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Abstract	

The	Fertile	Crescent,	its	hilly	flanks	and	surrounding	drylands	has	been	a	critical	region	for	studying	

how	climate	has	influenced	societal	change,	and	this	review	focuses	on	the	region	over	the	last	

20,000	years.	The	complex	social,	economic	and	environmental	landscapes	in	the	region	today	are	

not	new	phenomena	and	understanding	their	interactions	requires	a	nuanced,	multidisciplinary	

understanding	of	the	past.	This	review	builds	on	a	history	of	collaboration	between	the	social	and	

natural	palaeoscience	disciplines.	We	provide	a	multidisciplinary,	multi-scalar	perspective	on	the	

relevance	of	past	climate,	environmental	and	archaeological	research	in	assessing	present	day	

vulnerabilities	and	risks	for	the	populations	of	SW	Asia.	We	discuss	the	complexity	of	palaeoclimatic	

data	interpretation,	particularly	in	relation	to	hydrology,	and	provide	an	overview	of	key	time	

periods	of	palaeoclimatic	interest.	We	discuss	the	critical	role	vegetation	plays	in	the	human-

climate-environment	nexus	and	discuss	the	implications	of	the	available	palaeoclimate	and	



archaeological	data,	and	their	interpretation,	for	palaeonarratives	of	the	region,	both	climatically	

and	socially.	We	also	provide	an	overview	of	how	modelling	can	improve	our	understanding	of	past	

climate	impacts	and	associated	change	in	risk	to	societies.	We	conclude	by	looking	to	future	work,	

and	identify	themes	of	‘scale’	and	‘seasonality’	as	still	requiring	further	focus.	We	suggest	that	by	

appreciating	a	given	locale’s	place	in	the	regional	hydroscape,	be	it	an	archaeological	site	or	

palaeoenvironmental	archive,	more	robust	links	to	climate	can	be	made	where	appropriate	and,	

interpretations	drawn	will	demand	the	resolution	of	factors	acting	across	multiple	scales.	
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We	discuss	the	impact	of	a	changing	regional	hydroscape	(pictured)	on	the	proxy	archives	and	
people	of	SW	Asia	over	the	last	20,000	years.	

	

Introduction	

Climate, including drought, has influenced societal change in southwest (SW) Asia, not just in the last 

decades (e.g. Kelley, Mohtadi, Cane, Seager, & Kushnir, 2015), but for millennia (e.g. Kaniewski, Van 

Campo, & Weiss, 2012). The Fertile Crescent, its hilly flanks and surrounding drylands have long been 

a critical region for studying human societal change, first, as being an initial stepping point out of 

Africa for the first anatomically modern humans (Bae, Douka, & Petraglia, 2017; Hershkovitz et al., 

2018), and then as a centre for some of the earliest agricultural villages (Barker, 2009; Willcox, Buxo, 

& Herveux, 2009) and cities (Lawrence, Philip, Hunt, Snape-Kennedy, & Wilkinson, 2016; Ur, 2017). 

Since these early developments, the region has been the scene of many further social, technological 

and economic changes and exchanges. While climate has often been discussed as one potential driver 

for these developments (e.g. Büntgen et al., 2016; Weiss, 2016), the modern complex social, 

economic and environmental landscapes of the region emphasise the importance of a nuanced, 

multidisciplinary understanding of past climate change and its relationship to human behaviours (e.g. 



Jones, Maher, Richter, Macdonald, & Martin, 2016; Ur, 2015). Understanding the vulnerabilities of 

social and natural systems to change requires high-resolution reconstructions and modelling of the 

co-evolution of climate and human communities through time, and SW Asia provides a uniquely long 

record to explore these dynamics. With climate model projections for the region indicating rising 

temperatures and reduced rainfall in the coming decades (Pachauri et al., 2014), it is important to 

consider prehistoric and historical datasets regarding the relationships between climate, water 

availability and people to frame the impact of these changes on populations in the area today. 

This paper focuses on research published over the last decade since the last comprehensive 

reviews of the region’s palaeoclimate of the late Pleistocene and Holocene by Robinson, Black, 

Sellwood, and Valdes (2006) and Enzel et al. (2008). Recent progress in modelling capabilities and 

improvements in data quality across a range of disciplines now allows us to better test hypotheses of 

human-climate-environment interactions in the past at a variety of scales, both in time and space. 

With current geopolitical unrest in the region, a renewed focus on topics of migration and conflict, 

linked directly or indirectly to drought (e.g. Flohr et al., 2017; Gleick, 2014; Kelley et al., 2015), a long-

term perspective on these issues is especially timely. In this paper we outline our current 

understanding of climatic changes in SW Asia over the last 20,000 years and integrate this information 

with the latest archaeological and historical evidence. This combined approach provides a multi-scalar 

perspective on the relevance of past climate, environmental, and archaeological research in assessing 

present day vulnerabilities and risks for human populations in the region today. We build on a long 

history of collaborations between the social and natural palaeoscience disciplines (c.f. Roberts et al., 

2017)  

The review focuses on the region from present day Turkey, south along the eastern 

Mediterranean coast, southeast to the Arabian Peninsula and east to the Iranian Plateau (Fig. 1). This 

region marks a meeting point between continents and weather systems that adds to the complexity 

of reconstructing palaeoclimate and the related, or not, trajectory of past human histories. The last 

20,000 years witnessed one of the most dramatic global climatic changes (glacial/interglacial 

transition), but also includes the full scope of Holocene climatic variability. This time period also 

includes the development of agriculture and the first urban societies, the first examples of which can 

be found in this region. There are important records of environmental change through our time 

period of focus from the seas surrounding our study region (e.g. Heyvaert & Baeteman, 2007; Leroy et 

al., 2011), including insight into sea-level change (Benjamin et al., 2017; Goldberg, Lau, Mitrovica, & 

Latychev, 2016) and how this may have impacted the movement of people, but we do not focus on 

these directly here. We focus on the environments where people were living, i.e. the archaeological 



sites that they inhabited and terrestrial archives of palaeoenvironmental change, from trees, caves, 

and lakes and wetlands. 

 

 

 

F igure 1 Map of the region showing key palaeoenvironmental archives (Table 1; tree rings from 

Touchan et al., 2014), archaeological sites, and climate seasonality across the region (data from KNMI 

Climate Explorer). Climate plots show mean monthly (Jan-Dec) precipitation (mm; left hand axis) and 

average air temperature (°C right hand axis). Archaeological sites shown A1: Hattusas A2: Çatal Hoyuk 

A3: Tell Leilan A4: Tell Brak A5: Abu Hureyra A6: Ebla A7: Assur A8: Godin Tepe A9: Ohalo II A10: 

Babylon A11: Susa A12: Azraq A13: Uruk A14: Shahr-I Sokta A15: Tall-e Malyan A16: Konar Sandal. 

 

We discuss the complexity of palaeoclimatic data interpretation and its associated 

uncertainties, particularly in relation to hydrology, before providing an overview of key time periods 

of palaeoclimatic interest and relating them to archaeological narratives. Vegetation plays a critical 

role in the human-climate-environment nexus acting as both a control on, and being affected by, 

natural and anthropogenic environmental change, and we outline some of the outstanding questions 

regarding vegetation change over the last 20,000 years. We discuss the implications of available 

palaeoclimate and archaeological data, and their interpretation, on climatic and social 



palaeonarratives of the region. We also provide an overview of how modelling of climate, 

palaeoenvironmental archives and people can improve our understanding of past climate impacts and 

associated change in risk to societies. We end this review by discussing potential future directions for 

research in order for multiple disciplines to develop more sophisticated, evidence-based hypotheses 

of the impact of environmental change on societies in the past, integrating complementary, yet 

distinct, types of palaeoenvironmental and archaeological datasets.  

 

Regional  c l imate 

As a framework for this review, we very briefly outline here the modern climatology of the region. In 

general SW Asia is characterised by wet winters and springs and dry, warm, summers, although the 

rainfall source areas and circulation patterns that drive these are varied (Enzel, Kushnir, & Quade, 

2015) and complicate attempts to reconstruct palaeoclimate beyond local, site specific, conditions 

(Stevens, Wright, & Ito, 2001). Winter and spring storms from the Atlantic and Mediterranean extend 

over the Anatolian Plateau and into northern and west Iran, and across the Levant into northern 

Arabia. Additional rains, particularly in the south of the region come from the Red Sea, tropical Africa 

and the Gulf of Oman (Enzel et al., 2015). 

Summers are characterised by dry and warm conditions, except in the most southerly parts of 

the Arabian Peninsula where Africa and Indian Monsoon systems bring precipitation to the mountains 

of Yemen and Oman. These weather systems also impact the dry conditions of the rest of the region 

indirectly, due to circulation patterns that bring either descending air, linked to Hadley Cell 

circulation, or warm dry north, north-easterly winds across the region (e.g. Lionello et al., 2006). 

The balance between winter and summer conditions is key to water availability and a broad 

regional picture of local palaeoenvironmental conditions is needed to pull apart any of the subtleties 

evident in the modern climate regime in the past, or how this might have changed through time. 

 

Chronology 

Archaeological and palaeoclimate discussions, and particularly comparisons between different 

records, require robust chronological control, and much has been written on this in general and for 

our study region (e.g. Blockley & Pinhasi, 2011; Maher, Banning, & Chazan, 2011). In the next section 

of the paper (Archives and Proxies: Climate and Hydrology) we discuss the common dating methods 

for each of our climate archives of focus. Issues relating to dating archaeological sites are discussed in 

the later sections (e.g. Modelling Climate, Proxies and Human Responses). Different disciplines, and 



dating methods, traditionally use particular chronological conventions (e.g. AD/BC, CE/BCE, BP) such 

that direct comparisons can be confusing. Here we use a common chronological notation of ka, 

thousands of years ago, noting the type of age estimate used where appropriate, more recent events 

are described in years AD. All radiocarbon age estimates are calibrated unless otherwise stated. 

 

ARCHIVES AND PROXIES: CLIMATE AND HYDROLOGY  

Some of the continued uncertainty around proxy interpretation comes from the need to understand 

the nature of climate experienced by different archives and how these signals are recorded by 

different proxies within the archives before being incorporated into the geological record. This is an 

important issue when interrogating any proxy record, but is especially so when considering that 

record in terms of change that may impact the populations using a given resource, in this case water. 

