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Abstract. We consider the gradient flow evolution of a phase-field model for crystal dislo-
cations in a single slip system in the presence of forest dislocations. The model is based on a
Peierls-Nabarro type energy penalizing non-integer slip and elastic stress. Forest dislocations
are introduced as a perforation of the domain by small disks where slip is prohibited. The
�-limit of this energy was deduced by Garroni and Müller (2005 and 2006). Our main result
shows that the gradient flows of these �-convergent energy functionals do not approach the
gradient flow of the limiting energy. Indeed, the gradient flow dynamics remains a physically
reasonable model in the case of non-monotone loading. Our proofs rely on the construction of
explicit sub- and super-solutions to a fractional Allen-Cahn equation on a flat torus or in the
plane, with Dirichlet data on a union of small discs. The presence of these obstacles leads to
an additional friction in the viscous evolution which appears as a stored energy in the �-limit,
but it does not act as a driving force. Extensions to related models with soft pinning and
non-viscous evolutions are also discussed. In terms of physics, our results explain how in this
phase field model the presence of forest dislocations still allows for plastic as opposed to only
elastic deformation.
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1. Introduction

It is well-known that �-convergence of functionals is a C0
-type convergence that does not

imply convergence of the related dynamics. For example, the ‘wiggly’ potentials

f" : [�1, 1] ! R, f"(x) = x2
+ 2" sin(x2/")
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converge uniformly, hence also in the sense of �-convergence, to the limit f(x) = x2
as " ! 0

while solutions to the gradient flows of f" never travel farther than ±p
⇡" from their initial datum

into a local minimum and thus do not resemble the gradient flow of the �-limit at all.

On the other hand, there are well known conditions under which the gradient flows of �-

convergent functionals on Hilbert spaces [SS04] and metric spaces [Ser11] approach the gradient

flow of a the limiting energy in a suitable sense. In applications, it is not always obvious whether

functionals belong to the ‘wiggly’ or the convergent ‘Sandier-Serfaty’-class.

Here, we consider the e↵ect of forest dislocations on the propagation of slip in Peierls-Nabarro-

type models following [KCO02]. In [GM05, GM06] it was shown that the corresponding non-local

Modica-Mortola type energy functional augmented with the condition that the phase field u"

vanishes at certain small obstacles �-converges to a functional given by the sum of a perimeter

and a bulk energy. Essentially, the articles above show (in higher generality) that the energies

(1.1) E"(u") =
1

| log "|
✓

[u"]
2
H1/2(T2) +

Z

T2

1

"
W (u") dx

◆

converge to a functional

(1.2) E(u) = Per({u = 1}) + ⇤↵H2
({u = 1}), u 2 BV (T2, {0, 1})

in the sense of �-convergence with respect to the strong L2
-topology when restricted to the

spaces

(1.3) E" : X" ! R, X" := {u" 2 H1/2
(T2

) | u" ⌘ 0 on B"(xi,") for 1  i  N"}.
The obstacles xi," have to satisfy certain distribution assumptions and

"
| log "|

PN"

i=1 �xi," * ⇤H2
,

where Hk
denotes the k-dimensional Hausdor↵ measure (so H2

= L2
is the Lebesgue measure)

and W is a non-negative smooth multi-well potential vanishing quadratically at the integers.

The constant ↵ is determined through the solution of a cell-problem. Dislocations in this model

are given heuristically by Z+ 1/2-level sets of the slip u (see Figure 1).

The focus of this article is the evolution that arises as the limit of the L2
-gradient flows of the

energies E". In technical terms, we are interested in the behaviour of solutions to the evolution

equation

(1.4)

8

>

<

>

:

c""ut =

1
| log "| (Au�W 0

(u)) t > 0, x 2 T2 \SN"

i=1 B"(xi,")

u ⌘ 0 t � 0, x 2 SN"

i=1 B"(xi,")

u = u0 t = 0

as " ! 0, where A

:

= �(��)

1/2
is the fractional Laplacian or order s = 1/2 and the pinning

condition is interpreted as u"(t, ·) 2 X" for all t > 0 for weak solutions while the di↵erential

equation is only tested with functions supported in T2 \ SN"

i=1 B"(xi,"). The case c" ⌘ 1 cor-

responds to the time-normalised gradient flow dynamics of (1.1) under the pinning constraint

(1.3). Depending on the exact problem, we identify the scaling regime c" in which the evolution

approaches non-trivial limiting dynamics and give results on the limits of solutions of (1.4) for

suitable initial conditions.

We show that this problem belongs to the ‘wiggly’ world, i.e., that the gradient flows of E" do

not approach the dynamics of the limiting problem. The idea behind this is that the non-locality

in the energy is too weak to summon a driving force on an otherwise unloaded flat dislocation

from the pinning constraint on a relevant time scale. On the other hand, if an external force (or

a curvature term) acts to expand the {u" ⇡ 1}-phase, we do see a resistance from the energy

barrier. Thus the perforation of the domain induces a friction which only resists other forces but

does not initiate movement.
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Three di↵erent terms appear in the dynamics on di↵erent time-scales: The curvature driven

evolution stemming from the di↵use line-energy which acts on the gradient flow scale, a non-local

interaction between interfaces (kink/kink repulsion and kink/anti-kink attraction) stemming

from the next order �-limit which is | log "|�1
-small with respect to the curvature flow, and

the di↵use bulk term, which acts as a driving force, but only on a time-scale which is roughly

"1/2-slow with respect to the other terms, although it can act against other forces on the fast

scale.

In this article, we mostly focus on the situation of infinite parallel straight interfaces to be able

to neglect the curvature-driven evolution. We construct explicit sub- and super-solutions to esti-

mate the speed of motion of an interface. At some non-straight interfaces, we can obtain bounds

by using sub-solutions as barriers to show non-expansive behaviour (i.e., u non-decreasing) and

energy methods to show non-shrinking of an initial condition (i.e., u non-increasing).

Physically, our results provide a justification why the phase-field model is valid beyond the

applicability of the �-limit, where the bulk term stemming from the forest dislocations induces

a dislocation evolution to return to the undeformed state u = 0 at macroscopic velocities.

The article is structured as follows. In Section 2, we explain the mathematical setting and

the heuristic reasoning behind our results as well as a brief statement of our main theorems.

In Section 3 we construct sub-solutions and apply them to a one-dimensional analogue of our

problem in order to obtain results in this simpler setting. In Section 4, we state the main results

in more precise and general terms and show how the one-dimensional proofs can be adapted

to yield the full results. Section 5 is devoted to the discussion of di↵erent related models, in

particular non-viscous evolution. We conclude the article with a brief summary and some open

problems. In an appendix, we briefly discuss parabolic equations with fractional di↵erential

operators on bounded domains.

2. Background and Heuristics

2.1. The Energy Limit. The energies E" are obtained as a model for crystal dislocations in

[KCO02] and motivated in their current form in [GM05, GM06]. As the characteristic length

scale " of crystal grids is typically very small compared to the behaviour of a crystal on the length

scale we are interested in, it is desirable to have a simpler continuum limit "! 0 available. This

has been formalised by Garroni and Müller as follows.

Theorem 2.1. [GM06] Let xi," 2 T2 be points such that 1  i  N" with
"

| log "|N" ! ⇤ satisfying

the following assumptions:

(1) (equi-distributed) For r" ⇠ N�1/2
" there exist constants c, C > 0 such that

c r2" N"  N"(Q")  C r2" N"

where N"(Q") is the number of obstacles in Q" and Q" is a square of side length r".
(2) (well-separated) There exists � < 1 independent of " > 0 such that d(xi,", xj,") > 6 "�

for all 1  i 6= j  N".
(3) (finite capacity density) The obstacles approach a multiple of the Lebesgue measure

through "
| log "|

PN"

i=1 �xi * ⇤L2 for ⇤ 2 (0,1).

Take the space

X" := {u" 2 H1/2
(T2

) | u" ⌘ 0 on B"(xi,") for 1  i  N"}
and the energy functional

E" : X" ! R, E"(u") =
1

| log "|
✓

[u"]
2
1/2 +

Z

T2

1

"
W (u") dx

◆
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⌃
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Figure 1. The phase-field u" counts the number of half-planes wedged into a

crystal grid. Dislocations are the level sets of Z+1/2, i.e, the interfaces between
the phases. The dislocations we consider all lie in the same plane ⌃ of the crystal

grid and their Burgers vectors

~b are integer multiples of a single vector

~b0.

where W is a periodic multi well potential satisfying W � c dist2(·,Z) for some c > 0. Then
h

�(L2
)� lim

"!0
E"
i

(u) =

Z

T2

↵(u) dx+ 4

Z

Ju

[u] dH1
=

Z

T2

↵(u) dx+ 4 |Du|(T2
)

where u 2 BV (T2,Z), [u] = u+ � u� denotes the jump of u on the jump set Ju and ↵(z) is
determined as the solution of the cell problem

(2.1) ↵(z) = inf

⇢

1

2

[w]21/2,R2

+

Z

R2

W (w) dx

�

�

�

�

w � z 2 H1/2
(R2

), w ⌘ 0 on B1(0)

�

.

In [GM05, GM06] the precise statement is given also for anisotropic kernels, di↵erent scalings

of the number of obstacles, di↵erent obstacle sizes proportional to ", and finite strength pinning.

Furthermore, pre-compactness of finite energy sequences is established.

Let us briefly comment on this result. The �-limit is essentially the sum of two terms, the

perimeter functional which occurs as the limit of the unconstrained non-local Modica-Mortola

functional (see [ABS98, SV12] for double-well potentials and [GM06, Kur06, Kur07] for periodic

potentials), and the bulk term which stems from the pinning constraint (see [MK64, MK74,

CM97, AB02] for the local case). In the critical scaling N" ⇠ | log "|
" both terms appear on the

same order.

Remark 2.2. In one dimension, the critical scaling is N" ⇠ | log "|. The di↵erence arises due to

the di↵erent scaling of the H1/2
-semi-norm in di↵erent dimensions.

2.2. Viscous Evolution. In this article, we compare the gradient-flow dynamics associated to

the functionals E" with those of the continuum limit. If we assume that both halves of the crystal
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relax on a timescale much faster than the motion of dislocations, we can describe the dynamics

by a quasi-static evolution, i.e. only the jump condition between the traces in upper and lower

half-space along the slip plane needs to be evolved according to the gradient flow of the energy E"
and the distortion field in upper and lower half space approaches the associated energy minimum

instantaneously.

According to [IS09], solutions to the associated evolution equation of E" without the pinning

constraint

"ut =
1

| log "|
✓

Au� 1

"
W 0

(u)

◆

converge to level set mean curvature flow.

Remark 2.3. The " in front of the time derivative is the correct time scaling for a phase field

gradient flow since the interface moves with speed O(1) if the time derivative is O(1/").

In one dimension, the perimeter functional has no interesting dynamics, so the behaviour of

the evolution equation (without obstacles) should be governed by the next order �-limit. At a

simple step function �[r
1

,r
2

] on the real line we can modify arguments from [Kur06, Kur07] for

closely related energies to see that

(2.2) �(L2
)� lim

"!0
| log "| ·

✓

E" � 1

⇡

◆

=

1

⇡
log |r2 � r1|+ c0

where E" is given by the same formula as above, but in dimension one and on a space without

pinning constraint. Here c0 > 0 is a constant depending on the potential W . In particular, the

next order term in the �-expansion vanishes only logarithmically in " rather than exponentially

fast as in the classical local functional. Using non-variational techniques, Gonzalez and Monneau

showed in [GM12] that in one dimension (or at straight parallel interfaces), we still expect to see

attraction of interfaces on the slower timescale

1

| log "| ("ut) =
1

| log "|
✓

Au� 1

"
W 0

(u)

◆

.

This motion contrasts with the (local) Allen-Cahn equation in one dimension

"ut = "�u� 1

"
W 0

(u),

which becomes exponentially slow in " [CP89]. The stronger attraction here stems from the non-

locality of the half Laplacian as compared to the full Laplace operator, occurring analogously

in the next order �-limit (2.2) at a simple step function. The heavy tails of the singular kernel

force slower decay of optimal interfaces for the fractional Allen-Cahn equation, which translates

into stronger attraction (see Section 3.2).

Now consider the e↵ect of pinning, just in one dimension. Heuristically, we simply take a

function u with one or two interfaces and pinned obstacles on points d"Z such that the interfaces

are O(d") away from the nearest obstacle, 0 outside and 1 in between the obstacles. The obstacle

at md" contributes an amount roughly proportional to

1

| log "|
Z md"+"

md"�"

1

|x|2 dx ⇡ "

| log "|m2 d2"
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to the attractive force in the 1/2-Laplacian on an interface at x = 0, using the representation of

the half-Laplacian as a singular integral operator

�(��)

1/2u(x) = P.V.

Z

Rn

u(y)� u(x)

|x� y|n+1
dy

=

Z

B⇢(x)

u(y)� u(x)� hru(x), y � xi
|y � x|n+1

dy +

Z

Rn\B⇢(x)

u(y)� u(x)

|x� y|n+1
dy.(2.3)

The expression P.V.
R

denotes that the integral needs to be understood in the principal value

sense P.V.
R

Rn = lim"!0

R

Rn\B"(0)
. This interpretation will be implied in the following. The

integrals in the second expression exist and use the symmetry of the integral kernel and the

antisymmetry of the linear term for cancellation e↵ects and ⇢ 2 (0,1) can be chosen freely.

This form will be frequently used for estimates in the following. Note that our normalisation

of the fractional Laplacian (and the H1/2
-semi-norm) di↵er from the usual one by a dimension-

dependent constant.

We can sum over m 2 Z and obtain a term proportional to "/(d2" | log "|), which is much

smaller than the attractive force between interfaces for d" �
p
" and small in the natural gradient

flow time scaling for d" � p

"/| log "|. Seeing that the interesting amount of obstacles in one

dimension would be N" ⇠ | log "| on a periodic interval, the natural distance between obstacles

scales as d" ⇠ 1/| log "|. We are led to the conjecture that the obstacles’ contribution to the

the contracting force vanishes in the limit "! 0, and that the dynamics are independent of the

presence of obstacles in this scenario.

In one dimension, the pinning is expected to have an e↵ect on the evolution if d" ⇠
p

"/| log "|,
which is the natural length scale in two dimensions (since the natural scaling for the number of

obstacles is N" ⇠ | log "|
" ). We would still expect two-dimensional solutions to become slow in this

scaling since the one-dimensional case corresponds to solutions constant in one direction or the

e↵ect of pinning along whole lines, not just on circles.

