass combustion contributed around 30% to the 78 

severe aerosol pollution in North China Plain (NCP, Beijing) and Yangtze River Delta (YRD, 79 

Shanghai).   For black carbon, it was found that the petroleum usage and coal combustion 80 

could account for 46% and 66% of BC in YRD and NCP, respectively. In this study, the 81 

chemical characteristics including trace metals, ionic species, polycyclic aromatic 82 

hydrocarbons (PAHs) and biomarkers for high and low aerosol pollution periods in Ningbo 83 

have been investigated, and also diagnostic ratios, organic tracers and air mass backward 84 

trajectories have been adopted for a qualitative source analysis for this particular aerosol 85 

pollution event.  86 

2. Experimental 87 

2.1 Sampling site and aerosol collection 88 

The sampling site (29.80N, 121.56E) is located at the southern city of YRD- Ningbo, shown 89 

in Fig. 1(a) and (b). It is less than 10km away from the central business district (CBD). A 24-90 

hour sampling was conducted at the air monitoring station on the rooftop of Science and 91 

Engineering Building (SEB) in the University of Nottingham Ningbo Campus (UNNC) from 92 
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December 3rd 2012 to June 27th 2013, using a high volume sampler (Model: TH-1000H, 93 

Tianhong Instrument CO., Ltd. Wuhan, China) with the flow rate of 1.05 m3 min-1. 94 

20cm×25cm glass fibre filter (Huitong Instrument CO., Tianjin, China) was loaded to capture 95 

PM2.5. In total, 32 PM2.5 samples were collected and blank filters were obtained every two 96 

weeks from the sampler without their pump on.  97 

2.2 Air mass backward trajectory and fire-spot analysis 98 

To investigate the effects of medium and long-range transport of aerosols on local air quality, 99 

air mass transport pathways were studied through backward trajectory analysis which was 100 

carried out using the Hybrid Single-Particle Lagrangian Integrated Trajectory (HYSPLIT) 4.9 101 

model (Draxler, 2013; Rolph, 2013). A 4-day (96h) backward trajectory was started at the 102 

sampling site every 6 hours during each sampling day at 500 m above ground level (agl) and 103 

then  these computed trajectories were clustered by applying TrajStat 1.2.1.0 104 

(http://www.arl.noaa.gov/HYSPLIT.php) (Wang et al., 2009). TrajStat is a geographic 105 

information system (GIS) based software which can identify aerosol potential sources from 106 

long-term measurement data by using various trajectory statistical analysis methods. In this 107 

software, there are two clustering models- Euclidean distance and angle distance (Turpin and 108 

Huntzicker, 1995). The Euclidean distance model has been applied in this study because it 109 

concerns both the directions and distances of the trajectories while the angle distance only 110 

concerns the directions of the trajectories. In addition, Moderate Resolution Imaging 111 

Spectroradiometer (MODIS) fire-spots in this study were obtained from Fire Information for 112 

Resource Management System (FIRMS) Web Fire Mapper. Each fire-spot that was detected 113 

by satellites represents the centre of an approximately 1km pixel marked as containing one or 114 

more fires, or other thermal activities.  115 

2.3 Chemical analysis of aerosol samples 116 

2.3.1 Quality assurance and control 117 

Before sampling, fresh blank filters were prebaked for 4 hours at 550°C in a muffle furnace 118 

in order to remove any absorbed carbonaceous compounds. Equilibration of filters was 119 

carried out at constant temperature of 22°C ± 1°C and relative humidity (RH) at 30% ± 5% 120 

for 24 hours before and after sampling prior to gravimetric measurement by an electronic 121 

balance (Model: AL 104, Mettler Toledo, precision 0.1mg) and stored in refrigerator at -20°C 122 

to avoid any possible volatilization before analysis. Four portions were cut from each filter 123 

for the analyses of trace metals, PAHs, ionic species and anhydrosugar compounds. All 124 
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extracts were filtrated with 0.45 μm pore size membranes. Calibrations were carried out by 125 

using external standard obtained from Sigma-Aldrich (St. Louis, MO, USA) and all analytical 126 

results were corrected by subtracting the values obtained from blank filters. 127 

2.3.2 Trace metals  128 

Water-extracted and acid-digested trace metals were analysed to investigate the water-soluble 129 

and total metal concentrations, respectively. Water-soluble metals were extracted 130 

ultrasonically with 15mL Milli-Q water for 2.5 hours at room temperature. Total metals were 131 

extracted by 11mL concentrated nitric acid (65%, Sinopharm Chemical Reagent Co.,Ltd.) 132 

and hydrochloric acid (37%, Sinopharm Chemical Reagent Co.,Ltd.) mixture (volume ratio 133 

3:1) in a microwave digester (MARS 5, CEM CO., U.S.). The digestion temperature program 134 

was set as below: ramp to 185°C in 15 minutes and held for 25 minutes. After cooling, all 135 

extracts were filtered and further diluted with Milli-Q water to 100mL and stored at 4°C until 136 

analysis. Water extracts were acidified by HNO3 to 2% prior to analysis. In total, 13 trace 137 

metals, including Mn, Zn, Co, Cd, Cu, Al, Cr, Ni, Pb, V, Fe, Ti and As, were determined by 138 

Inductively Coupled Plasma – Mass Spectrometry (ICP-MS, NexIONTM 300X).  139 

2.3.3 Polycyclic aromatic hydrocarbons (PAHs) 140 

PAHs were extracted from filters with 20 mL hexane and acetone mixture (volume ratio 3:1) 141 

by a microwave digester, the conditions of which were set at: temperature (50℃), microwave 142 

energy (150W) and held for 20 minutes. Extracts were then filtrated and evaporated to 1mL 143 

and analysed by gas chromatograph (Agilent 7890A) - mass selective detector (Agilent 144 

5975C) (GC-MSD). GC was equipped with a capillary column (HP-5MS, 0.25μm film 145 

thickness, 30m×0.25mm i.d., Agilent J&W.), using helium as carrier gas. In this study, 17 146 

PAHs were investigated, including retene and 16 EPA priority PAHs: Naphthalene (Nap), 147 

acenaphthene (Ace), acenaphthylene (Acy), fluorene (Flu), phenanthrene (Phe), anthracene 148 

(Ant), fluoranthene (Fla), pyrene (Pyr), benzo[a]anthracene (BaA), chrysene (Chr), 149 

benzo[b]fluoranthene (BbF), benzo[k]fluoranthene (BkF), benzo[a]pyrene (BaP), 150 

indeno[1,2,3-cd]pyrene (InP), dibenzo[a,h]anthracene (DBA) and benzo-[ghi]perylene (Bpe). 151 

During analysis, 1μL sample was injected in splitless mode with 5-minute solvent delay and 152 

the temperature program was set as follows (Karthikeyan et al., 2006): held at 50°C for 2 153 

minutes, ramp to 200°C at a rate of 10°C min-1 and held for 8 minutes, then ramp to 300°C at 154 

a rate of 5°C min-1 and held for 8 minutes. PAHs were identified based on their specific m/z 155 

at different retention time and quantified by calibration with authentic standards. 156 
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2.3.4 Ionic species 157 

Filters were extracted ultrasonically by 20 mL of Milli-Q water for 45 minutes and then the 158 

aqueous extracts were filtrated and stored at 4°C before analysis. In total, 11 inorganic ions, 159 

namely Fluoride (F-), Chloride (Cl-), Bromide (Br-), Nitrate (NO3-) and Sulfate (SO42-), 160 

Lithium (Li+), Sodium (Na+), Ammonium (NH4+), Potassium (K+), Magnesium (Mg2+) and 161 

Calcium (Ca2+),  were determined by Ion Chromatograph (ICS-1600). The system 162 

comprisesan autosampler (Dionex AS-DV), an analytical column (Dionex, IonPacTM AS23 163 

for anions, IonPacTM CS12A for cations), a guard column (Dionex, IonPacTM AG23 for 164 

anions, IonPacTM CG12A for cations) and a self-regenerating suppressor (Dionex, ASRSTM 165 

300 for anions, IonPacTM CS12A for cations). A constant eluent (4.5mM Na2CO3 + 0.8mM 166 

NaHCO3, 1 mL min-1) with a suppressor current at 25mA were used for anion detection. 167 

Cations were investigated applying 1mL min-1 20mM Methanesulfonic acid (MSA) as eluent 168 

with a current at 59mA.  169 

2.3.5 Anhydrosugar compounds 170 

Filters were extracted ultrasonically by 4 mL Milli-Q water for 30 minutes under room 171 

temperature. The extracts then filtered and analyzed by High Performance Liquid 172 

Chromatograph (Shimadzu 30A) - Electrospray Ionisation - tandem Mass Spectrometry 173 

(ABsciex 3200 Q trap) (HPLC-ESI-MS/MS) with an anion-exchange analytical column 174 

(Dionex, Carbopac PA1, 250mm×4mm) and guard column (Dionex, Carbopac PA1, 175 

50mm×4mm). Similar detection conditions can be found in the work of Piot et al. (2012) with 176 

different mobile phase. Due to the crystallization effect of sodium hydroxide solution in ion 177 

source, instead of applying 0.5mM sodium hydroxide solution, the mobile phase used in this 178 

study was approximately 0.5mM ammonium hydroxide (NH3·H2O, HPLC level, Sigma-179 

Aldrich)in isocratic mode with a flow of 0.5 mL min-1. Columns were flushed and 180 

equilibrated between two samples for 3 minutes, applying the same flow rate. Parameters of 181 

the acquisition method were optimized to achieve the best Collision Induced Dissociation 182 

efficiency with selective current of daughter ions which are m/z 101+113, and m/z 101+129 183 

for levoglucosan (1, 6-anhydro-β-D-glucopyranose, Sigma-Aldrich) and mannosan (1, 6-184 

anhydro-β-D-mannopyranose, Sigma-Aldrich), respectively. 185 
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3. Results and discussion 186 

3.1 Mass concentration of PM2.5  187 

During the entire sampling period, 32 samples were collected. The temporal distribution of 188 

the daily-averaged PM2.5 concentration is plotted in Fig.2. Based on the variation of PM2.5 189 

concentrations, the sampling period was classified as two types: high and low pollution 190 

periods. For the 18 samples collected during the winter sampling period (2012/12/03-191 

