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A B S T R A C T   

The occupants’ presence, activities, and behaviour can significantly impact the building’s performance and 
energy efficiency. Currently, heating, ventilation, and air-conditioning (HVAC) systems are often run based on 
assumed occupancy levels and fixed schedules, or manually set by occupants based on their comfort needs. 
However, the unpredictability and variability of occupancy patterns can lead to over/under the conditioning of 
space when using such approaches, affecting indoor air quality and comfort. As a result, machine learning-based 
models and methodologies are progressively being used to forecast occupancy behaviour and routines in 
buildings, which may subsequently be used to aid in the design and operation of building systems. The present 
work reviews recent studies employing machine learning methods to predict occupancy behaviour and patterns, 
with a special focus on its related applications and benefits to building systems, improving energy efficiency, 
indoor air quality and thermal comfort. The review provides insight into the workflow of a machine learning- 
based occupancy prediction model, including data collection, prediction, and validation. An organised evalua-
tion of the applicability or suitability of the different data collection methods, machine learning algorithms, and 
validation methods was carried out.   

1. Introduction 

Buildings are responsible for up to 40% of the global total energy [1] 
and 30% of greenhouse gas [2]. As a result, reducing the amount of 
energy used by the building industry will considerably benefit the 
overall energy use and carbon concerns [3]. Buildings have a high en-
ergy consumption since they serve a variety of purposes and consume 
energy [4]. Particularly, buildings now combine traditional energy 
services systems like heating, ventilation, and air conditioning (HVAC), 
lighting, power distribution, and water systems with on-site power--
generating systems like solar photovoltaic (PV), wind turbines, and 
electric vehicle charging systems [5]. Many of these services are 
essential for maintaining thermal comfort and air quality [6], and the 
main challenge is to find a balance between providing a comfortable and 
healthy indoor environment while minimising the energy demand. 

Despite the massive quantity of energy used by buildings, thermal 
comfort is not always achieved. A study showed that in a conditioned 
office building, 75% of occupants report that they are dissatisfied with 
their thermal comfort [7]. Another field study in the US indicated that 
only 60% of occupants in 60 office buildings were satisfied with their 

thermal environment [8]. Even high-performance and energy-efficient 
buildings may not be comfortable or healthier than other buildings as 
they intended to be [9]. 

Building energy simulation tools and models are used to simulate the 
energy consumption at the design stage, ensuring that the building and 
its services match the required standards. However, variations in 
building construction, operation of building and energy services, usage 
of ICT and appliances, and occupancy behaviour all contributed to the 
distance between real and expected energy loads [10]. In the past, oc-
cupants’ behaviours were observed [11] or through interviews and 
surveys [12] to generate a fixed occupancy schedule [13] which can be 
used in building models or simulations for existing buildings. However, 
the actual occupancy behaviour is difficult to predict since it is 
time-varying and identity in different cases. Therefore, proposing a 
thoroughly and accurately occupancy prediction model is necessary for 
building energy conservation and to guide the occupant behaviour 
modelling in building energy simulation [14]. 

In the last decade, new powerful tools, including machine learning 
methods and data mining techniques, have been suggested to diagnose 
unnoticed relationships and summarise the data in innovative ways 
according to large information datasets, as discussed in many studies 
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[14]. To better understand energy usage in buildings, research tends to 
study the diversification of occupancy schedules based on big data 
streams [15]. A lot of research has been conducted to bridge the gap 
between occupancy prediction and building control while maintaining 
thermal comfort, which naturally has a significant impact on building 
energy use. One research with an AI-based method achieved energy 
conservation of up to 30% by using occupancy and eight different 
physical sensors [16]. Another paper proposed an integrated framework 
for an HVAC system that suggested a significant reduction in comfort 
dissatisfaction, going from 25% with the baseline strategy to 0% 
dissatisfaction while decreasing the energy cost by more than 10% [17]. 
Therefore, it is necessary to complete a literature review on the associ-
ation between energy usage, comfort-improving, and machine learning 
methods to establish a possible state-of-the-art approach to study the 
intercommunication between these topics. 

1.1. Occupant centric comfort approaches in buildings 

Buildings are where people spend more than 85% of their lifetime 
[18], provide a comfortable and healthy environment and protect oc-
cupants against outside conditions [19]. Different researchers have 
proposed several definitions of the comfort concept. Usually, it is 
commonly agreed that comfort is concerned with the occupant’s phys-
iology and the physics of the surroundings, in terms of these factors: 
thermal comfort, health, and availability of control [20]. 

Traditionally, physics-based heat balancing and transmission models 
such as standard effective temperature (SET) [21], the predicted mean 
vote (PMV) [22], and adaptive comfort models have been used to assess 
and analyse thermal comfort in buildings [23]. These models have 
already been integrated into several standards, such as ASHRAE 55 [24] 
and EN 16798–1 [25] for categorising indoor thermal conditions into 
various comfort categories or classes. The thermodynamic equation 
between occupants and their thermal environment is the basis for these 
models. They believe that the human being must be in thermal harmony 
with its surroundings to feel at ease. Personal factors such as clothing 
and activity and physical metrics such as ambient temperature, airspeed, 
humidity, and ambient temperature are widely employed. The 
physics-based heat balancing and transfer model has been questioned 
despite its widespread usage in building standards around the world, 
mostly because it was developed in a stable laboratory that does not 

accurately reflect real life, regarding unpredictable circumstances in the 
physical world [26]. Therefore, optimisation of these models was pro-
posed to better assess the total comfort sense of occupants [27]. 

In addition, the concept of comfort should not only focus on thermal 
environments, as stated above. ASHRAE 62.1–2019 defines acceptable 
indoor air quality (IAQ) as there are no known toxins at dangerous 
amounts in the air, and a considerable majority (80% or more) of people 
inside do not express discomfort [28]. Most studies refer to the index of 
comfort in IAQ as environment air temperature, humidity [29], airflow 
rate [30], CO2 concentration and pollutants. For example, the permis-
sible concentration of CO2 in closed spaces, according to the World 
Health Organization (WHO) is 1000 ppm [31] and CIBSE recommends a 
CO2 concentration of no more than 900 ppm to control human odours 
and maintain comfort. However, only a few experimental investigations 
have looked at the influence of occupancy behaviour on HVAC system 
performance on actual comfort and IAQ [32], which made the index of 
perceived IAQ still questionable. According to a recent study, an 
occupancy-based system can save up to 24% energy-consuming while 
maintaining thermal comfort and assessing IAQ [33]. From another 
study, combining CO2 sensors with occupancy-based ventilation control 
might save about 55.8% of outside air ventilation power [34], but the 
airflow rate is based on occupancy number and not verified. Therefore, 
the actual perceived thermal comfort and IAQ should be examined by 
more experimental studies. 

Furthermore, most of these models assume equal comfort for a group 
of people instead of individual comfort, given the nature of the aggre-
gation modelling method [35]. Since occupants have significant indi-
vidual differences, using group-averaged forecasts to control the 
building environment may not meet the individual’s thermal comfort 
demands [36]. It is shown that in the same situation, people with 
different body compositions respond differently [37] and occupants’ 
gender and age differences would affect their personal thermal comfort. 

Therefore, more research should focus on the actual perceived 
comfort models, which aim to predict the personal comfort of occupants 
to get a more accurate model while minimising energy consumption. 
Recent improvements in smart devices (e.g., wearing sensors) have 
made it easier to gather data to construct and validate individual ther-
mal comfort models without being too aggressive [38]. Furthermore, 
developments in ML technology have made it easier to analyse extensive 
data and collect valuable insights that can be summarised into a module 
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and integrated into a self-learning system. 

