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1. Introduction. This paper is concerned with the application of the compensated-convexity based theory17

for approximation and interpolation of sampled functions that was presented in our previous article [55] to sur-18

face reconstruction based on knowledge from finitely many level sets, scattered data approximation, and image19

inpainting.20

In general, approximation theory is concerned with the problem of finding in the set of simple known functions one21

that is close in some sense to a more complicated otherwise unknown function. The variational theory is developed22

by specifying a priori the class of the approximating functions and the criteria that allow selecting an element23

of such class. In the implementation of the theory, the approximating functions generally depend on unknowns24

parameters that control their form, so that the problem boils down to selecting the parameters that allow meeting25

the chosen criteria. Such criteria are usually related to the error between the approximating functions and what26

is known about the function to be approximated and might contain some regularizing term that determines the27

regularity of the approximating function and makes the whole problem well posed.28

Different classes of approximating functions, such as, for instance, algebraic polynomials [49], trigonometric poly-29

nomials [48, 49], radial basis functions [51, 11, 23], continuous piecewise polynomials [40], have been considered,30

and while their definition is usually motivated by good approximating properties for a given field of application,31

on the other hand the specific nature of a class of functions also represents a restriction that limits their general32

application.33

Total variation-type models [42, 10], [17, Ch. 6] and geometric partial differential equations [13],[50, Ch. 1],[43, Ch.34

8] have also been used as interpolation models. Their use has been principally motivated by applications in the field35

of image processing and geoscience. We mention in particular the applications to salt & pepper noise reduction36

[14], image inpainting (by using TV-inpainting models [9, 29],[17, Ch. 6], Curvature Diffusion Driven inpainting37

model [16], geometric PDE based inpainting model [8] or other PDE-based models discussed in the monograph38

[45]) and image interpolation [6, 13, 28], among others. For the applications to geoscience, and in particular to39

the construction of digital elevation models, PDE based interpolation models, such as the one considered in [2],40
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2 K. ZHANG, E. CROOKS, AND A. ORLANDO

where the interpolant is sought as the absolutely minimizing Lipschitz extension [5, 34] of the known values, have41

also been proposed and shown to be competitive against the classical interpolation methods such as the geodesic42

distance transformation method [46], the thin plate model [20, 26] and the kriging method [47].43

As for these latter methods, although there is a well-developed mathematical theory on the existence and uniqueness44

of weak solutions of variational models [4, 7, 30], and of the viscosity solution [5, 34] of the PDE based interpolation45

model used in [13], the quantitative effectiveness of such methods is mostly assessed on the basis of numerical46

experiments.47

The new approximation and interpolation theory introduced in [55] is based, on the other hand, on the theory48

of compensated convex transforms [52, 57, 56, 54] and can be applied to general bounded real-valued functions49

sampled from either a compact set K ⊂ Rn or the complement K = Rn \ Ω of a bounded open set Ω. The50

methods presented in [55] centre on the so-called average approximation that is recalled in Definition 1.1 below.51

Importantly, [55] establishes error estimates for the approximation of bounded uniformly continuous functions, or52

Lipschitz functions, and of C1,1-functions, and proves rigorously that the approximation methods are stable with53

respect to the Hausdorff distance between samples.54

Here we apply the average approximation method developed in [55] to three important problems: level set and55

scattered data approximation and interpolation, for which the sample set K ⊂ Rn is compact, and the inpainting56

problem in image processing, where the aim is to reconstruct an image in a damaged region based on the image57

values in the undamaged part and the sample set K = Rn \ Ω is the complement of a bounded open set Ω58

representing the damaged area of the image. We will also present a series of prototype examples of explicitly59

calculated approximations that build insight into the behaviour of the average approximation introduced in [55],60

as well as a selection of illustrative numerical experiments.61

Before outlining the rest of the paper, we first recall the definitions of compensated convex transforms [52] and62

average approximation [55]. Suppose f : Rn → R is bounded. The quadratic lower and upper compensated convex63

transform [52] (lower and upper transforms for short) are defined for each λ > 0 by64

