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Abstract

We present the results of systematic numerical computations relating to the extreme value
statistics of the characteristic polynomials of random unitary matrices drawn from the Circular
Unitary Ensemble (CUE) of Random Matrix Theory. In particular, we investigate a range of re-
cent conjectures and theoretical results inspired by analogies with the theory of logarithmically-
correlated Gaussian random fields. These include phenomena related to the conjectured freezing
transition. Our numerical results are consistent with, and therefore support, the previous con-
jectures and theory. We also go beyond previous investigations in several directions: we provide
the first quantitative evidence in support of a correlation between extreme values of the char-
acteristic polynomials and large gaps in the spectrum, we investigate the rate of convergence to
the limiting formulae previously considered, and we extend the previous analysis of the CUE
to the CβE which corresponds to allowing the degree of the eigenvalue repulsion to become a
parameter.

1 Introduction and Background

Questions related to quantifying statistical properties of high and extreme values taken by
the characteristic polynomials of random matrices have recently attracted considerable atten-
tion [2, 11, 22, 23, 25, 28, 31, 36]. The main motivation was the suggestion of a close anal-
ogy [22, 23] between the statistics of the (logarithm of) the modulus of characteristic polynomi-
als of large random matrices [26] (originally, from the Circular Unitary Ensemble, or CUE, of
Random Matrix Theory) and an important class of log-correlated random processes and fields,
namely those characterised by having a logarithmic singularity on the diagonal of the covari-
ance kernel, which have been the focus of considerable attention in the past few years. Such
processes and fields appear with surprising regularity in many different contexts, ranging from
the statistical mechanics of branching random walks and polymers on trees [13, 9] and disor-
dered systems with multifractal structure [10, 17] to models of random surfaces underlying the
probabilistic description of two-dimensional gravity [39, 32]. In particular, the extremal values
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of log-correlated Gaussian processes have been the subject of intensive study, leading to consid-
erable progress ranging from non-rigorous [18, 19, 21], through tending-to-rigorous [34, 35], to
fully rigorous [14, 38, 40, 41] analysis.

The characteristic polynomials of random matrices are of considerable interest in their own
right, but in addition they underpin an influential model [29] for the statistical properties of the
Riemann zeta function on the critical line [28]. One of the main points of the articles [22, 23]
is that on the global and mesoscopic scales, one should think of the logarithm of the zeta
function on the critical line as behaving statistically like a log-correlated field. Large values of
the Riemann zeta on the critical line are of considerable and long-standing interest [28], and
this new perspective has attracted a good deal of attention [1, 3, 31, 37].

It is of course important to make clear that every step of the translation should be taken with
appropriate adjustment and caution. Log-correlated fields are necessarily random generalised
functions (distributions), and establishing in which way the logarithm of the modulus of a
characteristic polynomial tends to such a highly singular object is a non-trivial task (see, for
example, [26]). Such studies necessarily involve regularisations, and one of the most natural
rigorous frameworks seems to be provided by the theory of multiplicative chaos, which has
its origins in informal ideas of Mandelbrot [33] which were developed into a comprehensive,
mathematically rigorous theory in works by Kahane [27], and have been further extended in
recent years [6, 39]. The convergence of characteristic polynomials and the Riemann zeta-
function on the critical line, at the appropriate scale, to the Multiplicative Chaos measures was
established in several recent papers [7, 42]. Together with other related results, e.g. [24, 36] this
provides strong support for the correspondence in question.

Despite these developments, up to now only a few preliminary attempts have been made to
investigate the predictions of the theory by direct numerical simulations of large random matri-
ces [22, 23, 25, 28]. In this paper we present the results of an extensive numerical investigation
of large CUE matrices when the matrix dimension N = 2M is large. In our experiments we
diagonalised numerically more than 107 matrices for M = 2, 3, 4, 5, 6, 7, 8, 9 and somewhat fewer
matrices for M = 10, 11 and M = 12 (more than 106 for M = 10, more than 105 for M = 11,
and 50000 for M = 12), and extracted the relevant information from their spectra.

Our first goal is to check manifestations of the main mechanism underlying the extreme
value statistics of log-correlated processes, the so-called ’freezing transition’ [9, 18, 38]. In fact,
some features of this phenomenon are seen already at the level of sequences of independent
(rather-than log-correlated) random sequences. Indeed, it was first discovered at the level of
the so-called uncorrelated Random Energy Model (REM) introduced originally by Derrida [12],
which is a toy model for such a freezing transition. In REM the energy values {En}Nn=1, are
taken to be i.i.d. random variables with a Gaussian distribution

P (E) =
1√

MπJ2
e−

E2

MJ2 , M = logN/ log 2 (1)

where J > 0 is a global energy scale. Defining for a temperature T > 0 the REM partition func-
tion as ZN =

∑N
n=1 e

−En/T one then can study the associated free energy F = −M−1T logZN ,
and show that its mean value becomes independent of T below some finite critical temperature
T = Tc.

Although the log-correlated models share the existence of a freezing transition with the
simple REM, finer features implied by freezing are quite different, and the two models actually
belong to different universality classes. The difference is reflected, in particular, in much broader
fluctuations in the number of points in the process exceeding a high threshold in the log-
correlated case [20], and eventually in the statistics of extreme values. From that angle, we
always compare the results for CUE simulations with the corresponding numerical simulation of
the simple REM at comparable ensemble sizes (and beyond). Our investigations shed some light
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on the convergence properties of the extremal value distribution, the distribution of partition
function moments, and the associated mean free energy.