1.2. The use of machine learning method in occupancy prediction 

Many occupancy models have been created over the last twenty 
years to simulate occupant unpredictability and variety and generate 
stochastic occupancy models for making accurate simulations [39]. The 
three types of prediction models are the physical model or white-box 
model, the ML model, also called the data-driven model, and the 
mixture model [40]. White-box models produce detailed simulations of 
a building’s energy performance, with details such as the building ma-
terial, HVAC control, and management systems [41]. In addition, 
creating a white-box model takes time and some building details are 
difficult to obtain. Data-driven models are fast to construct and provide 
acceptable results with good data quality, but they require a large 
amount of data, and their parameters and inputs have no obvious 
physical meaning [42]. Mixture models combine physical and 
data-driven models, inheriting the advantages and disadvantages of 
both techniques. Traditional energy models with sets of specified static 
coefficients multiplied by a maximum room occupancy were white-box 
models with extensive building information and certain occupancy 
characteristics [43]. 

With the rapid advancement of computer technology, data-driven 
approach (black-box) models have shown great potential in building 
energy models to simulate and predict related appliances, including 
occupancy behaviour, thermal comfort, IAQ and energy consumption. A 
study compared the occupancy prediction model with and without a 
machine learning algorithm and showed that the accuracy was signifi-
cantly improved and 30% energy saving can be achieved with the pro-
posed algorithm [44]. Another study using a learning-based model 
predictive control (MPC) technique achieved significant energy savings, 
with 40.56% less cooling and 16.73% less heating power while keeping 
occupants comfortable [45]. 

Although these ML algorithms have been widely used and checked in 
earlier studies, the algorithm choice differs in each case; the model setup 
depends on many factors including the available information, the 
timescale preferred, the time span (from any seconds to years), and the 
size (a small space to a whole country). As a result, with the growing 
number of publications produced, it’s more important to examine model 
capabilities, problems, and a critical assessment of research gaps. This 
work will discuss the developments in occupancy behaviour prediction 
and ML technology and how it enhances thermal comfort and IAQ, and 
reduces energy consumption. 

1.3. Previous reviews, novelty, aim and objectives 

With the growing number of articles published on occupancy pre-
diction, an in-depth and critical evaluation of the different methods in 
this area is required. In 2012, a brief review was conducted of the 
methods for predicting building energy consumption, including ANNs 
and SVM [46]. In 2021 a review compared the AI-based and conven-
tional models employed in building energy consumption prediction with 
occupancy factors and proved that AI-based models had better accuracy 
[47]. Another work reviewed studies on electrical load prediction and 
provided an overview of prediction timescale and potential model so-
lutions [48]. The use of machine learning in the various phases of the 
building lifecycle was examined, and research gaps in the design, con-
struction, operation and maintenance, and control, were investigated in 
another paper [49]. Most of these review papers focused on the occu-
pancy detection approach and performance, while in terms of its 
application in buildings, most of the studies evaluated its impact on 
energy efficiency but not thermal comfort and air quality (as shown in 
Table 1). This work argues that the occupancy behaviour data obtained 
can be employed to minimise energy and at the same time provide a 
comfortable and healthy environment. For example, the occupancy 
prediction method can be integrated into a framework or model which 

can control and optimise the operation of the HVAC regarding energy, 
comfort and health. 

To address the gaps in the relevant review studies (some detailed 
above), this work will conduct a comprehensive review of occupancy 
prediction and evaluate the interrelated applications and benefits to 
building operation, including improving occupancy comfort and indoor 
air quality and reducing energy loads. The review will also provide an 
insight into the workflow of a machine learning-based occupancy pre-
diction model, including data collection, prediction, and validation in 
Section 2. Section 3 will review the different data collection methods 
and technologies. The best-performing algorithms in occupancy pre-
diction modelling will be highlighted in section 4, and the different 
validation approaches will be investigated in section 5. Finally, the 
challenges linked with occupancy prediction models will be discussed, 
and recommendations regarding further research will be made. 

2. Method and commonly used occupancy prediction workflow 
based on ML 

Although there is a large amount of literature on building occupancy 
prediction using machine learning and a great number of review articles, 
what is lacking is a straightforward categorisation and organisation of 
the methodologies and technologies, allowing for the definition of a 
useful (or ideal) “occupancy prediction structure”. Therefore, we 
consider articles published from 2011 to 2021 in the main databases 
such as Scopus and Thomas Reuters’ Web of Science. The keywords 
included “building, occupancy prediction, machine learning” & “ther-
mal comfort, occupancy prediction, building”. The keywords “thermal 
comfort, machine learning, artificial intelligence, comfort factor, indoor 
air temperature, and control method” were also used to identify more 
related publications. We focus on papers that employed machine 
learning to predict occupancy in buildings and related applications. 
Review papers and irrelevant papers were excluded, for example, some 
research only focused on occupancy detection and was not suitable for 
the review purpose. 

Table 1 
Information on existing reviews in the last five years.  

Ref. Year Journal Research Focus and Gaps 

[50] 2019 Indoor Air Focused on the sensors collecting air 
quality index and have not considered 
the occupancy impact. 

[51] 2019 Energy & Buildings Focused on occupancy sensing and 
lack of consideration of future 
prediction and validation methods 

[52] 2020 Energy & Buildings Mainly focused on occupancy 
detection and estimation, not enough 
integration of occupancy information 
with models. 

[49] 2020 Energy & Buildings Examined papers using machine 
learning in different stages of building 
life cycle. 

[53] 2021 Building and 
Environment 

Focused on the various types of MPC 
and their software implementation 

[47] 2021 Sustainable Energy 
Technologies and 
Assessments 

Focused on prediction on occupant 
number/level and fail to locate the 
impact of more detailed occupancy 
behaviour. 

[54] 2021 Building Simulation Focused on sensors and algorithms 
used in occupancy prediction and do 
not pay attention to the interaction of 
occupants with the building systems. 

[55] 2021 Renewable and 
Sustainable Energy 
Reviews 

Focused on the energy model but did 
not pay enough attention to the 
occupancy factors and their comfort. 

[56] 2021 Building and 
Environment 

Divided the occupancy prediction 
models into state/level prediction and 
occupancy activities prediction, but 
the discussion about activities 
prediction is limited.  
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2.1. The application of reviewed research 

160 papers were selected, and a timely review was proposed, which 
can help guide the future research of occupancy prediction with ma-
chine learning regarding building design, operation, and research ac-
tivities and to provide a better understanding of occupancy behaviour 
and better the building performance. 

In general, the number of machine learning methods and their ap-
plications in built environment research is rising, particularly in the last 
five years (Fig. 1). These applications include the prediction of occu-
pancy state, occupants’ interactions with thermal comfort, energy con-
sumption, indoor temperature, and lighting use. Occupancy state 
prediction was the most popular application of machine learning models 
until 2020, while the number of studies on energy consumption pre-
diction increased. This could be due to the development of prediction 
models, which can be specifically used for more detailed problems like 
the comfort state and the occupancy actives instead of just predicting if 
the room is occupied or not. Also, it shows increasing awareness of en-
ergy efficiency and occupancy comfort in the built environment. 

2.2. The regions of reviewed studies 

The case studies in reviewed papers were mostly conducted in three 
big geographic regions: Europe, North America, and Asia. Most of the 
early studies were in Europe and North America, while studies in Asia 
have increased since 2016, as shown in Fig. 2. In recent years, when the 
topic became more popular, these three main regions dominated this 
field by turns. Other regions showed less interest in this area until 2017, 
indicating that more studies would be conducted in other regions in the 
future. 