A two dimensional version of the argument above gives the contribution

1

| log "|
Z

B"(id",jd")

1

|x|3 dx ⇡ "2

| log "| d3"
1

(i2 + j2)3/2

for a single obstacle and thus the scaling proportional to "2/(d3" | log "|) for the contribution of the

obstacles to the driving force. Again, inserting d" = 1/
p
N" =

p

"/| log "|, we see that this force

should be O("1/2| log "|1/2) which is negligible compared to the attraction between interfaces, let

alone curvature.

Technically, the relevant consideration is whether this back-of-the-envelope calculation gives

the right scaling or whether the pinning induces further non-local e↵ects. In particular, we need

to investigate how quickly minimisers of the cell-problem (2.1) approach z 2 Z at infinity.

Another interesting question is how pinning interacts with other terms. Namely, when external

forces, the attraction of interfaces, or curvature terms are driving an interface to expand the phase

{u = 0}, a moving interface must create new obstacles during the movement (for example by

Orowan loops). This would lead to an increase in the bulk energy term which may dominate the

potential energy gain. In this case, the presence of obstacles prevents motion.

These heuristic considerations suggest that the forest dislocations do not act as a driving force

on the relevant time-scale, but may act against other driving forces to prevent motion. In this

sense, it is more appropriate to think of the obstacles as creating a friction term in the dynamic

case rather than a stored energy as it appears in the �-limit. Studying the gradient flow of the

present phase field model thus provides insight into the treatment of stored energy hardening

terms in macroscopic models for plastic evolution, in particular how to include a Bauschinger

e↵ect.
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2.3. Main Results and Idea of Proof. We will always assume that W 2 C1
(R), that W is

1-periodic and satisfies W � c dist2(·,Z) for some c > 0 and W (0) = 0. Note that the conditions

together imply that W 00
(0) > 0. Additional conditions will be placed on W in Sections 3.2

and 3.4 to ensure the right behaviour of the second derivatives of the optimal transition profile

between two neighbouring potential wells in one dimension and of a corrector function for moving

interfaces. The prototype of an admissible potential is W (z) = sin(⇡z) + 1. Furthermore, we

make the following assumptions on the distribution of obstacles xi,":

(1) the assumptions of Theorem 2.1 hold and additionally

(2) the obstacles are arranged as perturbations of a square grid.

The second condition is stated in a precise fashion in Theorem 4.5. Admissible configurations

are a perfect square grid with length scale d" ⇠ N�1/2
" , small perturbations of the grid on a small

fraction of this length scale, or a square grid on a slightly smaller length scale with vacancies and

potentially multiple points xi," close to a single node of the grid. For technical reasons a truly

random arrangement of xi," as identically and uniformly distributed points on T2
is admissible

neither for our results nor in Theorem 2.1.

Heuristic Statement of the Main Results. Under the assumptions above, the following
holds:

(1) The gradient-flows of E" do not converge to the gradient flow of E in any time-scale, nor
to pure mean curvature flow.

(2) For a suitably aligned single straight interface on R2, a time-rescaling c" 
q

"
| log "| is

necessary to obtain a moving interface in the limit "! 0. In the plane or on a flat torus,
two suitably aligned and su�ciently close interfaces attract on a time-scale of c" =

1
| log "| .

This motion is independent of the presence of obstacles xi,".
(3) If we apply an external force to increase the amount of slip |u| or mean curvature flow

would act in that way, the Garroni-Müller energy barrier has to be overcome and the
presence of obstacles can prevent such motion.

Remark 2.4. Point (2) in the main results can be interpreted in the sense that in the unrescaled

time-scale, dislocations remain stationary after unloading in contrast to the evolution of the

�-limit. This extends the validity of the phase-field model to non-monotone loading.

Remark 2.5. Informally speaking, the essence of our results can be stated as follows. In the

gradient flow time scaling and in the presence of forest dislocations, straight parallel dislocation

lines are stationary. If an exterior force is applied in the direction of increasing the amount of

slip, the dislocations remain stationary until a certain threshold is reached, while they o↵er nei-

ther resistance nor help to an exterior force which acts in the direction of decreasing the amount

of slip, see Figure 2. In particular, the results derived here are consistent with the mechani-

cal Bauschinger e↵ect observed in [DR10], in the sense that reverting a plastic deformation is

associated with a dramatic yield strength drop, but the reversal does of course not take place

spontaneously.

To simplify the constructions, we have presented proofs for slip functions taking only the

values in [0, 1], but extensions to positive slip are possible. For technical reasons, we focus on

signed slip and interfaces which are aligned with the forest dislocations. By that we mean that if

the forest dislocations are located on a square grid d" ·Z2
and a straight interface in R2

meets the

x-axis at an angle � 2 [0, 2⇡), then we require tan(�) 2 Q. We believe that also this restriction

is of a purely technical nature.

In one dimension, the second restriction does not appear and the results are sharp.

The precise statements of these results can be found in the main text, most importantly in

Theorems 4.3, 4.5 and Corollary 4.7. The exact time-scaling c" for a gradient flow u" of E" for a
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V

ff0

no forest dislocations

gradient flow of the �-limit

limit of the gradient flows

Figure 2. We consider the normal velocity V (f) of a single straight dislocation

in the sharp interface limit without time rescaling under an applied exterior force

f . In the figure above, both the force and the velocity of the interface are chosen

to be positive in the direction of increasing slip. The three lines illustrate the

kinetic relation derived from a viscous evolution without forest dislocations, the

gradient flow of the Garroni-Müller �-limit (with f0 = ⇤ · ↵(1)), and the limit

of gradient flows of the phase field model with forest dislocations, respectively.

The regime of the dotted line has not been treated here, and is to be taken as

a conjecture.

single straight and aligned interface in the plane is not known, but the bounds

r

"

| log "|3  c" 
r

"

| log "|
hold. Stronger results are available in one dimension, see Theorems 3.8, 3.11, 3.12 and 3.16.

As seen in the heuristic calculations above or in other situations of ‘dynamic meta-stability’

[BK90], the pinning constraint induces no motion on the macroscopic time-scale since its en-

ergy dissipation is highly localised at the obstacles. A similar phenomenon is observed in the

aforementioned ODE model

ẋ = �2x

✓

1� sin

✓

x2

"

◆◆

which is the gradient flow of F (x) = x2
+ " cos(x2/"). Short bursts of very fast motion can be

observed here before getting trapped in a local energy minimum. Replacing the sin-function by

a suitable modification, we can instead observe very fast motion at steep drops alternating with

very slow motion on almost flat segments. The overall motion becomes slow as "! 0 due to the

many flat segments of the potential. An energy dissipation argument for such a system can be

found in [Mie12].

Unfortunately, directly using energy dissipation techniques appears impossible in our model.

Instead, we construct viscosity sub- and super-solutions of (1.4) which ‘trap’ a solution. If we

can establish a certain behaviour for both the sub- and super-solution, it follows that it also

holds for the solution. Using suitable estimates, the slowness of sub- and super-solutions (or

their behaviour according to kink/anti-kink attraction) can be established through a rigorous

version of the heuristic calculation given above. For a one-dimensional problem without pinning,

a similar approach has been used in [GM12].

The main di�culty in the proof therefore lies in the construction of suitable sub-solutions

for the non-local evolution equation. We first prove analogue statements in one dimension in
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Theorems 3.8, 3.11, 3.12 and 3.16 because this is technically easier and then modify the arguments

to yield the result in two dimensions.

The construction proceeds in two steps. First we construct a stationary sub-solution at a

pinning site by considering a periodic constrained minimisation cell problem and obtaining sharp

decay estimates for the solution as "! 0. Then we carefully glue the stationary sub-solution to

a modified optimal profile for the transition between the potential wells with precise estimates

in order to not destroy the sub-solution property.

3. One-dimensional Dynamics

In this section, we construct sub- and super-solutions to the evolution equation (1.4) in

one space dimension for various initial conditions. This is significantly simpler than the two-

dimensional case even at straight parallel interfaces, so we devote an entire section to demon-

strate the techniques that will later be refined for the two-dimensional evolution. The rate we

obtain is optimal in one dimension, while there is a di↵erence of order O(| log "|) between the

upper and the lower bound in the two-dimensional case.

3.1. Periodic Obstacles. We consider a rescaled version of the problem where a forest disloca-

tion/obstacle has length scale O(1). The same length scale occurs in the transition of an optimal

profile between two potential wells.

Lemma 3.1. Denote by S1
l the circle of length l � 0 and take R,M > 0 and an arbitrary point

x0 2 S1
l . Then, if l � 1 is large enough, there exists a function ūl 2 H1/2

(S1
l ) such that

ūl ⌘ 0 on BR(x0) and A ūl �W 0
(ūl) =

M

l
on S1

l \BR(x0)

in the weak sense. The function ūl has the following properties:

• 0  ūl < 1 and ūl > 0 outside BR(x0).

• ūl 2 C0,1/2
(S1

l ) and ūl 2 C1
loc(S

1
l \BR(x0)).

• If x 2 S1
l and x̄ denotes the reflection of x through x0, then ūl(x̄) = ūl(x).

• If we identify S1
l = [�l/2, l/2) and x0 = 0, then ūl is monotonically increasing on [0, l/2).

• Let � > 0. Then the set {ūl < 1 � �} is contained in [�c� , c� ] for some c� > 0

independently of l.
• Let �x0 denote the antipodal point of x0 Then

ul(�x0)  1� 1

W 00
(0)

✓

M

l
+

R

l2

◆

.

• There exists a constant c2 > 0 such that

ūl(x) � 1� M

W 00
(0) l

� c2
|x|2 .

All constants may depend on R. M may depend on l and the constants are uniform as long as
Ml  M0 is uniformly bounded.

Proof. Set Up. For the time being, replace W by a smooth double-well potential on R which

agrees with the original on [0, 1] which is monotone and convex outside that interval such that

W 0
has linear and W has quadratic growth at 1 and such that W (t) � t for t � 2. Once we see

that all relevant functions take values only in [0, 1), we can pass back to the original multi-well

potential. Consider the Hilbert space

Xl :=

n

u 2 H1/2
(S1

l ) | u ⌘ 0 on BR(x0)

o

.
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We will show that for every l � 1, the energy

El(u) = [u]21/2,S1

l
+

Z

S1

l

W (u) dx+

M

l

Z

S1

l

|u| dx

has a minimiser ū = ūl in the open set

Ul :=

(

u 2 Xl

�

�

�

�

1

l

Z

S1

l

u dx >
1

2

)

.

Subsequently, we will show that ūl has the properties we claim in the Lemma.

Finite Energy. First, we show that there exist functions ul 2 Ul such that

El(ul)  C

for a universal constant C (which depends on R,M). Take a smooth function ⌘ : R ! R such

that ⌘(r) = 0 for r  R, ⌘(r) = 1 for r � 2R and monotone in between. Then set

ul(x) = ⌘(d(x, x0))

where d is the usual distance function on the circle. The function ul is smooth and has energy

El(ul) =

Z

S1

l

Z

S1

l

K(x, y) |ul(x)� ul(y)|2 dx dy +
Z

S1

l

W (ul) dx+

M

l

Z

S1

l

ul dx


Z

B
3R(x

0

)

Z

B
3R(x

0

)
K(x, y) |ul(x)� ul(y)|2 dx dy

+

Z

S1

l \B3R(x
0

)

Z

B
2R(x

0

)
K(x, y) |1� ul(x)|2 dx dy + 2

Z 2R

R

W (⌘) dr +M.

Recall that the kernel K of the H1/2
semi-norm on S1

l is

K(x, y) =
X

k2Z

1

|x� (y + lk)|2 =

1

l2

X

k2Z

1

| (x� y)/l + k |2 =

1

4⇡2 l2 sin

2
�

x�y
⇡l

�

when we identify S1
l = (�l/2, l/2]. To see this, take the periodic covering of the circle by the

real line and use that the half-Laplacian on the circle agrees with the half-Laplacian of the

periodically lifted function on R. Clearly, this gives the above kernel for the half-Laplacian and

by extension for the H1/2
-semi-norm. Observe that |x�y|  |x|+ |y|  3R+ l/2 for x 2 B3R(0),

y 2 S1
l = [�l/2, l/2], so

�

�

�

�

K(x, y)� 1

|x� y|2
�

�

�

�

=

X

k2Z\{0}

1

|x� (y + lk)|2

=

1

l2

X

k2Z\{0}

1

|(x� y)/l + k|2

 l�2
max

z2B
1/2+3R/l(0)

X

k2Z\{0}

1

|z � k|2

 C l�2
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where C is uniform for all l � 1. Using |x� y|2 � |y|2/3 for x 2 B2R(x0) and y 2 S1
l \B3R(x0),

the remaining integral is then estimated by

Z

S1

l \B3R(x
0

)

Z

B
2R(x

0

)
K(x, y) |1� ul(x)|2 dx dy 

Z

S1

l \B3R(x
0

)

Z

B
2R(x

0

)
K(x, y) dx dy


Z

S1

l \B3R(x
0

)

Z

B
2R(x

0

)

1

|x� y|2 + C l�2
dx dy


Z

S1

l \B3R(0)

Z

B
2R(0)

3

|y|2 + C l�2
dx dy

= 2R

 

Z

[�l/2,l/2]\[�3R,3R]

3

|y|2 dy + C l�1

!

 C.

Similarly, the local integral is uniformly bounded for large l where the kernel approaches the

kernel of the half-Laplacian on the real line.

Minimisers. The direct method of the calculus of variations establishes that El has a min-

imiser ūl in the closure Ul of Ul. We will show that for large enough l, ūl must lie inside Ul.

Assume that 1/2 < 1
l

R

S1

l
ūl dx < 4/7. Then there are two possibilities:

• There exists a set Al ⇢ S1
l such that |Al| ! 1 as l ! 1 and 1/3  ūl  2/3 on Al or

• there exists no such set.