Arguably, the most well studied, and, in a sense, paradigmatic example of a 1D processes
with logarithmic correlations is the so-called Gaussian circular-logarithmic model suggested
originally in [18]. The process has a simple representation as a (formal) Fourier series given by

the real part of
∑∞

n=1 vn
e−int√

n
, with i.i.d. complex random Gaussian coefficients vn with zero

mean and unit variance. The same object can be, with due interpretation, viewed as a 2D
Gaussian free field defined on a disc with Neumann boundary conditions and sampled along a
circle of unit radius, see [4, 40]. As such, it has intimate connections with conformal field theory,
and appears in that context very naturally [4]. This line of research very recently provided the
first rigorous proof [40] of the conjectured explicit distribution of its extreme values, see Eq. (13)
below. Fortunately, it is precisely the model which is expected to represent the limiting statistics
of the log-mod of CUE characteristic polynomial, so will serve as a benchmark for our numerics.

Let us finally mention that, given the widespread interest in the family of β−ensembles of
symmetric three-diagonal random matrices1 introduced by Dumitriu and Edelman [15] and their
circular analogues (CβE) [30], it seems natural to ask if the large-N statistics of the extreme
values for characteristic polynomials in this family will have similar properties to the β = 2
case for any fixed β > 0. The first steps in this direction were taken by Chhaibi et al. [11]
who proved that, up to a simple rescaling of parameters, the first two (non-random) terms in
the asymptotics of the maximum value, see Eq.(15), are indeed common to all members of the
family. In Appendix B we extend to arbitrary β > 0 heuristic computations given in [23] for the
CUE. On this basis we conjecture that the distribution Eq.(13) of the first nontrivial random
term should be also universal with respect to changes of the parameter β.

The structure of the paper is as follows. We introduce some notation and definitions in
subsection 1.1. We present our numerical results for the extreme value statistics in section 2. In
section 3 we present data supporting the conjectured freezing transition for the free energy. We
summarise our conclusions and outlook in section 4. The paper has two appendices. In the first
appendix we compare our numerical data with some recent exact formulae for the moments of
the partition function. In the second appendix we present a heuristic calculation for the CβE
which generalises that given in [23] for the CUE.

Acknowledgements. The research at King’s College (YF) was supported by EPSRC grant
EP/N009436/1 ”The many faces of random characteristic polynomials”. JPK is grateful for
support from a Royal Society Wolfson Research Merit Award and ERC Advanced Grant 740900
(LogCorRM).

1.1 Setting: extreme values of the characteristic polynomial,
moments and free energy for CUE and REM

Let UN ∈ U(N) be a unitary N ×N matrix taken at random from the CUE, i.e. uniformly with
respect to the Haar measure on U(N). Denoting its eigenvalues by {eiφn}Nn=1, its characteristic
polynomial is given by

pN (θ) = det(1− UNe−iθ) =

N∏
n=1

(1− ei(φn−θ)). (2)

We will be interested in the statistical distribution of |pN (θ)| with a focus on its extremal
(maximal) value

|pN |max ≡ maxθ∈[0,2π) |pN (θ)| . (3)

1The Dyson parameter β in the definition of the β-ensembles should not be confused with the notation for the
inverse temperature β = 1/T used elsewhere in the paper, apart from the Appendix B.
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Let us express the square of the maximum as |pN |2max = e−aN+bNy where aN and bN are
coefficients that depend only on the matrix size N which will be discussed later in detail. The
limiting distribution, as N →∞ of the variable y has been in the centre of recent conjectures [22,
23] that will be described more fully in Sect. 2. For a detailed description of the technical
background we refer the reader to [23]. In the present paper we will just describe the setting,
the main definitions and the main conjectural predictions without much detail how these were
obtained. We then focus on the detailed description of the comparison of numerical data with
these predictions.

The distribution of absolute values |pN (θ)| of the characteristic polynomial and its extremal
values may be characterised in terms of the moments

ZN (β) =
N

2π

∫ 2π

0
|pN (θ)|2β ≡ N

2π

∫ 2π

0
e−βVN (θ) (4)

where VN (θ) = −2 log |pN (θ)|. In analogy to the partition function in statistical physics we refer
to β as the inverse temperature and introduce the normalised free energy

FN (β) = − 1

β logN
logZN (β) . (5)

The additional normalisation with logN is to ensure the existence of a finite limiting value as
N → ∞. The extreme values are obtained in the low temperature limit β → ∞ of the free
energy via

lim
β→∞

FN (β) =
1

logN
minθ∈[0,2π)VN (θ) = − 1

logN
log |pN |2max. (6)

Our numerical investigation focuses on the statistical properties of log |pN |max and the mo-
ments ZN (β). Both properties only depend on the spectrum of CUE matrices. Numerically we
used the fact that the eigenvalues of CUE matrices have the same joint probability distribution
as explicitly known ensembles of banded (5-diagonal) unitary matrices [30] which are much eas-
ier to construct than full CUE matrices. We used standard octave/matlab routines for random
number generators and numerical diagonalisation.