The prediction timeframe and model system are different in identi-
fied studies, making it hard to conclude a perfect model for building 
occupancy prediction. However, in current studies, a typical occupancy 
prediction model usually consists of several procedures: data collection, 
occupancy prediction, and validation (as shown in Fig. 3). Each pro-
cedure contains various options concerning the inputs, data structure 
and algorithm, which require dedicated examination based on the target 
problem and building system. Conversely, the building performance and 
occupancy comfort will be impacted by the model proposed. Therefore, 
this paper will have the following sections: existing data gathering and 
sensor technology, ML techniques for developing occupancy prediction 
models, and model verification methodologies. The best-performing and 
popular predictors and ML methods will be labelled, which will help 
future studies construct suitable models. 

3. Data collection for occupancy data 

3.1. Data collection, methods and privacy preservation 

To improve the accuracy of occupancy prediction, plenty of data 
collection methods have recently been introduced. According to several 
studies, occupancy sensing can save up to 30% [57] on energy costs 
while improving indoor air quality [58]. However, although the use of 
such technology is promising and provides a glimpse of future smart 
buildings, privacy issues have to be addressed for wider adoption. More 
resolution and accurate building prediction models can be achieved by 
combining adequate monitoring technology of the building environ-
ment with proper HVAC or other systems monitoring. 

Because the detection of occupancy status is constantly linked to 
privacy concerns [59], selecting the appropriate sensor is not always 
simple. Based on the reviewed literature, studies are usually narrowed to 
academic buildings (labs or offices in universities/research institutes), 
which could impact the quantity and quality of data obtained, particu-
larly when the prediction method is applied to the industry. As shown in 
Fig. 4, 46% of the case studies were conducted in academic buildings. 
Other case study building types include office (25%), residential (16%), 
commercial (8%) and others such as airport terminals [60], museums 
[61], mosques [44] and metro stations [62]. 

Fig. 5 shows the building types in case studies in different regions. 
Academic buildings play a dominant role in the reviewed studies in all 
regions because it is easier to conduct, especially when considering 
privacy issues. Office buildings are quite popular in all regions since the 
occupants are usually fixed, and not hard to get permission. In 2020, a 
paper conducted a case study in an office building in Stockholm, col-
lecting five years of data with multiple sensors installed in the building 
[63]. However, the privacy concern may arise when such technology is 
applied commercially or for widespread adoption in some regions as 
commercial buildings are the least favoured case study type in Europe 
and North America. In Asia, the residential building is the least used, 
indicating the intense privacy concern for households in this area. 

Privacy leakage is always a concern when choosing sensors for data 
collection. The key privacy risks for occupancy detection include col-
lecting the identification and location of individuals. Masking, encryp-
tion, noise addition, anonymisation of data, and scrambling of location 
data to avoid individual identification are all common procedures for 
dealing with private data. User/data anonymisation is a simple solution, 
but it offers no protection against attackers who have direct access to the 
sensing database and fails to provide the room-specific information and 
required room identity [64]. An alternative way is to detect certain 
occupancy patterns in a particular zone rather than target individuals 
[65]. Also, occupancy location can be inferred from the occupancy data 
with some auxiliary information [66]. For instance, a purposely defo-
cused camera that creates a ‘fuzzy’ or ‘warped’ image or out-of-focus 
images is also a solution to room occupancy sensing [67]. 

Fig. 1. An overview of the application of machine learning in the built environment based on the reviewed studies from 2011 to 2021.  
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In general, the two types of data gathering methods are direct 
counting approaches, which directly track the occupancy number, and 
environmental sensors, which indirectly reveal the occupancy state. 
Fig. 6 shows the connection and details of different sensors in various 

applications of occupancy prediction models. Temperature sensors are 
the most used sensor in all kinds of studies since they are easy to set up 
and usually pre-installed in HVAC systems or other building systems. 
Some sensors are only used in specific applications; for example, 

Fig. 2. The location of case studies in the reviewed papers conducted from 2011 to 2021.  

Fig. 3. The typical procedure of occupancy prediction with machine learning, validation and applications in the built environment.  
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cameras are only found for occupancy state prediction and energy 
consumption prediction. Also, some sensors are more suitable for a 
particular application, like most studies use energy meters as sensors for 
energy consumption predictions. The following sections will explore the 
benefits and drawbacks of these sensors in terms of precision, price, 
ethical concerns, unresolved difficulties and future recommendations. 

3.2. Direct occupancy counting sensing technology 

The most straightforward way to access occupancy data or profiles 
that record how occupants use the facilities or their lifestyle is to directly 
follow the occupants’ status. Many researchers employed question-
naires, especially data from the large-scale survey, and it is convenient 
for groups who share the same lifestyle, such as students on campus or 
residents of the same culture. A dormitory building with 200 rooms was 
selected as the target building, and questionnaires were sent to occu-
pants to get their working schedules [15]. Another national survey was 
taken in Korea of 5240 single-person households for their daily routines 
[68]. Accurate occupancy data can be obtained through these 
large-scale surveys, and questions about their behaviour and other 
evaluation can be easily added to get the full picture as the research did 
in 2007 [68]. The mass data can show the lifestyle of a group of people. 
However, these surveys are usually time-consuming and require many 
participants from the same area and extra form-filling while participants 
are not always willing to cooperate. 

The most accurate approach for determining the occupants’ state and 
the number of inhabitants is camera-based occupancy detection, which 
is often used to offer the ground truth of occupants. An experiment in 
research students’ office rooms with overhead cameras achieved over 
80% accuracy [69], and another monitoring system with cameras was 
employed to examine the new proposed occupancy prediction algorithm 
[70]. However, most cameras were installed in the researchers’ offices 

or specialised experimental rooms due to private intrusiveness [71]. 
In recent articles, wearable sensors, mobile devices, and security 

systems have all been used to detect occupancy [72]. The Internet of 
Things (IoT) has opened new possibilities for occupancy detection. 
Wi-Fi, Bluetooth, RFID, and other technologies are examples of these 
strategies. Because Wi-Fi networks are common in modern buildings, it 
requires no additional hardware or software instalment and performs 
well when it comes to monitoring occupancy. A Wi-Fi-based even-
t-triggered update system for a university lecture theatre was developed 
in 2019 to improve detection accuracy from 77.3% to 96.8% [73]. 
Despite the potential for occupancy monitoring, detection mistakes do 
exist, requiring extensive data cleaning methods to filter errors to ac-
quire trustworthy occupancy data. Details of the comparisons between 
these data collection methods can be found in Table 2. 

3.3. Environmental sensors for data collection 

As shown in Table 2, most direct occupancy counting methods either 
cause private intrusiveness or are time-consuming. Compared to direct 
occupancy counting methods, environmental sensors often target a 
smaller group of occupants, which is partly due to the cost of sensors and 
the detailed data these sensors can collect. Most papers use more than 
one sensor to combine the data and avoid missing data. Also, when 
people are aware that they are being watched, they may alter their 
behaviour [83]. The idle way of data collection would be employing 
existing infrastructures or simple instalments without capturing detailed 
personal information that concerns private intrusiveness. In most 
research, the case study is the researcher’s own office or dwelling to 
avoid private intrusiveness [84]. However, the number of occupants is 
always limited, and the behaviour routine is usually fixed, which could 
make the model defective when applied to larger implementations. 
Therefore, some studies are conducted in public areas like shopping 
malls [85] and cinemas [86], while the sensors could miss some data 
with the large group of occupants. 