Clλ(f)(x) = co[λ| · |2 + f ](x)− λ|x|2,
resp. Cuλ (f)(x) = λ|x|2 − co[λ| · |2 − f ](x), x ∈ Rn,

(1.1)65

where |x| is the standard Euclidean norm of x ∈ Rn and co[g] denotes the convex envelope [33, 41] of a function66

g : Rn → R that is bounded below.67

Let K ⊂ Rn be a non-empty closed set. Given a function f : Rn → R, we denote by fK : Rn ⊃ K → R the68

restriction of f to K, which can be thought of as a sampling of the original function f , which we would like to69

approximate, on the convex hull of the set K.70

Suppose that for some constant A0 > 0, |fK(x)| ≤ A0 for all x ∈ K. Then given M > 0, we define two bounded71

functions that extend fK to Rn \K, namely72

(1.2)

f−MK (x) = f(x)χK(x)−MχRn\K =

{
fK(x), x ∈ K,

−M, x ∈ Rn \K ;

fMK (x) = f(x)χK(x) +MχRn\K =

{
fK(x), x ∈ K,

M, x ∈ Rn \K ,

73

where χG denotes the characteristic function of a set G.74

Definition 1.1. The average compensated convex approximation with scale λ > 0 and module M > 075

of the sampled function fK : K → R is defined by76

(1.3) AMλ (fK)(x) =
1

2

(
Clλ(fMK )(x) + Cuλ (f−MK )(x)

)
, x ∈ Rn .77
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APPROXIMATIONS AND INTERPOLATIONS 3

In addition, we can also set M = +∞ in place of (1.2) and consider the following functions, commonly used in78

convex analysis,79

(1.4) f−∞K (x) =

{
f(x), x ∈ K,
−∞, x ∈ Rn \K;

f+∞
K (x) =

{
f(x), x ∈ K,
+∞, x ∈ Rn \K.80

and define the corresponding average approximation approximation,81

(1.5) A∞λ (fK)(x) :=
1

2

(
Clλ(f+∞

K )(x) + Cuλ (f−∞K )(x)
)
, x ∈ Rn .82

By doing so, we can establish better approximation results than those obtained using f−MK and fMK , but A∞λ (fK)83

is not Hausdorff stable with respect to sample sets, in contrast to the basic average approximation AMλ (fK) (see84

[55, Thm. 4.12]).85

The plan of the rest of the paper is as follows. Section 2 introduces notation and recalls key definitions and results86

from our article [55], including error estimates for the average approximation AMλ (fK) of bounded and uniformly87

continuous, Lipschitz, and C1,1 functions. In Section 3, we consider level set interpolation and approximation, for88

which f is continuous and K consists of finitely many compact level sets. We give conditions so that AMλ (fK) is89

an interpolation between level sets and also establish a maximum principle. Section 4 treats the case of scattered90

data, when K is finite. In this case, we show that when λ > 0 is sufficiently large and when M >> λ, AMλ (fK) is a91

piecewise affine interpolation of fK in the convex hull of K. Moreover, if K is regular in the sense of the Delaunay92

triangulation, we show that AMλ (fK) agrees with the piecewise interpolation given by the Delaunay method. In93

the irregular case that the Delaunay sphere Sr contains more than n + 1 points in Rn, AMλ (fK) is the average of94

the maximum and minimum piecewise affine interpolation over the convex hull of K ∩ Sr. Section 5 presents error95

estimates for our average approximation in the context of the inpainting problem, and compares and contrasts these96

estimates with the error analysis in [15]. We also give a simple one-dimensional example to illustrate the effect of97

the upper and lower compensated convex transforms Cuλ (f), Clλ(f) and the average approximation AMλ (fK) on a98

jump function, to provide insight into how jump discontinuities behave under our approach.99