Drought	and	its	propagation:	

Drought, defined as a deficit of water compared to normal conditions (Van Loon, 2015), is 

hypothesised to play a significant role in societal behaviour in SW Asia today (Kelley et al., 2015) as 

well as in the past (e.g. Weiss, 2016). Drought can be defined in multiple ways (van Loon, 2015), and 

these different definitions can help us to conceptualise the impacts of hydrological change, broadly, 

on human populations at different points through time (Rohling , 2016).  

 

Meteorological Drought: a precipitation deficiency, possibly combined with increased evaporation. 

 

Soil-moisture (Agricultural) Drought: soil moisture deficit, often linked to crop failure. 

 

Hydrological Drought: lower than average availability of surface and sub-surface water. 

 

Meteorological drought is filtered by catchments and their biophysical characteristics such as geology, 

soils and vegetation, so that agricultural and hydrological drought, those more likely to be captured 

by geological archives and impact human populations, can be damped relative to, or lag behind, the 

climatic forcing.  

 



 

 

S idebar 1 F igure Typical response times to a climatic perturbation (e.g. meteorological drought) of 

critical components of the hydrological cycle for SW Asia, and the geological archives which are the 

focus of this paper. A simple conceptual framework is complicated by the large scale of some SW 

Asian catchments, such as the Tigris and Euphrates Rivers, where response time may be further 

delayed due to the significant potential distance from the source of the perturbation, as well as 

smoothing of the signal in longer residence time systems. 

 

In modern hydrology, droughts are generally at the annual scale or greater, but less than decadal, and 

therefore reflect movement away from the longer-term mean which is itself derived from 

approximately three decades of data (Van Loon, 2015). There are few archives, beyond tree rings and 

varved lake records, which could record such drought at this resolution in the past. Care must be 

taken, therefore, in discussing drought using relatively low-resolution proxy records which may more 

likely record changes in mean climate state, and thus lead to different societal impacts (e.g. Ur, 2015). 

	

The concept of drought propagation (Sidebar 1) provides a useful starting point for 

understanding the translation of meteorological anomalies or climate changes through to hydrological 

changes (in fluxes or hydrochemistry) and then onto the proxy system. This concept has largely been 

derived from studies of humid catchments and it should be noted that the semi-arid to arid climate 

experienced by much of SW Asia may show important differences; for instance, the sensitivity of the 

relative partitioning of precipitation into available soil moisture, runoff and groundwater recharge 

may vary markedly for different types of climate change or anomaly (Van Loon & Van Lanen, 2012). 

Lakes and speleothems, for example, may be more sensitive to meteorological changes that affect 



runoff and groundwater recharge generation such as rainfall intensity changes (Mark O. Cuthbert et 

al., 2014; Markowska et al., 2016). Vegetation, including trees, dependent on soil moisture may have 

a higher sensitivity to hydrological changes influencing the long-term balance between infiltration and 

evapotranspiration and are more obviously susceptible to direct human impact, such as through 

forest clearance or grazing.  

Due to the large lag time and attenuation of hydrological change between many groundwater 

and some surface water bodies (e.g. Cuthbert et al., 2017), certain climate proxy archives may be 

relatively insensitive to meteorological droughts recorded by others (Sidebar 1). In addition it is worth 

noting that modern drought, as defined here, is mostly relevant in the wetter parts of the region, as 

some areas are always dry with rare rainfall events the exception to mean conditions. Understanding 

the likely governing hydrological processes and the position of the archive and proxy in the landscape 

(Fig. 2) are, therefore, key to interpreting these differences, and linking proxy records back to climate.  

We briefly review here the key terrestrial regional palaeoenvironmental archives and consider 

their place in the regional hydroscape. Given the strong precipitation gradients across the region (Fig. 

1), the presence of a tree, speleothem or wetland in the landscape is itself a measure of hydrological 

state. The presence, or growth, of the archive can therefore be used as a first order proxy for a 

threshold in water availability (e.g. Vaks et al., 2003). 

 

 

F igure 2  Typical SW Asian hydroscape, highlighting key parts of the hydrological cycle and location of 

key terrestrial archives within this system. 

 

Trees  

In low latitudes, including over SW Asia (St. George & Ault, 2014), tree growth is typically more 

sensitive to moisture availability than temperature. Trees are large-scale integrators of both changes 

in water supply and demand, they themselves are key parts of the hydrological cycle and are typically 

better indicators of soil moisture and/or hydrological drought (Sidebar 1). Outside of the humid 

tropics, trees typically put on a single ring of growth every year, allowing precise annual dating of 

records using cross-dating, as first described by Douglass (1941). Due to the precisely dated nature of 



these records, they can be calibrated using instrumental climate observations to develop quantitative 

reconstructions of specific climate variables, including the Palmer Drought Severity Index (Cook, 

Anchukaitis, Touchan, Meko, & Cook, 2016; Cook, Ault, & Smerdon, 2015), precipitation (Grissino-

Mayer, 1996), streamflow (Woodhouse, 2001), and temperature (Büntgen et al., 2016). This 

calibration in turn allows for quantitative comparisons between tree-ring based palaeoclimate 

reconstructions and the instrumental climate record (e.g. Griffin & Anchukaitis, 2014) and climate 

model simulations of the past (e.g. E. R. Cook et al., 2015). Further, because trees are fairly ubiquitous 

across broad geographical regions, individual sampling sites can be combined into networks to 

generate gridded spatial reconstructions. Such reconstructions can be especially informative for 

understanding climate dynamics because many modes of natural climate variability have distinct 

spatial fingerprints that manifest in these reconstructions (e.g. Herweijer, Seager, Cook, & Emile-

Geay, 2007). 

One of the biggest disadvantages to tree rings as palaeoclimate proxies is the relatively short 

lifespan of individual trees, typically hundreds to, occasionally, several thousands of years. This limits 

the length of most well replicated tree-ring reconstructions to the last two thousand years. An 

additional side effect of the relatively short lifespan is the difficulty of preserving centennial scale (or 

longer) variability in tree-ring based reconstructions, a phenomenon often referred to as the 

“segment length curse” (Cook, Briffa, Meko, Graybill, & Funkhouser, 1995). However, considerable 

strides have been made to ameliorate this problem, beginning with use of “regional curve 

standardization" (Briffa et al., 1992) and followed up by development and use of “signal-free” 

detrending methods (Melvin & Briffa, 2008). In so doing it is possible to preserve multi-centennial 

variations in climate in large tree-ring data sets composed of overlapping tree-ring series from living 

trees and remnant wood samples. 

Over SW Asia specifically, the availability of tree-ring chronologies is limited by the extreme 

aridity in much of the region (precluding growth of trees) and the long history of human settlement 

and occupation (which can make it difficult to find old, undisturbed trees). This is highlighted in Figure 

1 (tree ring data from Touchan et al., 2014), which shows that tree-ring chronologies in SW Asia are 

largely found in Turkey, Syria, Jordan, and Lebanon, with recent work also identifying chronologies in 

Cyprus and Iran (Griggs, Pearson, Manning, & Lorentzen, 2014; Nadi, Bazrafshan, Pourtahmasi, & 

Bräuning, 2017). Among these, the longest chronologies (>200 years old) are confined to Turkey, 

Jordan and Lebanon.  

 

Caves  



Caves are abundant throughout the region and a number of speleothem-based palaeoclimate 

reconstructions have been developed for Turkey, Lebanon, Israel, Iraq and Oman (Table 1). The 

chronologies of all stalagmite records are primarily based on uranium-series dates, which are 

sometimes supported by annual layer counts (e.g. Fleitmann et al., 2004; Flohr et al., 2017). Typical 

chronological uncertainties of stalagmite records vary between 0.5 and 2% of the absolute age, 

depending on the uranium-content and purity of the calcite.  

Oxygen and carbon stable isotope ratios (δ18O and δ13C respectively using the common delta 

notation) of stalagmite calcite are the most frequently used hydroclimate proxies. Stalagmite δ18O 

values are primarily influenced by the δ18O of cave drip water, usually a function of surface 

precipitation, where δ18O of precipitation is influenced by multiple climate parameters such as 

temperature, and the origin and amount of rainfall (see below). The interpretation of δ18O stalagmite 

calcite values is therefore not straightforward, and may be further complicated by other factors, as 

shown by recent work in other semi-arid environments, that demonstrate that speleothems respond 

to complex recharge, as well as in-cave, processes (e.g. Baker et al., 2018; M. O. Cuthbert et al., 2014; 

Markowska et al., 2016). The majority of stalagmite records from the region have been interpreted as 

reflecting changes in the amount of precipitation (e.g. Bar-Matthews, Ayalon, Gilmour, Matthews, & 

Hawkesworth, 2003; Cheng et al., 2015; Fleitmann et al., 2003; Flohr et al., 2017) and changes in the 

source of moisture (e.g. Fleitmann et al., 2007; Ünal-İmer et al., 2015). 

 

Table 1 Key Lake and Cave sites from SW Asia (Fig. 1). 

Site 

 

Elevation 

(masl) 

Duration 

 (ka) 

Selected references 

 Lakes and Wetlands 

  Iznik L1 85 36.2 – present day Roeser et al. (2012); Ülgen et al. (2012)  

Van L2 1648 600 – present day 

Wick, Lemcke, and Sturm (2003); Kuzucuoğlu et al. (2010); 

Çağatay et al. (2014); Cukur et al. (2014); Litt and 

Anselmetti (2014);  Kwiecien et al. (2014); Stockhecke et 

al. (2014)  

Eski Acıgöl L3 1270 17 – present day 

Roberts et al. (2001); Woldring and Bottema (2001); 

Jones, Roberts, and Leng (2007); Turner, Roberts, and 

Jones (2008)  



Nar L4 1363 13.8 – present day 

Jones Jones, Roberts, Leng, and Turkes (2006); England 

England, Eastwood, Roberts, Turner, and Haldon (2008); 

Woodbridge and Roberts (2011); Dean, Jones, et al. 