Table 3 summarises some of the recent studies using environmental 
sensors. Many researchers use physical sensors like motion sensors to 
capture accurate occupancy states without being aware. 20.3% of 
energy-saving was achieved in a 550 m2 office space with motion sen-
sors [87], and another experiment in a smart-home testbed with a mo-
tion sensor has achieved around 60% accuracy for occupancy prediction 
[88]. On the other hand, motion sensors are not able to detect nearly 
stationary individuals, which is common in offices and during the 
inactive time at home. Therefore, the occupancy state can only be 
identified by the arrival and departure times. Also, non-intrusive sensors 
such as pyroelectric infrared (PIR), ultrasonic, and acoustic sensors can 
only be used to assess whether or not a space is occupied, not the oc-
cupants’ number [89]. Therefore, they are suitable for single-occupant 
rooms. For example, research conducted in a single-occupant office 
had a 1-h forecast accuracy of 79%–98% [90]. However, due to the air 

Fig. 4. The proportion of building types in the reviewed case studies.  

Fig. 5. Case study building types in different regions of reviewed studies.  
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mixing process, there were always significant delays for these sensors, 
especially when they were located far away from occupants. 

Therefore, environmental sensors, including CO2-based detection, 
indoor temperature, relative humidity, and energy meters, are proposed. 
The indoor temperature sensor is the most used data collection method 
in the reviewed papers (as seen in Fig. 6) because they are small and 
usually already available in standard HVAC systems. Since the indoor 
temperature is not directly linked to occupancy data, the temperature 
and humidity sensors are commonly combined with CO2 sensors [87] or 
weather data [100]. Also, sensors that record the indoor temperature 
and relative humidity are generally used to operate window opening and 
thermostat adjustments. These sensors, however, should be kept away 
from sources of heat, humidity, and contamination (equipment, 
humans, and solar power) to avoid a mixture of their readings [52]. 

Smart meters, which can reflect the actual electricity consumption, 
are also employed in many works. The energy load data is easy to collect 
and compare to the simulation or prediction result. Most works exhibit a 
significant performance gap between models and observed energy use, 

and meters that monitor real energy consumption can be used to detect 
the gap and validate the influence of occupancy behaviours [101]. 

CO2 sensors are a viable technique since they are inexpensive, tiny, 
non-intrusive, and non-terminal, making them a popular data collection 
method [102]. Since CO2 sensors commonly exist in regular HVAC 
systems, no new infrastructure expenditure is needed. The method cal-
culates the number of occupants with an equation using CO2 concen-
tration [103], which has the main disadvantage of delayed response and 
possible difficulties in identifying physical parameters. As a result, when 
CO2 sensors are properly installed, and details about observed rooms 
(room volume and airflow rate) are known, the CO2-based method 
performs well, whereas the results were unreliable when the studied 
spaces were open and irregular, such as an open-plan or naturally 
ventilated office [104]. To overcome these weaknesses, more accurate 
methods were developed including data mining algorithms. 

Thermal imaging and thermal comfort voting are new contactless 
sensors that have demonstrated the capacity to enhance thermal comfort 
while reducing energy consumption. In an office room, using thermal 

Fig. 6. Data collection methods and their related application in the reviewed studies.  
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comfort voting to obtain users’ real-time reactions to the environment 
and then modifying the management goal settings enhances thermal 
comfort while saving up to 40% energy [105]. Consequently, subjective 
responses instead of physical parameters might be an alternative 
approach to occupancy detection that should be paid more attention to. 

3.4. Data mining technologies 

As shown in Table 3, in most studies, data collected from buildings 
installed more than one kind of sensor. For reviewed papers in this 
article, the most widely used method is the combination of indoor 
temperature sensors and CO2 sensors [97,106,107]. However, raw data 
might have a variety of issues, such as missing information or sudden 
swings if one or more sensors are disrupted. Also, sensor readings could 
conflict with each other, and sometimes, the reading in sensors will not 
change much, so it provides no valuable information. 

To solve these problems above, data mining technologies have been 
introduced by many researchers. For example, missing data were 
replaced with interpolated data, and nonsensical data was either 
removed or reset to the sensor’s initial values using the “data cleaning” 
method [108]. Extraction of the mean, standard deviation, mean abso-
lute deviation, first, second, and third-order differences and even simple 
moving averages are used as post-processing procedures for collected 
original data. For data mining, most researchers use supervised 

Table 2 
Comparison and key findings between different direct occupancy counting 
methods in recent studies.  

Data collection 
mothed 

Year Testing 
environment 

Study scale Ref. Key findings 

Survey 2021 Dormitory 
and office on 
a campus 

200 
students 
and 90 
staff 

[15] ✓ Get access to 
the full picture 
of the 
occupancy 
lifestyle. 

2019 Residential 
houses 

5240 
occupants 

[73] ✕✕ Time- 
consuming and 
requires a 
large number 
of participants 

2019 Apartments 154 
occupants 

[74]  

2007 Residential 
houses 

60 
occupants 

[12]  

Camera 2020 Office 12.4 m2 [75] ✓ The most 
accurate 
method, 
provides the 
ground truth.  

2020 Student 
centre 

1400 m2 [42] ✕✕ The private 
intrusiveness  

2018 Student 
office 

25 
residents 

[76]   

2017 Student 
office 

2 students [69]   

2017 lecture 
theatre 

876 m3 [77]  

Internet of 
Things 

2020 Office 350 
employees 

[78] ✓ Low cost and 
requires no 
additional 
device.  

2019 Residential 
complex 

149 rooms [79] ✕✕ The 
detection error 
and need data 
cleaning  

2019 Office 80 
employees 

[80]   

2019 Office 200 m2 [81]   
2018 Student 

office 
25 
residents 

[82]   

Table 3 
Recent studies on occupancy detection using environmental sensors.  

Ref. Accuracy Testing 
Environment 

Study Scale Data Collection 
Method (DCM) 

[91] Up to 97.4% Office Around 20 
m2 

3 DCM - Passive 
infrared sensor 
(PIR) sensor, an on- 
site survey, a 
camera 

[92] The average 
accuracy of 
95.8% 

An apartment – 6 DCM - CO2 

concentration, 
motion sensors, 
relative humidity, 
temperature, 
heating, and 
lighting 
consumption 

[84] Average detection 
accuracy of 
92.2% 

Office space 39 m2 AI-powered camera 

[93] The best-adjusted 
R2 is 0.94 

Eight 
apartments 

3-bedroom 
apartments 

5 DCM - Motion 
sensors, indoor 
CO2, indoor 
humidity, 
temperature, and 
the number of 
occupants 

[94] Up to 84% A house-like 
cubicle 

3 m × 3 m 9 DCM - 
Microclimatic 
station air 
temperature, 
relative humidity, 
net-radiation, air 
speed, the CO2 

concentration, and 
illuminance level 

[95] Vary from 0.82 to 
0.98 for heat 
consumption and 
0.87–0.97 for 
electricity 
consumption 

A mixed-use, 
university 
building 

7445 m2 3 DCM - Outdoor 
temperature, and 
historical energy 
consumption data 

[63] The error of only 
5% 

Office 
building 

8 floors, 
area: 
19,642 m2 

9 DCM - Water 
consumption, 
electricity load, 
room temperatures, 
ventilation devices 
and controllers, air 
pumping, indoor 
air quality 

[96] Vary from 85.6 to 
93.7% 

Office Single user 7 DCM - Motion 
and temperature 
sensors, door 
sensors, pressure 
sensors on office 
chairs. 