In the first case, we observe that

El(ūl) �
Z

S1

l

W (ūl) dx � |Al| min

t2[1/3,2/3]
W (t)

which goes to infinity when l becomes large. Hence this is not possible for minimisers for large

enough l. In the second case, we know that the sets

Bl := {ūl � 2/3}, Dl := {ūl  1/3}
satisfy |Bl|+|Dl| � l�c for some constant c > 0. Observe that ūl � 0, since this cut-o↵ decreases

the energy and cannot violate the integral condition. So we deduce that

4/7 · l >
Z

S1

l

ūl dx � 2/3 |Bl|(3.1)

Conversely, we know that

Z

{ūl�2}
ūl dx 

Z

S1

l

W (ūl) dx  C

since W (t) � t for t � 2. Therefore

l

2

<

Z

S1

l

ūl dx  2 |Bl|+ C +

2

3

|S1
l \ (Bl [Dl)|+ 1

3

|Dl|.

We renormalise bl := |Bl|/l and dl := |Dl|/l and since in this case also |S1
l \ (Bl [Dl)|  C for

some constant, the inequalities read

6/7 > bl, 1/2 < 2bl + C/l + dl/3.

For the same reason, we have 1� bl � dl � 1� bl � C
l , whence

1

2

< 2bl +
C

l
+

1� bl
3

) 1

2

� 1

3

� C

l
<

5

3

bl ) 1

10

� C

l
< bl.
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In total, we find that

1/11 < bl < 6/7

for all large enough l. Consequently, we obtain that � < bl, dl < 1�� for some � > 0 and all large

enough l. We can roll up the circle to an interval Il = [0, l] and use K(x, y) � |x � y|�2
. Then

the re-arrangement result [ABS98, Proposition 6.1] states that Bl and Dl are ideally distributed

as two sub-intervals at opposite ends of Il. We compute

El(ūl) � [ūl]
2
1/2,S1

l

�
Z

Bl

Z

Dl

✓

1

3

◆2

K(x, y) dx dy

� 1

9

Z |Bl|

0

Z l

|Bl|+c

1

|x� y|2 dx dy

=

1

9

Z |Bl|

0

1

|Bl|+ c� y
� 1

l � y
dy

=

1

9

[log(|Bl|+ c)� log(c)� log(l) + log(l � |Bl|)]

=

1

9

log

✓

(|Bl|+ c)(l � |Bl|)
c l

◆

⇠ log

✓ |Bl| |Dl|
|Bl|+ |Dl|

◆

.

If both |Bl| and |Dl| go to infinity as l ! 1 (as above), then El(ūl) ! 1 as well, which leads to

a contradiction. This key estimate is used in [ABS98, Lemma 4.5] to establish �-convergence to

the perimeter functional for the fractional Modica-Mortola energy with a double well potential

and no pinning. Thus indeed |Dl|  C so that |Bl| � l � C � c and

1

l

Z

S1

l

ūl dx > 4/7,

so ūl 2 Ul. We finally come to establishing the properties we claimed for ūl.

Symmetry and Monotonicity. Due to [BI94, Theorem 3] ū agrees with its monotonically

decreasing rearrangement around �x0 since rearranging decreases the non-local term in the en-

ergy (strictly, if the function was not symmetric decreasing from a point before) while leaving the

local ones invariant and preserving the integral constraint. So, when we identify S1
l = (�l/2, l/2]

and x0 = 0 by the usual covering map, we see that ūl(x) = ūl(�x) and ūl is monotonically

increasing on [0, l/2).
Growth. When showing that ūl 2 Ul, we showed that one of the sequences of sets

Bl := {x 2 S1
l | ūl � 2/3}, Dl := {x 2 S1

l | ūl  1/3}
must have uniformly bounded measures. Since

1
l

R

S1

l
ūl dx > 1/2, this can only be Dl. Since Dl

has uniformly bounded measure and for � < 1/2 also the measure of the set {1/2  ūl < 1� �}
is bounded from the double-well part of the energy, it follows that the sequence of sets

D�
l := {x 2 S1

l | ūl  1� �}
must have uniformly bounded measures depending on � 2 (0, 1). Since ūl is monotone growing

away from x0 = 0, the sets D�
l are intervals and there exists a constant c� > 0 such that

D�
l ⇢ (�c� , c�) ⇢ (�l/2, l/2] = S1

l

for all su�ciently large l.
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Boundedness. We have seen that ūl � 0 and that

1

l

Z

S1

l

ūl dx >
4

7

,
1

l

Z

{ūl�2}
ūl dx  C

l
.

So clearly, min{ūl, 2} satisfies the integral constraint for large enough l, vanishes on B1(x0) and

has strictly lower energy than ūl unless ūl  2 since we modified W (t) to be monotonically

increasing for t � 1. Thus ūl  2 for all su�ciently large l.
Regularity. Since ūl lies in the interior of Ul, we can calculate the change of energy in El

under small variations of ūl. El is smooth when we vary only where ūl > 0. Thus, ū satisfies the

Euler-Lagrange equation

(

ūl = 0 on [�al, al]

A ūl = W 0
(ūl) +M/l in S1

l \ [�al, al]

in a weak sense. The right hand side of the equation lies in L1
(S1

l ) since ūl is bounded. Due to

[SV14], ūl is a viscosity solution of the same equation and thus continuous. In fact,

ūl 2 C0,1/2
(S1

l ) \ C1 �

S1
l \ [�al, al]

�

due to [ROS14, Propositions 1.1 and 1.4, Theorem 1.2]. The proofs in the literature are usually

presented for bounded domains on Euclidean space, but also work in the periodic case.

Determining the Vanishing Set. It remains to show that al = R. Assume that al > R
and take � 2 C1

c (R, al) with � � 0. Then we know that

0  El(ūl + t�)� El(ūl)

t

= hūl,�iH1/2 +

t

2

[�]2H1/2 +

1

t

Z

S1

l

W (t�) dx+

M

l

Z

S1

l

� dx

! �hA ūl,�iL2

+

M

l

Z

S1

l

� dx

as t ! 0 since W vanishes quadratically at zero and W (ūl + t�) = W (ūl) where ūl 6= 0. We can

replace the H1/2
-inner product with an L2

-inner product since ūl ⌘ 0 is smooth on the support

of �. It follows that Aul  M
l on (R, al), but this can easily be seen to be false for all large l

since

A ūl(x) �
Z l/2

c⌘

⌘

|y � x|2 dy � ⌘

c⌘
� 2⌘

l
�!6 0

for all ⌘ 2 (0, 1). Thus al ⌘ R for l � 1.

Improved Boundedness. By boundedness, symmetry and monotonicity, ūl is maximal at

the antipodal point �x0 of x0. Due to smoothness, we can easily argue that A ūl is defined

pointwise around �x0, and thus

A ūl(�x0) =

Z

S1

l

K(x, y)
⇥

ūl(x)� ūl(x0)
⇤

dx


Z l/2

�l/2

u(x)� u(�x0)

min{|x� l/2|, |x+ l/2|}2 dx


Z R

�R

�ūl(�x0)

min{|x� l/2|, |x+ l/2|}2 dx  (2R) · �1

(l/2)2

since ūl is maximal at �x0, hence

�8R/l2 � A ūl(�x0) = W 0
(ūl(�x0)) +M/l
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holds pointwise. Since W 0 > 0 outside [0, 1], this directly shows that

ūl  ūl(�x0)  1� 1

W 00
(1)

✓

M

l
+

R

l2

◆

< 1

for large enough l. From now on, we can use the original potential W .

Improved Growth I. Take 0 < � < 1/8 such that �W 0
(1�t) � W 00(1) t

2 for t 2 [0,�] and that

W 0
is monotonically increasing on [1��, 1]. Assume that S1

l = J[Jc
and wl 2 C0

(S1
l )\H1/2

(S1
l )

such that ūl � wl on J and

Awl �W 0
(wl) � M

l
as well as ūl � 1� � on Jc.

Then by a simple application of the maximum principle we have ūl � wl on S1
l . Assume the

contrary. Then wl � ūl has a positive maximum somewhere in Jc
. We find that

0 � A(wl � ūl) � W 0
(wl) +M/l �W 0

(ūl)�M/l = W 0
(wl)�W 0

(ūl) > 0

at this point since 1 � wl > ūl � 1�� are both in the area where W 0
is monotonically increasing

and obtain a contradiction. We will now construct comparison functions wl.

By monotonicity and growth beyond 1�� on uniformly finite intervals, there exists an interval

J� around x0 such that ūl � 1� � outside of J� independently of l. Take l � 1 and define

wl : S
1
l = (�l/2, l/2] ! R, wl(x) =

✓

1� �M

l
� c̃2

|x|2
◆

+

.

We easily calculate

wl(x) = 0 , |x| 
s

c̃2
1� �M/l

, wl(x) � 1� � , |x| �
s

c̃2
� � �M/l

� 2

p

2 c̃2,

so in particular wl vanishes on an interval

[�
p

c̃2,
p

c̃2] ⇢ J ⇢ [�
p

2c̃2,
p

2c̃2].

In particular we can choose c̃2 so large that ūl(x)  1� � implies wl(x) = 0. So we observe that

Awl(x)�W 0
(wl(x)) = Awl(x)�W 0

✓

1� �M

l
� c̃2

|x|2
◆

� Awl(x) +
W 00

(1)

2

✓

�M

l
+

c̃2
|x|2

◆

� W 00
(1) �

2

M

l
+

✓

Awl(x) +
W 00

(1) c̃2
2 |x|2

◆

whenever wl � 1 � �. Therefore we can choose � � 2/W 00
(1) and only need to show that the

second term is non-negative for |x| � 2

p
2c̃2. Without loss of generality, take x > 0. Now we

observe that wl(x) = 0 ) |x|  p
2 c̃2 and recall that

c
|x|2  Kl(x)  C

|x|2 where Kl is the kernel

of the half-Laplacian on S1
l = (�l/2, l/2] and the constants c, C are uniform in l � 1.

First, let us assume that 0 < x < l/2� 1. We do not use the integrals in our estimates which

have the correct sign (i.e. over the domain x < y < l/2 and its mirror image) except for the one

over [x, x+1) and we replace the ones with a negative sign which are on the far half (�l/2, 0) of
the circle by their counterpart on the near side (0, l/2). Since the kernel Kl is monotone, this is
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admissible. Pick 2/3 < ↵ < 1 and compute

Awl(x) = P.V.

Z l/2

�l/2
[wl(y)� wl(x)]Kl(x� y) dy

� �
Z

p
2c

2

p
2c

2

Kl(x� y) dy + 2

Z x↵

p
2c

2

Kl(x� y) [wl(y)� wl(x)] dy

+ 2

Z x�1

x↵

Kl(x� y)

Z y

x

w0
l(t) dt dy +

Z x+1

x�1
Kl(x� y)

Z y

x

(y � t)w00
l (t) dt dy

� �C

 p
2c2

|x�p
2c2|2

+

1

|x� x↵|2
Z x↵

c
2

c2
y2

dy +
c2

|x↵|3
Z x�1

x↵

1

|y � x| dy +
c2
|x|4

!

In the first term, we used that the jump is at most 1, in the second we pulled out the integral

kernel and used only the negative part of the di↵erence. If x↵  p
2c̃2, the second term simply

disappears. In the third term, we kept the integral kernel and used the largest possible value

of the derivative, and the fourth term is estimated solely by the second derivative of |x|�2
.

Constants were absorbed into C. Thus

Awl(x) � �C

✓

p
2c2

|x�p
c2|2 +

1

|x� x↵|2 +

c2 log(x)

|x↵|3 +

c2
|x|4

◆

When we choose c̃2 large enough, we can see that

Awl(x) � �W 00
(1) c̃2

2 |x|2
for all |x| � p

2 c̃2. Finally, we observe that the argument can also applied for |x| > l/2�1 when

we replace 1/x2
by a function fl 2 C2

(S1
l ) satisfying

c

|x|2  fl(x)  C

|x|2 , |f 0
l (x)| 

C

|x|3 , |f 00
l (x)| 

C

|x|3 .

Improved Growth II. Finally, we use the comparison function

wl(x) =

✓

1� �M

l
� c2

|x|2
◆

+

with the sharper growth rate � =

1
W 00(1) in the leading order term. Using a more precise Taylor

expansion of W at the well, we observe that

Awl(x)�W 0
(wl(x)) = Awl(x)�W 0

✓

1� �M

l
� c2

|x|2
◆

� Awl(x) +W 00
(1)

✓

�M

l
+

c2
|x|2

◆

� CW 000

✓

�M

l
+

c2
|x|2

◆2

� W 00
(1) �

M

l
+

✓

Awl(x) +
W 00

(1) c2
|x|2

◆

� CW 000

✓

�M

l
+

c2
|x|2

◆2

whenever wl � 1 � � for a constant CW 000
which depends only on the third derivatives of W .

Choosing c2 large enough, we see that wl(x)  1� 2
W 00(0)l � c̃

2

|x|2  ūl(x) for all x  p
l, and by

the same argument as above, we see that wl is a sub-solution on S1
l \ [�

p
l,
p
l], such that we find

also in this ansatz that wl(x)  ūl(x) for all x 2 S1
l and l � 1. The important argument in this

second improved growth estimate is that |x|�2
is small (in fact, comparable to l�1

) outside of the

relevant interval, so that the third derivative correction term can be estimated to be small. ⇤
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Remark 3.2. The same method can be applied on tori T d
l = (S1

l )
d
in any dimension d � 1, but

only yields solutions to

Au�W 0
(u) =

M

ld

with faster decaying constant on the right hand side. That decay rate is not su�cient for later

applications, since an interface along a straight line is essentially one-dimensional and exerts a

force of order 1/l.
The case d = 1 is special in the proof above since Sd

l = T d
l . On tori in higher dimensions,

the re-arrangement is significantly more involved, since for example the monotonically increasing

and monotonically decreasing rearrangements do not agree.

Remark 3.3. Assume that we are instead constructing an obstacle with boundary conditions at

a 2 Z, say a � 2. Then we modify W outside [0, a] instead and obtain the same results as before

under the integral side condition

1
l

R

S1

l
u dx > a� 1/2. The proof is only slightly more involved.

For technical purposes, it will be helpful to continue the solutions onto a larger set.

Lemma 3.4. Let m 2 N,m � 2 and u 2 C2
(S1

l ). Identify S1
r = (�r/2, r/2] and define

ul,ml : S
1
ml ! R, ul,ml(x) =

(

u(x) x 2 S1
l

u(l/2) x 2 S1
ml \ S1

l

.

If u is maximal at l/2, then

A

S1

ml ul,ml(x) � A

S1

l u(x)

for x 2 S1
l and

A

S1

ml ul,ml(x) � A

S1

l u(l/2)

for x 2 S1
ml \ S1

l . The same holds true for m = 1 (i.e. S1
ml = R).