As mentioned above we compare our results to REM in order to show the characteristic
differences between the two universality classes (and for benchmarking). In REM we set the
energy scale to

J = 2
√

log 2 (7)

throughout this manuscript. This choice ensures that the critical inverse temperature for the
freezing transition in REM is βcrit = 1 in coincidence with the critical inverse temperature in
CUE.
We will compare the statistics of extreme values of the characteristic polynomial of random
unitary matrices in the form −2 log |pN |max to the statistics of ground state energies Emin =
minNn=1En for realisations of the REM (due to the symmetry of the model this is equivalent to
comparing the maximal energy with 2 log |pN |max ). For convenience (in order to have the same
notation for CUE and REM) we set log |pN |max = −Emin/2 when considering REM.
Analogously we compare moments ZN (β) for CUE with partition sums

ZREM
N (β) =

N=2M∑
n=1

e−βEn (8)

with the normalised free energy2

FREM
N (β) = − 1

β logN
logZREM

N (β) . (9)

2Note that our normalisation with logN corresponds directly to the one used for CUE but differs by a factor log 2
from the one used in most literature on REM (where logN is often replaced by M = logN

log 2 ).
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Our choice of parameters and normalisation implies that the theoretical prediction for the
expected free energy in CUE and REM follow the same curve

− lim
N→∞

FCUE/REM
N (β) =

{
β + 1

β for β ≤ 1,

2 for β ≥ 1.
(10)

2 The distribution of extreme values

The logarithm of the maximal values |pN |2max for REM is known to be distributed according to
a Gumbel distribution, see e.g. [8]. To be more specific, after an appropriate rescaling

2 log |pN |max = −aN + bNy (11)

the integrated probability distribution for the random variable y converges to

IREM(y) ≡ IGumbel(y) =

∫ y

0
PGumbel(y

′) dy′ = e−e
−y

. (12)

In the case of the CUE, appropriate rescaling leads to an integrated distribution [18, 22, 23]

ICUE(y) =

∫ y

0
PCUE(y′) dy′ = 2e−y/2K1(2e−y/2) (13)

where K1(x) is the modified Bessel function of second kind and order one. The Gumbel and
the CUE distributions are related by a simple convolution

PCUE(y) =

∫ ∞
−∞

PGumbel(y1)PGumbel(y − y1) dy1. (14)

In other words if y1 and y2 are two independent Gumbel-distributed random numbers then their
sum y = y1 + y2 follows the CUE distribution. The scaling parameters obey

aN =− 2 logN + c log logN + o(1)

bN =1 +O(1/ logN)
(15)

in both cases. The constant c however takes different values

c =

{
1
2 for REM;
3
2 for CUE.

(16)

The different value of this constant is a key signature of the long range correlations in the CUE
model. We tested this numerically by rescaling the data according to (11) using aN ≡ afit and
bN ≡ bfit as fitting parameters such that the rescaled data has the same mean and variance
as the Gumbel distribution (for REM) or the CUE distribution (for CUE). From the fitted
parameters we evaluated the quantities

cfit =
afit + 2 logN

log logN
,

dfit =(bfit − 1) logN .

(17)

From (15) we see that cfit should converge to c with corrections of order o(1/ log logN) while
dfit should be of order O(1). In Fig. 1 we plot cfit and dfit. The plots are consistent with the
expected behaviour. Indeed, allowing deviations of order O(1/ log logN) the data is consistent
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Figure 1: (Color online.) Scaling behaviour of the fitting parameters cfit (upper panel) and dfit (lower
panel) with N = 2M for CUE (large red dots) and REM (small blue dots) data of |pN |max.
Note that log2N = logN/ log 2 = M denotes the logarithm with base 2.
The error bars describe one standard deviation of the data (where no error bars are visible they are
smaller than the dot size). The (blue) dotted curve in the upper panel is 0.5 + 1.4/ log logN and
shows that the REM data is consistent with cfit = 1/2 + O (1/ log logN). For the CUE data the
deviations of cfit from c = 3/2 are consistent with a much faster decay (at least for the given range
of matrix sizes N).

with cfit → 3/2 for CUE and cfit → 1/2 for REM (the difference between O(1/ log logN) and
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Figure 2: (Color online.) Integrated distribution function of log |pN |max using the rescaled variable
x (see Eq. (18)) for REM (blue dashed curve for N = 1048576 = 220) and CUE (red curve for
N = 4096 = 212) against the predicted curves.
The full black line gives the CUE prediction. The dashed black line gives the Gumbel distribution
(REM prediction). The left panel gives the whole distribution, the right two panels zoom into the
distributions.

o(1/ log logN) is too delicate to be resolved numerically).
A more detailed analysis of the distribution may be obtained by comparing the integrated

distribution functions directly. For this we use the rescaled variable

x =
log |pN |2max − E[log |pN |2max]√

Var[log |pN |2max]
(18)

which has vanishing mean and unit variance. In Fig. 2 we plot the integrated distribution from
the REM and CUE data against the predicted REM (Gumbel) and CUE distributions. The
latter have been rescaled accordingly to have vanishing mean and unit variance and, with minor
abuse of notation, we will write

IREM/CUE(x) ≡ IREM/CUE(y =
√

Var[y] x+ E[y]) . (19)

One can see in Fig. 2 that the predicted curves and the curves obtained from numerical data
are all very close to each other. Zooming into the details of the curves reveals that neither the
REM curve has fully converged to the REM prediction (at N = 220) nor has the CUE curve
converged to the CUE prediction (at N = 212).