[97] The best accuracy 
for real-time 
prediction is 86% 

A graduate 
student office 

About 200 
m2 with 25 
residents 

3 DCM - CO2 

concentration, 
relative humidity, 
and temperature      

[98] The highest R2 is 
0.9594 

Office room The floor 
area of 152 
m2 

4 DCM - CO2 

concentration, 
temperature, 
relative humidity, 
energy 
consumption 

[87] The total control 
accuracy is 88.1% 

Office space 550 m2 5 DCM - Motion 
sensors, 
temperature 
sensors, relative 
humidity sensors, 
CO2 sensors, and 
HMI 

[99] Prediction errors 
below 7% 

A study zone 125 m2, 36 
occupants 

6 DCM - PIR 
sensors, cameras, 
temperature 
sensors, CO2 

sensors  
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algorithms like the SVM (Support Vector Machine) and the Decision 
Tree to categorise samples based on a target variable [109]. Unsuper-
vised learning techniques, such as hierarchical clustering and k-means, 
have recently been adopted in studies to organise data into clusters 
based on the characteristics of all variables without any target variable 
[110]. With the trend of multiple sensors, it is hard to confirm an oc-
cupancy dataset structure in advance. Therefore, using cluster algo-
rithms is becoming a standard step before sending data to machine 
learning training. 

4. Machine learning algorithms and their applications 

Supervised learning, unsupervised learning, and reinforcement 
learning are the three most typical machine learning approaches used in 
occupancy prediction [111]. Supervised learning models include deci-
sion trees [112] (such as the gradient boosting tree), classifiers (such as 
the Bayes classifier, kNN, and support vector machine), and neural 
network-based models [113] (such as the feedforward backpropagation 
network and cascade correlation). Furthermore, these models can be 
classified as linear or nonlinear based on the data structure. Linear 
methods are used when the responding and prediction data are linearly 
linked or converted into a linear relation. With the dramatically 
increasing of variates, data transformation techniques like normal-
isation process, log conversion, and ranking transformation might be 
utilised [114]. In the majority of circumstances, linear models are easy 
to create and use, and they are frequently used as the first model. Other 
nonlinear models can be employed more effectively if the data are un-
likely to be linearly connected. 

Unsupervised learning methods reduce, summarise, and synthesise 
data using unlabelled training data [111]. Unsupervised learning algo-
rithms include cluster analysis learning, like principal component 
analysis and parametric analysis, and various ANNs (e.g., autoencoder 
neural network and self-organising map) [115]. Because occupants 
behave in a stochastic manner impacted by a variety of parameters, the 
majority of which are immeasurable and unpredictable, it’s critical to 
figure out which inputs are the greatest influencers and only add those 
that significantly increase behaviour. As a result, while unsupervised 
learning cannot generate a prediction for a new dataset, it can contribute 
to the comprehension of the data’s character, allowing for the selection 
of supervised models for prediction [116]. Since there is no output in 
unsupervised methods, data linearity is not an issue. Similarly, with 
reinforcement learning, a direct match of input and output is not 
existing, and it can only estimate how well the output is. 

4.1. The trends of machine learning and deep learning 

In general, there is a rise in machine learning applications because of 
the availability of building automation systems, smart systems and IoT 
platforms, which increases the quantity of data available as discussed in 

Section 3 [117]. The great volume of data requires advanced techniques 
to analyse them which conventional models cannot handle properly. In 
addition, most behaviours are influenced by several contextual ele-
ments, the best way to mimic them is to either integrate all the pa-
rameters in one equation or address the factors that influence behaviour 
separately, allowing them to be split into various formulae. Therefore, 
powerful methods like deep learning which is suitable for big-data and 
computationally intense processes have been introduced in recent years. 

As can be seen in Fig. 7, the neural network-based algorithm (which 
occupied more than 40% of reviewed papers after 2018) is the most 
popular method in building machine learning prediction. Particularly, 
deep learning with a large number of hidden layers that compose the 
neural network showed good capacity in image pattern recognition, 
speech recognition and synthesis, etc. which also indicated possible 
future development in occupancy prediction models. 

The popularity of the neural-network-based algorithm indicated that 
deep learning is making major advances as typical machine-learning 
techniques were narrowed in the ability to deal with data in the natu-
ral form [118]. Deep learning uses graph technologies and neuron 
transformations to obtain multilayer learning models and automatically 
learns the data. The most widely used deep learning models are Con-
volutional Neural Network (CNN) [119] and Recurrent Neural Networks 
(RNN) [120], which are also popular in building occupancy prediction. 
Also, the development of deep learning algorithms provides advance-
ment in building automation systems as it can convert the data at one 
level (starting with the natural data) into a depiction at a slightly more 
abstract level. In 2021, a smart Oracle-based building management 
system was proposed that auto-learns occupancy patterns and leverages 
spatial organisation to deliver actionable insights on energy savings 
[121]. 

4.2. Occupancy prediction 

Occupancy prediction, in general, draws the most attention in the 
reviewed papers until 2020, which is since the variation of occupants’ 
interactions is regarded as the foundation of the uncertainty in building 
models. One of the key parameters an occupancy prediction model 
should consider is the occupancy level. In 2011, a study separated oc-
cupancy prediction levels into three major factors: temporal, spatial and 
occupancy state resolution [122]. The precision with which the timing 
of events is modelled is referred to as temporal resolution. The precision 
of physical scale is defined by spatial resolution (e.g., a building or a 
zone the model target). The model’s occupancy resolution refers to how 
it specifies individuals. 

For temporal resolution, one of the classifications divided occupancy 
prediction models into three categories: real-time recognition, future 
time-step predicting, and occupancy profile modelling [52]. These ap-
proaches either estimate the number of occupants, determine whether 
they exist in a particular area, or generalise a few occupancy profiles 

Fig. 7. Summary of the reviewed studies from 2011 to 2021 using machine learning algorithms.  
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based on previous occupancy patterns. In most occupancy prediction 
models, the monitor period has ranged from a day to multiple years, and 
the time they mean to predict varies from serval seconds to more than a 
year. A study showed 61.5% and 43.6% accuracy for building pre-
dictions of more than a year and 1 h, respectively [48]. The short-term 
prediction has a direct application for quick occupancy demand 
response and suits the needs of the industry. However, the seasonal ef-
fect of occupant behaviours requires a full year of monitoring is more 
reliable, especially in specific cases, such as simulating academic 
buildings’ holiday schedules regarding energy consumption [95]. 

In the reviewed studies, the regression-based method based on 
Random Forest is the most used method for occupancy prediction. Ac-
cording to a study, the regression model is primarily used for long-term 
forecasting, while ANN is mainly used for short-term forecasting [48]. 
Different methods should be employed for different types of occupancy 
state prediction. For example, ANN with long short-term memory 
(LSTM) architecture is the most commonly used and suitable method for 
time series prediction [123]. A study found that Random Forest is the 
most suited classifier [124], with at least 90.53% accuracy, after 
training data with five different machine learning classifiers (Random 
Forest, Decision Tree Classifier, Extra-Trees, Gaussian Naive Bayes, and 
Multi-layer Perceptron). Another study achieved 97.27%–98.90% ac-
curacy in an indoor office by employing several Deep Neural Networks 
(DNNs) [125]. The method’s accuracy also depends on the type of data 
collected. For example, the SVM and k-NN models have lower counting 
errors when using Wi-Fi data, whereas the ANN model is more accurate 
when using fused data [82]. 