2013/01/25), high ambient PM2.5 concentrations were obtained. The average PM2.5 192 

concentration of this period is 110.9 ± 30.8 μg m-³, much higher than the latest GB 3095-193 

2012 Chinese “Ambient Air Quality Standard (AAQS)” Grade II standard (75.0 μg m-³ for 194 

24h-averaged PM2.5, applicable to residential, commercial, cultural, industrial and rural areas) 195 

(MEP, 2012). Therefore 2012/12/03-2013/01/25 was categorized as a high pollution period. 196 

For this period, the PM2.5 concentration ranged from 60.8 to 175.3 μg m-³, and the most 197 

polluted day occurred on 8 January 2013 with the highest PM2.5 concentration of 175.3 μg m-198 

³. This is in very good agreement with the study conducted by Wang et al. (2014) who 199 

reported the mean PM2.5 concentration in eight cities of YRD ranging from 110.8-175.6 μg 200 

m-³ in January 2013. As shown in Table 6, the average PM2.5 concentration of this study 201 

(110.9 μg m-³) is also comparable with that of Tianjin (> 94 μg m-³) (Han et al., 2014) in 202 

northern China, but it is much lower than the results obtained in Handan (160.1 ± 77.9 μg m-³) 203 

(Wei et al., 2014) and Beijing (258 ± 100 μg m-³) (Ho et al., 2016) of northern China and 204 

Xi’an (233 ± 52 μg m-³) (Ho et al., 2016) in central China. For the 14 samples that were 205 

collected in the remaining sampling period (2013/02/25-2013/06/27), the PM2.5 206 

concentrations varied between 34.9 and 67.7 μg m-³ with an average of 52.6 ± 11.9 μg m-³, 207 

which was only half of that for the high pollution period and lower than the above mentioned 208 

threshold, hence it is defined as a low pollution period accordingly. 209 

3.2 Meteorological conditions 210 

Stagnant weather conditions are favorable for the accumulation of atmospheric contaminants 211 

while flowing air is beneficial for their dispersion. In this study, meteorological data were 212 

collected from the UNNC meteorological station (WatchDog 2900ET weather station, 213 

Spectrum® Technologies, Inc.) located at the same rooftop as the samplers. Original data 214 

(temperature, rainfall, wind speed, relative humidity) were recorded at 10-minute intervals, 215 

and were then converted to daily-averaged data and summarized in Table 1. 216 
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Ningbo experiences a marine monsoon subtropical climate, featuring distinct seasons with 217 

hot, humid summers and cool dry winters (Haas and Ban, 2014). This high pollution period 218 

occurred in the winter in slightly windy conditions (2.1km/h), but the ambient temperature 219 

(6.5°C), rainfall (0.015mm) and relative humidity (67.9%) are relatively low. Under such 220 

conditions, a lower planetary boundary layer and a stronger surface inversion could be 221 

expected (Seidel et al., 2010), which would induce a more stagnant atmosphere. The low 222 

pollution period possessed had a higher average temperature (18.8°C) and rainfall (0.040mm), 223 

which favoured the dispersion and scavenging of aerosols.  224 

3.3 Air mass backward trajectory and fire-spot analysis for both high and low pollution 225 

periods 226 

As mentioned before, all the computed trajectories for this sampling campaign have been 227 

clustered by TrajStat model. According to the change or turning point in total spatial variance 228 

(TSV) during the Hysplit cluster analysis, 3 has been chosen as the number of clusters (Wang 229 

et al., 2015), which deems most suitable and indicative in this study by the software.  After 230 

comparing the clustered results between “display means” and “display clusters”, it is decided 231 

to use the statistically mean trajectory to represent the pathways of each cluster for a more 232 

concise presentation by merging through the Euclidean calculation.  In Figure 3, both 233 

trajectory clustering results and fire spot data have been included; different air mass 234 

backward trajectory clusters have been presented as lines in various colours with their 235 

relative percentage shown at the left bottom of the map. Due to numerous fire-spots emerged 236 

during the sampling period (2012/12/03-2013/06/27), representative fire-spots for both 237 

periods were selected. 238 

Fig. 3 (a) shows that the air arriving in Ningbo during the high pollution period originated 239 

from northwest direction, 60.3% of the 96-h backward trajectories originated from northern 240 

China, and air masses transported through Hebei, Shandong and Jiangsu provinces to Ningbo. 241 

While the rest 39.7%  trajectories came from Mongolia and crossed Inner Mongolia, Shanxi, 242 

Hebei, Shandong and Jiangsu provinces to the receptor site through long-range transport. 243 

During the high pollution period, trajectories were observed to pass through the north China 244 

plain with heavy industries and large farming area with plenty of fire-spots, indicating long-245 

range contributions from industrial emission and biomass burning to the high pollution 246 

aerosols in Ningbo.  247 
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Different from the trajectories in the high pollution period, only 17.3% of the trajectories 248 

came from Mongolia, passing through Inner Mongolia and crossing the Bo-Hai Sea and 249 

Yellow Sea to reach Ningbo, as shown in Fig. 3 (b). 42.3% of these trajectories derived from 250 

northern China, and also travelled through the Bo-Hai Sea, Yellow Sea and East China Sea to 251 

Ningbo. While the rest 40.4% 96-h backward trajectories originated from Taiwan and crossed 252 

the strait of Taiwan to Ningbo with a short distance.  253 

Even though the low pollution period seemed to have slightly denser fire spot distribution 254 

than the high pollution period, as shown in Fig. 3, trajectories reaching Ningbo during low 255 

pollution period did not pass the dense fire-spots area in the northern region but were more of 256 

oceanic origins, indicating less influence of long-range transport of air pollutants including 257 

biomass burning emission to the slightly polluted aerosols in Ningbo. 258 

3.4 Characteristics of both high and low pollution aerosols 259 

3.4.1 Trace metals 260 

 (1) Metal concentrations  261 

A comparison of the metal concentrations between the high and low pollution periods is 262 

listed in Table 2 which includes water soluble (CWS) and total (CT) metal concentrations, their 263 

corresponding water solubility and enrichment factors. The sum of total metal concentrations 264 

during the high pollution episode (3.8 μg m-³) was approximately 2.4 times that for the low 265 

pollution period (1.6 μg m-³), accounting for 3.4% and 3.1% of total PM2.5 mass 266 

concentrations, respectively. These results in high pollution period are in good agreement 267 

with a study conducted in Beijing, which shows the sum of total 13 metal concentrations is 268 

3.74 μg m-³, accounting for 2.6% of its total PM2.5 mass concentration (Tan et al., 2016) 269 

(Table 6). The sum of water soluble metal concentrations during high and low pollution 270 

periods were only 0.8 and 0.5 μg m-³, accounting for 0.7% and 1.0% of total PM2.5 mass 271 

concentrations, respectively. The averaged total metal abundance in the aerosol samples were 272 

in following order: Al> Fe> Zn> Mn> Pb> Cu> As> Ni> Cr> V> Cd> Ti> Co (High 273 

Pollution) and Al> Fe> Zn> Mn> Pb> Cu> Ni> As> Cr> V> Ti> Cd> Co (Low Pollution). 274 

The highest Al concentrations were 1.1 and 0.6 μg m-³ in the high and low pollution episodes, 275 

respectively. Compared with low pollution period, Mn, Co, Cu, As, V and Fe doubled in high 276 

pollution period. Zn and Pb were tripled, and Cd in high pollution episode even increased 277 

about 5 folds. The concentration of Cd in winter of Ningbo is 47.0 ng m-3, which is 278 

comparable with that in winter of a southern Chinese city- Foshan (42.6 ng m-3) (Tan et al., 279 
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2014). Nevertheless, the differences of Ni and Ti between the high and low pollution periods 280 

were not as significant as those of the above mentioned others. Besides the stronger 281 

accumulation of locally emitted aerosols due to the more stagnant atmospheric condition, 282 

higher metals concentrations of PM2.5 during high pollution episode may be contributed by 283 

the long-range transport of air pollutants from heavy industries in Northern China, especially 284 

when large amount of particulates were released from coal combustion for centralized and 285 

decentralized house-heating in urban areas and countryside, respectively (Li and Zhang, 286 

2014). 287 

(2) Water solubility 288 

In addition to the comparison of metal concentrations between the high and low pollution 289 

samples, their water solubility was also compared. Water solubility is defined as the ratio of 290 

the water-extracted metals to the acid-extracted metals concentrations in this study. Water 291 

solubility is essential to evaluate the health effects caused by metals, because only those 292 

water-soluble fractions of metals are more likely to cause health problems due to their 293 

bioavailability (Birmili et al., 2006). In general, the water solubility varied for different 294 

metals, ranging from 8.4% (Cd) to 46.4% (Cu) in the highly polluted aerosols and 12.0% (Cd) 295 

to 60.3% (Cu) in the slightly polluted aerosols. Cu was found with highest solubility in both 296 

high and low pollution episodes, which could be explained that it existed dominantly as 297 

soluble salts such as sulfate in aerosol (Manousakas et al., 2014). Other metals including Ti, 298 

Fe, As, Cr and Pb also had moderately good water solubility (20%-60%), whereas, Zn, Co, 299 

Cd and Mn were observed to have lower solubility (<20%) in high pollution aerosols. 300 

Desboeufs et al (2005) summarized that the solubility of individual metals is related to the 301 

origins of the samples and they have found the metals in more alumino-silicated particles 302 

would be less water soluble, which may explain the lower water solubility in high pollution 303 

samples as mentioned above. It has been observed that more contributions were from long-304 

range transported air masses to the local high pollution particles and during the transport 305 

process more aluminum containing dusts were incorporated into the aerosols in this study. 306 

Toxic metal like Pb, with high concentrations (high pollution period 291.5 ng m-3, low 307 

pollution period 92.4 ng m-3) and moderately good water solubility (high pollution period 308 

20.0%, low pollution period 29.6%) was expected to greatly influence human health. 309 

Generally, most metals were observed to have lower water solubility in the high pollution 310 

samples. Compared to the results from other studies conducted in East China (Hsu et al., 311 