Section 6 contains explicitly calculated prototype examples in R2, including both examples where the sample set100

K is finite, and also examples where K is not finite. We present graphs of our calculated average approximation101

for two irregular Delaunay cells, for 4 and for 8 points on the unit circle. We also present prototype examples of102

contour line approximations, as well as prototypes for inpainting of functions that show that singularities such as103

ridges and jumps can be preserved subject to compensated convex approximations to the original function when104

the singular parts are close to each other. Section 7 discusses several numerical experiments for level set and point105

clouds reconstructions of functions and images, for image inpainting, and for restoration of images with heavy salt106

& pepper noise. Though such experiments are carried out only on a proof-of-concept level, we briefly report on the107

comparison of our method with some state-of-art methods. In Section 8 we conclude the paper with proofs of our108

main theorems stated in Sections 3, 4 and 5.109

2. Notation and Preliminaries. Throughout the paper, we adopt the following notation and recall those110

results from [55] that will be used here for our proofs, to make the development as self-contained as possible. For111

the necessary background in convex analysis, we refer to the monographs [41, 33].112

For a given set E ⊂ Rn, with Rn a n−dimensional Euclidean space, Ē, ∂E, E̊, Ec and co[E] stand for the closure,113

the boundary, the interior, the complement and the convex hull of E, i.e. the smallest convex set which contains E,114

respectively. For a convex set E ⊂ Rn, we define the dimension of E, dim(E), as the dimension of the intersection115

of all affine manifolds that contain E, where by affine manifold we mean a translated subspace, i.e. a set N of the116

form N = x + S with x ∈ Rn and S a subspace of Rn. We then define dim(N) = dim(S). We use the term of117

convex body to denote a compact convex set with non-empty interior. The convex hull of a finite set of points is118

called a polytope and with the notation #(E) we denote the cardinality of the finite set E. If E = {x1, . . . , xk+1}119

and dim(E) = k, then co[E] is called a k−dimensional simplex and the points x1, . . . , xk+1 are called vertices. A120
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4 K. ZHANG, E. CROOKS, AND A. ORLANDO

zero-dimensional simplex is a point; a one-dimensional simplex is a line segment; a two-dimensional simplex is a121

triangle; a three-dimensional simplex is a tetrahedron. The condition that dim(E) = k is equivalent to require that122

the vectors x2 − x1, . . . , xk+1 − x1 are linearly independent.123

The open ball centered at x ∈ Rn and of radius r > 0 is denoted by B(x; r) = {y ∈ Rn : |y − x| < r} where | · |124

stands for the Euclidean norm in Rn, thus |x − y| is the distance between the points x, y ∈ Rn. The diameter of125

the set E ⊂ Rn, diam(E), is then defined as diam(E) = supx,y∈E |x− y|.126

In this paper, we will assume, unless otherwise specified, that K ⊂ Rn is either a compact set or the complement127

of a bounded open set, that is, K = Ωc where Ω ⊂ Rn is a bounded open set. A function g : co[K] ⊂ Rn → R is128

said to be an interpolation of fK if g = f in K, while for λ > 0, a family of functions gλ : co[K] ⊂ Rn → R is said129

to approximate f if lim
λ→+∞

gλ = f uniformly in K.130

The error estimates obtained in [55] are expressed in terms of the modulus of continuity of the underlying function131

f to be approximated and of the convex density radius of K. For the convenience of the reader, these definitions are132

recalled here. The modulus of continuity of a bounded and uniformly continuous functions f is defined as follows133

[19, 32].134

Definition 2.1. Let f : Rn → R be a bounded and uniformly continuous function in Rn. Then,135

(2.1) ωf : t ∈ [0, ∞)→ ωf (t) = sup
{
|f(x)− f(y)| : x, y ∈ Rn and |x− y| ≤ t

}
136

is called the modulus of continuity of f .137

We also recall that the modulus of continuity of f has the following properties [32, page 19-21].138

Proposition 2.2. Let f : Rn → R be a bounded and uniformly continuous function in Rn. Then the modulus139

of continuity ωf of f satisfies the following properties:140

(2.2)

(i) ωf (t)→ ωf (0) = 0, as t→ 0;

(ii) ωf is non-negative and non-decreasing continuous function on [0,∞);

(iii) ωf is subadditive: ωf (t1 + t2) ≤ ωf (t1) + ωf (t2) for all t1, t2 ≥ 0 .