Based on the reviewed papers, many studies focus on detecting the 
occupancy state, including the occupancy presence, number and loca-
tion in space, zone or building. However, there are limited studies on the 
detection of the occupancy activities, for example, movement in space 
[75], opening/closing of windows [126], adjustment of HVAC, and use 
of equipment and appliance. Furthermore, significant attention of the 
existing literature is focused on the performance of developed algo-
rithms, such as their speed and accuracy. Details of different kinds of 
occupancy prediction are listed in Table 4. 

Limited works focused on evaluating the impact of the detection 
technique on the performance of the building and HVAC systems. For 
example, a study proposed a vision-based approach for detecting and 
recognising the occupants’ activities within building space [75]. Unlike 
previous works which focused on occupancy levels, the study used the 
data to predict the indoor heat gains from the occupants with varying 
activity levels. Such information would be useful for HVAC controls to 
adapt and make a timely response to dynamic changes in occupancy 
activities. A recent work used the same detection approach to detect how 
the occupants interact with the equipment or appliance such as com-
puters [126]. Similarly, the proposed approach can predict the internal 

gains from the facilities operated, contributing to the indoor heat gains. 

4.3. Indoor air quality (IAQ) prediction 

IAQ has long been an important topic for the health and wellbeing of 
the occupants in buildings. The previous sections have highlighted the 
importance of a holistic approach to deal with these challenges 
adequately. Traditionally, mechanistic IAQ models have been utilised, 
and the link between inputs and outputs has been based on mechanisms 
[133]. However, mechanistic IAQ models do not include the interactions 
between the occupants and the indoor environment and the difference 
between individuals, which can impact energy consumption and 
building performance. The operation of HVAC systems affects both 
comfort and the IAQ. Hence in some studies, IAQ prediction is combined 
with thermal comfort prediction and considered as part of the overall 
occupant’s comfort parameter [134]. Therefore, these models, espe-
cially ML models, which consider the occupancy interaction and 
building performance, are increasingly being employed in recent 
research. 

One of the most crucial issues in IAQ prediction is finding the right 
input to achieve a reliable prediction. Since the model is data-driven, it 
is important to identify the key variables inputs. Many environmental 
indexes are used to determine the relationship between occupants’ 
feelings about IAQ, such as door/window opening behaviour, temper-
ature, relative humidity, CO2 concentration, solar radiation, rainfall, 
wind speed, noise, illumination, and so on [135]. Therefore, in IAQ 
prediction models, normally, one or more driving factors are used for 
prediction [39]. The inputs may have an indirect and unexpected impact 
on the behaviour [136], therefore an over-fitted model that has many 
inputs is often conducted. Many research used data mining approaches 
such as stepwise regression, principal component analysis [137], and 
partial least squares [138] to uncover the driving components before 
developing the models. 

The algorithm selection is often related to the data structure and 
collection method. However, IAQ is related to a lot of environmental 
indexes, as stated before, which can be recorded by various kinds of 
sensors and parameters, it is hard to recommend a specific kind of al-
gorithm without analysing the detail of the model. One review before 
summarised the popular algorithm, for example, ANN, linear regression 
models, and Decision Tree developed for predicting different factors of 
IAQ, but cannot recommend the optimal method and suggested a test 
and compares different models before choosing the most suitable model 
[50]. 

Most IAQ models are employed to improve the occupants’ overall 
comfort or lower the concentration of indoor air pollutants. For 
example, a study tested a control model of a filter for indoor CO2 
decreasing in a sports centre while using fuzzy inference to reduce the 

Table 4 
The information about studies using various algorithms in occupancy state/number/activities prediction.  

Prediction 
Classification 

Ref. Year Sensor Algorithm Test Environment Accuracy 

Occupancy State 
Prediction 

[127] 2019 Relative humidity, temperature, and CO2 Linear Regression, Neural 
Networks, and Random Tree 

A laboratory Higher than 90% 

[128] 2018 CO2 data and indoor human occupancy seasonal-trend decomposition 
(STD) 

An academic office and a 
cinema theatre 

An average of 
94.68% 

Occupancy Number 
Prediction 

[129] 2021 28 Wi-Fi Apps Multilayer Perceptron ANN 5 floors of classrooms RMSPE of 0.29 
[130] 2019 Real-Time Locating System inhomogeneous Markov chain A research laboratory 86% on average 
[81] 2019 Wi-Fi probes and indoor air temperature, 

relative humidity, and airflow rate 
Gradient tree boosting, Random 
forests, AdaBoost 

A large office room, 200 
m2 

Reached 72.7% 

[131] 2019 Camera and motion sensor RNN with LSTM units An exhibition Best RMSE of 
10.31 

Occupancy Activity 
Prediction 

[84] 2021 Camera CNN Office space, 39 m2 Average accuracy 
92.2% 

[61] 2020 Social networks Random Forest and XGBoost A public museum RMSE within 30% 
[132] 2019 Temperature sensor and PIR sensor Markov model (MM), HMM, and 

RNN 
Single-family homes Under 0.80 

average accuracy  
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indoor CO2 concentration [139]. Another research found Multilayer 
Perceptron (MLP) follows the pattern of CO2 changes more quickly and 
with higher accuracy compared to other algorithms (Support Vector 
Machine (SVM), AdaBoost (AdB), Random Forest (RF), Gradient 
Boosting (GB), Logistic Regression (LR)). It reduced 51.4% of energy 
consumption in the total energy usage [140]. Other environmental in-
dexes like PM2.5 concentration can also be predicted by neural networks 
(i.e., RNN, LSTM, and gated RNNs) [141]. 

4.4. Thermal comfort prediction 

The number of thermal comfort prediction studies and approaches 
using the ML methods is limited compared to occupancy and energy 
consumption prediction, as in Fig. 1. In the existing literature, thermal 
comfort is typically assessed by the PMV model based on extensive 
laboratory tests, which ignored individual comfort [22] and, in some 
cases, do not provide satisfaction for all occupants [142]. Therefore, 
most existing literature uses the ML approach to forecast thermal com-
fort and consider all occupants as a whole, disregarding data acquired 
from separate occupants [143]. In this scenario, individual occupant 
diversity was lost, and occupants were modelled as an “average group”, 
which is a statistical construction rather than an actual person [134]. It’s 
worth noting that occupant comfort differs according to one’s age, 
gender, background, and other personal characteristics. Therefore, in-
dividual comfort is becoming more popular, and personal comfort 
models based on data from individual occupant comfort surveys are 
being developed [144]. 

A recent study used two different machine learning algorithms to 
analyse a combination of inputs, including an individual comfort sys-
tem, body temperatures, timing, and environmental parameters. Per-
sonal comfort models achieved the best accuracy across all examined 
methodologies and participants, according to their findings [145]. With 
the advancement of the Internet of Things, it is becoming more conve-
nient to collect physiological data using a range of sensors (wearable or 
non-wearable devices). They can forecast thermal experience or satis-
faction based on users’ physiological data, such as employing wearable 
devices to monitor skin temperature, heart rate, blood pressure, and 
other physiological parameters at various human body positions (such 
as wrist, face, back and legs) [143]. Therefore, these sensors show po-
tential for the future development of thermal comfort prediction. 

In 2012, a research employed a PMV control model with an RNN 
network and branch-bound boost to the HVAC system [146]. Another 
study looked at the effectiveness of an ANN-based adaptive PMV control 
algorithm in a residential house and discovered that it was more effec-
tive than non-adaptive algorithms for improving control and 

disturbance reaction [147]. Meanwhile, since two behaviours can ach-
ieve the same goal and thermal comfort often links to serval behaviours, 
ensemble models are likely to be introduced in comfort prediction 
models. A paper using the machine learning approach Bagging, using a 
multilayer perception network (MLPN) as a learning algorithm, out-
performed traditional ANN and SVM methodologies [148]. 