2010; Jiang et al., 2014), the water solubility of Cu, Pb, V and As were in good agreement; 312 
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however, the water solubility of Cd and Zn in highly polluted samples in this study were 313 

lower than the reported data, while Fe and Ti of both periods showed higher water solubility 314 

than those collected in Hong Kong (Jiang et al., 2014). In addition to the various extraction 315 

methods applied, the particular aerosol matrix affected by diverse yet distinct sources in 316 

different studied areas may result in the discrepancy of recovery efficiency of individual 317 

metals.   318 

(3) Enrichment factor  319 

The enrichment factors (EFs) can be applied to investigate whether the metals were 320 

originated from anthropogenic or natural sources. EF of each metal (EFi) in this study was 321 

calculated by dividing the relative abundance of each metal in a PM2.5 sample by its 322 

corresponding average abundance in the upper continental crust and it was normalized by a 323 

commonly used reference metal- Al, which was chosen due to its stability in chemical 324 

analysis (Birmili et al., 2006; Zhou et al., 2014). The calculation is carried out by the 325 

following equation (1) (Zhou et al., 2014):  326 EF୧ = ( େ౟େ౨౛౜)௔௧௠௢௦௣௛௘௥௘/( େ౟େ౨౛౜)௖௥௨௦௧        (1) 327 

Where, (Ci/Cref)atmosphere is the ratio of specified metal (Ci) and reference metal (Cref) 328 

concentrations in aerosol samples, while (Ci/Cref)crust is the ratio of specified metal (Ci) and 329 

reference metal (Cref) concentration in the upper continental crust. Metal concentrations in 330 

upper continental crust were 6.62% for Al, 2.94% for Fe, 0.38% for Ti and 583, 74.2, 12.7, 331 

0.097, 22.6, 61, 26.9, 26, 11.2 and 82.4 mg kg-1 for Mn, Zn, Co, Cu, Cr, Ni, Pb, As and V, 332 

respectively, reported by China's National Environmental Monitoring Centre (CNEMC) 333 

(CNEMC, 1990).  334 

In this study, most metals have EF values greater than 10, suggesting their primarily 335 

anthropogenic sources, such as vehicles and industrial emissions (Zhou et al., 2014). 336 

However, the EF value of Fe is only 1.7 and 1.2 in high and low pollution samples, 337 

respectively. This might be because Fe has the second highest crustal background 338 

concentration (CFe)crust which have led to relatively lower EF value, even though the 339 

concentration of Fe ranked the second in all metals. It is noteworthy that EF value of Ti is 340 

less than 1, which indicates Ti is depleted in the environment and crustal sources are 341 

dominant. Mn, Co, Cr and V were found moderately enriched (10<EF<100), implying 342 

majority of them were emitted from human activities. Toxic As was found to have 343 

consistently high EF (>100) values in both high and low pollution samples, as well as Zn, Cu, 344 
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Pb, Ni and Cd, suggesting they were all significantly related with anthropogenic sources. The 345 

mean EF value of them are ranked as: Cd > Pb > Zn > As > Cu > Ni, which showed very 346 

good agreement with the atmospheric metal study carried in Foshan that the top five EF 347 

values were in the same order and Cd even had the highest daily maximum EF value of 348 

18,357.0 (Tan et al., 2014). The EF value of Cd in this study is 29, 509.0 (haze), which is 349 

nearly 3.2 times to the low pollution period (9,269.6). The EF of Pb in high pollution period 350 

(648.8) shows approximately 1.6 times higher than that of low pollution period (397.7). The 351 

EF value of Zn in high pollution period (604.1) increased by a factor of 1.9 compared to low 352 

pollution period (318.1). While the EF value of Ni and Ti were reversely higher in low 353 

pollution period. Higher EF values of metals during high pollution period imply that cool and 354 

dry winter with less rainfall favored the accumulation of these metals onto particles in 355 

addition to those greatly contributed by long-range transport from north China. 356 

(4) Correlations among trace metals  357 

Correlations among trace metals can be used to determine whether these metals have similar 358 

sources, therefore, the correlation coefficients of each trace metal for both high and low 359 

pollution periods are summarized in Table 3. In low pollution period, there are no significant 360 

correlations between metals. Nevertheless, few metals were observed to have good 361 

correlations in high pollution period. V, Fe, Ti, Cr, Mn and As have high correlation 362 

coefficients (0.72 < r < 0.95). As is characterized as one of the representatives of coal burning 363 

in China (Kang et al., 2011). V is released to the ambient environment from oil burning and 364 

the fossil fuel combustion is reported to account for 85% of total V emissions in China (Duan 365 

and Tan, 2013). The correlated V, Fe, Ti, Cr, Mn and As may suggest that oil burning and 366 

coal combustion could be the major sources of these metals. The ratio of Cu/As was reported 367 

to be 1.2 (279/224, ug/g in PM) in honeycomb coal burning (Ge et al., 2004), while in this 368 

study it is approximately 1.8 during the high pollution period, indicating coal combustion 369 

may not be the unique source of Cu, and worn tires and automobile brake pads abrasion 370 

particles could be another contributors of Cu (Okuda et al., 2008). Cd and Pb, which were 371 

reported to correlate in coal-fired power plants in China (Deng et al., 2014), were also found 372 

with a significant correlation coefficient of 0.9581 in the high pollution period. As reported 373 

by Ge et al. (2004) and Karanasiou et al. (2007), Cd and Pb existed predominantly in fine 374 

particles other than in coarse particles of coal burning, part of aerosols containing Cd and Pb 375 

could be possibly transported from Northern China (as shown in Fig. 3 (a)), where heavy 376 

industries and centralized / decentralized house-heating are responsible for coal emissions.  377 
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3.4.2 Polycyclic aromatic hydrocarbons (PAHs) 378 

PAHs are usually predominantly derived from incomplete combustion or high-temperature 379 

pyrolysis processes of fossil fuels and biomass (Ravindra et al., 2008). The average 380 

concentrations of each PAH during the high and low pollution periods are plotted in Fig.4. 381 

The total PAH concentration during the high pollution episode ranged from 15.2 to 331.9 ng 382 

m-³ with an average of 90.6 ng m-³, accounting for 0.8‰ of total PM2.5 mass concentration. 383 

These results are comparable with those in other cities (Nantong, Wuxi and Suzhou) of YRD 384 

(range: 13.9-229.0 ng m-³, average: 88.2 ng m-³) (Zhang et al., 2013). As seen in Table 6, the 385 

average total PAH concentration in this study is also consistent with the result in PRD (91.5 ± 386 

36.1 ng m-³) (Huang et al., 2014), but lower than the result in Zhengzhou of northern China, 387 

which is 211 ng m-³ and accounts for 1.2‰ of total PM2.5 mass concentration (Wang et al., 388 

2015a). The total PAHs level in the low pollution episode ranged from 14.3 to 59.6 with an 389 

average of 34.8 ng m-³. Results in this work were higher than the PAHs concentrations 390 

obtained in Guangzhou (low pollution period: 13.3 ng m-³, high pollution period: 59.8 ng m-³) 391 

(Tan et al., 2011). Compared to the low pollution episode, BkF, Flu, Chr, Bpe, BbF, BaA, 392 

BaP and InP were about tripled, while Phe, Ant, Ace, Fla, Pyr and Bpe were about doubled 393 

and the rest pollutants increased less than 50%. In addition to the strong accumulation of 394 

local aerosols and long-range transport of those from outside of this region, another reason 395 

for higher occurrence levels of PAHs during the high pollution period (winter time) could be 396 

due to the relatively lower temperature which would promote more PAHs to distribute and 397 

condense onto particulate matter via the gas-particle partitioning process (He and 398 

Balasubramanian, 2009).  399 

During the high pollution episode BkF, BbF, InP, Bpe and Chr dominated. BkF exhibited the 400 

highest concentration at 13.3 ng m-³ and Acy was the lowest at 0.017 ng m-³ in high pollution 401 

aerosols. The concentration of highly carcinogenic BaP was 3.8 ng m-³ during the high 402 

pollution episode, similar to the result in northeast China (Jin et al., 2012). Retene has been 403 

identified as a tracer for soft wood burning especially conifers (Azevedo et al., 2002) and its 404 

concentration was doubled during the high pollution period, indicating the increased 405 

contribution from soft wood burning.  406 

The low molecular weight 2 and3 ring PAHs - Nap, Ace, Acy, Flu and Ant, were observed in 407 

low abundance in particle phases (< 1 ng m-3), while the high molecular weight PAHs (4-6 408 

rings) accounted for 87.5% of total PAHs. This result is in good agreement with the study 409 

conducted in Nanjing where 4-6 ring PAHs accounted for more than 80% of the total PAHs 410 



15 
 

(Meng et al., 2015). Basically, PAHs with 2 or 3 rings are present mainly in gaseous phase 411 

due to their higher volatility and they would more actively participate in photochemical 412 

reactions and, thus, their atmospheric lifetimes are reported to be a few hours or less, much 413 

shorter than those with more than three rings (Oliveira et al., 2014).  414 

The diagnostic ratios of PAHs in particulates have been commonly used as indicators for 415 

source apportionment of PAHs (Bourotte et al., 2005; Esen et al., 2008; Harrison et al., 1996). 416 

Previous studies have shown that PAH concentrations varied largely based on their 417 

composition and different emission sources (Alves et al., 2014), therefore, some PAH ratios 418 

are adopted to study the source origins. The mean value of Fla/(Fla+Pyr) during the high 419 

pollution episode ranged from 0.32 to 0.70, with an average value of 0.54,  which was in the 420 

range of wood combustion (>0.50), approaching 0.58 for coal combustion (Bravo-Linares et 421 

al., 2012; Xu et al., 2012). The diagnostic ratio of BaP/Bpe was calculated at 0.49 and 0.30 422 

for the high and low pollution aerosols respectively, associated with the result of non-traffic 423 

emissions (<0.6) (Bravo-Linares et al., 2012), indicating less influence of traffic on PAH 424 

concentrations and PM2.5 concentrations. This is reasonable since the sampling site is around 425 

half kilometre away from the main roads where the air pollution attributed to traffic 426 

emissions could be reduced to low levels (Zhu et al., 2002). To summarize, aerosols were not 427 

significantly influenced by traffic emissions, mainly arising from pyrogenic sources, such as 428 

biomass burning and coal combustion.  429 

3.4.3 Inorganic ions  430 

The ion concentrations, their relative abundance in PM2.5 and their ratios for the high and low 431 

pollution episodes are summarized in Table 4.  Total ionic mass concentrations in the high 432 

and low pollution periods were 59.5 and 32.6 μg m-3, accounting for 55.3% and 62.0% of 433 