Proof. A function on S1
l or S1

ml can be interpreted as a function on R with period l or ml
respectively. In this way, every function on S1

l can also be interpreted as a function on S1
ml, since

the periods are compatible. Now let x 2 S1
l , then

A

S1

ml ul,ml(x) =

Z 1

�1

ul,ml(y)� ul,ml(x)

|x� y|2 dy �
Z 1

�1

u(y)� u(x)

|x� y|2 dy = A

S1

l u(x)

since ul,ml(x) = u(x) and ul,ml(y) � u(y) for all y 2 R. If on the other hand x 2 S1
ml \ S1

l , then

we may assume up to translation that

l
2 < x < ml

2 , thus

A

S1

ml ul,ml(x) =

Z 1

�1

ul,ml(y)� ul,ml(x)

|x� y|2 dy

=

Z

R\[l/2,ml/2]

ul,ml(y)� u(l/2)

|x� y|2 dy

�
Z

R\[l/2,ml/2]

u(y)� u(l/2)

|x� y|2 dy

�
Z

R\[l/2,ml/2]

u(y)� u(l/2)

|l/2� y|2 dy

�
Z

R

u(y)� u(l/2)

|l/2� y|2 dy

= A

S1

l u(l/2)
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since again ul,ml(y) � u(y) and since the missing part of the integral over the real line which we

include in the last step is non-positive. The fact that choosing x = l/2 minimises the function

x 7!
Z

R\[l/2,ml/2]

u(y)� u(l/2)

|x� y|2 dy

can be seen easily since the function is by design symmetric under reflection around the midpoint

between l/2 and ml/2 and concave as

d

dx

Z

R\[l/2,ml/2]

u(y)� u(l/2)

|x� y|2 dy = (�2)

Z

R\[l/2,ml/2]
[u(y)� u(l/2)]

1

(x� y)3
dy

d2

dx2

Z

R\[l/2,ml/2]

u(y)� u(l/2)

|x� y|2 dy = (�2)(�3)

Z

R\[l/2,ml/2]
[u(y)� u(l/2)]

1

(x� y)4
dy

which is clearly negative since u is maximal at l/2. ⇤

We formulated the Lemma in the setting of smooth functions to compute the singular integral

directly, but by density it also holds in the distributional sense for u 2 H1/2
(S1

l ), thus in

particular

A

S1

ml ūl,ml �W 0
(ūl,ml) � M

l
on {ūl,ml > 0} = S1

ml \BR(x0).

The same methods as in Lemma 3.1 can be used to establish the following result for a global

minimiser without the negative forcing term M .

Lemma 3.5. Let u 2 1 +H1/2
(R) be a minimiser of

E(u) = [u]21/2 +

Z

R
W (u) d

under the constraint u ⌘ 0 on [�R,R]. Then u satisfies 1� c
|x|2  u(x) for all x 2 R and some

c � 1.

3.2. The Interface. We recall the following results for transitions between potential wells.

Lemma 3.6. [CSM05] There exists a function � 2 C2,↵
(R) such that � is monotonically in-

creasing,

lim

x!1
�(x) = 1, lim

x!�1
�(x) = 0, A��W 0

(�) = 0.

The function satisfies
c

1 + x2
< �0(x)  C

1 + x2

for some C � c > 0.

The estimate on the derivative further implies that

�(x) = 1�
Z 1

x

�0(t) dt  1�
Z 1

x

C

1 + t2
dt  1� C 0

x

for any C 0 > C and su�ciently large x, as well as �(x) � 1� c
x for all su�ciently large x. This

has been sharpened to the estimate

�

�

�

�

1� 1

W 00
(0)x

� �(x)

�

�

�

�

= O(x�2
)
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in [GM12, Theorem 3.1]. The same decay holds for large negative x:
�

�

�

�

�(x)� 1

W 00
(0) |x|

�

�

�

�

= O(|x|�2
).

Note that the constant in [GM12] is slightly di↵erent since the operator used there is the half-

Laplacian in its usual normalisation, while we neglected a dimensional constant for easier nota-

tion. Under additional conditions, we can also control the second derivative of �. Note that for

the popular choice

W (u) =
1

⇡
[cos(⇡u) + 1]

(with wells on Z+ 1/2) we have the transition function

�(x) =
2

⇡
arctan(x), �0(x) =

2/⇡

1 + x2
, �00(x) =

4x

⇡ (1 + x2
)

2

so that also

(3.2) |�00(x)|  C/(1 + x2
)

3/2.

In the following, we assume that W is chosen such that the optimal transition function � = �W
satisfies (3.2).

Lemma 3.7. Let L � 1, � as in Lemma 3.1. Then there exists function e� =

e�L 2 C2,↵
(R)

such that

(1) e� is monotone increasing,

(2) e� ⌘ 0 on (�1,�L/W 00
(0) +

˜C),

(3) e� ⌘ 1� 1
L on [L/W 00

(0) +

˜C,1),

(4) whenever 0 < e�(x) < � or 1� � < e�(x)  1 we have
⇣

A

e��W 0
(

e�)
⌘

(x) � c̄

L2

(5) whenever �  e�(x)  1� �, we have
�

�

�

A

e��W 0
(

e�)
�

�

�

(x)  C

L2
.

The constants c̄, C, ˜C depend on W , but not on L.

Proof. Take fL : R ! R to be a smooth function such that

fL(z) =

8

>

<

>

:

0 z  1
L

z � C
1

L2

2
L  z  1� 2

L

1� 1
L z � 1� 1

L

, fl(z)  z � C1

L2
8 z � C1

L2

and 0  f 0
L  3, |f 00

L|  10
L and define

e� = fL � �.
We see that

e�0 = (f 0
L � �)�0 � 0,

so

e� is monotone increasing. Furthermore, we obtain that

�(x) � 1� 1

W 00
(0)x

� C

x2
� 1� 1

L
8 x � L/W 00

(0) + C
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and thus

e�(x) ⌘ 1� 1
L for all x � L/W 00

(0)+C. Analogously,

e�(x) ⌘ 0 for all x  �(L/W 00
(0)+

C). Now compute

(

e�� �)0 = [(f 0
L � �)� 1]�0

(

e�� �)00 = [(f 0
L � �)� 1]�00 + (f 00

L � �) (�0)2.
Thus it is easy to see that

�

�

�

e�� �
�

�

�

 2

L
,

�

�

�

e�0 � �0
�

�

�

 C

L2
,

�

�

�

e�00 � �00
�

�

�

 C

L3
.

When we abbreviate w =

e���, we can therefore use a representation of A like (2.3) to compute

�

�

A(

e�� �)(x)
�

�

=

�

�

�

�

�

Z x+L

x�L

R y

x
(y � t)w00

(t) dt

|y � x|2 dy +

Z

R\[x�L,x+L]

w(y)� w(x)

|y � x|2 dy

�

�

�

�

�


Z x+L

x�L

||w00||L1
dy + 2

Z 1

L

||w||1
y2

dy

 C

L2
.

Finally, take x such that �(x) � 1� � or 0 < �L(x)  �. Then we can use that

˜�  � � C
1

L2

or

e� = 0 to estimate

�W 0
(

e�(x)) = �W 0
(

e�(x)� �(x) + �(x))

� �W 0
(�(x))� 2W 00

(�(x))

3

(

e�(x)� �(x))

� �W 0
(�(x))� W 00

(1)

2

C1

L2
.

Thus in total

A

e��W 0
(

e�) � C

L2

if

e�(x) /2 [�, 1��][ {0} and C1 is chosen large enough (since the constants involving derivatives

do not depend on C1) and
�

�

�

A

e��W 0
(

e�)
�

�

�

 C

L2
.

⇤
3.3. Dynamics on the Real Line I. We can apply the sub-solutions constructed above to the

one-dimensional problem by glueing a sub-solution for periodic obstacles to that for an interface.

First we describe our results on the real line for a single step and then for a kink/anti-kink pair.

The first case cannot be achieved with finite energy, but it helps us identify the time scale on

which the pinning constraint induces motion. Here, we need to use solutions to (1.4) in the

viscosity sense since a single transition layer does not have finite energy.

Theorem 3.8 (A single step). Let xi," = i d" for d" � ". Then there exist u"  u" which are a
viscosity sub- and super-solution of

(3.3)

(

c""ut =

1
| log "|

�

Au� 1
" W

0
(u)

�

in R \Si2Z B"(id")

u = 0 on
S

i2Z B"(id")

respectively with the following property: When we choose c" =

"
d2

" | log "| , there are constants

c, C > 0 such that
lim

"!0
u"(t, ·) = �[ct,1), lim

"!0
u"(t, ·) = �[Ct,1)
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in L2
loc(R) for all t > 0.

In one dimension, the natural obstacle scale is d" ⇠ 1/| log "|, so the gradient flow equation is

slow on a scale of O(" | log "|). The interface moves with speed O(1) if d" ⇠ p

"/| log "|, which
is the natural distance between obstacles in two space dimensions; it is slow for larger distances

and fast for smaller ones. It moves on the same time-scale as an interface would due to the

kink/anti-kink attraction for d" ⇠
p
". The proof also goes through for d" = N" for large enough

N .

The assumption that the obstacles are distributed on a lattice can of course be weakened

significantly, and we believe that solutions u" should in fact converge to a characteristic function

with a linearly propagating front �[vt,1) for periodic obstacles. We do not pursue these questions

further.

Proof of Theorem 3.8. Construction of a sub-solution. For convenience, we build the sub-

solution in the blow-up scale. Choose l = l" = d"/("N) for some su�ciently large N 2 N (to be

specified later), R = 1 and M = 1. We can extend the sub-solution for an obstacle ūl on the

circle S1
l from Lemma 3.1 to the circle of length Nl as in Lemma 3.4.

Define L by 1� 1
L = ūl(�x0) and take

e� associated to L. By growth estimates for the optimal

profile and the obstacle cell solution, L = l + O(1). Furthermore, by this we know that

e� is

constant on intervals (�1, l/W 00
(0) +

˜C] and [l/W 00
(0) +

˜C,1) for potentially larger constants

˜C. While l and L depend on N , the constants are uniform (at least for l � 1 bounded from

below), and we can take N such that N > 4

˜C. We will place an additional condition on N later.

Our sub-solutions are given by a modified transition

e� which moves with speed ↵ in the space

between two obstacles. Once we get too close to an obstacle, we jump over it instantaneously.

In formulas

ũ(t, x) =

(

e�
�

x� N
4 l � ↵t

�

x  3N
4 l

ūl,Nl(x) x � 3N
4l

for t 2 [0, Nl
4↵ ] and

ũ(t, x) = ũ

✓

t�m
Nl

4↵
, x�mNl

◆

for t 2
✓

m
Nl

4↵
, (m+ 1)

Nl

4↵

�

, m 2 N.

By construction, u is continuous in space for all times t, jointly upper semi-continuous and non-

increasing in time for a fixed point x 2 R. Since for fixed x we only jump down as time increases,

u is clearly a sub-solution at the points of discontinuity in time. It remains to find ↵ such that

u is a sub-solution also where it evolves smoothly.

At smooth points of ũ away from the pinning set

S

i2Z B1(iNl), it is su�cient to verify the

inequality ut  Au�W 0
(u) pointwise to obtain that ũ is a viscosity sub-solution.

At points where ũ =

e� = 0, ũ is clearly a sub-solution as @tũ = 0, W 0
(ũ) = 0 and A ũ � 0

since 0 is an absolute minimum of ũ. At points where ũ = ul,Nl, ũ is a sub-solution since

A ũ(x)�W 0
(ũ(x)) = A ũl,Nl(x)�W 0

(ũl,Nl(x)) + A(ũ� ũl,Nl)(x) � 1

l
� c
�

�x� N
4 l � ↵t

�

�

� 0

as the left half-space where ũ < ũl,Nl exerts a force proportional to the inverse distance of the

interface to the point x. As this is larger than Nl, the first term dominates and the sub-solution

property is established for large enough N .
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Finally, take (t, x) such that ũ(t, x) = e�(t, x) and compute

A ũ(t, x)�W 0
(ũ(t, x)) = A(ũ� e�)(t, x) + A(

e�(t, x))�W 0
(

e�(t, x))

= A(ũ� e�)(t, x) +O(l�2
)

=

Z 1

x+N
8

l

(ũ� e�)(y)

|y � x|2 dy +O(l�2
)

� �
1
X

i=1

Z iNl+1

iNl�1

1

|y � x|2 dy +

Z iNl�1

(i�1)Nl

c |y � iNl|�2

|y � x|2 dy

+

Z (i+1)Nl

iNl+1

c |y � iNl|�2

|y � x|2 dy +O(l�2
)

� �
1
X

i=1

2

|iNl �Nl/4|2 +

2

|(i� 1� 1/4)Nl|2
Z l

1

1

y2
dy +O(l�2

)

= O(N�2l�2
) +O(l�2

)

= O(l�2
).

Now we can finally use that the second O(l�2
) term is positive where

e� 2 (0,�] or [1��, 1], and
it compensates the first term for large enough N (which can be chosen independently of l). At

the interface we have

c̄ := max

z2[�,1��]

e�0(z) > 0,

so we can choose ↵ = O(l�2
) such that ũ is a sub-solution.

Rescaling. Let us pass back to the original length scale:

u"(t, x) = ũ

✓

t

c""2 | log "| ,
x

"

◆

.

By construction, u" is a sub-solution of (3.3) since (at smooth points)

c"" @tu" =
c" "

c" "2 | log "| (@tũ)

 1

" | log "| ((A ũ)�W 0
(ũ))

=

1

| log "|
✓

Au" �
1

"
W 0

(u")

◆

.

We know that the interface in the blow up scale moves by exactly Nl" in time Nl"/(4↵) ⇠ N l3" ,
so the rescaled interface moves by d" = N"l" at the time t" such that

t"
c" "2 | log "| ⇡ N

✓

d"
"

◆3

, t"
c"

=

N d3" | log "|
"

.

To obtain a speed of O(1), we need t" ⇠ d", so we choose the acceleration factor

c" =
"

d2" | log "|
.

Limiting behaviour. In the limit "! 0, the jumps over shorter and shorter spatial intervals

disappear and u"(t, ·) converges locally in L1
to the characteristic function of an interval I(t)

moving with uniform speed. If c" is chosen too small, then I(t) = ; for all positive times, whereas

too large c" implies I(t) ⌘ [0,1). In the scaling regime identified above, we have I(t) = [ct,1)

for some c > 0.
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Construction of super-solutions. Here we work directly on the macroscopic scale. Let us

make the ansatz

u"(t, x) = min

⇢

�

✓

x� ↵t

"

◆

, ūl"

⇣x

"

⌘

�

.