The prediction model of thermal comfort is directly linked to the 
occupants’ satisfaction with the indoor environment. With new ML 
models and data collection methods, the performance gaps will be 
reduced. Improved models could be linked to a real-time environmental 
control system to improve building management without scarifies 
occupant comfort. For example, as shown in Fig. 8, the environmental 
information obtained can be used to provide data for the prediction of 
thermal comfort in real-time, which can be used to adjust the operation 
of the HVCA system. The occupancy data, such as the occupant’s num-
ber and metabolic/activity level, can estimate the indoor CO2 level and 
minimum ventilation level. Similarly, the thermal comfort prediction 
model can also use the occupancy number and activity level. Such in-
formation can be used to optimise the HVAC operation while also 
minimising the energy demand. 

4.5. Energy consumption prediction 

Prediction of energy usage in buildings is becoming increasingly 
important, however, it is influenced by interrelated physicals, opera-
tional, and behavioural factors such as building material, building 
schedule, and occupant behaviour [149]. In most cases, the 
physics-based building energy simulation tools (white-box models) such 
as DOE-2 and Energy-Plus are often used [150]. However, these tools are 
limited for energy analysis since they do not contain uncertain factors 
like occupancy behaviour, impacting annual energy consumption up to 
75% for residential buildings and 150% for commercial buildings [151]. 
As a result, many researchers use the data-driven method (black-box 
models) to forecast energy use and analyse the effects of energy-saving 
initiatives like energy-retrofit strategies and renewable energy tech-
nology [152]. Meanwhile, other researchers use the output of occupancy 
prediction to generate an occupancy profile as input for physics-based 
simulation tools to calculate the energy use result (grey-box model). 

Existing machine learning-based models, on the other hand, do not 
adequately account for occupant behaviour. They either ignore occu-
pancy behaviour entirely or deal with it in a limited way, such as merely 
examining building operation schedules [153] or simplifying the occu-
pancy model as occupancy rate [154]. In addition, with the new 
development of data collection methods, models that target specific 
occupants will be proposed. A model simulating energy consumption on 

Fig. 8. The existing workflow of IAQ and thermal comfort prediction and the potential improvement.  
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the personal level and considering the gender difference was proposed in 
Ref. [73] and concluded that females tend to use more energy than 
males. 

Although HVAC is usually required to provide comfortable, pro-
ductive, and healthy surroundings, it also uses a large amount of energy 
[155]. However, occupants have many adaptive opportunities and other 
energy-relevant behaviours to minimise consumption. Furthermore, two 
behaviours can achieve the same goal, for instance, adding more 
clothing and turning on or adjusting a heater can both lead to warming a 
person, but at different levels of efficiency, price, and energy inten-
siveness. Most machine learning models of energy consumption only 
evaluate and discuss a single behaviour without considering their 
correlated relationship. It could be due to the ML algorithm re-
quirements for the data structure and simplifying the model. Therefore, 
choosing suitable inputs and model structures is critical for the predic-
tion method and affects accuracy and performance. 

The most often utilised methods for building energy estimates using 
historical data are regression and ANN models [156]. The performance 
of different data-driven models may differ from residential, commercial, 
and office buildings when picking the best strategy for a certain case. 
Most researchers would use a trial-and-error method to find the best 
model performer for a certain structure instead of assuming a universal 
model and applying it to all building types. In general, ANN prefers 
environmental, time index inputs [48]. Ensemble models, which 
combine numerous models due to the nature of energy use in buildings, 
are more likely to produce accurate predictions than single models 
[157]. A few studies reached better results with the ensemble techniques 
than the single method. For example, the performance of three ANN 
models – Feed Forward Neural Network (FFNN), radial basis function 
network (RBFN), and adaptive neuro-fuzzy interference system (ANFIS) 
– was compared to the ensemble of these three models, and the ensemble 
model produced the best accurate prediction results [158]. 

One major challenge to the machine learning model is the large 
number of algorithms available, making it difficult to determine which 
one should be used for a given task. The type of data provided de-
termines the learning methods. Statistical models are classified as linear 
or nonlinear based on whether they are used to solve linear or nonlinear 
problems. After appropriate data transformations, nonlinear issues can 
be turned into linear ones. Aside from the differences, one model may 

involve multiple learning algorithms, with its own set of strengths and 
disadvantages, making it even more difficult to choose the best method. 
Making several assumptions and testing various approaches is a frequent 
solution. A more comprehensive estimation can be obtained by training 
various models and combining the prediction outcomes. Consequently, 
it is vital to summarise the data for various applications to assist re-
searchers in developing better prediction models. A list of popular ma-
chine learning algorithms for different applications in the existing 
literature is made in Table 5. 

Therefore, new prediction methods that distinguish different types of 
activities and the personnel management system are required for future 
energy consumption models and fill the research gap. Like the methods 
discussed in the earlier sections, future energy models could benefit 
from more advanced occupancy data collection methods or integrated 
sensor systems, which can better capture the dynamic variations and 
make the necessary adjustments to the HVAC system. 

5. Validation of the prediction models: case study and time 
series 

Most studies include a validation stage or process after obtaining the 
results, which evaluates the proposed model’s accuracy and applica-
bility. The leave-one-out cross-validation approach is the most common 
validation method. The entire data set is usually separated into three 
sections: training stage, verification, and testing. The majority of the 
data is normally used for training (more than 70%), while the rest is used 
for testing and model validation [128]. The result from machine 
learning methods will be compared with the validation data collected to 
evaluate the method’s accuracy. 

In the reviewed studies, as shown in Fig. 10, most research (90.7%) 
conducted field experiments in existing buildings or testbeds to test and 
validate the proposed method, while others used simulation-based in-
vestigations. Using historical occupancy data or other data collected as 
the input, the prediction accuracy can be up to 95% [104]. For experi-
mental studies, the implementation scale in reviewed studies varies from 
a small testbed [164] to the whole building [15]. Many energy-related 
experiments are conducted in a whole building, while most occupancy 
prediction models use selected rooms inside a building for the case study 
(Fig. 9). Some research separates the testbed into zones to compare 

Table 5 
Summary of the commonly used machine learning algorithms for different applications.  

Application Algorithm Suitable Cases Accuracy Ref. 