PM2.5 mass concentrations, respectively. As compared in Table 6, the total ionic mass 434 

concentration during high pollution period in this study (59.5 μg m-3, 55.3% in PM2.5) is 435 

higher than that of Hangzhou in YRD (41.7 μg m-3, 38.5% in PM2.5) (Liu et al., 2015), but 436 

lower than that of Handan in northern China (77.3 μg m-3, 48.3% in PM2.5) (Wei et al., 2014). 437 

Sulfate, nitrate and ammonium (namely SNA) ranked as top three ions in the high pollution 438 

period and their total concentration reached up to 45.2 μg m-³, accounting for 78.0% of total 439 

ions masses and 42.0% of PM2.5 mass, repsectively. This result was in good agreement with 440 

the studies conducted in Nanjing, Hangzhou and Shanghai of YRD, which have shown that 441 

SNA accounting for 41.0-61.0% of PM2.5 (Fu et al., 2008). Furthermore, the result is also 442 

comparable with two studies conducted in Beijing of northern China with SNA accounting 443 
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for 35.8% and 45.2% of PM2.5 (Tan et al., 2016, Ho et al., 2016). Nevertheless, the result in 444 

this study is slighltly lower compared with that of Xi’an in central China, which has shown 445 

that SNA contributed to 53.9% of total PM2.5 concentration (Ho et al., 2016). In low pollution 446 

aerosols, the abundance of sulfate, nitrate and ammonium accounted for even higher 447 

percentage (44.0%) of aerosols with total average concentration of 23.2 μg m-³, accounting 448 

for 71.3% of total ions masses. Similar result was also found in Chengdu where sulfate, 449 

nitrate and ammonium accounted for 72.9% of total ion concentration (Tao et al., 2013). 450 

When comparing them individually, SO42- and NO3- were doubled in high pollution period, 451 

while NH4+ was about 2.7 times higher. In low pollution episode, SO42-, NO3-, NH4+ and K+ 452 

were obviously decreased, especially NH4+ which decreased from 7.2 μg m-3 (High Pollution) 453 

to 2.7 μg m-3 (Low Pollution), while the rest ions such as Na+ was not significantly changed. 454 

Since the sampling site is located in an international port city- Ningbo, marine contribution to 455 

ionic species needs to be eliminated to evaluate the inputs from other sources in this study. 456 

Measured Na+ was assumed to be derived from sea salts. Non-sea salt (nss) components were 457 

calculated using the following equation (2) (Kong et al., 2014): 458 nss-X = X୧ −  Naା୧ × (X/Naା)ୱୣୟ          (2) 459 

where, Xi represents the ion concentration in samples, Na+i is the concentration of Na+ in 460 

sample and (X/ Na+)sea is seawater ratio which is 0.0385 for Ca2+, 0.037 for K+ and 0.2516 for 461 

SO42- respectively based on seawater composition (Balasubramanian et al., 2003). For the 462 

high pollution episode, nss-SO42- (25.98 μg m-3), nss-Ca2+ (2.44 μg m-3) and nss-K+ (1.40 μg 463 

m-3) accounted for 95.7%, 93.3% and 89.2% of SO42-, Ca2+ and K+ mass respectively. As for 464 

low pollution episode, nss-SO42-/SO42-, nss-Ca2+/Ca2+ and nss-K+/K+ were 94.0%, 93.6% and 465 

83.4% respectively, similar to high pollution aerosols. These results indicated that marine 466 

sources are not the dominant origin of these ions. The mass ratio of Na+/SO42- is 0.17 and 467 

0.24 in the high and low pollution samples, repsectively, much lower than that of seawater 468 

(3.98), reconfirming that marine source was not pridominant (Yuan et al., 2015). The high 469 

value of nss-Ca2+/Ca2+ indicate a large amount of continental contribution to atmospheric 470 

Ca2+. A few studies have revealed K+ is a tracer of biomass burning (Chow et al., 2004). Two 471 

times higher nss-K+ was observed in the high pollution episode compared with low pollution 472 

episode. This is not surprising since the air in high pollution episode passed through the 473 

region with more dense fire-spots than low pollution episode, which could have carried more 474 

biomass burning pollution to affect the sampling site. Further investigation on biomass 475 

burning impact on local air quality would be discussed in section 3.4.4.   476 
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Other than marine-derived sulfate and nitrate, these ions may also be formed through gas-477 

particle transition. Therefore, to investigate the transformation of SO2 to SO42- and NO2 to 478 

NO3-, sulfur oxidation ratio (SOR) and nitrogen oxidation ratio (NOR) were applied and 479 

caculated by following equations (Lin, 2002): 480 SOR = ൣnss-SOସଶି൧/(ൣnss-SOସଶି൧ + [SOଶ])      (3) 481 NOR = [NOଷି]/([NOଷି] + [NOଶ])        (4) 482 

Where [X] refers to molar concentration, higher value of SOR and NOR would imply the 483 

greater oxidation of gaseous species like SO2 and NO2 and the increase of secondary aerosol 484 

formation. In this work, NOR in high and low pollution episodes were 0.14 and 0.08 485 

respectively, indicating the formation of nitrate during the high pollution episode, which is 486 

consistent with the result obtained in Shanghai where the NOR value was 0.18 and 0.084 487 

during high and low pollution days respectively (Hua et al., 2015). It is reported that the 488 

photochemical oxidation of SO2 occurred when SOR>0.1 (Ohta and Okita, 1990). The SOR 489 

value for the low pollution episode was 0.44, suggesting a considerable conversion from SO2 490 

to SO42-. While the SOR value for the high pollution samples (0.27) was surprisingly lower 491 

than that of low pollution samples, but comparable with the SOR values of high pollution 492 

aerosols in Taiwan (0.30) and Guangzhou (0.29) (Lin, 2002; Tan et al., 2009). Lower SOR in 493 

high pollution aerosols may probably due to the rapid increase of SO2 and relatively less 494 

formation of sulphate during high pollution episode: (1) During the high pollution episode,  495 

with more stagnant weather during the winter at Ningbo, more SO2 would preferably 496 

accumulate under poorer air circulation/ dispersion and weaker solar radiation. (2) 497 

Additionally, it has also reported that high NO2 concentrations and weak photochemical 498 

process cannot generate sufficient oxidants for the formation of sulphate (Hua et al., 2008). 499 

The ratio of (NO3-/ nss-SO42-) to (NO2/ SO2) in high pollution aerosols was more than 4 times 500 

higher than low pollution aerosols, suggesting nitrate formation is more significant than 501 

sulphate formation in high pollution episode. The higher formation of nitrate may have 502 

hindered the generation of conversion oxidants for the formation of sulphate and 503 

consequently led to lower SOR value in high pollution period.  504 

In this study, the correlation between NH4+ and SO42- was only 0.12 during the low pollution 505 

episode, while NH4+ was highly correlated with NO3- with coefficient of 0.70, indicating 506 

nitrate dominated in secondary inorganic aerosols formation in low pollution episode. In high 507 

pollution aerosols, NH4+ was found both highly correlated with SO42- and NO3- with 508 
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coefficients of 0.72 and 0.73 respectively, indicating the formation of (NH4)2SO4, NH4HSO4 509 

and NH4NO3, which is consistent with the results in Shanghai during high pollution period 510 

(Du et al., 2011). The correlation coefficients between SOR and NOR-temprature were 0.31 511 

and 0.08, indicating very little influence of temprature. No obvious relation was obseved 512 

between SOR, NOR and relative humidity. The correlation coefficients between SOR, NOR 513 

and PM2.5 concentrations were 0.16 and 0.42, repsectively, indicating higher aerosol 514 

concentration (higher surface area) may have potentially favored the secondary aerosol 515 

formation though the number concentrations have not been considered here. 516 

3.4.4 Anhydrosugar compounds 517 

Anhydrosugars such as levoglucosan (L) and mannosan (M) are reported as unique and stable 518 

components of aerosols emitted from biomass burning (Saarnio et al., 2010), thus, they are 519 

used as tracers to investigate contributions from biomass burning to high pollution aerosols in 520 

this study. The average concentrations of levoglucosan and mannosan during high and low 521 

pollution episodes are listed in Table 5, as well as the ratio of L and M. The average 522 

concentrations of levoglucosan during dry high pollution episode and wet low pollution 523 

period were 76.1± 27.7 ng m-3 and 14.7 ± 6.7 ng m-3, accounting for 0.7‰ and 0.3‰ of total 524 

PM2.5 mass concentration, respectively. Compared with the results above, a suburb area 525 

located in Pearl River Delta (PRD) region of south China was observed with higher 526 

concentration of levoglucosan during dry season (181.0 ± 124.0  ng m-3) but with a lower 527 

concentration during the wet season (7.5 ± 8.7  ng m-3) (Zhang et al., 2015b). As shown in 528 

Table 6, significantly higher levoglucosan concentrations were observed in Beijing of 529 

Northern China and Xi’an of Central China than in this study. In Beijing the average 530 

levoglucosan concentrations are reported to be 307 ng m-3 (3.1‰ in PM2.5) (Zhang et al., 531 

2008) and 359.3 ± 130.2 ng m-3 (1.4‰ in PM2.5) (Ho et al., 2016), while in Xi’an even higher 532 

level of levoglucosan is found at 653.3 ± 191.4 ng m-3 and accounting for 2.8‰ of PM2.5 533 

mass concentration (Ho et al., 2016). Significantly higher concentrations of levoglucosan in 534 

northern and central China could be possibly due to large amount of softwood/grass burning 535 

for decentralized house-heating in the country area especially during the winter season 536 