141

Any function ω defined on [0, ∞) and satisfying (2.2)(i), (ii), (iii) is called a modulus of continuity. A modulus of142

continuity ω can be bounded from above by an affine function (see [19, Lemma 6.1]), that is, there exist constants143

a > 0 and b ≥ 0 such that144

(2.3) ω(t) ≤ at+ b (for all t ≥ 0).145

As a result, given ωf , one can define the least concave majorant of ωf , which we denote by ω, which is also a146

modulus of continuity with the property (see [19])147

(2.4)
1

2
ω(t) ≤ ωf (t) ≤ ω(t) for all t ∈ [0, ∞) .148

The convex density radius of a point x ∈ co[K] with respect to the set K and the convex density radius of K in149

co[K] are the geometrical quantities that describe the set K with respect to its convex hull and are such properties150

which enter the error estimates for our approximation operators. We recall next their definition from [55].151

Definition 2.3. Suppose K ⊂ Rn is a non-empty and closed set, and denote by dist(x; K) the Euclidean152

distance of x to K. For x ∈ co[K], consider the balls B(x; r) such that x ∈ co[B̄(x; r) ∩K]. The convex density153

radius of x with respect to K is defined as follows154

(2.5) rc(x) = inf{r ≥ 0 such that x ∈ co[B̄(x; r) ∩K]} ,155

whereas the convex density radius of K in co[K] is defined by156

(2.6) rc(K) = sup{rc(x), x ∈ co[K]} .157
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APPROXIMATIONS AND INTERPOLATIONS 5

Here it is also useful to introduce the following, more geometric quantities. Let Q ⊂ Rn be a bounded set, and158

given x ∈ Q and ν ∈ Rn with |ν| = 1, define the quantity159

dν(x) = d+
ν (x) + d−ν (x) ,160

where161

d+
ν (x) = sup

{
t > 0 : x+ sν ∈ Q for 0 ≤ s ≤ t

}
and d−ν (x) = sup

{
t > 0 : x− sν ∈ Q for 0 ≤ s ≤ t

}
.162

It is then easy to see that dν(x) is the length of the line segment with direction ν passing through x and intersecting163

∂Q at two points on each side. We also define164

(2.7) d(x) = inf
{
dν(x), ν ∈ Rn, |ν| = 1

}
165

and the thickness of the set Q ⊂ Rn as166

(2.8) DQ = sup
{
d(x), x ∈ Q

}
.167

Remark 2.4. (a) Given a non-empty bounded open set Q = Ω ⊂ Rn, by comparing definition (2.5) of168

rc(x) and (2.8) of d(x), it is straightforward to verify that169

(2.9) rc(x) ≤ d(x)170

for x ∈ Ω.171

(b) If the interior Q̊ = ∅, such as in the case of a discrete set, then its thickness DQ is zero.172

We recall next the error estimates for our average approximation operators developed in [55] and refer to [55] for173

proofs and details. For the case of K compact and M = +∞, we have the following.174

Theorem 2.5. (See [55, Theorem 3.6]) Suppose f : Rn → R is bounded and uniformly continuous, satisfying175

|f(x)| ≤ A0 for some constant A0 > 0 and all x ∈ Rn, and let K ⊂ Rn be a non-empty compact set. Denote by ω176

the least concave majorant of the modulus of continuity of f . Let a ≥ 0, b ≥ 0 be such that ω(t) ≤ at+ b for t ≥ 0.177