Occupancy State 
Prediction 

Decision tree and HMM Decision tree is suitable for current state detection and 
HMM for future state 

86.2%-93.2% [159] 

CNN Good with images 89.39% [160] 
DNN Suitable for resource constrained devices used in IoT- 

based applications 
Ranging from 97.27% to 98.90%. [82] 

Indoor Air Quality 
Prediction 

LSTM Outperform other algorithms with real-time collected 
data 

96% [161] 

Markov model and ANN Markov model for comfort assessment and ANN for 
CO2 predictions 

R2 = 0.92. [162] 

SVM, AdB, RF, GB, LR, and MLP MLP outperformed in the study for CO2 forecasting The best RMSE for MLP is 33.78 [140] 
Energy Consumption 

Prediction 
k-means cluster Better fitting for time series withless mobility of 

occupants or the rooms with larger capacity 
15% error [15] 

ANN four Back-propagation neural 
network 

Levenberg–Marquardt Back-propagation has better 
performance in forecasting electricity consumption 

Error rate is 1.07–2.23% [113] 

SVR, LMSR, KNN and NB Regression models fit for modelling daily electricity 
and heat demand 

Varies from 0.82 to 0.98 for heat 
consumption and 0.87–0.97 for electricity 
consumption 

[95] 

LSTM and NNARX and MLP LSTM models reduce prediction error by 50%. The error is under 0.35 [163] 
Thermal Comfort 

Prediction 
SVC and ANN Suitable for single room residences with the phone 

application 
Above 95% [144] 

ANNs and SVM, PMV, aPMV, and 
ePMV 

ANNs model is effective in natural ventilated 
residential buildings 

ANNs model had the highest R (0.6984) and 
R2 (0.4872) values 

[143] 

Linear Discriminant Analysis (LDA), 
KNN, DT, NB, SVM, and RF classifiers 

Could be combined with the real-time control system Up to 84% [94] 

LSTM Can accurately forecast overheating conditions 
throughout the year 

Over 95% [107]  
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different methods [165], while others define a small area as a testbed to 
check the prediction method [94]. The selection of implementation scale 
is often related to experiment design, and the challenges researchers 
faced ranged from communication issues with facility managers to 
equipment [96] and sensors malfunction, which should be considered 
before conducting similar experiments [164]. 

Some of the studies use public occupancy datasets to test the pre-
diction models they proposed. For example, one research employed 
ASHRAE Global Thermal Comfort Database with data from 52 field 
studies conducted in 160 buildings around the world [166]. This data-
base is also used in another project to study the subjective metrics used 
for the assessment of the occupants’ thermal experience [167]. Another 
example is the American time use survey (ATUS) conducted by the U.S. 
Bureau of Labor Statistics as an annual survey to record the respondent’s 
activities and locations on a regular day [168]. Another dataset con-
ducted in 2015 in Berkeley, California includes whole-building and 
end-use energy consumption, HVAC system operating conditions, in-
door and outdoor environmental parameters, as well as occupant counts 
[169]. With the awareness of the importance of occupancy behaviour, 
there will be more datasets available in the future and validated by the 
scientific community. 

Also, the time series they meant to predict can be divided into long- 
term and short-term prediction, which varies from a few seconds [165] 
to two years [95]. Across all reviewed studies, about a third summarise 
the prediction result into 24-h or daily typical profiles, which can be 
transferred as occupancy profiles for existing building energy modelling 
software [170]. As shown in Fig. 10, short-term, long-term, and 24-hour 
predictions each contribute about one-third of reviewed papers for all 
regions. Short-term predictions are more common in North America and 
Europe, while long-term predictions are more common in Asia. This 
could be due to the sensor chosen and the prediction method design 
difference and most of the short-term predictions are usually tested 
before the longer version. The time series in different regions is shown in 
Fig. 10, as the red columns indicate the time length in implementations. 

The accuracy is an important index for evaluating the model’s per-
formance and the baseline could be either raw data collected from 
sensors, or a baseline set before the prediction. However, because of the 
multiple variables that influence their performance, a straight compar-
ison of the study cases may not be the ideal method. Indeed, models are 
developed for various places and periods, using data of varying quality, 
and supplemented by scripts of varying quality. Even the value used to 
determine accuracy in different studies differs including mean absolute 
percentage error, mean percentage error, RMSE, and coefficient of 
variation of RMSE, making comparison impossible. Table 6 shows the 
algorithms and accuracy index used in some of the reviewed papers, 
which indicate the different kinds of the mean for accuracy determina-
tion used in various models. 

6. Discussion and recommendation for future work 

Results of the literature evaluation showed that the application of 
machine learning in building occupancy prediction has significantly 
grown in recent years. The number of studies focusing on occupancy 
state predictions outnumbered other applications in the early years. The 
focus of occupancy prediction research is shifting from simply deter-
mining whether there are people inside a room toward more compli-
cated objects such as the occupant’s motion, resulting in more accurate 
building simulation models and better building service operation. 

The Internet of Things, which allows affordable deployment of sen-
sors and controllers, has also promoted the adoption of occupancy 
prediction models on a larger scale. In the existing literature, there is 
currently no one-size-fits-all model in sufficient detail to allow model 
repeating. The way different models describe occupants is inconsistent, 
making it hard to represent a uniform format for simulation programs. 
The data collection method and prediction algorithm for different ap-
plications should be selected carefully as the data structure, and algo-
rithm adaptation are interconnected with each other. 

The review also highlights the importance of combining different 
types of data collection methods and sensors to capture the dynamic 
variations within buildings and make the necessary adjustments. For 
example, vision-based and environmental sensors can be combined, and 
the benefits of both strategies will be inherited. The work also high-
lighted the potential of an all-in-one solution that can detect the occu-
pancy information and behaviour/activities and use the data to not only 
reduce the energy use but also enhance the IAQ and thermal comfort, 
which to date, previous works have not addressed. 

Machine learning implementations in different stages of the occu-
pancy prediction workflow were evaluated. One of the most popular 
algorithms in building occupancy prediction is the neural-network- 
based algorithm, particularly ANN - LSTM, which was utilised by 
more than 10 papers after 2018 [173]. LSTM is a special RNN which has 
a good effect in dealing with long time sequence problems, with the 
combination of ANN, it can quantify the impact of features from the 
sensors and reflect them into the network together with the current time 
input to participate in training. In 2020, an experimental result showed 
that the LSTM models exceed multilayer perceptron models by reducing 
the prediction error by 50% [163]. However, the best method for a 
specific scenario differs depending on the circumstances. Before imple-
menting the method, an examination of the data structure should be 
performed, such as determining whether the data is linear, continuous, 
or otherwise and whether data mining is required. 

According to the study, investigations on thermal comfort and IAQ 
prediction using ML are rather limited compared to other domains such 
as occupancy prediction and energy consumption prediction. According 
to the study, there is a growing trend of research into occupant comfort 
and occupancy-centric comfort systems. The concept of thermal comfort 
is changing from physical index like PMV to occupant’s overall comfort, 

Fig. 9. The implementation scale of different prediction models in reviewed studies.  
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which needs more attention in future works [174]. Occupants’ behav-
iour, including operating the HVAC system, is driven by their satisfac-
tion with the overall comfort and leads to changes in energy 
consumption. Therefore, advanced models in the future which maintain 
comfort and minimise energy consumption will have a promising future. 
Individual occupant diversity should also be considered, and future 
models could include exact comfort measures and responses gathered 
through thermal-based data collection methods such as thermal cameras 
and thermal comfort rating apps. 

7. Conclusion 

Overall, this review provides an in-depth investigation of occupancy 

prediction and its applications and the commonly used framework for 
the occupancy prediction method. As interest in this area rises, it’s 
critical to establish a path for future models that takes a more consistent 
approach. It was observed that studies were mostly concentrated in the 
US, Europe and Asia, and more research is required in other regions. 
Furthermore, most studies were conducted in academic/office buildings 
raising the question of the applicability of the proposed methods in other 
indoor environments. Research on thermal comfort and IAQ prediction 
using ML is rather limited compared to other domains such as occupancy 
prediction and energy consumption prediction. Some promising sensors 
and data collection methods, including vision cameras and thermal 
voting applications, are concluded in this review. The neural network- 
based algorithm is the most popular method in building machine 

Fig. 10. The prediction timeframe and experimental methods conducted in different regions based on the reviewed studies.  
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learning prediction among the reviewed papers. The validation method 
and timeframe in reviewed papers are discussed and the future recom-
mendation for the occupancy prediction method is also made. 
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