(Cheng et al., 2013a). The average concentration of mannosan in this study during the dry 537 

high pollution episode (14.9 ± 6.3  ng m-3) was about 5 fold higher compared to the wet low 538 

pollution episode (2.6 ± 1.4  ng m-3). The concentration of mannosan during the dry high 539 

pollution episode was comparable with that of dry season in PRD region (10.0 ± 6.2 ng m-3) 540 

(Zhang et al., 2015b). Higher levoglucosan and mannosan concentrations in the high 541 
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pollution aerosols indicated the strong contribution from biomass burning to the organic 542 

matter present. In this study, levoglucosan was correlated very well with mannosan, with 543 

coefficient of 0.99 and both of them were positively correlated to PM2.5, with linear 544 

coefficients of 0.67 and 0.60, respectively, further confirming that biomass burning 545 

contributed to the high pollution aerosols.  546 

The L/M ratios can also be used to distinguish emissions from specific types of biomass. 547 

Based on combustion chamber studies, Engling et al. (2013) summarized the following L/M 548 

ratios for the differentiation of various biomass sources: softwood (3-5), hard wood (14-15), 549 

peat (11) and grass (5.5). In addition, Sang et al. (2013) reported average L/M ratios were 550 

32.6 ± 19.1 for crop residues. In this study, the high pollution episode has displayed a 551 

consistent L/M ratio with average of 5.2, while L/M of low pollution episode is in between of 552 

4.8 and 7.2, with average of 5.9, which falls into the L/M range of softwood and grass 553 

burning. Given that the high pollution episode occurred from December 2012 to January 554 

2013 when rice harvest season had passed in YRD, it might be safe to infer that rice straw 555 

burning was not the dominant form of biomass burning. Based on the air mass backward 556 

trajectory analysis, long-range transport of these organic tracers from north China might be 557 

the main origin where the softwood/grass in addition to coal would be used in large amounts 558 

for decentralized heating in the country area (Cheng et al., 2013a).  559 

4. Conclusions 560 

1. For the 32 samples analysed, the high pollution samples clearly exhibited a higher average 561 

concentration of PM2.5 (111 μg m-³) than the low pollution samples (53 μg m-³). 562 

2. High pollution aerosols had higher concentrations of metals, PAHs, inorganic ions and 563 

organic tracers. Total ionic mass concentrations in the high and low pollution periods were 564 

59.5 and 32.6 μg m-3, respectively, accounting for 55.3% and 62.0% of PM2.5 mass 565 

concentrations, respectively, with nitrate, sulphate and ammonium accounting for over 42.0% 566 

of PM2.5 mass concentrations in both periods. Total metals concentrations were 3.8 μg m-³ 567 

and 1.6 μg m-³ in the high and low pollution episodes respectively. Al was the highest in both 568 

episodes. PAHs in Ningbo were comparable with those in other cities of YRD. The high 569 

molecular weight PAHs (4-6 rings) accounted for 87.5% of total PAHs.  570 

3. Heavy metals including Cd and Pb indicated that there is a major contribution from 571 

anthropogenic sources especially from coal combustion. Diagnostic ratios Fla/(Fla+Pyr) and 572 

BaP/Bpe indicated the predominant sources of PAHs were both coal and wood combustion, 573 
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rather than traffic emissions. The elevated nss-K+, retene, levoglucosan and mannosan 574 

concentrations, and the ratio of L/M around 5 during the high pollution episode implied 575 

contributions from softwood and grass burning to the aerosols.  576 

4. Through the comparisons of above mentioned chemical components in highly polluted 577 

aerosols between this study and other studies in China, those medium-sized and megacities in 578 

Northern and Central China seemed to be experiencing generally more severe aerosol 579 

pollution than in YRD region in terms of the occurrence levels of PM2.5, PAHs, inorganic 580 

ions and biomass burning tracer levoglucosan for the past decade.  581 

5. Long-range trajectories showed that the air in Ningbo during the high pollution episode 582 

had been transported from heavily polluted northern areas and passed through regions with 583 

more dense fire spots than the low pollution episode. To summarize, the high pollution 584 

aerosols in Ningbo arise from a combination of local emissions, long-range transport of air 585 

pollution and formation of secondary aerosols with the assistance of stagnant atmospheric 586 

conditions in this region.   587 

Acknowledgements 588 

The authors acknowledge the financial support from the International Doctoral Innovation 589 

Centre, Ningbo Education Bureau, Ningbo Science and Technology Bureau, China's MoST 590 

and The University of Nottingham. This work was also partially supported by Natural 591 

Science Foundation of China (41303091), Zhejiang Provincial Applied Research Program for 592 

Commonweal Technology (2015C33011), Strategic Priority Research Program (B) of the 593 

Chinese Academy of Sciences (XDB05020403), Ningbo Municipal Natural Science 594 

Foundation (2014A610096), Ningbo Municipal Key Project (2012B10042) and Open Fund 595 

by Jiangsu Key Laboratory of AEMPC (KHK1304 & KHK1204).  596 



21 
 

Reference 597 

 Alves, N.d.O., Hacon, S.d.S., de Oliveira Galvao, M.F., Peixotoc, M.S., Artaxo, P., Vasconcellos, P.d.C., 598 
Batistuzzo de Medeiros, S.R., 2014. Genetic damage of organic matter in the Brazilian Amazon: A 599 
comparative study between intense and moderate biomass burning. Environ. Res. 130, 51-58. 600 

Andersson, A., Deng, J., Du, K., Zheng, M., Yan, C., Skold, M., Gustafsson, O., 2015. Regionally-Varying 601 
Combustion Sources of the January 2013 Severe Haze Events over Eastern China. Environ. Sci. 602 
Technol. 49, 2038-2043. 603 

Azevedo, D.D., dos Santos, C.Y.M., Neto, F.R.D., 2002. Identification and seasonal variation of atmospheric 604 
organic pollutants in Campos dos Goytacazes, Brazil. Atmos. Environ. 36, 2383-2395. 605 

Balasubramanian, R., Qian, W.B., Decesari, S., Facchini, M.C., Fuzzi, S., 2003. Comprehensive 606 
characterization of PM2.5 aerosols in Singapore. J. Geophys. Res.: Atmos. 108. 607 

Birmili, W., Allen, A.G., Bary, F., Harrison, R.M., 2006. Trace metal concentrations and water solubility in 608 
size-fractionated atmospheric particles and influence of road traffic. Environ. Sci. Technol. 40, 1144-609 
1153. 610 

Bourotte, C., Forti, M.C., Taniguchi, S., Bicego, M.C., Lotufo, P.A., 2005. A wintertime study of PAHs in fine 611 
and coarse aerosols in Sao Paulo city, Brazil. Atmos. Environ. 39, 3799-3811. 612 

Bravo-Linares, C., Ovando-Fuentealba, L., Mudge, S.M., Cerpa, J., Loyola-Sepulveda, R., 2012. Source 613 
Allocation of Aliphatic and Polycyclic Aromatic Hydrocarbons in Particulate-Phase (PM10) in the City 614 
of Valdivia, Chile. Polycyclic Aromatic Compounds. 32, 390-407. 615 

Cheng, Y., Engling, G., He, K.B., Duan, F.K., Ma, Y.L., Du, Z.Y., Liu, J.M., Zheng, M., Weber, R.J., 2013a. 616 
Biomass burning contribution to Beijing aerosol. Atmos. Chem. Phys. 13, 7765-7781. 617 

Cheng, Z., Wang, S., Fu, X., Watson, J.G., Jiang, J., Fu, Q., Chen, C., Xu, B., Yu, J., Chow, J.C., Hao, J., 2014. 618 
Impact of biomass burning on haze pollution in the Yangtze River delta, China: a case study in summer 619 
2011. Atmos. Chem. Phys. 14, 4573-4585. 620 

Cheng, Z., Wang, S., Jiang, J., Fu, Q., Chen, C., Xu, B., Yu, J., Fu, X., Hao, J., 2013b. Long-term trend of haze 621 
pollution and impact of particulate matter in the Yangtze River Delta, China. Environ. Pollut. 182, 101-622 
110. 623 

Chow, J.C., Watson, J.G., Kuhns, H., Etyemezian, V., Lowenthal, D.H., Crow, D., Kohl, S.D., Engelbrecht, J.P., 624 
Green, M.C., 2004. Source profiles for industrial, mobile, and area sources in the Big Bend Regional 625 
Aerosol Visibility and Observational study. Chemosphere. 54, 185-208. 626 

CNEMC, 1990. The Background Values of Chinese Soils. China National Environmental Monitoring Centre, 627 
Environmental Science Press of China, Beijing. 1-370 (in Chinese). 628 

Deng, S., Shi, Y.J., Liu, Y., Zhang, C., Wang, X.F., Cao, Q., Li, S.G., Zhang, F., 2014. Emission characteristics 629 
of Cd, Pb and Mn from coal combustion: Field study at coal-fired power plants in China. Fuel Process. 630 
Technol. 126, 469-475. 631 

Desboeufs, K.V., Sofikitis, A., Losno, R., Colin, J.L., Ausset, P., 2005. Dissolution and solubility of trace 632 
metals from natural and anthropogenic aerosol particulate matter. Chemosphere. 58, 195-203. 633 

Draxler, R.R.a.R., G.D., 2013. HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model 634 
access via NOAA ARL READY Website (http://ready.arl.noaa.gov/HYSPLIT.php). NOAA Air 635 
Resources Laboratory, Silver Spring, MD. 636 

Du, H., Kong, L., Cheng, T., Chen, J., Du, J., Li, L., Xia, X., Leng, C., Huang, G., 2011. Insights into 637 
summertime haze pollution events over Shanghai based on online water-soluble ionic composition of 638 
aerosols. Atmos. Environ. 45, 5131-5137. 639 

Duan, J., Tan, J., 2013. Atmospheric heavy metals and Arsenic in China: Situation, sources and control policies. 640 
Atmos. Environ. 74, 93-101. 641 

Engling, G., Lee, J.J., Sie, H.-J., Wu, Y.-C., Yet-Pole, I., 2013. Anhydrosugar characteristics in biomass smoke 642 
aerosol-case study of environmental influence on particle-size of rice straw burning aerosol. J. Aerosol 643 
Sci. 56, 2-14. 644 