We have analysed the convergence of the integrated distributions by considering the differ-
ences

∆ICUE/REM(x) = IN (x)− ICUE/REM(x) (20)

of the data (IN (x)) for REM and CUE and the three predicted curves. In Fig. 3 we plot these
differences for increasing values of the size N of the eigenvalue spectrum. For REM the trend
in these differences is clearly consistent only with the REM prediction. For CUE the picture
is less clear because it was not feasible to diagonalise matrices larger than N = 212. We ‘only’
diagonalised 50000 matrices of that size N = 212 which gives much larger noise levels compared
to smaller values of N (at N = 28 we diagonalised 107 matrices). Nonetheless the numerics
remains consistent with the CUE prediction.
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Figure 3: (Color online.) Difference between predicted integrated density distributions for log |pN |max

and numerically obtained distributions for various values of the size N of the eigenvalue spectrum.
The data is rescaled to vanishing mean and unit variance using the variable x (see Eq. (18)).
The left panels (a and b) show the difference between the two predictions and CUE data (for N = 24,
28, and 212).
The right panels (c and d) show the difference between the two predictions and REM data (for
N = 24, 28, 212, 216, and 220).

A more detailed analysis of the convergence may be obtained by plotting the maximal
difference maxx∈R|∆ICUE/REM(x)| (i.e. the L∞-norm of the difference) against N , see Fig. 4.
This confirms again that the REM data is consistent only with the REM prediction. For CUE
the available data indicates that the difference to the REM prediction saturates at a finite
value. The CUE data shows very slow convergence and the limited data at N = 2048 and
N = 4096 results in a large error term – nonetheless the data is consistent with convergence
of the CUE data to the conjectured prediction for CUE. Based on the data plotted in Fig. 4
one may estimate that one may require N ×N matrices with N = 220 or even larger in order
to get a clearer support for the conjectured convergence. In order to get a sufficiently smooth
integrated distribution function one has to fully diagonalise about 106 to 107 matrices. While
there are specialised algorithms for sparse or banded matrices that obtain a fraction of the
spectrum quite quickly we here need the full spectrum and computing the required amount of
data is well beyond our limits.

We would like to mention that the extreme value distribution for characteristic polynomi-
als of the Gaussian Unitary Ensemble GUE ensemble has also been discussed recently [25].
GUE spectra have the same logarithmic correlations as CUE spectra and the corresponding
distribution of extreme values of characteristic polynomials shows similar deviations from the
non-correlated REM spectra as CUE. The predicted curve IGUE(x) is different but very close
to the predicted curve ICUE(x) (closer than to the REM curve IREM(x)). The origin of the
difference is well understood – finite GUE spectra have Gaussian tails not present in CUE (see
for [25] for further details). We have checked whether our CUE data is able to distinguish
between the GUE and CUE predictions – however the two are too close to be resolved.
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Figure 4: (Color online.) Maximal difference of the three predicted integrated density distributions
against the data for CUE and REM as a function of size N of the eigenvalue spectrum. The one-sided
error bars reflect the noise level – the upper dot is pure data without any smoothing the lower bar
gives the difference for smoothed data (local average over an interval of size 0.5).
The thick (red) dots for M = 2 to M = 12 compare CUE data to the CUE prediction. The thin
(red) dots for M = 2 to M = 12 compare the CUE data to the REM prediction. The thick (blue)
dots for M = 2 to M = 20 compare REM data to the REM prediction. The thin (blue) dots for
M = 2 to M = 20 compare REM data to the CUE prediction

2.1 Correlations of the position of the maximal modulus of the
characteristic polynomial and the spectrum

The spectrum {eiφn}Nn=1 of the unitary matrix U gives the zeros of the characteristic polynomial
|pN (θ)|. One may expect that the position θmax where |pN (θmax)| = |pN |max statistically occurs
preferably in large intervals that are free of zeros. This kind of correlation may be measured
in various ways. Most directly one may consider the level spacing distribution at θ = θmax.
For any unitary matrix of dimension N the mean level spacing over its complete spectrum is
(trivially) 2π/N . Numerically we find that typical values of level spacings at θmax for CUE
matrices are about twice as large for the matrix sizes we used. This is a clear indication for
correlation between the position θmax and large spacings for which we will give a more precise
description in the following. Indeed our numerical analysis allows for a more detailed analysis
of this deviation by considering the full statistical distribution of level spacings at θmax for CUE
matrices. While it is very hard to make strong analytical predictions about the properties of
this distribution (and we are not aware of any relevant results) it is numerically straightforward
from the large amount of CUE spectra that we have computed. For each spectrum we have
obtained the scaled levels spacing s = N (φn+1 − φn) /(2π) where φn+1 > θmax > φn. The
integrated level spacing distribution Ils(s; θmax) is then the ratio of the number of spectra where
the rescaled level spacing is smaller than s over the total number of spectra. In Fig. 5 we plot
this quantity for N = 28, 210 and 212 and compare it to the Wigner surmise. If θmax was a
typical point in the spectrum one would expect to see a distribution close to the Wigner surmise
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Figure 5: (Color online.) Integrated level spacing distributions Ils(s; θmax) at θmax for CUE at N =
28 = 256, N = 210 = 1024 and N = 212 = 4096.
The thin (red) curve on the left is the integrated Wigner surmise for unitary ensembles. The three
thick (blue) curves give the CUE data.

and the expectation value of the level spacing would be close to unity. The plots in Fig. 5 show
however strong deviations from the Wigner surmise and the expected level spacings are much
larger than unity (and growing slowly with N). This is evidence for strong correlations between
the position θmax of the maximum of the modulus of the characteristic polynomial and the
spectrum close to this value.