Then for all λ > 0 and x ∈ co[K],178

(2.10) |A∞λ (fK)(x)− f(x)| ≤ ω

(
rc(x) +

a

λ
+

√
2b

λ

)
.179

where rc(x) ≥ 0 is the convex density radius of x with respect to K. If we further assume that f is a globally180

Lipschitz function with Lipschitz constant L > 0, then for all λ > 0 and x ∈ co[K],181

(2.11) |A∞λ (fK)(x)− f(x)| ≤ Lrc(x) +
L2

λ
.182

Section 4 will discuss an application of Theorem 2.5 to the case of scattered data approximation. We will apply183

Theorem 2.5 also to the case of salt-and-pepper noise removal, where K is the compact set given by the part of184

the image which is noise free. Section 7 contains a numerical experiment showing such an application.185

A similar statement to Theorem 2.5 is obtained with M finite in the case that K = Ωc, where Ω ⊂ Rn is a186

non-empty bounded open set. In this case, clearly co[K] = Rn and the error estimate of the average approximation187

AMλ (fK) is as follows.188

Theorem 2.6. (See [55, Theorem 3.7]) Suppose f : Rn → R is bounded and uniformly continuous, satisfying189

|f(x)| ≤ A0 for some constant A0 > 0 and all x ∈ Rn. Let Ω ⊂ Rn be a bounded open set, dΩ the diameter of Ω190
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6 K. ZHANG, E. CROOKS, AND A. ORLANDO

and K = Ωc. Denote by ω the least concave majorant of the modulus of continuity of f and let a ≥ 0, b ≥ 0 be191

such that ω(t) ≤ at+ b for t ≥ 0. Then for λ > 0, M > A0 + λd2
Ω, and all x ∈ Rn,192

(2.12) |AMλ (fK)(x)− f(x)| ≤ ω

(
rc(x) +

a

λ
+

√
2b

λ

)
,193

where rc(x) ≥ 0 is the convex density radius of x with respect to K. If we further assume that f is a globally194

Lipschitz function with Lipschitz constant L > 0, then for λ > 0, M > A0 + λd2
Ω and all x ∈ Rn, we have195

(2.13) |AMλ (fK)(x)− f(x)| ≤ Lrc(x) +
L2

λ
.196

Under an additional restriction on f and on K, it is possible to extend the results of Theorem 2.6 to the case when197

K is a compact set and thus to obtain error estimates independent of M . More precisely, the following result refers198

to the case where we are given the values of the function f on the union of a compact set and the complement of a199

bounded open set. This extension allows the application of Theorem 2.6 to the problem of inpainting, for instance.200

Corollary 2.7. (See [55, Corollary 3.9]) Suppose f : Rn → R is bounded and uniformly continuous satisfying201

|f(x)| ≤ A0 for some constant A0 > 0 and all x ∈ Rn. Assume that f(x) = c0 for |x| ≥ r > 0, where c0 ∈ R202

and r > 0 are constants. Let K ⊂ Rn be a non-empty compact set satisfying K ⊂ B̄(0; r). For R > r, define203

KR := K ∪Bc(0; R). Denote by ω the least concave majorant of the modulus of continuity of f . Let a ≥ 0, b ≥ 0204

be such that ω(t) ≤ at+ b for t ≥ 0. Then for all λ > 0, M > A0 + λ(R+ r)2 and all x ∈ co[K],205

(2.14) |AMλ (fKR
)(x)− f(x)| ≤ ω

(
rc(x) +

a

λ
+

√
2b

λ

)
,206

where rc(x) ≥ 0 is the convex density radius of x with respect to K. If we further assume that f is a globally207

Lipschitz function with Lipschitz constant L > 0, then for λ > 0, M > A0 + λ(R+ r)2 and all x ∈ co[K], we have208