(2015); Dean et al. (2013); Roberts et al. (2016)  

Neor L5 2500 13 – present day Ponel et al. (2013); Sharifi et al. (2015)  

Urmia L6 1267 200 – present day 

Djamali et al. (2008); Stevens, Djamali, Andrieu-Ponel, and 

de Beaulieu (2012)  

Zeribar L7 1300 42.6 – present day 

Stevens et al. (2001); Wasylikowa and Witkowski (2008); 

Wasylikowa et al. (2006) 

Yammouneh L8 1360 400 – present day 

Develle et al. (2011) Develle, Herreros, Vidal, Sursock, and 

Gasse (2010); Gasse et al. (2015)  

Mirabad L9 800 9.3 – present day 

Griffiths, Schwalb, and Stevens (2001); Stevens, Ito, 

Schwalb, and Wright (2006)  

Dead Sea L10 -418 220 – present day 

Migowski, Stein, Prasad, Negendank, and Agnon (2006); 

Litt, Ohlwein, Neumann, Hense, and Stein (2012); 

Torfstein, Goldstein, Stein, and Enzel (2013); Neugebauer 

et al. (2014);  

Parishan L11 823 3.9 – present day Jones et al. (2015); Djamali et al. (2016)  

Tayma L12 801 10 – present day Engel et al. (2012)  

Awafi L13 8 8.1 – 3 

Parker et al. (2004) Parker et al. (2006); Parker et al. 

(2016) 

 Speleothems 

   

Sofular C1 440 50 – present day 

Fleitmann et al. (2009); Göktürk et al. (2011); Badertscher 

et al. (2014)  

Karaca C2 1536 77 – 6 Rowe et al. (2012)  

Akcakale C3 1530 0.5 – present day Jex et al. (2011)  

Dim C4 232 90 – 10 

Ünal-İmer et al. (2015); Ünal-İmer, Shulmeister, Zhao, 

Uysal, and Feng (2016)  



Gejkar C5 650 2.5 – present day Flohr et al. (2017) 

Jeita C6 100 20.3 – 0.4 

Verheyden, Nader, Cheng, Edwards, and Swennen (2008); 

Cheng et al. (2015)  

Soreq C7 400 185 – 1 

Bar-Matthews, Ayalon, Kaufman, and Wasserburg (1999); 

Matthews, Ayalon, and Bar-Matthews (2000); Orland et 

al. (2009); Bar-Matthews and Ayalon (2011)  

Hoti C8 800 330 – present day 

Burns, Matter, Frank, and Mangini (1998); Neff et al. 

(2001); Fleitmann et al. (2003) Fleitmann et al. (2004) 

Qunf C9 650 10.3 – 0.4 Fleitmann et al. (2007)  

 

Like δ18O, stalagmite δ13C values are influenced by several environmental factors that include 

changes in surface vegetation (including vegetation density, proportion of C3 to C4 photosynthetic 

plants), soil microbial activity, recharge conditions (open versus closed system recharge), and kinetic 

fractionation processes during calcite precipitation in the cave (drip rates and cave air pCO2). Almost 

all factors influencing δ18O and δ13C values in stalagmites are therefore influenced, directly or 

indirectly, by temperature and precipitation.  

Trace elements are an additional climate proxy increasingly measured at high resolution from 

speleothems, where magnesium, barium, phosphorous and uranium concentrations appear to be 

additional proxies for the amount of precipitation (e.g. Flohr et al., 2017). However, their full potential 

as an additional hydrological proxy in stalagmites from across the region is not yet fully exploited.  

 

Lakes and Wetlands 

There is a relatively long history of palaeoenvironment research from lake archives from across the 

region (Table 1 and see summaries in Roberts et al., 2017; Roberts  and Reed, 2009). A number of 

proxies have been regularly used including pollen (see Biogeography and Vegetation Change), oxygen 

isotopes (e.g. Roberts et al., 2008), and diatoms (e.g. Vossel, Roeser, Litt, & Reed, 2018), with 

sediment chemistry, at increasingly high resolution given improvements in non-destructive scanner 

technologies, also becoming more common place (e.g. Sharifi et al., 2015). All these proxies have 

been used as records of changing water availability, with some debate surrounding these 

interpretations (e.g. Jones & Roberts, 2008). Radiocarbon dating or U-series methods (where old 

carbon impacts the radiocarbon chronology) are commonly used to establish the age of lake archives 

(e.g. Dean et al., 2015) with individual age-estimate errors typically in the order of tens to hundreds of 



years. Recent advances in age-depth modelling using Bayesian techniques (e.g. Blaauw & Christen, 

2011) have great potential in reducing these errors and calibration uncertainties. Tephrochronology, 

where applicable, is another way to provide further dating control (e.g. Eastwood, Tibby, Roberts, 

Birks, & Lamb, 2002). At some sites lake sediments are annually laminated (varved) opening up the 

possibility of annual, or seasonal, records of past change (Zolitschka, Francus, Ojala, & 

Schimmelmann, 2015). 

There has been much recent interest in identifying former lakes and wetlands in landscapes 

where they are either currently absent or greatly diminished, and in the interpretation of their 

sedimentary archives (Pigati, Rech, Quade, & Bright, 2014) particularly in the Arabian Peninsula (Engel 

et al., 2017; Enzel et al., 2015; Enzel, Quade, & Kushnir, 2017) and Jordan (Catlett et al., 2017; Jones, 

Maher, Macdonald, et al., 2016). These studies follow a long history of research into lake levels in the 

more humid parts of the region, such as Konya (Roberts, 1983), Van (Kuzucuoğlu et al., 2010) and the 

Dead Sea/Lake Lisan (e.g. Torfenstein et al., 2013). 

Irrespective of the uncertainty surrounding the nature of some water bodies, there is clear 

evidence for a greater presence of open water in the past. This is usually explained by some 

combination of enhanced precipitation, enhanced groundwater recharge, decreased open water 

evaporation, and enhanced local and/or regional groundwater discharge. In addition to the effects of 

changing precipitation and evaporation, the increases in human population over the Holocene will 

also have resulted in increased consumption of water, potentially impacting lakes and wetlands (e.g. 

Jones et al., 2015). 

Evidence currently available points to localised wetland development in the past, particularly 

in more arid parts of the region (Jones, Maher, Richter, et al., 2016). If recharge was regionally 

enhanced, then this would also have created a regionally raised water table, capable of forming water 

bodies or wetlands wherever the land was below that level. If a rise in regional unconfined water-

tables is not supported by empirical evidence elsewhere in the region, then the more localised 

development of wetlands (in the absence of surface drainage networks) is likely to be related to fault-

mediated discharges from confined aquifers or break in slope supply (i.e. springs). This poses an 

interesting problem for linking the timing of wetter land surfaces with wetter climates, since 

depending on the length of the groundwater systems involved (Sidebar 1), the lags between the two 

could be thousands to tens of thousands of years (e.g. Cuthbert et al., 2017). The Deep Sandstone 

Aquifer complex in Jordan, for example, consists of palaeowater that, while difficult to date, is largely 

a remnant of Late Pleistocene to Early Holocene climate (Abu-Jaber & El-Naser, 2016). Spring 

calcretes, such as those described in the Late Pleistocene of Wadi Sabra (Bertrams et al., 2012) and 

the Neolithic of Beidha (Rambeau et al., 2011), therefore may mark paleosprings reflecting either 



local recharge at the times of deposition or an older, non-local, recharge event that has taken 

considerable time to propagate to the surface. 

 

SOME KEY TIME PERIODS OF CLIMATIC INTEREST  

Here we briefly summarise some of the key periods of interest in terms of regional environmental and 

climatic change, and particularly those that have been linked to substantial key societal changes in the 

region. We focus on key debates surrounding changing environments at different frequencies. 

 

Mil lennial  Scale Changes 

There is continued interest in the transition from the last glacial into the Holocene and the potential 

role this shift played in the transition to agriculture by Neolithic people (Sidebar Younger Dryas). 

Continuous records that span the full transition from 20,000 years BP into the early Holocene remain 

relatively scarce, but those available point to a gradient of conditions across the region. Lake levels of 

Lake İznik in NW Turkey (Roeser et al., 2012) and Lake Van in eastern Turkey (Tomonaga et al., 2017) 

were relatively low at the Last Glacial Maximum (LGM), for example, although pore-water salinity 

from the latter only provides a multi-millennial resolution record, and there are high terraces around 

Lake Van radiocarbon dated to ~25 and ~21 ka (Kuzucuoğlu et al., 2010). The advance of glaciers 

(Sarikaya & Çiner, 2015) and continuous speleothem growth in Dim Cave in SW Turkey (Ünal-İmer et 

al., 2015; Fig. 3), as well as high levels of Lake Lisan in the Dead Sea Basin (Torfstein et al., 2013; Fig. 

3), and continuous deposition of speleothems in the vicinity of the Dead Sea (e.g. Frumkin, Bar-Yosef, 

& Schwarcz, 2011), suggest relatively wetter conditions. This spatial pattern is complicated by the 

timing of shifts in condition, which suggest relatively wetter conditions up to the LGM (26-21 ka), but 

very dry conditions after it (18-15 ka), the youngest dates for highstands at Lake Konya, for example, 

are radiocarbon dated at c. 21 ka (Roberts, 1983). 

Lake δ18O records from across the Eastern Mediterranean show a transition from the late 

glacial to the early Holocene from positive to negative, generally interpreted to indicate wetter 

conditions (Roberts et al., 2008). The transition occurs relatively abruptly in some records; for 

example in less than 200 years (with over half the shift in oxygen isotopes occurring in just nine years) 

at Lake Nar in central Turkey (Dean et al., 2015; Figure 3). There are also differences in the cave δ18O 

records through the transition, with a positive shift recorded in Sofular Cave in NW Turkey and a 

negative shift recorded further south in Dim and Soreq caves (Israel). These differences probably 

reflect differing controls on the isotopic composition of rainfall at these sites, the balance between 

changing conditions in the source waters in the Black and Mediterranean Seas respectively, and the 

changing amount of local rainfall (Bar-Matthews et al., 2003, Fleitmann et al., 2009). The Hoti and 



Qunf Cave δ18O records (Fig. 3) from Oman both reflect the strength of the Indian Ocean Monsoon 

(Fleitmann et al., 2007).  These latter examples underline that varying factors can influence 

environmental signals recorded by the same proxy (δ18O) in the same type of archive (caves) across 

the region in different ways, most notably here due to the different sources of rainfall. 