From the correlations between the position θmax and the increased level spacings at this
point one may expect further correlations between the maximal values of the characteristic
polynomial and the spectrum. Let θ̃ = θ − θmax ∈ [0, 2π). The spectral counting function may
be written as

N(θ̃) =
Nθ̃

2π
− 1

π
Im log det(1− eiθmaxU) +

1

π
Im log det(1− e−i(θ̃+θmax)U) . (21)

In this form it counts the number of states above θmax and it directly relates the spectrum of
U to the characteristic polynomial. The fluctuations in the spectral counting function

Nfluct(θ̃) =
1

π
Im log det(1− e−i(θ̃+θmax)U) (22)

are expressed in terms of the argument of the characteristic polynomial pN (θ). One may expect
that the position of the maximum is correlated with large fluctuations. Numerically we obtain
the values θ̃max and θ̃min where Nfluct(θ̃) takes its maximal and minimal values. In Fig. 6 we
plot the integrated density Ifl(θ̃) of these values as a function of θ̃. In absence of correlations
one expects a straight line θ̃/(2π). However, the plots show deviations from a straight line
that imply strong correlations between the position of the maximum of the modulus of the
characteristic polynomial and the positions of the extrema in the fluctuations of the spectral
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Figure 6: (Color online.) Integrated distribution Ifl(θ̃max) (Ifl(θ̃min)) of the position θ̃max (θ̃min) where
the fluctuations of the spectral counting function are maximal (minimal) measured from the position
of the maximum of the modulus of the characteristic polynomial (at θ̃ = 0).

counting function. The plots are consistent with the previous observation of large level spacings
at θ̃ = 0. At the beginning (end) of a large level spacings one may expect that Nfluct(θ̃) has
a statistical tendency to be positive (negative). At θ̃ = 0 we have found exceptionally large
spacings and thus may expect a statistical correlation that a maximal positive fluctuation occurs
before and that a maximal negative fluctuation (i.e. its minimum) occurs just above θ̃ = 0.
This is clearly shown in the plotted integrated densities. In addition these plots show that these
correlations are long ranged and certainly do not decay on the scale of the mean level spacing
2π/N (the scale for spectral n-point correlation functions in CUE).

The correlations we have found numerically point to interesting effects that are currently not
understood on a theoretical level. Analytical approaches to these kinds of correlations would
be highly desirable.

3 The free energy and its distribution

In Sec. 1.1 we introduced the partition sum ZN (β) and the free energy FN (β) for CUE and
REM. Numerically they are straightforwardly obtained from the eigenvalue spectra that we
have obtained for both models (by numerical integration over the spectral angle θ).

In Fig. 7 we plot the expected free energy E[FN (β)] as a function of the inverse temperature
β for CUE and REM and some values of N . In both cases we see freezing but the convergence
to the predicted curve for N → ∞ above the freezing transition β ≥ 1 is quite slow. In
the freezing regime the free energy is dominated by the maximal value of the modulus of the
characteristic polynomial. In the previous section we have confirmed the prediction that the
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Figure 7: (Color online.) Expectation value of the free energy as function of the inverse temperature
β. Upper panel: the thick (red) lines give CUE data for N = 26 and N = 212 the thin (black) line
is the theoretical predicition for N → ∞. Lower panel: the thick (blue) lines give REM data for
N = 26, N = 212 and N = 218 and the thin (black) line is the theoretical predicition for N →∞.
Note that the scale for the ordinate starts at the value 1.5.
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Figure 8: (Color online.) Convergence of the expected free energy at β = 3. The plot shows the
difference of the expected value −E[F(3)] = 2 and the data for CUE (thick red dots) and REM (thin
blue dots), rescaled by a factor logN/ log(logN). The two thin dotted lines correspond to fitted
curves of the form (23) (see main text for explanation).

latter obey 2 log |pN |2max ∼ 2 logN − c log logN + o(1) where c = 3/2 for CUE and c = 1/2 for
REM (see (16)). For the free energy this implies convergence at a slow rate log logN/ logN
in the freezing regime. We test this estimate numerically by considering the difference of the
numerically obtained free energy at β = 3 to the theoretical value E[F(3)] = −2. We compare
this to a fitted curve of the form

−Ffit = 2− c log logN

logN
+

gfit

logN
(23)

where the additional parameter gfit is fitted to the data at N = 212 for CUE where gfit ≈ 0.69
and at N = 220 for REM where gfit ≈ −0.67. In Fig. 8 we plot the difference of the conjectured
expectation value −E[F(3)] → 2 for N → ∞ and the numerical expectation value at finite
values of N . In the plots we have rescaled the difference by a factor logN/ log(logN)). For
both models the plots are consistent with a saturation at the value c = 3/2 or c = 1/2 for CUE
and REM with higher order deviations ≈ gfit

log logN .
Next we consider the distribution of the partition function ZN (β) for the CUE model (we

do not show that data for the well-understood REM model, because it does not give additional
insight to what we have learned from the comparison so far). For inverse temperatures below
the freezing transition β < 1 an analytical prediction is available for the complete distribution.
For this purpose one rescales the partition function

z = ZN (β)/Ze(β) (24)

where Ze(β) = N1+β2 G2(1+β)
G(1+2β)G(1−β2)

and G(x) is the Barnes G-function. In the limit N → ∞
the prediction for the integrated probability distribution of the rescaled partition function is