In the stationary case ↵ = 0 this minimum of two solutions is clearly a super-solution. Still

for small positive ↵, it su�ces to consider (t, x) such that u"(t, x) = �
�

x�↵t
"

�

since at other

points (including the non-smooth points where � and ūl" meet) the super-solution property is

still easily established. The function is continuous by construction and satisfies the pinning

constraint. Finally, compute

c"" @tu"(t, x) = �↵ "

d2" | log "|
�0
✓

x� ↵t

"

◆

� �c↵"

d2" | log "|
1

�

x�↵t
"

�2
+ 1

1

| log "|
✓

Au" � 1

"
W 0

(u")

◆

=

1

" | log "| ((A�)�W 0
(�)) +

1

| log "|
✓

Au" � 1

"
(A�)

◆

=

1

| log "| A
✓

u" � �

✓ ·� ↵t

"

◆◆

 1

| log "|
X

i2Z

Z

[id"�",id"+"]

�� �y�↵t
"

�

|y � x|2 dy

 �2" �
�

x�↵t�d"
"

�

| log "| d2"
by just considering the index i 2 Z such that x � d"  id"  x. Since �(z) � c min{1,�1/z}
vanishes more slowly than �0, this shows that

c"" @tu"(t, x) � 1

| log "|
✓

Au" � 1

"
W 0

(u")

◆

for suitably small ↵ which is independent of " > 0. ⇤

Remark 3.9. It is possible to prove a comparison principle for the evolution equation (1.4) in the

viscosity sense. This has been done for equations on the whole space and operators of the type

(��)

s
for s > 1/2 in [Imb05], but the methods go through for s  1/2 and equations on domains

with only minor modifications. Thus, the existence of a viscosity solution u" with u"  u"  u"

follows directly by Perron’s method. For a viscosity solution with given initial data, additional

barriers have to be constructed. It is well known that u solves

8

>

<

>

:

c""ut =

1
| log "|

⇣

Au� W 0(u)
"

⌘

t > 0, x 2 ⌦"

u ⌘ 0 t � 0, x 2 ⌦

c
"

u = u0 t = 0

in the viscosity sense if and only if v :

= e��tu solves an equation of the same form with the

non-linearity

f�(t, v) = �e��tW
�

e�tv
�

"
� �v.

in place of W 0
(u)/". When we choose � large enough (depending on W and "), the function f�

is monotone in u uniformly in t. For an initial condition u0
smooth enough to establish

Au0 � W 0
(u0

)

"
2 L1

(⌦")
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pointwise, we can then construct sub- and supersolutions by

v(t, x) = u0(x) + Ct · �⌦" , v(t, x) = u0(x)� Ct · �⌦"

for some large constant C > 0. This includes all initial conditions in C2
b (R) and all initial

conditions that we are interested in. Since v attains the initial condition, also u does. The

domain ⌦" can be chosen to be periodic or the perforated real line R \B"(d" · Z).
3.4. The Corrector. We have seen that the pinning constraint induces motion on a time-scale

which is strictly slower than the log "-timescale on which the next-order term in a �-expansion

(2.2) acts as a kink/anti-kink attraction. We want to show that the pinning does not a↵ect the

attraction and annihilation of a single kink/anti-kink pair. For this purpose, we need a more

refined construction to obtain the exact speed of an interface rather than just the order in ".
Therefore, we need to know the behaviour of a moving interface to the next order.

Set

⌘ :=

1

W 00
(0)

Z 1

�1
(�0)

2
dx.

Lemma 3.10. There exists a function  2 H1/2
(R) \ C1,↵

(R) \ L1
(R) for some ↵ > 0 which

solves
A �W 00

(�) = �0 + ⌘ (W 00
(�)�W 00

(0)) .

The solution  satisfies the estimate

| 0
(x)|  C

1 + x2

and if W 2 C3,1
(R) then also  2 C2,↵

(R) for some ↵ > 0 and

| 00
(x)|  C

1 + x2
.

The Lemma is proved in [GM12, Theorem 3.2] without the decay estimate, see also [PV17,

Lemma 2.2]. A simple proof can be obtained in a similar way as the one of the decay estimate

on �0.

Idea of Proof: We only sketch the proof of the decay estimates. Consider the case W↵(z) =

1�sin(⇡z)
⇡2↵ for ↵ > 0 which has the explicit solution �↵(t) =

1
⇡ arctan(

t
↵ ) (with potential wells at

±1 instead of 0 and 1). We note that the derivative of any optimal transition �↵ satisfies

A�0↵ �W 00
(�↵)�

0
↵ = 0

so in particular

A(�0↵) +
1

↵
�0↵ � 0

for all large (positive and negative) x. Given another potential W , we split W 00
(�) = f+(x) +

f�(x) with inf f+ > 0 and f� compactly supported. This splitting allows us to use a comparison

with the solutions �↵ for a suitable ↵, taking the compactly supported ‘bad’ term to the other

side. We calculate formally

A �W 00
(�) = �0 + ⌘ (W 00

(�)�W 00
(0))

A 0 �W 00
(�) 0

= W (3)
(�)�0 + �00 + ⌘W (3)

(�)�0

A 00 �W 00
(�) 00

= W (3)
(�) {2�0 0

+ �00 + ⌘�00}+W (4)
(�)

�

(�0)2 + ⌘(�0)2
 

.

If W 2 C3,1
(R), then the last equation makes sense with a right hand side in L1

(R) \ L1
(R)

and the regularity of  can be improved to C2,↵
(R). The decay now follows as in the proof of

[CSM05, Theorem 1.6]. ⇤
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Note that due to the decay estimate on the derivative, �± " is still monotone increasing for

all small enough " > 0. As before, this is needed when a moving interface comes close to an

obstacle and jumps instantaneously to ensure that the jump is pointwise down in time and thus

to preserve the sub-solution property at jump points.

3.5. Dynamics on the Real Line II. We can now use the slowness of the obstacle-driven

evolution in comparison to the kink/anti-kink attraction to show that the pinning constraint has

no influence on the motion of a single kink/anti-kink pair.

Theorem 3.11 (Asymptotically flat crystal). Let xi," = i d" for d" � p
". Then there exist

u"  u" which are a viscosity sub- and super-solution of
(

1
| log "|"ut =

1
| log "|

�

Au� 1
" W

0
(u)

�

in R \Si2Z B"(id")

u = 0 on
S

i2Z B"(id")

respectively such that

lim

"!0
u"(t, ·) = lim

"!0
u"(t, ·) = �[�r(t),r(t)]

in L2
(R) for all t > 0 with

r(t) =

s

r(0)2 � t
R1
�1(�0)2 dt

.

Proof. Choose � > 0. Following [PV17] we know that for all small enough " > 0



�

✓

x+ x�(t)

"

◆

� " 

✓

x+ x�(t)

"

◆�

+



�

✓

x�(t)� x

"

◆

� " 

✓

x�(t)� x

"

◆�

� 1

is a sub-solution of the unpinned equation

"ut = Au� 1

"
W 0

(u)

when we choose x� as the solution of the ordinary di↵erential equation

˙x� =

1

R1
�1 (�0)2 dx

�1

2x�
� �, x�(0) = r(0)� �.

We just sketch the modifications which we need to make in the previous proof to apply it in this

situation. Again, we can modify the interface choosing

"�1/2
= "�1 "1/2 ⌧ L" ⌧ "�1 d".

This time, we need to modify the function �" = � � " . Abbreviate again w" = (fL � �") � �"
and compute

w00
" = [(f 0

L � �")� 1]�00" + (f 00
L � �") (�0")2  C

✓

1

L3
+

"

L2

◆

so

Aw"(x)  2L ||w00
" ||L1(x�L,x+L) +

2

L
||w"||L1(R)  C

✓

1

L2
+

"

L

◆

.

The contribution of the “bending modification” to the attraction thus is O(L�2
+ "L�1

) =

O(L�2
" ), which was seen to be slow compared to the kink/anti-kink attraction in the previous

proof where we also saw that the insertion of obstacles contributes to the force on the same order.

When constructing sub-solutions in this setting, we only have to jump over obstacles when we

come L"-close (as before), but the obstacles are d"/"-far apart, which is significantly further by



THE EFFECT OF FOREST DISLOCATIONS 25

our choice of L". Thus both the additional attraction and the fast motion close to obstacles

disappear in the limit "! 0. Thus the sub-solution converges to

�[�x�,x�]

strongly in L1
(R). Now it su�ces to take � ! 0. Super-solutions are obtained similarly. ⇤

It is expected that the Theorem results can be extended to the case where several up and

down steps occur by combining our methods with those of [PV15, PV17].

We see that motion becomes slow also in this time scale as the compact step becomes wider

and wider. If we take a limit such that one transition remains fixed at the origin and let the other

one go to ±1, we partially recover the statement of the previous Theorem as we see that in this

time-scaling, the evolution of a single step is stationary. To recover the optimal time-scale, we

could couple the initial width r(0) = r"(0) of the step to ".

3.6. Periodic dynamics. On a circle of finite radius, there is no analogue of a single step.

Instead, we can consider the situation in which {u" ⇡ 1} is the majority phase. Without

pinning, the majority phase takes over the minority phase in logarithmic time in a gradient flow.

This happens precisely as it would if {u" ⇡ 1} is the minority phase and the pinning has no

e↵ect, just as on the real line. If {u" ⇡ 1} however is the majority phase, this would increase the

energy, and the evolution becomes stationary on all timescales.

The use of energy methods relies on an analogue of Theorem 2.1 being valid in one dimension.

We formulate it at the end of this section in Proposition 3.15 and assume its validity throughout.

Theorem 3.12. Denote by S1
R = [�R/2, R/2] the circle of radius R and xi," be points on S1

R

such that

min

i 6=j
|xi," � xj,"| � d" �

p
"

The number of points is denoted by N".

(1) Let r < R/2. There exists a weak solution u" of

(3.4)

(

1
| log "|"ut =

1
| log "|

�

Au� 1
" W

0
(u)

�

in S1
R \SN"

i=1 B"(xi,")

u = 0 on
SN"

i=1 B"(xi,")

such that u"(0, ·) ! �[�r/2,r/2] which satisfies

u"(t, ·) ! �[�r(t),r(t)]

for all t > 0 independently of the distribution of points xi,". Here r(t) solves

ṙ = � 1

2r
+ 2

1
X

n=1

2r

(nR)

2 � 4r2
, r(0) = r/2.

If the points xi," satisfy the conditions of Theorem 2.1/Proposition 3.15, then also
E"(u"(0, ·)) ! E(�[�r/2,r/2]).

(2) Let r > R/2 and assume that the points xi," satisfy the conditions of Proposition 3.15.
Then there exists a weak solution u" of

(

c""ut =
1

| log "|
�

Au� 1
" W

0
(u)

�

in S1
R \SN"

i=1 B"(xi,")

u = 0 on
SN"

i=1 B"(xi,")

such that u"(0, ·) ! �[�r/2,r/2] and E"(u"(0, ·)) ! E(�[�r/2,r/2]) which satisfies

u"(t, ·) ! �[�r/2,r/2]

for all t > 0, independently of c" ! 0.
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Proof. Proof of (1). Note that the results of [PV15] also hold in this setting and that an

unpinned solution to the time-rescaled gradient flow is governed by this ODE. In the proof, the

discussion showing that the constants in front of "-powers are finite is slightly more involved

than in the case of finitely many layers. One has to use periodicity in an essential way always

combining the force exerted by a kink/anti-kink pair to obtain cancellations between otherwise

infinite forces.

We construct sub- and super-solutions periodically on R and then take them as functions on

the circle. Note that the series

U(t, x) :=
X

k2Z



(�� " )

✓

x� kR� r(t)/2

"

◆

� (�� " )

✓

x� kR+ r(t)/2

"

◆�

converges absolutely and uniformly for all x 2 R by comparison with

P1
k=1 k

�2
since for kR >

x+ r/2 we have

�

✓

x� kR� r/2

"

◆

� �

✓

x� kR+ r/2

"

◆

= 1� 1

W 00
(0)

x�kR�r/2
"

+O

✓

"2

(x� kR� r/2)2

◆

�
 

1� 1

W 00
(0)

x�kR�r/2
"

+O

✓

"2

(x� kR� r/2)2

◆

!

=

1

W 00
(0)

✓

"

x� kR� r/2
� "

x� kR+ r/2

◆

+O("2 (kR)

�2
)

=

"

W 00
(0)

r

(x� kR)

2 � (r/2)2
+O("2 (kR)

�2
).

A similar estimate holds for kR < x � r/2 and for  . Hence, the partial sums of the series

converge and a continuous limit exists. Since super-solutions for a finite number of kink/anti-

kink pairs have precisely this form (with a function r which starts out slightly wider than the

width of the limiting step and moves slightly slower than by the limiting ODE, compare the role

x� plays in the proof of Theorem 3.11), we can construct a limiting (viscosity) super-solution to

the unpinned problem using this series. Now, it is easy to see that again

u(t, x) = min {U(t, x), ul(x)}
is a super-solution to the pinned equation where ul is constructed as in Lemma 3.1 for M = 0.

For weak sub-solutions, both the optimal transitions after the bending modification and the

extended obstacle sub-solutions are constant for large arguments, so they can be glued together

rather than added up. The proof proceeds like that of Theorem 3.11 with an additional term in

the calculations from periodicity. The resulting ODE is computed by periodicity:

ṙ =

0

@

X

n2Z\{0}

1

r � (r + nR)

� 1

r � (�r + nR)

1

A� 1

2r

= � 1

2r
+ 2

1
X

n=1

2r

(nR)

2 � 4r2
.

The initial condition with converging energies which lies above the sub-solution is given by

u0 = min

(

X

k2Z



�

✓

x� kl � r/2� �"
"

◆

� �

✓

x� kl + r/2 + �"
"

◆

+ 1

�

, ū
⇣x

"

⌘

)

where ū is the periodic solution of Lemma 3.1 with M ⌘ 0. Furthermore, �" is a small parameter

which ensures that the initial condition lies above the sub-solution.
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Proof of (2). Fix t > 0. For any sequence c" > 0 and solutions u" to the evolution equation,

we observe that u"(t, ·) ! �E(t) up to a subsequence since the initial energies are bounded, and

the energy decreases along the gradient flow.