A wetter early Holocene continued until ~7 ka, when a transition to drier conditions began in 

the Eastern Mediterranean (Clarke et al., 2016; Roberts, Brayshaw, Kuzucuoğlu, Perez, & Sadori, 

2011), with a similar trend of decreasing monsoonal rains documented in southern Arabian 

speleothems (Fleitmann et al., 2003; 2007). The end of the early Holocene ‘humid’ period ~5.9 ka in 

SE Arabia (Parker et al., 2006; Fleitmann et al., 2007) corresponds with the end of the Neolithic in this 

region (Preston et al., 2015) and with evidence for violence and conflict, possibly over water 

resources, coeval with increasing aridity (Kutterer & Uerpmann, 2012; Uerpmann, Uerpmann, & 

Jasim, 2008).   

In general, these millennial scale trends in the region follow summer insolation trends (Fig. 3). 

A reduction in insolation through the Holocene led to a southward shift in the boreal summer Inter 

Tropical Convergence Zone, and weaker summer monsoonal rains in southern Arabia, while in the 

eastern Mediterranean region this drying was caused by a northerly shift in westerly storm tracks that 

reduced winter precipitation (Dean et al., 2015). 

 

Abrupt Events 

In the Holocene, where more continuous, higher resolution records are available, the longer term 

millennial trends in climate are punctuated by centennial- and multi-decadal-scale periods that are 

drier than the millennial average. The recognition of these brief events in any archive is partly sample-

resolution dependant, but even some relatively high-resolution records such as the Sofular Cave 

record in NW Turkey (Göktürk et al., 2011) do not document all of the events recorded elsewhere 

during the Holocene.  

 



 

 

 

F igure 3 Summary of regional palaeoenvironmental change for the last 20ka. Key time periods (Late 

Glacial, LG; Last Glacial Maximum, LGM) and climatic events discussed in the text are highlighted (Late 

Glacial stadial, grey shading; 8.2ka and 4.2ka, dashed lines). Note that each record is plotted based on 

its own chronology. Insolation data are from Berger and Loutre (1991), see Table 1 for site references. 

 

 

 

 



The	Younger	Dryas:	

The Younger Dryas, or more correctly the regional temporal and climatic manifestation of the Late 

Glacial stadial, has long been discussed as a potential trigger for the transition from hunting and 

gathering to agriculture through the Last Glacial-Interglacial Transition in SW Asia (e.g. Bar-Yosef, 

2009; Bar-Yosef & Belfer-Cohen, 2002; Hillman, Hedges, Moore, Colledge, & Pettitt, 2001; Moore & 

Hillman, 1992), in part due to apparent correlations between societal and climatic changes (Balter, 

2010). In general the period is considered to have been drier across the region, from speleothem 

(Bar-Matthews et al 1999; Frumkin et al 2000; Verheyden et al 2008) and pollen evidence (e.g. Baruch 

& Bottema, 1999; Kadosh, Sivan, Kutiel, & Weinstein-Evron, 2004; Van Zeist & Wright, 1963), but 

actual records for this time period remain relatively scarce, and chronological uncertainties in the 

palaeoclimate records remain (e.g. Meadows, 2005). Some recent work suggests that the Younger 

Dryas was cool, but not as dry as previously thought (Hartman, Bar-Yosef, Brittingham, Grosman, & 

Munro, 2016). Broadly speaking, the Younger Dryas drying has been described as a significant stress 

factor that influenced both the subsistence economy as well as the settlement pattern of late 

Pleistocene groups in the Levant (references above).  

In recent years, archaeologists have begun to revise the scenarios for the impact of the 

Younger Dryas (Rosen & Rivera-Collazo, 2012). In the southern Levant, the chronological correlation 

between the Younger Dryas and the emergence of the late Natufian cultural assemblage of the 

Epipalaeolithic is now largely in doubt (e.g. Caracuta et al., 2016; Grosman, 2013; Maher et al., 2011) 

and further north evidence for plant cultivation at Abu Hureyra during the late Natufian is now 

disputed (Colledge & Conolly, 2010). Evidence has also begun to emerge for substantial early and late 

Natufian settlement outside the original core zone (e.g. Richter, 2017; Richter, Arranz-Otaegui, 

Yeomans, & Boaretto, 2017; Rodríguez et al., 2013) and for more continuity in sedentary settlement 

in the Mediterranean zone (Grosman et al., 2016). Importantly, improvements in dating 

archaeological sites, also suggest that the Pre-Pottery Neolithic A  now began within the Younger 

Dryas (e.g. Blockley & Pinhasi, 2011; Wicks et al., 2016). Thus, recent work has reduced the apparent 

importance of the Younger Dryas as a trigger event for the onset of the first crop based agricultural 

societies. 

 

A drying around 9.3 ka, linked to an event in the Greenland ice cores (Rasmussen, Vinther, 

Clausen, & Andersen, 2007), has so far only been observed in the Lake Nar and Qunf Cave records 

(Fleitmann et al., 2008; Dean et al., 2015) as well as potentially being a factor in the slowdown of 

speleothem growth at Dim Cave (Ünal-İmer et al., 2015). In the Nar, Qunf and Hoti Cave records, the 

8.2 ka event, again recognised in the Greenland ice cores and across much of Northern Europe (e.g. 



Alley & Agustsdottir, 2005; Daley et al., 2011), lasts longer than the 9.3 ka event, perhaps explaining 

why it is documented as a drier period in many more records from across SW Asia. It is expressed as 

an isotopic shift to more positive values in Soreq Cave, Israel (Bar-Matthews et al., 2003) and Hoti and 

Qunf caves, Oman (Fleitmann et al., 2007), an interruption of sapropel S1 in the Eastern 

Mediterranean (e.g. Kotthoff et al., 2008), and increased sediment flux rates from SE Arabia (Parker et 

al., 2016). It has also been detected in the Riwasa playa lake on the plains of NW India (Dixit, Hodell, 

Sinha, & Petrie, 2014).  

Assessing and interpreting any cultural and societal impact of the 8.2 ka event is 

controversial. It has been proposed that it prompted migration and settlement abandonment in 

Turkey and contributed to the Neolithisation of the Aegean and SW Europe (Weninger et al., 2006; 

Weninger et al., 2014). However, there is much evidence for continuity in settlement over the 

centuries around 8.2 ka on the Anatolia plateau (Baird, 2012b) and Neolithic communities are present 

in western Turkey several centuries before the 8.2 ka event. Recent evaluation of archaeological 

evidence suggests that the 8.2 ka event had no systematic regional-scale impact on societies (Flohr, 

Fleitmann, Matthews, Matthews, & Black, 2016; Maher et al., 2011), although local impacts can be 

detected (Roffet-Salque et al., 2018). 

A dry period ~5.2 ka is recorded by speleothems from Israel (Bar-Matthews and Ayalon, 2011) 

and lakes/wetlands in SE Arabia (Parker et al., 2006) and Turkey (Kuzucuoğlu et al., 2011) and has 

been linked by some to the end of the late Uruk period societies in Mesopotamia (Weiss, 2003). 

Another period of drought at ~4.2 ka (Kaniewski, Marriner, Cheddadi, Guiot, & Van Campo, 2018) is 

recorded in lakes in Turkey (Eastwood et al., 2007; Dean et al., 2015), SE Arabia (Parker et al., 2006), 

the Dead Sea (Litt et al., 2012) and in the Gulf of Oman (Cullen et al., 2000). This drying period, which 

has been identified in South Asia as a weakening of the monsoon (Berkelhammer et al., 2012; Dixit, 

Hodell, & Petrie, 2014; Prasad et al., 2014), has been linked as contributing to the ‘collapse’ of the 

Akkadian civilisation in Mesopotamia, the possible disintegration of urban communities in the 

southern Levant (Staubwasser & Weiss, 2006; Weiss, 2016), the decline in known settlement in SE 

Arabia at the end of the early Bronze Age (Preston et al., 2015) and significant changes to settlement 

systems and irrigation technologies in SE Iran (Fouache, Francfort, Cosandey, & Adle, 2015). This 

event has come under recent focus with the sub-division of the Holocene (Cohen, Finney, Gibbard, & 

Fan, 2013; Walker et al., 2012) and we discuss more of the detail relating to the impact on societies of 

the 4.2 ka event later in the paper (The Archaeological Datasets). 

The final significant dry period was centred at ~3.2-3.1 ka and has been described from 

Turkey (Roberts et al., 2001; Wright, Fairbairn, Faith, & Matsumura, 2015), Lake Zeribar in Iran 

(Stevens et al., 2001) and Jeita Cave in Lebanon (Verheyden et al., 2008). Similar to the ~5.2 and 4.2 



ka events, high resolution analysis suggests that this drier period comprised several drought episodes 

interspersed within decades of wetter climate (Kuzucuoğlu, 2009). Hittite texts referred to drought 

(Kuzucuoğlu, 2015) and their civilisation declined at the end of the Bronze Age, with their capital 

Hattuşa destroyed ~3.18 ka (Weiss, 1982). There is also evidence of crop failures in Syria (Kaniewski et 

al., 2010) and evidence of large-scale migration/displacement of ‘Sea Peoples’ throughout the Eastern 

Mediterranean including Anatolia and the Levantine littoral (Van De Mieroop, 2008) at this time. 

However, as with previous climatic events, which as noted above are not seen in all regional proxy 

records, not all societies were impacted in the same way. Physical anthropological studies at Tell 

Dothan, in the West Bank, suggest continuation of a sedentary lifestyle of agronomists through this 

period (Gregoricka & Sheridan, 2017). 

The ~9.3, 8.2, 4.2 and 3.2 ka events are approximately coeval with Bond events, periods of 

increased ice rafting in the North Atlantic (Bond et al., 1997). The 5.2 ka event seen in SW Asia, 

however, does not appear to have an equivalent in the North Atlantic. Much of the precipitation that 

falls in the Eastern Mediterranean originates from the North Atlantic, so it is unsurprising that the 

majority of these dry ‘events’ coincide with cool sea surface temperature events in the North Atlantic 

which led to a reduction in cyclogenesis (e.g. Bartov, Goldstein, Stein, & Enzel, 2003). Nonetheless, 

the fact that some of these dry ‘events’ last longer, in the Nar and Qunf records for example, than the 

more discrete ‘events’ of the North Atlantic, suggests there may have been other underlying causes, 

perhaps related to changes in solar activity via the winter Siberian High (Rohling & Palike, 2005). It is 

also important to consider the impact of the Indian Summer Monsoon, and its periods of fluctuation 

during the Holocene (Jones et al., 2006). As noted above, the 4.2 ka event has been linked to 

weakening monsoon in NW India, and also in the Himalayas and Central India. Biophysical non-linear 

feedback mechanisms have been suggested as a possible factor prolonging phases of increased aridity 

in SW Asia (Parker et al., 2016). 