Iβ(z) = e−z
−1/β2

. (25)
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Figure 9: (Color online.) Integrated distribution of the rescaled partition function for inverse tem-
peratures below the freezing transition at β = 0.5 (red curves) and β = 0.8 (orange curves). We
plot the curves as a function of z1/β2

where z is the appropriately rescaled partition function (see
Eq. (24)). This makes the predicted limiting distribution independent of β. The different plots are
for N = 16, 64, 256, 1024, and 4096 (with increasing strength of color). The dashed black curve is
the predicted curve for N →∞.
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In Fig. 9 we plot the numerically obtained integrated distribution function IN,β(z) for CUE for
β = 0.5 and β = 0.8. For β = 0.5 one sees clear and quick convergence to the predicted curve.
For β = 0.8, somewhat closer to the freezing transition, convergence is slower but consistent
with the prediction.

In the freezing regime β > 1 a theoretical prediction for the distribution as N → ∞ of the
partition function is known only in the form of a Laplace transform (see eq (33) in [18]) to the
leading order ∫ ∞

0
IN,β(Z)e−sZdZ = 2νs

1
2β
−1
K1(2νs

1
2β ) . (26)

Here the parameter

ν =
N2

log3/2N
νred (27)

sets the overall scale and νred (the reduced parameter) is of order O(1). This implies that the
appropriately rescaled partition function

z̃ = ZN (β)
log3β/2N

N2β
(28)

has a finite limiting distribution Iβ(z̃). The Laplace transform of the latter is obtained from

(26) by replacing ν 7→ νred, i.e.
∫∞

0 Iβ(z̃)e−sz̃dz̃ = 2νreds
1

2β
−1
K1(2νreds

1
2β ). The value of the

scale νred is not known theoretically and it is not straightforward to extract numerically from
data at finite N because of the generally slow convergence of the model and the fact that the
distribution at finite N depends not only on the scale factor ν but also on the shape, which is
currently not known theoretically. As a practical way to obtain a value for νred we consider the
theoretical expectation value of log z̃ as a function of β and νred. Numerically the simple scaling
implies that one can extract the full dependence of E[log z̃] on the parameter νred for any given
value of β by obtaining the inverse Laplace transform at νred = 1. At β = 3 the scaling just
gives

E[log z̃] ≈ 6 log(νred) + 0.87. (29)

We compare this to the numerical fit (23) to the data for the free energy shown in Fig. 8 at the
same value β = 3

E[log z̃] = 3gfit ≈ 2.07 (30)

where the factor 3 on the right hand side is β. This results in an approximate value νred ≈
e0.2 ≈ 1.22. We do not claim that our practical approach gives the correct value as N → ∞.
We will use this scale for comparing the integrated distributions of z̃.

In Fig. 10 we plot the numerically obtained integrated distributions IN,β(z̃) of z̃ at the critical
point (β = 1) and in the freezing regime (β = 2 and β = 3). The curves in the freezing regime
are consistent with the existence of a limiting distribution on this scale though the convergence
to the predicted limiting distribution may be very slow. Note that the predicted curves contain
one fitting parameter νred. In Fig. 10 we have used the value νred = 1.22 obtained from the
procedure outlined above. Setting νred = 1 leads to a limiting curve where the ordinate is
stretched by a factor ν2

red ≈ 1.5. While this looks much closer to the data at the finite values
of N we should reiterate that no theoretical predictions about the leading corrections of the
shape of this curve are available and one should expect these deviations to decay slowly (e.g.
as 1/ logN or even slower). Furthermore note that our numerics indicates that at the critical
temperature β = 1 the scaling (28) is no longer valid. This is consistent with the prediction
that a different power of logN is expected at the transition point (see eq.(45b) of [9]).

From (26) one may deduce that the tails (at large values of the partition function) behave
like

1− Iβ(z̃) ∝ z̃−1/β log z̃ (31)
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Figure 10: (Color online.) Integrated distribution of the rescaled partition function for inverse
temperatures at the critical value β = 1 (green curves) of the freezing transition and in the freezing
regime at β = 2 (orange curves) and β = 3 (red curves). We plot the curves as a function of z̃1/β

where z̃ is the appropriately rescaled partition function (see Eq. (28)). The different plots are for
N = 256, 1024, and 4096 (with increasing strength of color). The dashed lines give the theoretical
prediction given by (26) where the overall scale parameter νred has been fitted by the procedure
outlined in the main text.
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Figure 11: (Color online.) Tail of the integrated distribution of the rescaled partition function at
the critical inverse temperature β = 1 (green curves) and in the freezing regime at β = 2 (orange
curves) and β = 3 (red curves). The tail 1 − IN,β(z̃) is divided by z̃−1/β log z̃ according to the
predicted behaviour in the freezing regime. The different plots are for N = 256, 1024, and 4096
(with increasing strength of colour).

where the logarithm is related to the strong correlation in CUE. In Fig. 11 we plot the ratio
of the numerically obtained tails 1 − IN,β(z̃) and the predicted behaviour for β > 1. In order
to confirm the prediction one should see the appearance of a saturation at a finite value as
z̃ increases. While the available numerical data at finite N cannot confirm this prediction
the numerics is consistent with the appearance of such a saturation as N → ∞. Indeed the
curves for β = 2 and β = 3 indicate that the behaviour in the tails for finite N may be of the
form 1− Iβ(z̃) ∝ z̃−1/β−νβ(N) log z̃ where the additional exponent νβ(N) > 0 decays to zero as
N →∞.