Assume there is c" ! 0 such that u"(t, ·) ! �E(t) with E(t) 6= [�r/2, r/2]. Since the unpinned
evolution equation wants to expand the {u = 1} phase under these initial conditions, we can

easily construct a stationary sub-solution to the initial condition: the kink/anti-kink attraction

acts at the interface in the direction of expanding the {u ⇡ 1} phase and the contracting force

of the obstacles becomes negligible. Thus [�r, r] ⇢ E(t) for all t > 0.

We assume that an analogue of Theorem 2.1 holds in one dimension. For a contradiction,

assume that [�r, r] ( E(t) ( S1
R. Then E(�E(t)) � 2 + ⇤L1

(E(t)) > E(�[�r/2,r/2]), which is a

contradiction. The inequality holds since any set which is neither empty nor the whole circle has

a perimeter � 2 in one dimension and since the {u = 1} phase was assumed to be expanding.

If E(t) = S1
R, then we use the fact that u" 2 C0

([0, T ], L2
) evolves continuously when con-

sidered as an L2
-valued function. This allows us to choose a di↵erent sequence c̃" such that

the integral of u" at time t is always strictly bounded away from both r and R. Thus we have

reduced this case to the previous one and obtain a contradiction like before. ⇤

Remark 3.13. It is an open question whether the statement above is stable in the sense that all

solutions to (3.4) with initial conditions u0
" satisfying

u0
" ! �[�r,r], E"(u0

") ! E(�[�r,r])

behave in the same way.

Remark 3.14. Since we employ energy methods for the derivation of this result, it is not clear

whether also dilute obstacles whose capacity vanishes asymptotically in the energy can impede

interface motion.

Finally, let us state the result needed for the use of energy methods above.

Proposition 3.15. Let xi," 2 S1 be points such that 1  i  N" with N"/| log "| ! ⇤ satisfying
the following assumptions:

(1) (well-seperated) There exists � < 1 independent of " > 0 such that d(xi,", xj,") > "� for
all 1  i 6= j  N".

(2) (finite capacity density) The obstacles approach a multiple of the Lebesgue measure

through 1
| log "|

PN"

i=1 �xi * ⇤L2 for ⇤ 2 (0,1).

Take the space

X" := {u" 2 H1/2
(S1

) | u" ⌘ 0 on B"(xi,") for 1  i  N"}
and the energy functional

E" : X" ! R, E"(u") =
1

| log "|
✓

[u"]
2
1/2 +

Z

S1

1

"
W (u") dx

◆

where W is a periodic multi-well potential and W � c dist2(·,Z) for some c > 0. Then
h

�(L2
)� lim

"!0
E"
i

(u) =

Z

S1

↵(u) dx+ 4

Z

Ju

[u] dH1

where u 2 BV (S1,Z), [u] = u+ � u� denotes the jump of u on the jump set Ju and ↵(z) is
determined as the solution of the cell problem

↵(z) = inf

⇢

1

2

[w]21/2,R2

+

Z

R
W (w) dx

�

�

�

�

w � z 2 H1/2
(R), w ⌘ 0 on B1(0)

�

.
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We will not prove the proposition in this article, the sceptical reader may also take it as a

conjecture. For a useful compactness property, either a more restrictive distribution of obstacles

or a potential growing at 1 should be imposed.

3.7. External Driving Forces. Let us assume that an external sheer force is applied to the

crystal. On the scale where the crystal can be assumed to be periodic, an applied force is constant

in space and thus enters the evolution equation as an additive constant.

Theorem 3.16. Denote by S1
R = [�R/2, R/2] the circle of radius R and let xi," be points on S1

R

satisfying the conditions of Proposition 3.15. Let r < R, f 2 R. There exists a weak solution u"

of

(3.5)

(

"ut =
1

| log "|
�

Au� 1
" W

0
(u)

�

+ f in R \SN"

i=1 B"(xi,")

u = 0 on
SN"

i=1 B"(xi,")

with an initial condition satisfying

u"(0, ·) ! �[�r/2,r/2] in L2
(S1

), E"(u"(0)) ! E(�[�r/2,r/2])

such that the following hold:

(1) If f < 0, then u"(t, ·) ! �[�r/2+|f |t,r/2�|f |t] in L2
(S1

) for all t > 0 (the characteristic
function of the empty set being zero).

(2) If f = f" = f | log "|�1 for f < 0 and c" =
1

| log "| , then u"(t, ·) ! �[�r(t),r(t)] for all t > 0

where

ṙ = � 1

2r
+ 2

1
X

n=1

2r

(nR)

2 � 4r2
+ f, r(0) = r/2.

(3) There exists f0 > 0 such that for 0 < f < f0, we have u"(t, ·) ! �[�r/2,r/2] in L2
(S1

)

for all t > 0. This also holds if we accelerate the solutions to any faster time-scale.

The proof proceeds exactly as before, but the applied force now acts on the fast time-scale

when it is contracting so that the kink/anti-kink attraction disappears in the limit. In the other

direction, we note that for small forces, an energy barrier still needs to be overcome. For the case

of small negative forcing or order | log "|�1
compare [GM12] where periodic forcing is considered.

4. Two-dimensional Dynamics

4.1. Technical Points. The one-dimensional evolution reaches the macroscopic time-scale at

an obstacle distance of d" ⇠ p

"/| log "| which is the natural distance of obstacles in the setting

of Theorem 2.1. In two dimensions, this is still expected to be slow.

Let us for the moment assume that the obstacles are distributed on a perfect grid d" · Z2
in

the plane. Then we can use the moving interface sub-solutions constructed in one dimension

as a sub-solution by extending them as constant in the second direction. They are still pinned

sub-solutions since at {u = 0}, the sub-solution property holds trivially on the non-pinned set.

However, these extended sub-solutions can be considered as sub-solutions in the situation when

the obstacles are "-tubes around lines rather than unions of "-balls. The volume of the pinning

set is N" · "2 ⇠ " | log "|, while the volume of the "-tubes is proportional to
p
N" · " ⇠

p

" | log "|,
so considerably larger. While the volume of the pinning set is a bad proxy for estimating its

influence, this simple observation suggests that using a one-dimensional construction may well

over-estimate the influence of pinning. Indeed, a back-of-the-envelope calculation like in Section

2.2 gives much slower speed for super-solutions.

The modification of the interface needs to be done more carefully in this setting, since the

flattening out of the interface to facilitate glueing induces motion on the macroscopic time-scale

in this scaling. The refined modification is presented below.
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Lemma 4.1. Let 1/2 < ⇣  1, F > 0, l � 1. Then there exists

ū 2 C1/2
�

R2
� \ C1,1/2

loc

�

B2 \B1

� \ C1,1/2
�

R2 \B3/2

�

with the following properties:

(1) We have

ū ⌘ 0 on B1 and A ū�W 0
(ū) � 1

l
+

F

l1+⇣
on R2 \B1.

(2) The function ū is constant on R2 \Bl⇣/3 and
�

�

�

�

lim

|x|!1
u(x)�

✓

1� 1

W 00
(0) l

◆

�

�

�

�

 C

l2⇣

(3) The growth estimate

ū(x) � 1� 1

W 00
(0) l

� c

|x|2
holds for some c > 0.

All constants are independent of l.

Proof. Take the sub-solution ū constructed in Lemma 3.1 on the circle of length l⇣ with

M = Ml =
1

l1�⇣
+

F

l
and extend it to the whole real line as in Lemma 3.4. Now set

u2D(x) = ū(|x|).
Since the norm is 1-Lipschitz, the function u2D is C0,1/2

-Hölder continuous and since the norm

is C1
-smooth away from the origin, u2D is exactly as smooth as ū outside B1(0).

The function is constant on R2 \Bl⇣/2(0) and satisfies the well-known growth estimate

ū(|x|) � 1� l⇣�1
+ F l�1

W 00
(1) l⇣

� c

|x|2
Note that F vanishes in the error estimate to leading order since l1+� � l2� . The sub-solution

property is established by comparing the rotationally symmetric extension to a non-radial ex-

tension. Assume that x = |x| · e1 and observe that

Au2D(x) =

Z

R2

ū(|y|)� ū(|x|)
|y � x|3 dy

�
Z

R2

ū(y1)� ū(x1)

|y � x|3 dy

= c2,1

Z

R

u(y1)� u(x1)

|y1 � x1|2 dy1

= c2,1 A ū(|x|).
since ū is monotone growing away from the origin and |x| = x1. The same holds after rotation

for any point x 2 R2 \B1(0).

We used that for a function f : Rn ! R, f(x̂, xn) = g(x̂) for some g : Rn�1 ! R we have

A

Rn

f(x̂, xn) = A

Rn�1

g(x̂) when the fractional Laplacian is computed as a singular integral.

The normalising constant c2,1 6= 1 appears here because we neglected normalising the fractional

Laplacian before. Since the same re-normalisation a↵ects the half-Laplacian acting on the in-

terface and the obstacle sub-solution in the same way, we will not make a di↵erence here and

remark only that the Lemma holds for the properly normalised operator. ⇤
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In two dimensions, the downward force exerted by the pinning constraint decays faster and

the optimal transition approaches +1 more quickly. This is connected to the fact that small

balls shrink faster in two dimensions, or equivalently, that the boundary condition at infinity

has a stronger upwards pull since large circles have increasing measure while two points in one

dimension always have the same mass.

Lemma 4.2. Let u 2 1 +H1/2
(R2

) be a minimiser of

E(u) = [u]21/2 +

Z

R2

W (u) dx

under the constraint u ⌘ 0 on BR(0). Then u 2 C1/2
(R2

) is radially symmetric, smooth away
from the pinning set, and satisfies 1� c

|x|3  u(x) < 1 for all x 2 R2 and some c � 1.

The proof is a slight variation of that of Lemma 3.1 or Lemma 3.5.

4.2. Dynamics in the Plane. We will now prove that the pinning constraint acts on a much

slower time-scale than the kink/anti-kink attraction by considering the model problem of a single

infinitely long straight interface on R2
perfectly aligned with the grid.

Theorem 4.3. Let �" = d" ·Z2 for d" � ". Then there exists u"  u" which are a viscosity sub-
and super-solution of

(

c±" "ut =

1
| log "|

�

Au� 1
" W

0
(u)

�

in R2 \Si2Z B"(id")

u = 0 on
S

i2Z B"(id")

respectively. When we choose c+" =

"2

d3

" | log "| for the time scaling of the super-solution and c�" =

| log "| c+" , there are constants c, C > 0 such that

lim

"!0
u"(t, ·) = �[ct,1)⇥R, lim

"!0
u"(t, ·) = �[Ct,1)⇥R

in L2
loc(R) for all t > 0. In particular, the gradient flow is slow of some order c" between

"1/2 | log "|1/2  c"  "1/2 | log "|3/2

in the line-tension scaling d" ⇠ "1/2| log "|�1/2.

Here, we miss the optimal order by a logarithmic term as the sub-solution moves on a faster

time-scale than the super-solution. This discrepancy is due to our use of a radially extended

function rather than a fully two-dimensional construction. The two-dimensional growth rate is

observed in Lemma 4.2, and we expect the super-solution to give the right order of movement

rather than the sub-solution – see Remark 3.2 for the di�culties related to constructing sub-

solutions directly in two dimensions.

Proof of Theorem 4.3. Like in the proof of Theorem 3.8, we begin by constructing sub-solutions

in a blow-up scale.

First modification. Like in the one-dimensional case, denote l = l" = d"/("N) for suitably

large N 2 N. Take fL like in Lemma 3.7, but this time for L = l3/2. Choose g 2 C1
(R) such

that

0  g  1, g(t) =

(

1 |t| � 2l

0 |t|  l
, |g0|  2

l
, |g00|  4

l2

and c1, c2 > 0 to be specified later. Set

e�(x) = fL � �(x1)� c1 log(l)

l2
g(x1)� c2 log(l)

l3



THE EFFECT OF FOREST DISLOCATIONS 31

and compute

�

�

�

A(

e�� �)(x)
�

�

�

 |A(fL � �� �)(x)|+
�

�

�

�

c1 log l

l2
A g(x)

�

�

�

�

 C

L2
+

c1 log(l)

l2

 

Z

Bl(x)

||D2g||
|y � x| dy +

Z

R2\Bl(x)

2 ||g||
|x� y|3 dy

!

 C

l3
+

c1 log(l)

l2

 

4

l2

Z l

0

1

r
(2⇡r) dr + 2

Z 1

l

1

r3
(2⇡r) dr

!

 C log(l)

l3
.

like in Lemma 3.7 because L2
= l3 and again using the property that the fractional Laplacian

of a function of n variable which does not depend on the last variable reduces reduces to the

fractional Laplacian of its profile one dimension below. Thus

e� satisfies

A

e��W 0
(

e�) = A(

e�� �) + A��W 0
(�) +

h

W 0
(�)�W 0

(

e�)
i

= A(

e�� �) +
h

W 0
(�)�W 0

(

e�)
i

�

8

>

<

>

:

�cW c
2

log l
l3

e�(x) 2 [�, 1� �]
c̃W c

2

log l
l3

e�(x) 2 (0,�] or e�(x) 2 [1� �, 1]
c̃W c

1

log l
l2 |x| � 2l.

All constants are positive and depend only on W 00
.

Second modification. Let yi,j," = Nl (i, j) be an enumeration of the pinning sites after

rescaling with i, j 2 Z. For pinning sites with Nli  l3/2 + l, we need an additional modification

to flatten the interface before we can insert obstacles.

Choose 1/2 < � < 1 and a bump-function ⌘ such that

0  ⌘  1, ⌘(x) =

(

1 |x|  l�

0 |x| � 2l�
, |r⌘|  2

l�
, |D2⌘|  4

l2�

and set

ũ�(x) =

0

B

@

1�
X

|i| 2 l1/2

N

X

j2Z
⌘(x� yi,j,")

1

C

A

e�(x1 + �l) +
X

|i|2
p
l/N, j2Z

Ui," ⌘(x� yi,j,")

with

Ui," =
e�( (Ni� �)l) +O(l��2

)

for a small term O(l��2
) to be chosen later. This is a function which mostly looks like (a

translated version of)

e�, but is flattened at the pinning sites. The parameter � will later be used

for the time-evolution. Note that

|e�(x)� Ui,"| = 1

W 00
(0)

�

�

�

�

1

x
� 1

Nil � �

�

�

�

�

+O(l�2
) +O(l��2

)  C l��2
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where ⌘(x� yi,j,") 6= 0, so when we set

⌘i,j(x) = ⌘(x� yi,j,"),

w :

= ũ� � e�

=

X

i,j

⇣

Ui," � e�(x1 + �l)
⌘

⌘i,j

we observe that

rw(x) =
X

i,j

⇣

Ui," � e�
⌘

r⌘i,j � e�0 ⌘i,j e1,

D2w(x) =
X

i,j

⇣

Ui," � e�
⌘

D2⌘i,j � e�0 (e1 ⌦r⌘i,j +r⌘i,j ⌦ e1)� e�00 ⌘i,j e1 ⌦ e1

= O
⇣

l�(2+�)
⌘

.