 

The last  two thousand years 

There are a number of high-resolution (annual or near-annual) records from, or attributed to, the 

region covering the last two thousand years (Fig. 4). In the Eastern Mediterranean, the Medieval 

Climate Anomaly (MCA) was generally wetter and the Little Ice Age (LIA) drier (Luterbacher et al., 

2012; Roberts et al., 2012). A recent multi-proxy speleothem record from northern Iraq suggests 

increasingly dry conditions over the last 1000 years in that part of SW Asia (Flohr et al., 2017).   



 

F igure 4 High resolution records of the last 2000 years. From the top; European temperature 

anomalies from the PAGES2k consortium (Ahmed et al., 2013), European summer temperature 

anomalies (Büntgen et al., 2011), PDSI reconstruction for SW Asia (Cook et al., 2016) and oxygen 

isotope records from Lake Nar (Jones et al., 2006), and Gejker Cave (Flohr et al., 2017). Grey shading 

picks out the Late Antiquity Little Ice Age (LALIA), Medieval Climate Anomaly (MCA) and Little Ice Age 

(LIA) as presented in Büntgen et al. (2016). 

 

One of the most recent and comprehensive reconstructions of hydroclimate over SW Asia 

and adjacent regions through the last 2 ka is the Old World Drought Atlas (OWDA; E. R. Cook et al., 



2015). The OWDA is an annually resolved, tree-ring based reconstruction of the summer season 

(June-July-August) Palmer Drought Severity Index (PDSI) at half degree spatial resolution across 

Europe and the Mediterranean. PDSI is a normalised indicator of soil moisture availability (negative 

values indicating drought), integrating changes in moisture supply (precipitation) and demand 

(evapotranspiration) on timescales of typically 12-18 months. Spatial coverage of the OWDA extends 

into SW Asia, though proxy coverage there is poor relative to other areas, limiting robust analyses 

over this region to 0.9 ka and later (Cook et al., 2016).  

One notable feature of SW Asia in the OWDA is the tendency towards anti-phased 

hydroclimate variability between the southern Levant (including Israel, Jordan, southern Syria, 

Lebanon) and a region encompassing Greece, Anatolia, and the Black Sea (Fig. 5; Cook et al, 2016). 

This feature is persistent across centuries, with strong and significant antiphase coherency from inter-

annual to multi-decadal timescales. The spatial fingerprint of this dipole bears a strong resemblance 

to the pattern that would be expected from variability in the North Atlantic Oscillation (Cook et al, 

2016). Such a dipole has been described previously (Xoplaki, Gonzalez-Rouco, Luterbacher, & Wanner, 

2004), and its persistent existence in the OWDA suggests it is a robust feature of natural hydroclimate 

variability in the region. 

 

 

 

F igure 5 Spatial patterns in the OWDA (Cook et al., 2016) of mean PDSI values and correlation with 

the SW Asia zone (red box) through the last 600 years (Fig. 4). 

 

The OWDA has also shed some light on the early 21st century AD/CE drought in the Levant 

region that may have contributed, in part, to the recent social unrest in Syria (Gleick, 2014; Kelley et 



al, 2015). Over the Levant, this protracted period of drought (1998-2012 in the OWDA) is the most 

intense 15-year drought of the last 900 years, and also includes the single most severe individual 

drought year in the record; 2000 AD (Cook et al, 2016). The OWDA therefore provides some 

independent support for analyses that suggest this recent drought was exceptional relative to natural 

variability, a sign that the expected drying from anthropogenic climate change in the region may 

already be beginning to occur (Kelley et al., 2015). 

 

BIOGEOGRAPHY AND VEGETATION CHANGE 

SW Asia encompasses four major biogeographical regions: (i) the Saharo-Sindian region in the south, 

comprising desert vegetation and pseudo-savannas in the Arabian Peninsula and southern 

Mesopotamia and tropical arid vegetation in the southern Arabian Peninsula and southern Iran; (ii) 

the Irano-Turanian region in the centre and east, comprising Artemisia steppes in internal Iranian 

plateaus and Mesopotamia with open woodlands and steppe-forests of deciduous trees and junipers 

in the Irano-Anatolian mountains; (iii) the Mediterranean region in the west comprising typical 

Mediterranean vegetation in western and southern Anatolia and the Levant, and (iv) the Euro-

Siberian region in the north and northwest including mesic deciduous and mixed conifer-deciduous 

forest in the South Caspian and Black Sea region (White & Léonard, 1990). Halophytic and hygro-

halophytic vegetation also occurs locally in endorheic depressions (Zohary, 1973). Continentality, 

winter temperatures and precipitation seasonality are the most important parameters determining 

the boundaries between these regions (Djamali, Brewer, Breckle, & Jackson, 2012).  

Last  Glacia l  Maximum 

The relatively sparse pollen data that extend back to the LGM indicate the dominance of an extremely 

dry steppe in most of the continental interior of SW Asia (Djamali et al., 2008; Litt, Pickarski, 

Heumann, Stockhecke, & Tzedakis, 2014; van Zeist & Bottema, 1977). Modern analogues for this cold, 

dry steppic vegetation can be found in the subalpine zone of the Irano-Turanian mountains (Djamali 

et al., 2011). Forest elements of the Euxino-Hyrcanian region along the southern Caspian Sea and 

Black Sea were less severely affected by Quaternary glaciations making them refugia for numerous 

species which were mostly eliminated from northern European regions (Leroy & Arpe, 2007). In 

contrast to most regions of SW Asia, the ecotones between the Euxino-Hyrcanian and Irano-Turanian 

region appear to have been only moderately affected by LGM climates (Miebach, Niestrath, Roeser, & 

Litt, 2016). Importantly, lowland parts of the Levant also appear to have been only moderately 

affected by the cold-dry LGM climate; these regions provided crucial refugia for animal and plant 



resources and human populations during this time period (Asouti & Austin, 2005; Asouti et al., 2015; 

Roberts et al., 2017). 

Late Glacia l  

Increasing numbers of Late Glacial vegetation records show moderate afforestation during the Late 

Glacial interstadial followed by a re-expansion of steppe during the Late Glacial stadial (Sidebar 1; 

Aubert et al., 2017). However, in contrast to the LGM which is almost everywhere characterized by 

Artemisia-Chenopodiaceae steppe reflecting a cold-dry climate, Late Glacial vegetation dynamics 

display contrasting patterns in different regions of SW Asia. In the mountain region of NW Iran and 

eastern Anatolia it is characterized by the dominance of a dry steppe with a slight expansion of boreal 

trees (e.g. Betula) and desert shrubs (Ephedra) while in the Levant and the biome transitional zone of 

northern Turkey, more trees were present in the landscape (Miebach et al., 2016).  

Ear ly  Holocene delayed vegetat ion advance and the precipitat ion paradox 

Postglacial afforestation by deciduous trees in temperate Europe began at the onset of the Holocene 

(e.g. Berglund et al., 1996), however a different pattern is evident in the much of the Mediterranean 

region. In the northern and western Mediterranean basin afforestation also occurred at the onset of 

the Holocene (e.g. Pons & Reille, 1988; Watts, 1985), indicating that the peninsulas of southern 

Europe and northern borderlands of Greece were important primary refugia. However, pollen data 

from the south-central Mediterranean (Sicily and Malta) show afforestation delayed until about 7.3 ka 

(Gambin et al., 2016; Tinner et al., 2009). This Early Holocene delay is especially marked in the upland 

interiors of the Irano-Anatolian plateaus (Djamali et al., 2010) where pollen data show a 3-5 thousand 

year lag between the onset of climatic amelioration at the beginning of the Holocene and the 

expansion of deciduous oak woodland.   

 The delayed response of woodland in inner Anatolia and the Zagros-Anti-Taurus mountains to 

climatic amelioration at the start of the Holocene has been much discussed in the literature and 

several hypotheses have been advanced to explain it. Ecological dynamics including autecology 

(growth rates of individual woodland trees), rates of dispersal, competition, starting positions and 

locations of primary and secondary refugia, suitable edaphic conditions and physical geographical 

barriers may all have affected the rate of migration and expansion of forests into regions of sparse 

tree cover (van Zeist and Bottema, 1991; Roberts et al., 2011). 

Early interpretations of pollen data suggested that climatic aridity was responsible (Roberts & 

Wright, 1993), but more recent stable isotope data show that there was probably increased moisture 

availability during the early Holocene (e.g. Roberts et al., 2008). Other hypotheses invoked suggest 



that the ‘oak steppe-parklands’ in the Zagros-Anti-Taurus arc and mountains of central Anatolia and 

NW Iran may have been anthropogenically-maintained through the use of both natural and human-

induced fire (Roberts, 2002). Micro-charcoal records show the start of the Holocene was a period of 

frequent/intense wildfires, which would have tended to maintain open (e.g. grassland) vegetation at 

the expense of closed woodland (Turner, Roberts, Eastwood, Jenkins, & Rosen, 2010). In addition, it is 

clear the nuts/fruits of terebinth/almond woodland were an important resource for early sedentary 

communities in central Anatolia. These trees are less visible in the pollen record, but are found in 

anthracological records from archaeological sites (Asouti and Kabukcu, 2014), and may be evidence of 

woodland response to increased precipitation and temperature in central Anatolia from the beginning 

of the Holocene. Landscapes may also have been maintained by people to aid their growth (Baird et 

al., 2018), as well as for more general vegetation management for grazing, fuel, fodder and timber 

(Asouti & Kabukcu, 2014). Although recent data (Roberts et al., 2017) have shown a long term trend 

of increasing population for the Neolithic of the early Holocene, it can be postulated that the density 

of archaeological sites and overall population levels for this time period in the Zagros-Anti-Taurus arc 

and mountains/plateau of central Anatolia and NW Iran were insufficient to effect vegetation on the 

regional scale and with the synchronicity that the pollen data appear to infer. 