Esen, F., Tasdemir, Y., Vardar, N., 2008. Atmospheric concentrations of PAHs, their possible sources and gas-645 
to-particle partitioning at a residential site of Bursa, Turkey. Atmos. Res. 88, 243-255. 646 

Field, R.D., Wang, Y., Roswintiarti, O., Guswanto, 2004. A drought-based predictor of recent haze events in 647 
western Indonesia. Atmos. Environ. 38, 1869-1878. 648 

Forsyth, T., 2014. Public concerns about transboundary haze: A comparison of Indonesia, Singapore, and 649 
Malaysia. Glob. Environ. Chang. 25, 76-86. 650 

Fu, Q., Zhuang, G., Wang, J., Xu, C., Huang, K., Li, J., Hou, B., Lu, T., Streets, D.G., 2008. Mechanism of 651 
formation of the heaviest pollution episode ever recorded in the Yangtze River Delta, China. Atmos. 652 
Environ. 42, 2023-2036. 653 



22 
 

Gao, L., Jia, G.S., Zhang, R.J., Che, H.Z., Fu, C.B., Wang, T.J., Zhang, M.G., Jiang, H., Van, P., 2011. Visual 654 
Range Trends in the Yangtze River Delta Region of China, 1981-2005. J. Air Waste Manage. Assoc. 655 
61, 843-849. 656 

Ge, S., Xu, X., Chow, J.C., Watson, J., Sheng, Q., Liu, W.L., Bai, Z.P., Zhu, T., Zhang, J.F., 2004. Emissions of 657 
air pollutants from household stoves: Honeycomb coal versus coal cake. Environ. Sci. Technol. 38, 658 
4612-4618. 659 

Gkikas, A., Hatzianastassiou, N., Mihalopoulos, N., Torres, O., 2016. Characterization of aerosol episodes in the 660 
greater Mediterranean Sea area from satellite observations (2000–2007). Atmos. Environ. 128, 286-304. 661 

Haas, J., Ban, Y.F., 2014. Urban growth and environmental impacts in Jing-Jin-Ji, the Yangtze, River Delta and 662 
the Pearl River Delta. Int. J. Appl. Earth Obs. Geoinf. 30, 42-55. 663 

Han, S.-q., Wu, J.-h., Zhang, Y.-f., Cai, Z.-y., Feng, Y.-c., Yao, Q., Li, X.-j., Liu, Y.-w., Zhang, M., 2014. 664 
Characteristics and formation mechanism of a winter haze–fog episode in Tianjin, China. Atmos. 665 
Environ. 98, 323-330. 666 

Harrison, R.M., Smith, D.J.T., Luhana, L., 1996. Source apportionment of atmospheric polycyclic aromatic 667 
hydrocarbons collected from an urban location in Birmingham, UK. Environ. Sci. Technol. 30, 825-668 
832. 669 

He, J., Balasubramanian, R., 2009. A study of gas/particle partitioning of SVOCs in the tropical atmosphere of 670 
Southeast Asia. Atmos. Environ. 43, 4375-4383. 671 

Ho, K.-F., Ho, S.S.H., Huang, R.-J., Chuang, H.-C., Cao, J.-J., Han, Y., Lui, K.-H., Ning, Z., Chuang, K.-J., 672 
Cheng, T.-J., Lee, S.-C., Hu, D., Wang, B., Zhang, R., 2016. Chemical composition and bioreactivity 673 
of PM2.5 during 2013 haze events in China. Atmos. Environ. 126, 162-170. 674 

Hsu, S.-C., Wong, G.T.F., Gong, G.-C., Shiah, F.-K., Huang, Y.-T., Kao, S.-J., Tsai, F., Lung, S.-C.C., Lin, F.-675 
J., Lin, I.I., Hung, C.-C., Tseng, C.-M., 2010. Sources, solubility, and dry deposition of aerosol trace 676 
elements over the East China Sea. Mar. Chem. 120, 116-127. 677 

Hua, W., Chen, Z.M., Jie, C.Y., Kondo, Y., Hofzumahaus, A., Takegawa, N., Chang, C.C., Lu, K.D., Miyazaki, 678 
Y., Kita, K., Wang, H.L., Zhang, Y.H., Hu, M., 2008. Atmospheric hydrogen peroxide and organic 679 
hydroperoxides during PRIDE-PRD'06, China: their concentration, formation mechanism and 680 
contribution to secondary aerosols. Atmos. Chem. Phys. 8, 6755-6773. 681 

Hua, Y., Cheng, Z., Wang, S., Jiang, J., Chen, D., Cai, S., Fu, X., Fu, Q., Chen, C., Xu, B., Yu, J., 2015. 682 
Characteristics and Source Apportionment of PM2.5 during a Fall Heavy Haze Episode in the Yangtze 683 
River Delta of China. Atmos. Environ. 123, 380-391. 684 

Huang, B., Liu, M., Bi, X., Chaemfa, C., Ren, Z., Wang, X., Sheng, G., Fu, J., 2014. Phase distribution, sources 685 
and risk assessment of PAHs, NPAHs and OPAHs in a rural site of Pearl River Delta region, China. 686 
Atmos. Pollut. Res. 5, 210-218. 687 

Ji, D., Li, L., Wang, Y., Zhang, J., Cheng, M., Sun, Y., Liu, Z., Wang, L., Tang, G., Hu, B., Chao, N., Wen, T., 688 
Miao, H., 2014. The heaviest particulate air-pollution episodes occurred in northern China in January, 689 
2013: Insights gained from observation. Atmos. Environ. 92, 546-556. 690 

Jiang, S.Y.N., Yang, F., Chan, K.L., Ning, Z., 2014. Water solubility of metals in coarse PM and PM2.5 in 691 
typical urban environment in Hong Kong. Atmos. Pollut. Res. 5, 236-244. 692 

Jin, G., Cong, L., Fang, Y., Li, J., He, M., Li, D., 2012. Polycyclic aromatic hydrocarbons in air particulates and 693 
its effect on the Tumen river area, Northeast China. Atmos. Environ. 60, 298-304. 694 

Kang, Y., Liu, G., Chou, C.-L., Wong, M.H., Zheng, L., Ding, R., 2011. Arsenic in Chinese coals: Distribution, 695 
modes of occurrence, and environmental effects. Sci. Total Environ. 412–413, 1-13. 696 

Karanasiou, A.A., Sitaras, I.E., Siskos, P.A., Eleftheriadis, K., 2007. Size distribution and sources of trace 697 
metals and n-alkanes in the Athens urban aerosol during summer. Atmos. Environ. 41, 2368-2381. 698 

Karthikeyan, S., Balasubramanian, R., See, S.W., 2006. Optimization and validation of a low temperature 699 
microwave-assisted extraction method for analysis of polycyclic aromatic hydrocarbons in airborne 700 
particulate matter. Talanta. 69, 79-86. 701 

Kong, S., Wen, B., Chen, K., Yin, Y., Li, L., Li, Q., Yuan, L., Li, X., Sun, X., 2014. Ion chemistry for 702 
atmospheric size-segregated aerosol and depositions at an offshore site of Yangtze River Delta region, 703 
China. Atmos. Res. 147, 205-226. 704 

Langmann, B., 2007. A model study of smoke-haze influence on clouds and warm precipitation formation in 705 
Indonesia 1997/1998. Atmos. Environ. 41, 6838-6852. 706 

Li, M., Zhang, L., 2014. Haze in China: Current and future challenges. Environ. Pollut. 189, 85-86. 707 
Liao, J.B., Wang, T.J., Wang, X.M., Xie, M., Jiang, Z.Q., Huang, X.X., Zhu, J.L., 2014. Impacts of different 708 

urban canopy schemes in WRF/Chem on regional climate and air quality in Yangtze River Delta, 709 
China. Atmos. Res. 145, 226-243. 710 

Lin, J.J., 2002. Characterization of water-soluble ion species in urban ambient particles. Environ. Int.  28, 55-61. 711 
Liu, G., Li, J., Wu, D., Xu, H., 2015. Chemical composition and source apportionment of the ambient PM2.5 in 712 

Hangzhou, China. Particuology. 18, 135-143. 713 



23 
 

Manousakas, M., Papaefthymiou, H., Eleftheriadis, K., Katsanou, K., 2014. Determination of water-soluble and 714 
insoluble elements in PM2.5 by ICP-MS. Sci. Total Environ. 493, 694-700. 715 

Meng, Q., Fan, S., He, J., Zhang, J., Sun, Y., Zhang, Y., Zu, F., 2015. Particle size distribution and 716 
characteristics of polycyclic aromatic hydrocarbons during a heavy haze episode in Nanjing, China. 717 
Particuology. 18, 127-134. 718 

MEP, Chinese Ministry of Environmental Protection, 2012. Ambient Air Quality Standards (GB3095-2012). 719 
Odman, M.T., Hu, Y., Russell, A.G., Hanedar, A., Boylan, J.W., Brewer, P.F., 2009. Quantifying the sources of 720 

ozone, fine particulate matter, and regional haze in the Southeastern United States. J. Environ. Manage. 721 
90, 3155-3168. 722 

Ohta, S., Okita, T., 1990. A chemical characterization of atmospheric aerosol in Sapporo. Atmos. Environ. Part 723 
A. General Topics. 24, 815-822. 724 

Okuda, T., Katsuno, M., Naoi, D., Nakao, S., Tanaka, S., He, K., Ma, Y., Lei, Y., Jia, Y., 2008. Trends in 725 
hazardous trace metal concentrations in aerosols collected in Beijing, China from 2001 to 2006. 726 
Chemosphere. 72, 917-924. 727 

Oliveira, R.L., Loyola, J., Minho, A.S., Quiterio, S.L., Azevedo, D.d.A., Arbilla, G., 2014. PM2.5-Bound 728 
Polycyclic Aromatic Hydrocarbons in an Area of Rio de Janeiro, Brazil Impacted by Emissions of 729 
Light-Duty Vehicles Fueled by Ethanol-Blended Gasoline. Bull. Environ. Contam. Toxicol. 93, 781-730 
786. 731 