Therefore, the usual argument shows that

|Aw(x)| 
Z

Bl� (x)

||D2w||L1

|x� y| dy +

Z

R2\Bl� (x)

||w||L1

|x� y|3 dy = O(l�2
)

on R2
where the matrix norm for D2w is the pointwise norm for symmetric bilinear forms

||D2w|| = max

v2S1

q

|vT D2w v|
as needed for radial integration. This estimate can be improved if we are far from the next

pinning site. Namely, assume that mini,j |x � yi,j,"| � 2l, then the first term vanishes and the

sharper estimate

|Aw(x)| 
X

i,j

C

|x� yi,j,"|3
Z

Bl� (yi,j,")
2 ||w|| dy


X

i,j

C l2� l��2

|x� yi,j,"|3

= O(l3��5
)

holds. From now on, take � = 2/3, so that Aw = O(l�3
). Note that this holds true for all x

with |x|  2l.
Inserting Obstacles: Right Half-Space. We now insert the obstacle sub-solutions from

Lemma 4.1 into the flattened out sites and on the half-spaces that are flattened out by fL. First
we deal with the right hand side of the interface where � is close to 1.

We concentrate on the obstacles in the flattened discs since the flattened half-plane can be

treated similarly. The height of the obstacle at yi,j," is 1 � 1
W 00(0) (Nil��) � O((Nil)��2

) for

j  2l1/2/N which is

1� 1

W 00
(0) l

�O(l�4/3
) = 1� 1

W 00
(0) (Nil)

� F

(Nil)4/3
+ o(l�4/3

)

for some bounded sequence F = Fj 2 R, so we choose ⇣ = 1/3 in Lemma 4.1. A lower order

perturbation in either term gives a matching height between the interface and the inserted

obstacle so that we can glue the obstacle into the modified domain. The sub-solution for an

obstacle on R2
is constant for arguments |x| � l⇣ = l1/3 and the flattened out disc in the obstacle

has a radius of l2/3, so the glueing does not cause more problems. The resulting function is

denoted by u.
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Let us check that the sub-solution condition is still satisfied at the obstacles we just inserted.

An ideal interface would exert a non-local force of

A�(Nil) = W 0
(�(Nil))

= W 00
(0)

�

1� �(Nil)
�

+O
�

(1� �(Nil))�2
�

= W 00
(0) · 1

W 00
(0)Nil

+O((Nil)�2
)

=

1

Nil
+O((Nil)�2

)

at yi,j," which is compensated by the obstacle by construction. The same is true up to order

O(l��2l��
) = O(l�2

) for the modified interface ũ�, which is also compensated. The obstacle

yi0,j0," has a distance of Nl
p

(i� i0)2 + (j � j0)2 to yi,j,", so their contribution to the non-local

force is negligible. Namely, the force created by the obstacles at a point x is

X

i,j

Z

B
1/3
l (yi,j,")

u(y)� ũ�(y)

|y � x|3 dy 
X

i,j

"

Z

B
1

(yi,j,"

1

|y � x|3 dy +

Z

B
l1/3

(yi,j,")\B1

1
|y�yi,j,"|2

|y � x|3 dy

#

= O

✓

1 + log(l)

dist(x,NlZ)3

◆

=

(

O(l�2
log(l)) if dist(x,NlZ) � l2/3

O(l�3
log(l)) if dist(x,NlZ) � l

which is compensated either by a su�ciently large constant c1 close to the obstacles or by c2
away from the obstacles. At the interface, it can be compensated by a speed O(l�3

log(l)).
Inserting Obstacles: Left Half-Space. Since the interface could only be modified for

|x| � L � l3/2, we also need to insert obstacles into the flattened out discs in the left half space

in two dimensions.

Being close to phase {u ⇡ 0}, the construction of a stationary obstacle sub-solution does not

go through. Instead we can take a sub-solution of the periodic obstacle problem at phase {u ⇡ 1}
for F = 0, an auxiliary double-well potential

fW and multiply it by a factor

hl ⇠ 1

W 00
(0) l

which allows for continuous glueing. Here, the interface pulls upwards with force ⇠ 1
l , while the

self-interaction force of the obstacle is

A(hlu)�fW 0
(hlu) = hl Au�fW 0

(hlu)

= hl
fW 0

(u)�fW 0
(hlu)

 CfW
l

.

When we choose

fW suitably, CfW can be made as small as we need by choosing any initial

fW and then multiplying by a suitably small constant. Thus the upwards pull of the interface

compensates the self-interaction.

Conclusion and Rescaling. Overall, the calculations show that a function as constructed

above is a sub-solution if the interface moves with a speed � = O(log(l) l�3
). Again, the suitable

monotonicity of

e� and the precise construction ensure the sub-solution property at non-smooth



34 PATRICK W. DONDL, MATTHIAS W. KURZKE, AND STEPHAN WOJTOWYTSCH

times. When passing to the macroscopic scale as

u"(t, x) = u

✓

t

"2| log "| c" ,
x

"

◆

we observe that the interface moves a distance d" ⇠ "l" in a time t" proportional to the product

of the re-scaling factor with the quotient of the travelled distance l" in the blow-up scale and the

speed l�3
" log(l") in the blow-up scale, i.e.

t" ⇠ "2| log "| c" · d"
"

✓

"3 | log "|
d3"

◆�1

=

c" d4"
"2

.

To obtain a uniform speed on the order O(1) we choose t" ⇠ d" or equivalently

c�" =

"2

d3"
.

Super-solutions. Super-solutions are constructed in analogy to the one-dimensional case.

The growth rate 1 � c
|x|3 from Lemma 4.2 leads to the fact that the logarithmic term in the

integral is not present in the super-solution. A simple calculation shows that super-solutions

move on the slower time-scale

c+" =

"2

d3" | log "|
.

⇤
Remark 4.4. A similar argument can be made when the interface is not perfectly aligned with

the grid. Take the grid �" = S(�) · �d" · Z2
�

where S(�) is the rotation matrix

S(�) =

✓

cos� sin�
� sin� cos�

◆

.

If we take � such that tan(�) 2 Q, then the first component z1 of z 2 �" is

z1 = d" (n cos�+m sin�) = d" cos� (n+m tan�)

for some n,m 2 Z. Since we assumed tan� to be rational, this is a discrete periodic subset of

the real line and the distance between any two points is proportional to d". Also the fractional

Laplacian can be estimated as before, so Theorem 4.3 also holds for rotated square grids.

Equally well, we could rotate the interface instead of the grid. This resembles the settings

of [DY06, DKY08] where a straight front in a periodic medium is considered for sharp interface

mean curvature flow and for a local Allen-Cahn equation. Our setting di↵ers in the use of a non-

local di↵erential operator and in that the obstacles are comparable to the size of the interface,

but the distances between them lie on a much larger scale.

4.3. Dynamics on a Torus. Finally we state the main result as applied to the case of [GM06].

Note that the inclusion of a constant force f in the energy is a compact perturbation, so

eE"(u) := E"(u)�
Z

T2

fu dx
�(L2)����! E(u)�

Z

T2

fu dx

for any constant f 2 R.

Theorem 4.5. Denote by T2
a = R2/

�

a · Z2
�

the flat square torus with volume A = a2. Consider
the evolution equation

8

>

<

>

:

c" "ut =

1
| log "|

�

Au� 1
" W

0
(u)

�

+ f in [0,1)⇥
h

T2
a \

SN"

k=1 B"(xi,")

i

u = 0 on (0,1)⇥SN"

k=1 B"(xi,")

u = u0
" at t = 0
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where the pinning sites xi," satisfy the assumptions of Theorem 2.1 and additionally

(1) the distribution assumption

{x1,", . . . , xN","} ⇢

q
| log "|

"
[

j,k=1

Br" (d" · (j, k)) .

for r" ⌧ d" =
q

"
| log "| (i.e. the pinning sites lie in small discs around grid points) and

(2) the number of obstacles per disk is uniformly bounded:

#({x1,", . . . , xN","} \Br" (d" · (j, k)))  M

for some M 2 N independently of ", j, k.

Then we find u0
" ! �[�r/2,r/2]⇥[0,a] =: u in L2

(T2
a) (a strip of width r around the torus) such

that E"(u0
") ! E(u) and the following hold:

(i) If f = 0 and r > a/2, then u"(t, ·) ! u in L2
(T2

a) independently of c" ! 0.
(ii) If f = 0 and r < a/2, then u"(t, ·) ! �[�r(t),r(t)]⇥[0,a] in L2

(T2
a) for c" = | log "|�1 where

ṙ = � 1

2r
+ 2

1
X

n=1

2r

(nR)

2 � 4r2
, r(0) = r/2.

(iii) If 0 < f < f0 for some f0 depending only on the capacity ↵ of dislocations (i.e. the
potential W ) and the limiting density ⇤ = lim"!0

"
| log "|N" 2 (0,1), then u"(t, ·) ! u in

L2
(T2

a) independently of c" ! 0. (This is valid also for f" > 0 if f" � | log "|�1.)
(iv) If f < 0, then u"(t, ·) ! �[�r/2+|f |t,r/2�|f |t]⇥[0,a] for c" ⌘ 1.

(v) If f = f" = f | log "|�1 for f < 0, then u"(t, ·) ! �[�r(t),r(t)]⇥[0,a] for all t > 0 where

ṙ = � 1

2r
+ 2

1
X

n=1

2r

(nR)

2 � 4r2
+ f, r(0) = r/2

if c" =
1

| log "| .

If W 2 C4
(R) and W (3)

(0) = 0 (e.g. if W 0
= sin), then we can generalise the distribution

assumptions as follows.

(1’) There exist d0" � "2/3| log "|1/3 and r" ⌧ d0" such that

{x1,", . . . , xN","} ⇢
1/d0

"
[

j,k=1

Br" (d
0
" · (j, k)) .

(2’) the number of obstacles per disk is uniformly bounded:

#({x1,", . . . , xN","} \Br" (d
0
" · (j, k)))  M

for some M 2 N independently of ", j, k.

The proof is a combination of the analogous statement in one dimension and the more subtle

modification of the interface in two dimensions described above with a few additional facets:

(1) Note that

| 0
(x)|  C

1 + |x|2 ) | (x)|  C

1 + |x| ,

so at the nearest obstacle where we need to modify we use l" ⇠ d"/" ⇠ (" | log "|)�1/2
to

calculate

" (l") = O("3/2 | log "|1/2) ⌧ (" | log "|)3/2 = l3" .
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This allows us to carry out the same modifications as before without paying much at-

tention to the corrector, which is a lower order perturbation only at the closest pinning

site. We have enough ‘wiggle room’ to come closer to the pinning sites and jump shorter

by a logarithmic term, so again we can argue that neither the contracting force nor the

jumps matter in the limit.

If W (3)
(0) = 0, then we can show that  decays as x�2

at ±1, not just as x�1
, thus

we can come closer to the corrected interface with the obstacles without having to take

care of bigger complications in the modification process.

If we could improve the order at which the sub-solution moves to the order of the

super-solution, it would su�ce to require d" � "2/3, which is the order at which the bulk

term induces logarithmically fast motion.

(2) When we denote by u the solution to the cell-problem from Lemma 4.2 and by xi," the

pinning sites, we see that the initial condition

u0
"(x) = min

⇢

�

✓

x1 + r/2

"

◆

,�

✓�x1 � r/2

"

◆

, u

✓

x� xi,"

"

◆�

1iN"

is trapped between the sub- and super-solution constructed before. Since all three com-

ponents have converging energies, also E"(u0
") ! E(u0

).

The first statement covers the case of obstacles located on a square grid, the second case allows

for relatively general arrangements in a denser grid with many vacancies.

In particular, we see that in none of the four cases above we obtain the gradient flow of the

the limiting energy as limit of the evolutions, which behaves as follows:

(1) If f = 0, the {u = 1}-phase contracts with constant velocity stemming from the bulk

energy term.

(2) If f < 0, the {u = 1}-phase contracts with constant velocity stemming from both the

bulk-energy term and the external force. Here, the behaviour is correct, but the velocity

is governed only by the external force.

(3) If 0 < f < f0, the {u = 1}-phase contracts with constant velocity stemming from the

bulk-energy which dominates the small external force in the opposite direction. Here, in

fact a small force f" already su�ces to cause qualitatively wrong behaviour.

Remark 4.6. Similarly as for the propagation of a front on the whole space, we can also have

tilted grids. On a torus, we obtain a tilted grid by labelling equidistant points on the edges

of a square and then connecting id" on the bottom with (i + k)d" on the top (and periodically

extended). The same result holds then, up to slight technical complications.

Finally, we apply Theorem 4.5 to show that the limit of the pure gradient flows without

external force in the usual fast time scale is not mean curvature flow.

Corollary 4.7. Under the same assumptions as Theorem 4.5 and the assumption that ⇤ > ⇤0 >
0 for a suitable ⇤0, there exists a sequence of initial conditions u0

" ! u = 1 � �Br(0) for some
small r > 0 such that E"(u") ! E(u) and of solutions u" of

8

>

>

<

>

>

:

✏ @tu" =
1

| log "|
�

Au" � 1
" W

0
(u")

�

in [0,1)⇥
h

T2 \SN"

k=1 B"(xi,")

i

u = 0 on (0,1)⇥SN"

k=1 B"(xi,")

u = u0
" at t = 0

such that u"(t, ·) ! 1� �E(t) for some set E(t) for all times t, but the boundaries @E(t) are not
moving by either mean curvature flow or the gradient flow of E.
Proof. At small circles, the line energy dominates the bulk term in both the energy E and its

gradient flow, while circles of radius r > 1
⇤↵ are expanding. Assume that ⇤0 is so large that
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@B2/(⇤↵)(0) is a round circle on the torus. Then choose r 2 ( (⇤↵)�1, 2(⇤↵)�1
). Both the

gradient flow of E and mean curvature flow of @Br(0) exist smoothly up to some small positive

time.