An alternative hypothesis considers that climate seasonality during the early Holocene was 

greater due to enhanced solar radiation which fueled more intensive Indian Summer Monsoon (ISM) 

circulation, resulting in more rainfall that spilled over into the Arabian Peninsula and north Africa, but 

led to an extended dry season in the continental interior of the Zagros-Anti-Taurus arc and plateau of 

central Anatolia and NW Iran, bioclimatically favouring grasslands over deciduous woodlands (Djamali 

et al., 2010). The important role of seasonality of precipitation has been shown to control biome 

distribution and biogeographical regionalisation in SW Eurasia (Djamali et al., 2012). Furthermore, 

radiocarbon ages of the expansion of deciduous oak and juniper at pollen sites in the Zagros-Anti-

Taurus arc and mountains and plateau of central Anatolia and NW Iran are coeval with the timings for 

the southward retreat of the ITCZ and concomitant southeastward retreat of the ISM. Thus postglacial 

re-expansion of deciduous oak woodlands was consequently delayed until weakening of the ISM at 

~6.3 ka (Djamali et al., 2010). 

 

THE ARCHAEOLOGICAL DATASETS  

Given the previous discussion it is worth reflecting on human response to the inferred rises in 

precipitation and temperature in the early Holocene. Evidence from the Anatolian plateau suggests a 

rapid human response with sedentary behaviours appearing immediately following the beginning of 



the Holocene in a major contrast to the very low visibility of settlement evidence on the Anatolian 

plateau in the Younger Dryas compared to the Bølling-Allerød /Late Glacial interstadial (Baird et al., 

2013; Baird et al., 2018). Interestingly this response seems based on the spread of a terebinth/almond 

woodland juxtaposed with rich grasslands and wetlands supporting large game like aurochs, boar and 

equid in some density, as opposed to sedentism related to increased cereal and legume density as in 

the Late Glacial interstadial in the southern Levant (Baird, 2012b). In this section we review some of 

the wider issues regarding the archaeological datasets available from the region which are important 

for discussion of human-climate-environment relationships. 

 

F igure 6 Summary of reginal archaeological chronologies. Derived from, for Anatolia (Allcock & 

Roberts, 2014), for the Levant (Finkelstein & Piasetzky, 2007; Maher et al., 2011; Regev, Finkelstein, 

Adams, & Boaretto, 2014),for Mesopotamia (Matthews, 2013; Nishiaki & Le Miere, 2005), for the 

Arabian Peninsula (Magee, 2014), and for the Iranian Plateau (Potts, 2013). The dating of some of 

these periods is complicated and debated, and varies within some of the regions defined here. Some 

periods were too short lived to appear on this summary figure. More details can be found in the 

references provided. 

 

Data avai labi l i ty  



The archaeological and historical datasets from SW Asia and the surrounding regions that can be used 

to investigate human-environment interaction and the impact of climate and environmental change 

are, like the palaeoenvironmental records, not resolved at consistent chronological or spatial scales 

(e.g. Lawrence et al., 2016; Maher et al., 2011; McCormick et al., 2012). Archaeological surveys have 

typically varying extent, intensity and methods, sometimes leaving considerable gaps in our 

knowledge of individual periods and areas with differential distribution of excavated sites and 

surveyed regions (e.g. Hole, 1987; Miroschedji, 2003; Petrie, Weeks, Potts, & Roustaei, 2006; Singh et 

al., 2009; Wilkinson et al., 1994). 

 Turkey, despite its substantial land area, has witnessed much less intensive archaeological 

investigation than most areas to its south, notably the Fertile Crescent areas of the Levant and 

Mesopotamia. This is a conjunction of the size of the land mass, alongside regulations and 

predilections that have focussed work on long-term excavation of major sites, especially of Bronze 

Age and Classical periods, some excavated for over 100 years (e.g. Hattusas and Ephesus), along with 

major rescue projects related to various dams on the Tigris and Euphrates rivers. Thus a few areas are 

well-researched, for example, the Konya Plain, stretches of the Tigris and Euphrates, and limited areas 

around major sites like Troy and Miletos, while the northern half of the country remains poorly 

understood. As a result, some questions e.g. the apparent rarity of Epipalaeolithic and Neolithic sites, 

are very hard to resolve as genuine phenomena or a function of previous archaeological research 

focus (Düring, 2010; Düring, Glatz, & Şerifoğlu, 2012). However, the data that are available do still 

allow some insights into human-environment interactions (e.g. Allcock, 2017). 

In the case of the prehistory of the Levant, there is considerable disparity between Israel, 

which has been intensively surveyed and has a high number of recorded archaeological sites, and 

neighbouring regions, where far fewer sites are known. For example, although Lebanon has an 

analogous geographical and environmental context to Israel, very few Epipalaeolithic, Pre-Pottery 

Neolithic A and B (see Figure 6 for explanation of archaeological time periods) sites have been 

documented there, and even fewer have been excavated (Rosen 1991). Recent fieldwork in both 

northeast and southeast Jordan has demonstrated that this region was actually much more densely 

populated during the late Epipalaeolithic and the end of the Neolithic than previously thought 

(Akkermans, Huigens, & Bruning, 2014; Bertrams et al., 2012; Rambeau et al., 2011; Richter, 2017; 

Rollefson, Rowan, Wasse, & Alexander, 2014; Rowan et al., 2015). Recent fieldwork in Saudi Arabia is 

extending the archaeological record of Neolithic occupation associated with palaeolake deposits and 

watercourses that were created/activated in the early Holocene (Breeze et al., 2017; Jennings et al., 

2015; Matter et al., 2016). Consideration of sea-level changes since the LGM and related marine 



transgression in the Persian Gulf indicate that previous potential areas of refugia for people during 

periods of climatic induced stress are now submerged (Cuttler, 2013; Rose, Černý, & Bayoumi, 2013).  

 In southern Mesopotamia, there has been a long tradition of archaeological excavations and 

survey that provide insight into changing settlement systems, including the rise of urbanism, and the 

concomitant fluctuations in population size and distribution (e.g. Adams, 1969; Adams & Nissen, 

1972). Similar data have also long been available for parts of Iran (e.g. Alden, 2013; Hole, 1987; Smith 

et al., 1972), and there are growing datasets for northern Mesopotamia and the adjacent uplands 

(e.g. Wilkinson et al. 1994; Lawrence et al. 2016), and parts of SE Arabia (al-Jahwari & Kennet, 2010; 

al-Jahwari & Kennet, 2008; Magee, 2014) and also South Asia (e.g. Kumar, 2009; Possehl, 1999).  

  

Water use 

Since the development of agriculture (Sidebar 2) there has been a more pressing need for people to 

deal with soil-moisture or hydrological droughts, in ways other than moving across the landscape, and 

these choices and adaptions have been key to the resulting degree of societal success. Access to 

water in some areas is reasonably straightforward, such as the parts of northern Mesopotamia and 

Iran that receive sufficient direct winter rainfall to support dry farming, and the various piedmont 

areas that receive broadly predictable water supplies via run-off onto alluvial fans (Petrie & Thomas, 

2015; Prickett, 1986; Sherratt, 1980). 

Some societies adapted to and developed specific niche environments. Cities in southern 

Mesopotamia, for example, grew and developed within or on the edges of an anastomosed and 

deltaic riverine system characterized by abundant salt- and freshwater marshes (Pournelle, Algaze, 

Crawford, McMahon, & Postgate, 2012; Wilkinson, Ur, & Hritz, 2013). These environments allowed 

early southern Mesopotamian societies not only access to varied and abundant resources and 

productive strategies, but also provided a buffer against significant climate fluctuations, such as at 

4.2. ka (see discussion above), which are argued to have dramatically affected rain-fed agricultural 

systems in northern Mesopotamia (e.g. Weiss, 2015). In Bronze Age SE Iran and SE Arabia, integrated 

oasis agro-pastoral systems developed from the domestication of the date palm, which created an 

anthropogenic ecosystem of sub-canopy micro-climates suitable for the cultivation of a variety of 

crops in hot and arid environments (Tengberg, 2012). 

In other areas, more careful management of water is required and this is evident from at least 

the middle Pre-Pottery Neolithic B (PPNB, c. 9 ka) onwards (Richter, 2016). Early Neolithic wells have 

been documented at Mylouthkia and Shillourokambos on Cyprus (Peltenburg, 2012), while the middle 

PPNB site of Wadi Abu Tulayha in south eastern Jordan's Jafr Basin produced evidence for a cistern 

and a dam (Fujii, 2007, 2008). Expansion in the use of water harvesting systems at specific locations, 



including terraces, qanats, dams and cisterns, may reflect a variety of factors influencing the people 

living there. Climatic and environmental factors (such as deforestation) may have played a key role in 

triggering expanded water harvesting. The Pottery Neolithic water harvesting and soil conservation 

instillations at Dhra’ (south of the Dead Sea) seem to be an early example of such efforts (Kuijt, 

Finlayson, & MacKay, 2015), and may be related to the 8.2 ka dry event. Social and economic factors 

such as increased wealth or larger populations may also be factors in this. The motive for the Early 

Bronze Age expansion of water harvesting and terrace agriculture in Jawa, northeast Jordan, for 

example, is difficult to ascertain. However, it is noteworthy that the age of the water harvesting 

systems at the site (Meister et al., 2017) corresponds with the aforementioned 5.2 ka drying event. 

On the other hand, water harvesting by the Nabateans of Petra from around 2-1.2 ka (Beckers, 

Schutt, Tsukamoto, & Frechen, 2013) seems to correspond to a wetter episode in the southeastern 

Mediterranean at the time (Dermody et al., 2012). Moreover, hydrological studies of the terrace 

systems suggests that they may have been introduced there as flood control measures rather than for 

water harvesting or as an agricultural installation (Al Qudah, Abdelal, Hamarneh, & Abu-Jaber, 2016). 

 

Water Demand  

The impact a hydroclimatic anomaly will have on a given society depends on the reliance that group 

has on the resource, their adaption capacity, and how supply can, or cannot continue to meet 

demand. Recent challenges to southwest Asian societies in terms of drought mitigation have been 

exacerbated by substantial regional population growth and migration (e.g. Kelley et al., 2015). It is 

important to therefore consider resource demand in the past, to the extent that it is possible from 

the archaeological data set, as well as the severity of past reduction in rainfall, in assessing the 

potential risk of drought to past societies. 