Park, R.J., Jacob, D.J., Kumar, N., Yantosca, R.M., 2006. Regional visibility statistics in the United States: 732 
Natural and transboundary pollution influences, and implications for the Regional Haze Rule. Atmos. 733 
Environ. 40, 5405-5423. 734 

Piot, C., Jaffrezo, J.L., Cozic, J., Pissot, N., El Haddad, I., Marchand, N., Besombes, J.L., 2012. Quantification 735 
of levoglucosan and its isomers by High Performance Liquid Chromatography - Electrospray 736 
Ionization tandem Mass Spectrometry and its applications to atmospheric and soil samples. Atmos. 737 
Meas. Tech. 5, 141-148. 738 

Pope Iii, C.A., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K., Thurston, G.D., 2002. Lung cancer, 739 
cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. J. Am. Medical. 740 
Assoc. 287, 1132-1141. 741 

Ravindra, K., Sokhi, R., Van Grieken, R., 2008. Atmospheric polycyclic aromatic hydrocarbons: Source 742 
attribution, emission factors and regulation. Atmos. Environ. 42, 2895-2921. 743 

Rolph, G.D., 2013. Real-time Environmental Applications and Display sYstem (READY) Website 744 
(http://ready.arl.noaa.gov). NOAA Air Resources Laboratory, Silver Spring, MD. . 745 

Saarnio, K., Teinila, K., Aurela, M., Timonen, H., Hillamo, R., 2010. High-performance anion-exchange 746 
chromatography-mass spectrometry method for determination of levoglucosan, mannosan, and 747 
galactosan in atmospheric fine particulate matter. Anal. Bioanal. Chem. 398, 2253-2264. 748 

Sang, X., Zhang, Z., Chan, C., Engling, G., 2013. Source categories and contribution of biomass smoke to 749 
organic aerosol over the southeastern Tibetan Plateau. Atmos. Environ. 78, 113-123. 750 

Schichtel, B.A., Husar, R.B., Falke, S.R., Wilson, W.E., 2001. Haze trends over the United States, 1980–1995. 751 
Atmos. Environ. 35, 5205-5210. 752 

Seidel, D.J., Ao, C.O., Li, K., 2010. Estimating climatological planetary boundary layer heights from radiosonde 753 
observations: Comparison of methods and uncertainty analysis. J. Geophys. Res.: Atmos.  115. 754 

Tan, J., Duan, J., He, K., Ma, Y., Duan, F., Chen, Y., Fu, J., 2009. Chemical characteristics of PM2.5 during a 755 
typical haze episode in Guangzhou. J. Environ. Sci. 21, 774-781. 756 

Tan, J., Duan, J., Ma, Y., Yang, F., Cheng, Y., He, K., Yu, Y., Wang, J., 2014. Source of atmospheric heavy 757 
metals in winter in Foshan, China. Sci. Total Environ. 493, 262-270. 758 

Tan, J., Duan, J., Zhen, N., He, K., Hao, J., 2016. Chemical characteristics and source of size-fractionated 759 
atmospheric particle in haze episode in Beijing. Atmos. Res. 167, 24-33. 760 

Tan, J., Guo, S., Ma, Y., Duan, J., Cheng, Y., He, K., Yang, F., 2011. Characteristics of particulate PAHs during 761 
a typical haze episode in Guangzhou, China. Atmos. Res. 102, 91-98. 762 

Tao, J., Zhang, L., Engling, G., Zhang, R., Yang, Y., Cao, J., Zhu, C., Wang, Q., Luo, L., 2013. Chemical 763 
composition of PM2.5 in an urban environment in Chengdu, China: Importance of springtime dust 764 
storms and biomass burning. Atmos. Res. 122, 270-283. 765 

Tao, M., Chen, L., Xiong, X., Zhang, M., Ma, P., Tao, J., Wang, Z., 2014. Formation process of the widespread 766 
extreme haze pollution over northern China in January 2013: Implications for regional air quality and 767 
climate. Atmos. Environ. 98, 417-425. 768 

Tie, X., Brasseur, G.P., Zhao, C., Granier, C., Massie, S., Qin, Y., Wang, P., Wang, G., Yang, P., Richter, A., 769 
2006. Chemical characterization of air pollution in Eastern China and the Eastern United States. Atmos. 770 
Environ. 40, 2607-2625. 771 

Tie, X., Wu, D., Brasseur, G., 2009. Lung cancer mortality and exposure to atmospheric aerosol particles 772 
in Guangzhou, China. Atmos. Environ. 43, 2375-2377. 773 



24 
 

Toledano, C., Cachorro, V.E., Gausa, M., Stebel, K., Aaltonen, V., Berjón, A., Ortiz de Galisteo, J.P., de Frutos, 774 
A.M., Bennouna, Y., Blindheim, S., Myhre, C.L., Zibordi, G., Wehrli, C., Kratzer, S., Hakansson, B., 775 
Carlund, T., de Leeuw, G., Herber, A., Torres, B., 2012. Overview of sun photometer measurements of 776 
aerosol properties in Scandinavia and Svalbard. Atmos. Environ. 52, 18-28. 777 

Turpin, B.J., Huntzicker, J.J., 1995. Identification of secondary organic aerosol episodes and quantitation of 778 
primary and secondary organic aerosol concentrations during SCAQS. Atmos. Environ. 29, 3527-3544. 779 

Wang, H., An, J., Shen, L., Zhu, B., Pan, C., Liu, Z., Liu, X., Duan, Q., Liu, X., Wang, Y., 2014. Mechanism for 780 
the formation and microphysical characteristics of submicron aerosol during heavy haze pollution 781 
episode in the Yangtze River Delta, China. Sci. Total Environ. 490, 501-508. 782 

Wang, J., Li, X., Jiang, N., Zhang, W., Zhang, R., Tang, X., 2015a. Long term observations of PM2.5-associated 783 
PAHs: Comparisons between normal and episode days. Atmos. Environ. 104, 228-236. 784 

Wang, L., Liu, Z., Sun, Y., Ji, D., Wang, Y., 2015b. Long-range transport and regional sources of PM2.5 in 785 
Beijing based on long-term observations from 2005 to 2010. Atmos. Res. 157, 37-48. 786 

Wang, M., Cao, C., Li, G., Singh, R.P., 2015c. Analysis of a severe prolonged regional haze episode in the 787 
Yangtze River Delta, China. Atmos. Environ. 102, 112-121. 788 

Wang, Y.Q., Zhang, X.Y., Draxler, R.R., 2009. TrajStat: GIS-based software that uses various trajectory 789 
statistical analysis methods to identify potential sources from long-term air pollution measurement data. 790 
Environ. Modell. Softw. 24, 938-939. 791 

Wei, Z., Wang, L.T., Chen, M.Z., Zheng, Y., 2014. The 2013 severe haze over the Southern Hebei, China: 792 
PM2.5 composition and source apportionment. Atmos. Pollut. Res. 5, 759-768. 793 

Xin, J., Gong, C., Wang, S., Wang, Y., 2016. Aerosol direct radiative forcing in desert and semi-desert regions 794 
of northwestern China. Atmos. Res. 171, 56-65. 795 

Xu, L., Zheng, M., Ding, X., Edgerton, E.S., Reddy, C.M., 2012. Modern and Fossil Contributions to Polycyclic 796 
Aromatic Hydrocarbons in PM2.5 from North Birmingham, Alabama in the Southeastern U.S. Environ. 797 
Sci. Technol. 46, 1422-1429. 798 

Yuan, Q., Li, W., Zhou, S., Yang, L., Chi, J., Sui, X., Wang, W., 2015. Integrated evaluation of aerosols during 799 
haze-fog episodes at one regional background site in North China Plain. Atmos. Res. 156, 102-110. 800 

Zhang, L., Zhang, T., Dong, L., Shi, S., Zhou, L., Huang, Y., 2013. Assessment of halogenated POPs and PAHs 801 
in three cities in the Yangtze River Delta using high-volume samplers. Sci. Total Environ. 454–455, 802 
619-626. 803 

Zhang, Q., Quan, J., Tie, X., Li, X., Liu, Q., Gao, Y., Zhao, D., 2015a. Effects of meteorology and secondary 804 
particle formation on visibility during heavy haze events in Beijing, China. Sci. Total Environ. 502, 805 
578-584. 806 

Zhang, T., Claeys, M., Cachier, H., Dong, S., Wang, W., Maenhaut, W., Liu, X., 2008. Identification and 807 
estimation of the biomass burning contribution to Beijing aerosol using levoglucosan as a molecular 808 
marker. Atmos. Environ. 42, 7013-7021. 809 

Zhang, Z., Gao, J., Engling, G., Tao, J., Chai, F., Zhang, L., Zhang, R., Sang, X., Chan, C.-y., Lin, Z., Cao, J., 810 
2015b. Characteristics and applications of size-segregated biomass burning tracers in China's Pearl 811 
River Delta region. Atmos. Environ. 102, 290-301. 812 

Zhou, S., Yuan, Q., Li, W., Lu, Y., Zhang, Y., Wang, W., 2014. Trace metals in atmospheric fine particles in 813 
one industrial urban city: Spatial variations, sources, and health implications. J. Environ. Sci.: China.  814 
26, 205-213. 815 

Zhu, Y., Hinds, W.C., Kim, S., Sioutas, C., 2002. Concentration and Size Distribution of Ultrafine Particles 816 
Near a Major Highway. J. Air Waste Manage. Assoc. 52, 1032-1042. 817 

 818 

 819 
 820 
  821 



25 
 

Figure Captions 822 

Fig. 1 (a) Location of YRD region in China and (b) Location of Ningbo in YRD 823 

Fig. 2 Daily-averaged PM2.5 concentrations during the high and low pollution periods of 824 

Ningbo from 2012/12/03 to 2013/06/27  825 

Fig. 3 Air mass backward trajectories and representative fire spots during the (a) high and (b) 826 

low pollution periods in Ningbo 827 

Fig. 4 Comparison of PAH concentrations in the high and low pollution periods 828 
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Fig. 1 (a) Location of YRD region in China and (b) Location of Ningbo in YRD  830 
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 832 

Fig. 2 Daily-averaged PM2.5 concentrations during the high and low pollution periods of Ningbo from 833 

2012/12/03 to 2013/06/27   834 
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 835 