For energetic reasons, the initial set cannot shrink, so Br(0) ⇢ E(t) and E does not evolve by

mean curvature flow. Using straight interfaces as barriers, we use Theorem 4.5 to show that E
cannot leave [�r, r]⇥ [0, 1] nor [0, 1]⇥ [�r, r]. Thus E is trapped in [�r, r]2 and does not evolve

by the gradient flow of E which is given by circles of increasing radius from E(0). ⇤

On the whole space, we could use the previous results to show that the circle is in fact non-

expanding since the angles � with tan� 2 Q are dense in (�⇡/2,⇡/2).

5. Related Models

Let us briefly discuss the validity of our results for similar models concerning the same phe-

nomenon. The first two extensions we discuss concern the dissipation mechanism, while the third

one discusses a modification of the energy functional.

5.1. Non-viscous Evolution. It can be argued that the use of a quadratic dissipation is un-

physical for the dynamics of dislocations and a rate independent evolution

(5.1) � �E"(u") 2 c" sign(u̇"), c" > 0

associated to a linear dissipation would be physically more sensible. Here

sign(z) =

8

>

<

>

:

{1} z > 0

[�1, 1] z = 0

{�1} z < 0

is the usual set-valued sign function. We believe that the emergence of an asymmetric, stick-slip

type motion law from a viscous dissipation is the more interesting observation, in particular as

rate-independent dynamics of this problem appear to be stationary in many cases. Namely, the

sub-solutions constructed above satisfy

�c"  1

| log "|
✓

Au" � 1

"
W 0

(u")

◆

 c"

for c" � C "
| log "| d2

"
for suitable C > 0 in the case of Theorem 3.8 and c" � C/| log "| in the case

of Theorems 3.11 and 3.12. The same is true for many similar initial conditions even without

the sign condition. Thus for such a choice of c", the rate-independent evolution can be taken as

stationary. The same holds for an evolution law associated to a mixed dissipation

��E"(u") 2 c" sign(u̇") + c̃" u̇"

if c" is chosen in the corresponding parameter regime as above, since the last term vanishes

identically for stationary solutions of the di↵erential inclusion (5.1).

5.2. Finite Relaxation Speed. We considered the L2
-gradient flow of the energy

E(u) = 1

| log "|
✓

1

2

[u]21/2 +
1

"

Z

T2

W (u) dx

◆

which arose from as an equilibrium localisation on a plane of the crystal grid of the energy

F"(u) =
1

| log "|

 

1

2

Z

T2⇥R
+

|ru|2 dx+

1

"

Z

T2

W (u) dx

!

.
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The modelling assumption behind this mechanism is that for given dislocations in a plane, the

rest of the crystal has relaxed to the minimal Dirichlet energy, which is not quite true in the

dynamic case. When we consider the first variation

�F"(u;�) =
1

| log "|

 

Z

T2⇥R
+

hru,r�i dx+

1

"

Z

T2

W 0
(u)� dx

!

=

1

| log "|

 

Z

T2⇥R
+

hr · (�ru)� (�u)� dx+

1

"

Z

T2

W 0
(u)� dx

!

=

1

| log "|

 

Z

T2⇥R
+

�(�u)� dx+

Z

T2

@⌫u+W 0
(u)� dx

!

and the inner product

hv,�i := 1

m"

Z

R
+

⇥T2

v� dx+

1

"

Z

T2

v�,

we obtain an evolution equation

(5.2)

8

>

<

>

:

m" ut =

1
| log "|�u in T2 ⇥ R+

"ut =

1
| log "|

�

Au� 1
" W

0
(u")

�

on T2 \SN"

k=1 B"(xi,")

u = 0 on T2 \SN"

k=1 B"(xi,").

The case we considered above corresponds to an infinitely fast relaxation speed in the half-space,

i.e. the formal limit m" ⌘ 0. In that case we could forget about the analytic continuation and

only had to track the evolution of the boundary values. We can connect this to the case of

positive m" > 0 as follows:

All the sub-solutions, super-solutions and solutions constructed above for the gradient flow

equation on ⌦ = R2
or ⌦ = T2

were pointwise non-increasing, so their harmonic extensions to

⌦⇥ R+ have this property as well. Thus the analytic continuation û" satisfies

m"@tû"  0 =

1

| log "|�û" in ⌦⇥ R+

both in the viscosity or the distributional sense, which means that the analytic solution û" is a

sub-solution for (5.2). In this sense, we can at least say that an evolution with a finite relaxation

speed can in no case be faster than the limiting case we considered.

5.3. Finite-Strength Pinning. The hard constraint u ⌘ 0 on

SN"

k=1 B"(xi,") can be see as the

limiting case of the following soft obstacle problems. We consider a version of E" on the whole

space with an additional term in the energy

F"(u) =
1

| log "
✓

[u]21/2 +

Z

T2

W (u) dx

◆

+

N"
X

i=1

1

"2

Z

B"(xi,")
g

✓

x� xi,"

"

◆

|u|q dx.

Here 1  q < 1 is a parameter we could choose freely and g 2 Cc(B1(0)) is a non-negative

function. The hard obstacle arises as the formal limit g ! +1 ·�
B

1

(0) for any q. Physically, the

case q = 1 seems the most relevant. This extension has been discussed in [GM05, GM06], and

the same �-limit statement still holds with a di↵erent capacity function ↵ : Z ! [0,1).

Our results apply also here by the following considerations. Observe that

ut = 0, W 0
(u) = 0, Au � 0

at x 2 SN"

k=1 B"(xi,"), so u is a sub-solution also to ut = Au � 1
"W

0
(u) � q g(x) |u|q�2u which

is the gradient flow equation of F". Thus we can use the same sub-solutions to obtain upper

bounds on the velocity of interfaces, even in the case q = 1 since the sub-solutions u" do not
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change sign. For super-solutions, we have to solve a minimisation problem with the soft pinning

instead of the hard one instead:

Minimise

1

2

[u]21/2 +

Z

S1

l

W (u) dx+

Z

B
1

(x
0

)
g |u|q dx subject to

1

l

Z

S1

l

u dx >
1

2

.

When we establish that the solution to this problem satisfies u 6⌘ 1, 0  u  1, we obtain

matching bounds on the scaling of the velocity of interfaces at a single step on the real line and

up to a logarithmic factor in the plane. We observe that also here, the contracting e↵ect of the

obstacles vanishes compared to the kink/anti-kink attraction.

6. Conclusion

We have identified the time-scale on which a pinning constraint would naturally act by con-

sidering a whole space problem (up to a factor of O(| log "|)). We have shown that the gradient

flows of the pinned problems do not converge to the gradient flow of the limiting problem under

certain assumptions on the distribution of obstacles and given estimates on the behaviour for

certain initial conditions. A number of questions remain open.

(1) Is there an explicit law that describes the limit of the evolutions of the "-problem at

curved initial conditions?

(2) How dependent is the limiting motion on the exact (well-prepared) initial condition?

(3) Do the same results hold for more general distributions of obstacles, or can other phe-

nomena occur for less regularly distributed (or moving) obstacles?

Furthermore, our methods used the rotational symmetry of the fractional Laplacian and the

fact that all functions we constructed were non-negative. We expect that these constraints could

be eliminated. We also believe that a more explicit characterisation of admissible potentials W
should be available.

Appendix A. Fractional Evolution Equations

The gradient flow of the energy E" is given by the fractional parabolic equation

(A.1)

8

>

<

>

:

c""ut =

1
| log "| (Au�W 0

(u)) t > 0, x 2 T2 \SN"

i=1 B"(xi,")

u ⌘ 0 t � 0, x 2 SN"

i=1 B"(xi,")

u = u0 t = 0

with c" ⌘ 1 which formally has the structure

(A.2)

8

<

:

ut = Au+ f(u) t > 0, x 2 ⌦

u ⌘ 0 t � 0, x 2 T2 \ ⌦
u = u0 t = 0, x 2 ⌦

where A = �(��)

1/2
is the fractional Laplacian of order s = 1/2 and f is a bounded Lipschitz

function. Choosing constants c" ⌧ 1 corresponds to accelerating time to rescale slow motion of

the gradient flows to the macroscopic time-scale. Since we derived the equation as the gradient

flow of the energy E", the most natural concept of a solution is that of a weak solution in a

Bochner space

W" =

⇢

u 2 L2
([0, T ], X")

�

�

�

�

du

dt
2 L2

([0, T ], X⇤
" )

�

where again

X" := {u" 2 H1/2
(T2

)

�

� u" ⌘ 0 on B"(xi,") for 1  i  N"}.
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It is well-known that the operator A : H1/2
(T2

) ! H�1/2
(T2

) (and also A : X" ! X⇤
" ) is

monotone. Furthermore, if u solves (A.2), we note that v(t, ·) = e��t
solves the same equation

with f replaced by

f�(v) = e��t f
�

e�tv
�

+ �v

which can be made monotone increasing for large enough � as f is Lipschitz. The existence of

a weak solution v follows by the theory of monotone operators. Reversing the modification, we

obtain a weak solution u = e�tv in the Bochner space W".

If u is smooth, 0  u0  1, the comparison principle implies that u  1 for all times and the

non-linearity f = �W 0
. We show that remains true for weak solutions.

Since f is bounded, we have f(u) 2 L1
(⌦) and [FRRO17] implies that u is Hölder continuous

up to the boundary (note that the concept of a weak solution used in that article is weaker than

ours). Hence f(u) is also Hölder continuous, which means that u is locally C1,↵
-smooth in ⌦

and C0,1/2
-continuous on T2

. While the results of [FRRO17] are given in domains in Rn
, the

proofs also apply in the periodic case.

In particular, the weak solutions are classical and thus justify the usual calculations that imply

a decrease of energy along the time evolution. The solutions are in particular viscosity solutions

and we may construct viscosity sub- and super-solutions to understand their behaviour.

Interestingly, the regularity results apply more easily if f is bounded a priori. However, if

W (z) = (z2 � 1)

2
is the usual double-well potential and the initial condition lies between �1

and 1, we may modify W outside [�1, 1] to become bounded Lipschitz. In a second step, we

may apply the maximum principle to deduce that solutions remain between ±1, which means

that the solution to the modified problem is actually also a solution to the original problem –

compare the proof of Lemma 3.1.

We have also investigated solutions of the evolution equation on the whole real line or in the

plane. By the same arguments as above, weak solutions exist if the initial condition happens to

lie in the space

(

u 2 L2
(Rn

)

�

�

�

�

u ⌘ 0 on

1
[

i=1

B"(xi,")

)

.

Here we use that we could modify f to become monotone and use a monotone Nemickij oper-

ator rather than having to pass to the theory of pseudomonotone operators, where the lack of

compactness in the embedding for the whole space problem causes additional challenges.

When we consider solutions to the evolution equation (A.1) on the real line with initial condi-

tions approximating a single step function, on the other hand, we need to understand solutions

in the viscosity sense. On the whole space, the theory of viscosity solutions for fractional evolu-

tion equations is developed [Imb05, DI06, BI08] and the pinning constraint could be included in

the proof of the maximum principle by the doubling of variables in the standard way – see e.g.

[Imb05, Theorem 2]. Existence can then be proved using Perron’s method.

Consider the Bochner space W over ⌦ ⇢ T2
and the particular case of a non-linearity f which

satisfies f(1) = 0, f < 0 on (1,1) and f is constant close to 1. Assume further that we have

an initial condition u0  1. Now consider u+ := max{u, 1}. Since u 2 C0
([0, T ], L2

(T2
)) by

embedding theorems u+(t, ·) is well-defined in L2
(T2

) and we can calculate the integral

✓

Z

T2

(u+)
2
dx

◆

(t)

pointwise in time. Due to Bochner-space theory, smooth functions are dense in W and we can

consider a sequence of functions un 2 C0
([0, T )⇥T2

)\C2
((0, T )⇥⌦) such that un ⌘ 0 on T2 \⌦
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such that un ! u in W . In particular this convergence implies

✓

Z

T2

(un)
2
+ dx

◆

(0) ! 0.

Take (t, x) such that un(t, x) > 1. By continuity, un > 1 in a neighbourhood of the point, and

the Laplacian can be calculated pointwise as a singular integral

[Aun,+] (t, x) =

Z

⌦

un,+(t, y)� un,+(t, x)

|x� y|3 dy �
Z

⌦

un(t, y)� un(t, x)

|x� y|3 dy = [Aun] (t, x)

since un,+(t, y) � u(t, y) and un,+(t, x) = un,+(t, x). On the other hand, if un,+(t, x) = 1, then

un,+ is minimal at (t, x) and thus Aun,+ � 0 at (t, x) in the distributional sense. It follows that

(@t �A)un,+ � �{un>1} · (@t �A)un.

Since u+ is smooth enough to be a Sobolev function, it also lies in W and we compute

✓

Z

Rn

(un)
2
+ dx

◆

(t) =

✓

Z

Rn

(un)
2
+ dx

◆

(0) + 2

Z t

0
h[@t �A+A] (un)+, (un)+iX⇤,X ds


✓

Z

Rn

(un)
2
+ dx

◆

(0) + 2

Z t

0
h[@t �A] (un)+, (un)+iX⇤,X ds


✓

Z

Rn

(un)
2
+ dx

◆

(0) + 2

Z t

0
hf(un,+), (un)+iL2,L2

+ h⌘n, un,+iX⇤,X ds


✓

Z

Rn

(un)
2
+ dx

◆

(0) + 2

Z t

0
h⌘n, un,+iX⇤,X ds

! 0

since un ! u strongly in W , thus in particular f(un) ! f(u) strongly as well. This implies that

u  1 for all times and thus the solutions are classical for positive times. The same argument

shows u � 0 and a slight modification implies comparison with a stationary sub- or super-solution.
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[ABS98] G. Alberti, G. Bouchitté, and P. Seppecher. Phase transition with the line-tension e↵ect.Arch. Rational

Mech. Anal., 144(1):1–46, 1998.
[BI94] A. Baernstein II. A unified approach to symmetrization. In Partial Di↵erential Equations of Elliptic

Type, Eds. A. Alvino et al., Symposia Matematica, volume 35, pages 47–91, 1994.
[BI08] G. Barles and C. Imbert. Second-order elliptic integro-di↵erential equations: viscosity solutions’ theory
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