4 Conclusions and Outlook

The numerical results we have presented here are consistent with the conjectures put forward in
[22, 23]. Taken together with recent proofs of some of these conjectures, there is growing evidence
supporting the underlying philosophy that the characteristic polynomials of random matrices
behave statistically like logarithmically-correlated Gaussian fields. However, the convergence
to the limiting formulae predicted is clearly very slow, and much more extensive numerical
experiments will be required in order to examine the details of the various conjectures. The
rates of convergence we have found in our computations are suggestive. It would be extremely
interesting if they could be verified by a more refined asymptotic analysis than that carried out
in [22, 23].

We believe the correlations we have found between the extreme values of characteristic
polynomials and eigenvalue spacings to be interesting and worthy of theoretical study. There
has for some time been a folklore belief that these correlations should exist, but as far as we
understand ours is the first quantitative study of them. It may be possible to analyse these by
extending the heuristic asymptotic analysis of [22, 23] to mixed moments involving both the
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modulus and the argument of the characteristic polynomial (as in the moment calculations of
[29]). It should also be possible to do a similar quantitative analysis for the Riemann zeta-
function, where extensive data exist.

It should be clear that the computations we have described here are first steps in what we
believe may be a worthwhile new line of research. We hope that that they will inspire further
numerical studies as well as new theory.

5 Appendix A: Moments of the partition function

Let
MN,β,k = E

[
ZN (β)k

]
(32)

be the k-th moment of the partition function. A conjecture in [22, 23] states MN,β,k ∼ N1+β2k2
.

If β and k are positive integers one may calculate these moments directly for arbitrary matrix
dimension from the autocorrelation function of order k for the characteristic polynomials [5]. It
is striking that exact formulae can be written down for this quantity, especially at the point of
the freezing transition. As a benchmark for our numerics we compare some low moments with
the analytically known values. Analytically one finds [5]

MN,1,1 =(N + 1)N =N2M red
N,1,1

MN,1,2 =N2

(
N + 3

3

)
=
N5

6
M red
N,1,2

MN,1,3 =
N3(N + 5)!

2520N !
(N2 + 6N + 21) =

N10

2520
M red
N,1,3

MN,1,4 =
8N4(N + 7)!

13!N !

(
7N6 + 168N5 + 1804N4

+10944N3 + 41893N2 + 99624N + 154440
)

=
56N17

13!
M red
N,1,4

MN,2,1 =
(N + 2)(N + 3)!

12(N − 1)!
=
N5

12
M red
N,2,1

MN,2,2 =
8N2(N + 7)!

15!N !

(
298N8 + 9536N7 + 134071N6

+ 1081640N5 + 549437N4 + 18102224N3

+38466354N2 + 50225040N + 32432400
)

=
2384N17

15!
M red
N,2,2.

We have here introduced as well the reduced moments M red
N,β,k. The reduced moments obey

M red
N,β,k → 1 asN →∞ and are of order unity for finite values ofN . The following tables compare

the known exact values of the reduced momentsM red
N,β,k with the corresponding reduced moments

ZN (β)k
red

obtained from the numerical data. In each case the given errors are one statistical
standard deviation. We only present data that has sufficiently converged (i.e the standard
deviation is sufficiently small). The statistical errors are consistent with the scaling with N of
the prediction for higher moments (which determine standard deviations) ∝ Nβ2k2−1/2.
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N M red
N,1,1 ZN (1)

red

4 1.25 1.25031± 0.00013
8 1.125 1.12505± 0.00018
16 1.0625 1.06230± 0.00026
32 1.03125 1.03145± 0.00036
64 1.01562 . . . 1.01682± 0.00078
128 1.0078 . . . 1.0076± 0.0013
256 1.0039 . . . 1.0056± 0.0023
512 1.0019 . . . 1.0014± 0.0019
1024 1.0009 . . . 0.9959± 0.0046
2048 1.0004 . . . 1.011± 0.014
4096 1.0002 . . . 0.998± 0.055

N M red
N,1,2 ZN (1)2

red

4 3.2812 . . . 3.2835± 0.0010
8 1.9335 . . . 1.9352± 0.0018
16 1.4194 . . . 1.4158± 0.0054
32 1.198 . . . 1.170± 0.012
64 1.096 . . . 1.241± 0.135
128 1.047 . . . 0.856± 0.050
256 1.023 . . . 1.238± 0.352
512 1.011 . . . 0.456± 0.029
1024 1.005 . . . 0.49± 0.17

N M red
N,1,3 ZN (1)3

red

4 56.293 . . . 56.362± 0.039
8 9.794 . . . 9.850± 0.058
16 3.39 . . . 3.28± 0.14
32 1.88 . . . 1.19± 0.10
64 1.38 . . . 1.74± 0.98