Fig. 3 Air mass backward trajectories and representative fire spots during the (a) high and (b) low pollution 836 

periods in Ningbo 837 

838 
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 840 

Fig. 4 Comparison of PAH concentrations in the high and low pollution periods 841 
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Table Captions 842 

Table 1 Average daily values for the meteorological data during the high and low pollution 843 
periods  844 

Table 2 Water soluble (CWS) and total (CT) metal concentrations, corresponding water 845 

solubility and enrichment factors (EF) of the high and low pollution samples  846 

Table 3 Correlation matrix for the trace metal concentrations 847 

Table 4 Average concentrations of ionic species and their abundance in PM2.5 848 

Table 5 Average concentrations of levoglucosan and mannosan during the high and low 849 

pollution periods  850 

Table 6 Comparisons of chemical compositions and their relative abundance in highly 851 

polluted aerosols from different regions in China  852 
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Table 1 Average daily values for the meteorological data during the high and low pollution periods  853 

 Sampling 
Days 

PM2.5/ ( μg 
m-³) 

Temperature 
(°C) 

Rainfall 
(mm) 

Wind Speed 
(km/h) 

Relative 
Humidity (%) 

High Pollution 18 110.9 ± 30.8 6.5 0.015 2.1 67.9 

Low Pollution 14 52.6 ± 11.9 18.8 0.040 1.9 76.8 
  854 
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Table 2 Water soluble (CWS) and total (CT) metal concentrations, corresponding water solubility and enrichment 855 

factors (EF) of the high and low pollution samples  856 

 

 High Pollution  Low Pollution 

CWS ( μg 
m-³) 

CT ( μg 
m-³) 

(CT/PM2.5) 
/% 

Water 
solubility/%

EF*a 
 

CWS ( μg 
m-³) 

CT ( μg 
m-³) 

(CT/PM2.5) 
/% 

Water 
solubility/%

EF 

Al 0.200 1.087 0.98 18.4 Ref*b 0.147 0.589 1.12 24.9 Ref 
Mn 0.036 0.366 0.33 9.8 38.3 0.022 0.173 0.33 12.8 33.4 
Zn 0.136 0.736 0.66 18.5 604.2 0.075 0.210 0.40 35.7 318.0 
Co 0.002 0.009 0.0081 17.6 41.7 0.001 0.004 0.0076 21.7 37.7 
Cd 0.005 0.047 0.042 9.7 29342.0 0.002 0.008 0.015 26.5 9495.7 
Cu 0.069 0.155 0.14 44.3 419.1 0.040 0.068 0.13 58.1 339.8 
Cr 0.011 0.053 0.048 21.4 53.0 0.008 0.029 0.055 26.5 53.2 
Ni 0.011 0.072 0.065 15.0 162.4 0.005 0.053 0.10 9.3 219.9 
Pb 0.055 0.277 0.25 20.0 649.1 0.031 0.092 0.17 33.1 399.7 
As 0.022 0.087 0.079 24.8 472.6 0.010 0.037 0.070 26.6 372.6 
V 0.011 0.052 0.047 20.6 38.5 0.004 0.023 0.044 17.0 31.0 
Fe 0.261 0.816 0.74 32.0 1.7 0.160 0.321 0.61 49.8 1.2 
Ti 0.007 0.019 0.017 36.4 0.3 0.005 0.012 0.023 41.3 0.4 

Sum 0.8 3.8  0.5 1.6  
PM2.5 110.9 110.9  52.6 52.6  

(∑metals)/PM2.5 0.7% 3.4%  1.0% 3.1%  
* a EF - Enrichment factor of metal, is defined as dividing the relative abundance of each metal in sample by its 857 
corresponding average abundance in the upper continental crust. 858 

௜ܨܧ = ( )/௥௘௙)௔௧௠௢௦௣௛௘௥௘ܥ௜ܥ  ௥௘௙)௖௥௨௦௧ 859ܥ௜ܥ

* b Al was chosen as a reference metal for the calculation of enrichment factors  860 
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Table 3 Correlation matrix for the trace metal concentrations 861 

Mn Zn Co Cd Cu Al Cr Ni Pb As V Fe Ti 
High Pollution 

Mn 1 
Zn 0.4069 1 
Co 0.2748 0.6224 1 
Cd 0.6139 0.4107 0.3286 1 
Cu 0.5289 0.1341 0.4003 0.5093 1 
Al 0.0061 0.1871 0.3222 0.1075 0.0218 1 
Cr 0.8803 0.4436 0.2122 0.4824 0.3332 0.0236 1 
Ni 0.4433 0.1323 0.2142 0.0872 0.5352 0.0059 0.3524 1 
Pb 0.6618 0.3397 0.2772 0.9581 0.5257 0.0327 0.4959 0.1012 1 
As 0.8351 0.5981 0.3306 0.7216 0.4179 0.0110 0.7222 0.3050 0.6976 1 
V 0.8470 0.3951 0.2354 0.5305 0.4756 0.0236 0.6940 0.4341 0.5678 0.9029 1 
Fe 0.8082 0.6936 0.363 0.7463 0.3254 0.0145 0.7202 0.186 0.7337 0.9477 0.8126 1 
Ti 0.7885 0.4903 0.334 0.6958 0.5649 0.0209 0.6418 0.440 0.6583 0.948 0.8828 0.8173 1 
Low Pollution 

Mn 1 
Zn 0.0078 1 
Co 0.2630 0.0530 1 
Cd 0.0194 0.0005 0.5251 1 
Cu 0.2443 0.0008 0.5907 0.4194 1 
Al 0.2297 0.2543 0.4380 0.4679 0.5528 1 
Cr 0.6450 0.2871 0.3748 0.1072 0.4597 0.0124 1 
Ni 0.5568 0.0179 0.8301 0.2303 0.5075 0.4323 0.1926 1 
Pb 0.0024 0.0023 0.5275 0.6891 0.1763 0.2760 0.1086 0.2663 1 
As 0.0365 0.4745 0.0576 0.2961 0.2480 0.7264 0.0250 0.0398 0.0504 1 
V 0.0130 0.0434 0.1481 0.0064 0.0011 0.1111 0.1882 0.1163 0.1847 0.5334 1 
Fe 0.0374 0.5416 0.1324 0.1731 0.1456 0.6172 0.0638 0.1527 0.2764 0.4387 0.0463 1 
Ti 0.3469 0.2167 0.1670 0.0040 0.1763 0.0019 0.6092 0.1636 0.0063 0.0687 0.1229 0.2030 1 

  862 
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Table 4 Average concentrations of ionic species and their abundance in PM2.5 863 

 High Pollution  Low Pollution  Cion (High Pollution)/ 

Cion (Low Pollution)  Cion* / ug m-3 (Cion/PM2.5) /%  Cion* / ug m-3 (Cion/PM2.5) /%  

F- 0.06 0.06 0.05 0.09 1.37 
Cl- 3.32 3.09 2.44 4.65 1.36 
Br- 0.013 0.01 0.007 0.01 1.78 

NO3
- 12.39 11.51 5.93 11.27 2.09 

SO4
2- 27.08 25.16 14.65 27.86 1.85 

Li+ 0.06 0.06 0.05 0.10 1.20 
Na+ 4.37 4.06 3.42 6.50 1.28 

NH4
+ 7.15 6.64 2.67 5.07 2.68 

K+ 1.56 1.45 0.77 1.46 2.04 
Mg2+ 0.84 0.78 0.57 1.08 1.48 
Ca2+ 2.61 2.43 2.07 3.93 1.27 
sum 59.5 55.3  32.6 62.0  - 

* Cion was defined as the average value of daily mean ionic concentration during high/ low pollution episode.864 
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Table 5 Average concentrations of levoglucosan and mannosan during the high and low pollution periods  865 

 Levoglucosan/ ( ng m-3) Mannosan/ ( ng m-3) L/M 

High Pollution 76.1 ± 27.7 14.9 ± 6.3 5.2 

Low Pollution 14.7 ± 6.7 2.6 ± 1.4 5.9 
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Table 6 Comparisons of chemical compositions and their relative abundance in highly polluted aerosols from different regions in China 866 

Location Sampling period 

(yyyy/mm-yyyy/mm) 
PM2.5 (μg m-³) Metals (μg m-³) PAHs (ng m-³) Inorganic ions 

(μg m-³) 

Levoglucosan 

(ng m-³) 
Reference 

Ningbo, YRD region 2012/12-2013/01 110.9 ± 30.8 3.78 (3.4%*1) 90.6 (0.8‰) 59.5 (55.3%) 76 ± 28 (0.7‰) This study 

Suzhou etc, YRD region 2009-07/2010/04   88.2   Zhang et al., 2013 

Hangzhou, YRD region 2004/04-2005/03 108.2 ± 43.2   41.7 (38.5%)  Liu et al., 2015 

PRD region 2010/11-2010/12   91.5 ± 36.1   Huang et al., 2014 

PRD region 
2010/05-2010/06 

2010/11-2010/12 
    181.0 ± 124.0  Zhang et al., 2015b 

Beijing, Northern China 2002/07-2003/07 99.2    307 (3.1‰) Zhang et al., 2008 

Tianjin, Northern China 2013/01-2013/01 > 94     Han et al., 2014 

Handan, Northern China 2012/12-2013/01 160.1 ± 77.9   77.3 (48.3%)  Wei et al., 2014 

Zhengzhou, Northern China 2011/03-2014/01 194 ± 109  211 (1.1‰)   Wang et al., 2015a 

Beijing, Northern China 2006/12-2006/12 142.3 ± 46.0 3.74 (2.6%)  50.9 (SNA*2)  Tan et al., 2016 

Beijing, Northern China 2013/01-2013/02 258 ± 100   116.5 (SNA) 359.3 ± 130.2 Ho et al., 2016 

Xi’an, Central China 2013/01-2013/02 233 ± 52   125.6 (SNA) 653.3 ± 191.4 Ho et al., 2016 

*1 Percentages in the table are the relative abundance of each chemical component in PM2.5, calculated as its mass concentration divided by its corresponding PM2.5 867 
concentration. 868 
*2 SNA – SO4

2-, NO3
- and NH4

+ (namely SNA) 869 