Estimating population sizes from archaeological datasets is notoriously difficult due to the 

uncertainties in the representation of sample datasets as being real reflections of larger numbers of 

people within sites and across landscapes that we may not be able to detect. While localised 

estimations of populations may be possible on a site level at well-preserved and extensively excavated 

sites, in order to extend these to the larger landscape beyond a site, we need improved and coherent 

methods to assess demographic trends (see Modelling Climate, Proxies and Human Responses). Even 

at well-excavated sites, chronological resolution often makes it very difficult to determine whether 

buildings within the same archaeological phase were occupied simultaneously or slightly apart in time 

(Birch-Chapman, Jenkins, Coward, & Maltby, 2017). There are also challenges posed by populations 

that are mobile across the landscapes that they inhabit, who left an archaeological record that is 

challenging to interpret in terms of demography. Archaeologists have often extrapolated population 



size from one small excavated area to an entire site by calculating available living space within the 

excavated area and multiplying it by the total size of the site (Hassan, 1978). This approach, however, 

is largely untested in real terms, since the scale and character of architecture in the unexcavated parts 

of the site is unknown, and because there is even less control over chronology beyond the excavated 

area (Birch-Chapman et al., 2017). Additionally, although site size is often combined with numbers of 

archaeological sites in a given area (e.g. Sumner, 1994), it is unclear whether such signatures 

necessarily reflect population growth or whether they are indicative of population aggregation. In arid 

areas such as Arabia, assessing population sizes in the early-mid Holocene is complicated by the 

common practice of residential mobility at various geographical scales (Cavulli & Scaruffi, 2013; 

Crassard & Drechsler, 2013; Lézine et al., 2010; McCorriston, Harrower, Martin, & Oches, 2012; Zazzo 

et al., 2016). Moreover, for the subsequent Bronze Age agro-pastoral communities of eastern Arabia, 

the burial archaeology record is at times much more prominent than that of contemporaneous 

settlement (Cleuziou & Tosi, 2007; Højlund, 2007), providing an alternative perspective on population 

size, distribution and, where skeletal remains are preserved, local demographic parameters (e.g. 

Baustian & Martin, 2010; Martin, 2007; McSweeney, Méry, & al Tikriti, 2010).  

 

Resi l ience or Col lapse? 

There has been considerable interest in linking climate events identified in climate proxy records, and 

periods and phases of cultural transformation identified in archaeological sequences (Büntgen et al., 

2016). In this regard it is interesting to compare the human responses to well-documented climate 

change events in inner Anatolia (see also Some Key Time Periods of Climatic Interest). Both the 8.2 ka 

and 4.2 ka events are seen in Anatolian plateau proxies (see above). The 4.2 ka event seems 

particularly significant for people in terms of either a major decline in frequency and scale of sites in 

areas like the Çarșamba fan (Baird, 2001) and other parts of Anatolia (Bachhuber, 2015), or major 

settlement restructuring with population concentration and growth of a few large sites. In the same 

areas the 8.2 ka event is not represented by any major settlement discontinuities (Baird, 2012a), 

although there may be subtle responses such as those also seen in north Syria. Rather than collapse 

the 8.2 ka event on the Anatolian plateau has been linked with population displacement (Clare & 

Weninger, 2014) and the spread of the Neolithic into western Anatolia, although the latter has been 

recently questioned (Berger et al., 2016; Kılınç et al., 2017).  

The contrasts in the same areas between these two climatic events may be due to their 

relative severity, but this was likely combined with the resilience of Neolithic communities at lower 

population levels and with significant flexibility in subsistence practices. These may have included 

ability to vary mobility, degrees of reliance on agriculture relative to foraging and pastoralism, and 



landscape exploitation practices that may have had significant incidental or deliberate conservation 

features. By 4.2 ka human populations had achieved much greater scale and density than that of 

previous millennia (Baird 2001; Bachuber 2015), highly dependent on large-scale agriculture in prime 

but sensitive semi-arid locations like the Konya basin alluvial fans, and were more dependent on 

elaborate land management schemes. People here had probably started to impact the landscape at a 

level much greater than in earlier millennia and operated in highly competitive political contexts 

(Bachuber 2015).  

The western parts of South Asia are affected by both winter Mediterranean and summer 

monsoonal rainfall systems that produces a climatically and ecologically diverse landscape that is 

subject to inter-annual and more long-term variability. In this context, the available palaeoclimate 

records have variable proximity to archaeological sites and regions of interest, which means that it is 

illogical to draw simple correlations between evidence for climate change and cultural changes 

observed in the archaeological record (e.g. Petrie, 2017; Petrie et al., 2017; Wright, 2010). 

Furthermore, beyond spatial coverage, one of the biggest challenges with palaeoclimate records from 

South Asia has been the limited chronological control of the data. Most of the early climate records 

have poor chronological control (Madella & Fuller, 2006), and while this has been improved by more 

recent studies (Berkelhammer et al., 2012; Dixit et al., 2018; Yama Dixit et al., 2014; Y. Dixit et al., 

2014), their spatial distribution remains limited and contested (e.g. Finné, Holmgren, Sundqvist, 

Weiberg, & Lindblom, 2011). It will only be with spatially proximate proxies from different zones 

within the region that it will be possible to characterise climatic variability accurately across the region 

as a whole, and link to local archaeological evidence.	

 

MODELLING CLIMATE, PROXIES AND HUMAN RESPONSES  

Modelling can help fill some of the gaps in the spatial and temporal coverage of climatic, hydrological 

and archaeological data identified above, and allow uncertainties in interpretations of these data to 

be better understood. 

Model l ing Cl imate 

Concerted modelling of past climates such as the Climate and Paleoclimate Modelling 

Intercomparison Projects (CMIPs, PMIPs), has usually focussed only on key intervals such as the LGM 

(~21 ka) and the mid Holocene (~6 ka).  In SW Asia these time intervals are often transition periods in 

proxy records, leading to some difficulties in data model comparison (Reuter, Buenning, & Yoshimura, 

2017). The most comprehensive modelling study of the Mediterranean Region for the Holocene yet 

attempted has been performed by Brayshaw, Rambeau, and Smith (2011) who analysed regional 



Mediterranean climate simulations, carried out at 2000 year intervals from 0 ka – 12 ka.  At 6 ka the 

model suggested that the annual average surface air temperature in the region was relatively similar 

to modern levels, however, cooler winters and warmer summers caused by insolation change meant 

that the seasonal cycle was amplified by 2-3 °C. A multi-model ensemble from PMIP2 (Braconnot et 

al., 2007), suggested that Turkey and SW Asia were 2-5 °C cooler than today at the LGM, and 1-2 °C 

warmer at 6 ka. Brayshaw et al. (2011) did not find substantial summer precipitation in the Eastern 

Mediterranean at any time 0-12 ka,  however during the wet season (October-May) simulations 

representing 8-12 ka showed an increase in precipitation over the Eastern Mediterranean (Turkey, 

Syria, Lebanon, Jordan). They suggested that these patterns were due to changes in lower 

tropospheric circulation which meant a stronger south-westerly flow in winter.  Perez-Sanz, Li, 

Gonzalez-Samperiz, and Harrison (2014) noted that CMIP5 models generally show an increase in 6 ka 

precipitation in the Mediterranean region, but also noted the difficulties in modelling precipitation for 

the region. 

The challenge of model disagreement is further highlighted by modelling of LGM precipitation 

across the region. Robinson et al. (2006) suggested that the Eastern Mediterranean and the Levant 

had reduced winter precipitation relative to modern levels; but Arpe, Leroy, and Mikolajewicz (2011) 

showed that with a high resolution version of the ECHAM5 climate model, a shift in circulation at the 

LGM could lead to enhanced precipitation over the Levant.  This shift in circulation did not occur in 

lower spatial resolution versions of ECHAM5.  Models generally agree that the seasonal patterns of 

precipitation are similar between the LGM and the preindustrial period (c. 1750 AD) with most of the 

precipitation in the winter season and summers being very dry. Robinson et al. (2006) note that LGM 

evaporation was in excess of LGM precipitation in this region, despite the drop in temperature.  They 

also note that in the LGM a significant amount of the modelled winter precipitation falls as snow. 

The addition of isotope hydrology to General Circulation Models of climate potentially 

improves the comparison of climate model output to proxy records of change. Risi, Bony, Vimeux, and 

Jouzel (2010) modelled global changes in the oxygen isotope values of precipitation (δ18Op) between 

the LGM and the preindustrial period.  In SW Asia they found no strong change in δ18Op between the 

two periods, despite the LGM being 3-9°C cooler.  Reuter et al. (2017) found that modelled δ18Op at 6 

ka was more negative than present day, due to a combination of effects including changes in local 

surface temperature and precipitation amount.  

 

Proxy System Models  

Palaeoclimatic archives and proxies filter the climate signal, as discussed above, such that comparison 

of climate model output with geological records requires an understanding of the systematics of the 



archive, such as that provided by Proxy System Models (PSMs; e.g. Evans  et al., 2013, Dee  et al., 

2015). These models themselves have different levels of complexity from regression-based models, 

such as of PDSI from tree rings (Cook et al., 2016), through to transfer function approaches from 

pollen (e.g. Eastwood, Leng, Roberts, & Davis, 2007) or diatoms (Woodbridge & Roberts, 2011), and 

more mechanistic models of lakes and wetlands (Jones & Imbers, 2010; Rohling, 2016). The more 

mechanistic PSMs allow for the investigation of the impact of changing climate seasonality, including 

the impact of changing amounts of snow relative to rainfall, on these archive systems (e.g. Dean et al., 

2018). 

Given our discussions above, a key challenge in PSMs for SW Asia is correctly modelling the 

hydrology of a given archive, a crucial part of the Environment Model in the PSM framework of Evans 

et al. (2103). Dryland environments present particular challenges for hydrological models (Wheater, 

Sorooshian, & Sharma, 2007), but there has been some success in using hydraulic models, which can 

better represent the water routing at the event scale (e.g. Jarihani, Larsen, Callow, McVicar, & 

Johansen, 2015; Massuel et al., 2011). The very large spatial heterogeneity in rainfall, soil properties, 

and vegetation that combine to produce runoff in dryland environments is difficult to capture (e.g. 