N M red
N,1,4 ZN (1)4

red

4 9156.3 . . . 9171.0± 12.4
8 201.9 . . . 206.1± 5.2
16 18.38 . . . 1.36± 0.21

N M red
N,2,1 ZN (2)

red

4 4.9218 . . . 4.9255± 0.0015
8 2.4169 . . . 2.4190± 0.0023
16 1.5968 . . . 1.5926± 0.0061
32 1.273 . . . 1.243± 0.013
64 1.130 . . . 1.289± 0.147
128 1.063 . . . 0.869± 0.056
256 1.03 . . . 1.21± 0.36

N M red
N,2,2 ZN (2)2

red

4 27270.2 . . . 27313.8± 32.9
8 402.9 . . . 409.7± 8.4
16 27.57 . . . 21.4± 2.9
32 5.79 . . . 0.78± 0.18
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6 Appendix B: On the maximum of characteristic

polynomial for β−circular ensemble.

Consider the circular β− ensemble with j.p.d. of real variables θi ∈ [0, 2π), i = 1, . . . , N given
by [30] 3

Pβ(θ1, . . . , θN ) =
1

(2π)NCN,β

N∏
i<j

|eiθi − eiθj |β, CN,β =
Γ (1 +Nβ/2)

Γn(1 + β/2)
, β > 0 (33)

and denote 〈. . .〉CβEN the corresponding averages. Further introduce the characteristic polyno-

mial pN (θ) =
∏N
i

(
1− ei(θi−θ)

)
by Eq.(2) in terms of which we define the partition function

Zq =
N

2π

∫ 2π

0
|pN (θ)|2q dθ, q > 0 (34)

where q is the inverse temperature (we can not use β here for the inverse temperature as that
is reserved for the Dyson index). Integer moments of the partition function are then given by

E
{
Znq
}

=
Nn

(2π)n

∫ 2π

0
. . .

∫ 2π

0
E

{
n∏
l=1

|pN (θl)|2q
}
dθ1 . . . dθn (35)

where

E

{
n∏
l=1

|pN (θl)|2q
}

=
1

(2π)NCN,β

∫ N∏
i<j

|eiθi − eiθj |β
N∏
i=1

g(θi) dθi ≡
〈

N∏
i=1

g(θi)

〉
CβEN

(36)

and we defined the “symbol” function

g(θ) =

n∏
l=1

(2− 2 cos (θl − θ))q (37)

which can be rewritten as

log g(θ) =

n∑
l=1

q log (2− 2 cos (θl − θ)) . (38)

The last equation when compared to Eq.(1.6) from [16] implies

a(θ) = 1, al = q, bl = 0 ∀l = 1, . . . , n, (39)

If the parameter β is rational ( that is: β = 2s/r where s and r are relatively prime) the paper
[16] conjectured the generalisation of Fisher-Hartwig formula for N → ∞, which in the case of
(39) reads (see (3.13)-(3.14) in [16] with identification R = n and qj = 2q/β, ∀j) as well as
cn = 0, ∀n): 〈

N∏
i=1

g(θi)

〉
CβEN , N→∞

∼ N
2nq2

β An|(qj=2q/β)

n∏
l<m

∣∣∣eiθl − eiθm∣∣∣− 4q2

β
(40)

3The random matrix Dyson index β > 0 in this Appendix should not be confused with the inverse temperature
parameter used in the main body of the paper.
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and the function A|qj is given by a complicated product of Barnes functions in eq.(3.11) of [16].

Substituting the above to (35) and defining q̃ = q
√

2
β we get:

E
{
Znq
}

= N
2nq2

β An|(qj=2q/β)
Nn

(2π)n

∫ 2π

0
. . .

∫ 2π

0

n∏
l<m

∣∣∣eiθl − eiθm∣∣∣−2q̃2

dθ1 . . . dθn (41)

= Zne (q̃)Γ(1− nq̃2) (42)

where we introduced the “typical value” for the partition function

Ze(q̃) = N1+q̃2
A|(qj=2q/β)

1

Γ(1− q̃2)
(43)

We see that the “freezing temperature” is now given by the condition q̃ = 1 so that q =
√

β
2 .

The “free energy” is given by, to the leading order for N →∞:

−F =
1

q logN
logZq →


1
q + 2

β q, q <
√

β
2

2
√

2
β , q >

√
β
2

(44)

Correspondingly, the leading order of the maximum of the characteristic polynomial is given by√
2
β logN . To find the subleading order one can follow the same procedure as for β = 2 and find

that the typical measure of “high points” , that is those points where 2 log |pn(θ)| > 2x logN is
given by

µe(x) ∼ N−βx
2/2

logN

1

Γ (1− βx2/2)
(45)

and equating this to N−1 we find the ”threshold of high values” to be

x =

√
2

β

(
1− 3

4

log logN

logN

)
(46)

which implies two first terms of the maximum to be
√

2
β

(
logN − 3

4 log logN
)
, in full agreement

with [11]. Finally, the correction term of the order of unity will be obviously given by the same
distribution as for β = 2, as moments of the partition function are the same, up to a trivial

rescaling by
√

2
β whenever necessary.

We therefore come to the conclusion that asN →∞ the characteristic polynomials of circular
ensemble for any β > 0 is essentially described by the same random Gaussian logarithmically

correlated process rescaled by the parameter
√

2
β .
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