Jothityangkoon, Sivapalan, & Farmer, 2001), meaning the processes driving modern dryland 

hydrology remain poorly understood. There is a lack of understanding of hydrological systems in the 

present day, from systems with heavy anthropogenic modification, to aid benchmarking such models. 

On top of this, groundwater spring resources may have notably lagged responses to climate (see 

discussion above) and, therefore, these proxies of water availability may be spatially and temporally 

incoherent, and have little fit to climate model outputs. This is a substantial knowledge gap, and leads 

to challenges in constraining the water supply for past populations. 

 

Model l ing human water demand 

A number of recent studies have begun to use computational techniques to address questions of 

settlement scale and resource demand in the archaeological record. At the most basic level, the 

presence of humans in a region requires a supply of accessible, potable water. This has a bearing on 

the most arid regions of SW Asia, which appear to have only been periodically inhabitable over the 

last twenty thousand years (Groucutt & Petraglia, 2012). The known Upper Palaeolithic and 

Epipalaeolithic record in Arabia is sparse (Maher, 2010), and the region was not recolonised until the 

late Pleistocene/Early Holocene (Crassard, Petraglia, Drake, et al., 2013; Crassard, Petraglia, Parker, et 

al., 2013; Hilbert et al., 2014). Consequently, Breeze et al. (2015) have demonstrated that modelled 

palaeohydrological features are a good predictor of the location of archaeological sites in the 

hyperarid interior of the Arabian Peninsula. Bretzke, Drechsler, and Conard (2012) also found that 



modelled water availability is correlated with the distribution of sites in the Palaeolithic of the Syrian 

Desert, both in terms of where settlements were located, and the intensity of occupation through 

time. 

On a larger scale, the aggregate demand for water in the region can be assumed to track its 

net population. The difficulty of deriving absolute estimates of population size in archaeological 

contexts was discussed previously, but in recent years archaeologists have increasingly used the 

summed radiocarbon or “dates as data” method (Chaput & Gajewski, 2016; Rick, 1987) to model 

long-term demographic trends. Although not without its critics (Bamforth & Grund, 2012; Contreras & 

Meadows, 2014; Torfing, 2015), the application of this technique has produced significant insights 

into the relationship between population and climate (Bevan et al., 2017; Shennan et al., 2013) and 

the results correlate well with other demographic proxies (Downey, Bocaege, Kerig, Edinborough, & 

Shennan, 2014; Lechterbeck et al., 2014; Woodbridge et al., 2012).  

Several authors have recently applied the summed radiocarbon technique to corpuses of 

dates from SW Asia, focused primarily on the Pleistocene–Holocene transition (Borrell, Junno, & 

Barcelo, 2015; Flohr et al., 2016; Roberts et al., 2017). The overall trend evident in each study is one 

of exponential population growth, with a marked ‘boom’ beginning around 14.5 ka. This agrees with 

earlier population growth estimates based on palaeoanthropological (Guerrero, Naji, & Bocquet-

Appel, 2008) and site frequency data (Goring-Morris & Belfer-Cohen, 2010). The evidence for 

demographic responses to specific climate events is more equivocal. Borell et al. (2015) found a 

pronounced break in settlement in the northern Levant—the “near abandonment of the region”— 

corresponding to early Holocene warming, but this was not replicated in the larger dataset of Roberts 

et al. (2017). The latter authors did see a synchronicity between climate events and population 

events, but stressed the overall continuity of settlement in the region. Similarly, Flohr et al. (2016) 

tested the human response to the 9.2 and 8.2 ka climate events and found that the population was 

resilient to both. All three studies found evidence for significant regional variation in population 

dynamics and demographic response to climate, highlighting the importance of factoring local 

environmental conditions into this class of model. 

For the later prehistoric and historic periods, demographic trends can be modelled more 

concretely using quantitative historical data, an approach sometimes dubbed ‘cliodynamics’ (Turchin, 

2008). Reba, Reitsma, and Seto (2016) recently produced a database of estimated urban population 

growth between 5.7 ka and the present. This database is of particular interest because not only was 

SW Asia the location of the world’s earliest urban societies, the advent and growth of these societies 

is frequently linked to growing demand and centralised management of water resources (Wilkinson & 



Rayne, 2010). Integrating this data into linked models with the climate record, and with the 

prehistoric summed radiocarbon sequence, is therefore a promising avenue for future research. 

Modelling has also been used to reconstruct water demand on subregional or site-local 

scales. This reveals considerable variation in people’s reliance on hydrological resources depending on 

the environmental and cultural context. In the Late Pleistocene of steppic eastern Jordan, for 

example, Byrd, Garrard, and Brandy (2016) modelled mobile foragers as needing to be only within 

one or two days’ walk of freshwater, and posit that they only temporarily gathered at perennial water 

sources during the dry season. By contrast, Whitehead, Smith, and Wade (2011); Whitehead et al. 

(2008) constructed a model of the hydrological resources of the nearby Early Bronze Age site of Jawa, 

concluding that its system of diversions and storage ponds was constructed to support a permanent, 

sedentary population of 6000 or more people and their livestock. Even in the same environmental 

zone, therefore, the human response to hydroclimatic events can be expected to differ radically 

between social contexts. 

 

SUMMARY  

Our review of this topic has highlighted the continued challenges involved in answering the key 

research questions regarding human vulnerability to climate change over the last 20,000 years. The 

paper illustrates a considerable, and growing, body of literature from across the palaeoscience 

disciplines dealing with these issues in SW Asia. Development of new analytical technologies will 

continue to provide new ways of examining archaeological and palaeoenvironmental archives and 

further add to our knowledge base. For example, new excavations and palaeoclimate reconstructions 

in Anatolia, Iraqi Kurdistan, southern Mesopotamia, Iran, Arabia, and South Asia are providing 

opportunities, not only to improve the spatial resolution of data available, but to implement the use 

of the full-spectrum of state of the art bio-archaeological approaches. Archaeobotany and 

archaeozoology have been widely used for some time, but isotopic analysis of human and animal 

remains is being increasingly utilised to investigate questions of mobility, diet and the impact of 

climate change on water availability and use (e.g. Chase, Ajithprasad, Rajesh, Patel, & Sharma, 2014; 

Chase, Meiggs, Ajithprasad, & Slater, 2014, 2018; Jones, 2018; Kenoyer, Price, & Burton, 2013; 

Kutterer & Uerpmann, 2012; Riehl, Pustovoytov, Weippert, Klett, & Hole, 2014; Valentine et al., 

2015). Residue analysis of ceramics from new excavations, and also museum collections, is also now 

being attempted (Craig et al., 2013; Gregg, 2010; Gregg, Banning, Gibbs, & Slater, 2009). 

Coming to a conclusion regarding ongoing work is difficult, so here we summarise two key 

themes that pervade this paper and are likely foci of future work. Whilst collaboration across the 

palaeoscience disciplines working in SW Asia has often been the norm, our review here highlights the 



need for these communities to look further, to hydrologists, soils scientists and modellers, for 

example, to take such work forward. We need to fully integrate data and approaches, new and 

existing, in interdisciplinary ways towards answering focussed research questions (Jones, 2013). 

Scale 

Although modelling, quantitatively or conceptually, is likely to aid future interpretation of new and 

existing data sets, a major challenge is integrating widely divergent scales of archaeological and 

palaeohydrological data. For example how do we best compare regional summed radiocarbon 

population proxies to site-specific water management strategies, with palaeoenvironmental data 

conditioned by regional climatic and local hydrological and ecological states? 

To aid resolving such complexity more care needs to be taken in understanding the likely 

spatial relevance of a given proxy record, and the public availability of instrumental meteorological 

and climate-model data give one way make this possible (e.g. Jex, Phipps, Baker, & Bradley, 2013; 

Yiğitbaşıoğlu et al., 2015), alongside improved monitoring of archive systems (e.g. Dean, Eastwood, et 

al., 2015; Djamali et al., 2009).  Some of the non-conformity between scales can also be addressed by 

palaeoenvironmental work in direct association with individual archaeological sites i.e. from the local 

hydroscape, and only then linking to, often more continuous,  palaeoclimate records from further 

away (Jones, Maher, Richter, et al., 2016). Modelling, particularly of local, hydrology is often a 

‘missing link’ in the palaeonarratives reviewed here. Appreciation of a given locale’s place in the 

regional hydroscape, be it a palaeoenvironmental archive or archaeological site, allows more robust 

links to climate to be made where possible, and demands the resolution of factors acting across 

multiple scales.  

 

Seasonal ity  

Palaeoenvironmental records rarely have the resolution to pick apart conditions in multiple seasons of 

a given year, but many reflect conditions of a particular season (e.g. Dean et al., 2018). Given the very 

different seasonal conditions across SW Asia, even with a first order conceptual hydrological 

understanding, the balance between the now predominant winter wet season and summer dry 

season is likely to be important for water availability, and the climatic systems that ultimately control 

these conditions range from the Atlantic Ocean to East Asia, and from Iceland to south of the equator. 

Over the last 20,000 years the timing (e.g. Stevens et al., 2001) and type (e.g. Robinson et al., 2006) of 

precipitation across the region may have changed, as would have the degree of summer evaporation 

(e.g. Djamali et al., 2010). The balance of seasonal precipitation and evaporation patterns is a primary 

control on recharge, and will therefore impact water availability and how a given 



palaeoenvironmental archive records shifting patterns. Changing amounts of snowfall, and snowmelt, 

would also alter this filtering of climate by hydrological systems, and are an important focus for future 

work, especially in understanding glacial-interglacial changes in proxy records from the region. 

 

C lose 

The water resources available to a given group of people at any time is a function of climate 

moderated by landscape and technology, such as vegetation type and quantity, soil cover and 

stability, geology, and topography, which influence surface- and ground-water systems, and the 

people themselves. People have been making the most of these resources, and adapting as they 

change, across SW Asia for over 20,000 years. Whatever the complications in detailing the finer points 

of past societies’ relationships with changing water availability it is clear that dealing with changing 

elements of that relationship is far from a new issue for people, in SW Asia arguably for longer than 

anywhere else. Our review here highlights the need for a multi-disciplinary, multi-scalar approach to 

furthering work in this area. A 20,000-year perspective shows that societies are often vulnerable to 

changing climate and have sometimes struggled to adapt. The implications for resilience in our own, 

present day and projected future contexts are salutary.  
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