(2.15) |AMλ (fKR
)(x)− f(x)| ≤ Lrc(x) +

L2

λ
.209

If we further assume that f is a C1,1 function such that |Df(x)−Df(y)| ≤ L|x− y| for all x, y ∈ Rn and L > 0210

is a constant, then for λ > L, M > A0 + λ(R+ r)2 and all x ∈ co[K], we have211

(2.16) |AMλ (fKR
)(x)− f(x)| ≤ L

4

(
λ+ L/2

λ− L/2
+ 1

)
r2
c (x) .212

Furthermore, in case (iii), AMλ (fKR
) is an interpolation of fK in Rn.213

The conditions of Corollary 2.7 can be realized, for instance, in the case we can define f to be zero outside a large214

ball containing K.215

Theorem 2.6 and Corollary 2.7 will be applied to the case of (i) surface reconstructions from a finitely many level216

sets representation and (ii) inpainting of damaged images, where Ω is the domain to be inpainted and K = Ωc. We217

will discuss such applications in Section 3 and Section 5, respectively, whereas Section 7 contains some numerical218

experiments of both applications.219

We conclude this section by giving the following property which will be useful in Section 4 that deals with220

scattered data approximations.221

Proposition 2.8. (The restriction property) Let m ≥ 1, n ≥ 1. Suppose f : Rn → R is bounded, satisfying222
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|f(x)| ≤M for some M > 0 and for all x ∈ Rn. Let g±M : Rn × Rm → R be defined, respectively, as follows223

gM (x, y) =

{
f(x), x ∈ Rn, y = 0 ∈ Rm,

M, x ∈ Rn, y ∈ Rm, y 6= 0;

g−M (x, y) =

{
f(x), x ∈ Rn, y = 0 ∈ Rm,

−M, x ∈ Rn, y ∈ Rm, y 6= 0 .

224

Then225

Clλ(gM )(x, 0) = Clλ(f)(x) and Cuλ (g−M )(x, 0) = Cuλ (f)(x) (for x ∈ Rn) .226

In the case the sampled set K is compact, the restriction property and Corollary 2.7 imply that if K is227

contained in a k-dimensional plane E ⊂ Rn, we can then calculate the average approximation operator AMλ (fK(x))228

for x ∈ co[K] ⊂ E by restricting our calculations in E.229

3. Level Set Approximations. We consider the case where the sampled set is given by the union of finitely230

many compact level sets, that is, we know the values of a continuous function f only on finitely many compact231

contour lines, and we want to study the structure of AMλ (fK). We will establish a result which gives a natural232

bound on the value of AMλ (fK), ensuring that, for λ > 0 sufficiently large, the value of AMλ (fK) at points between233

level sets is between the values of the corresponding level sets, and present an error estimate for AMλ (fK).234

Let f : Rn → R be a continuous function and a ∈ R. Denote by Γa = {x ∈ Rn, f(x) = a} the level set of f of level235

a and by Va := {x ∈ Rn, f(x) ≤ a} the sublevel set of f of level a.236

We then have the following result.237

Theorem 3.1. Suppose f : Rn → R is continuous and that for a0 < a1 < · · · < am, m ∈ N, the level sets238

Γai = {x ∈ Rn, f(x) = ai} are compact for i = 0, 1, . . . ,m. Denote by239

δ0 = min
{

dist(Γai , Γaj ), 0 ≤ i, j ≤ m, i 6= j
}
> 0 ,240

the minimum Euclidean distance between two different level sets. Define K = ∪mi=0Γai and denote by dK the241

diameter of K. If λ > (am − a0)/δ2
0 and M > λd2

K + maxK |f |, then242

(i) AMλ (fK) is an interpolation of f from K to co[K], that is, for x0 ∈ Γai , i = 0, 1, . . . ,m,243

(3.1) AMλ (fK)(x0) = ai.244

(ii) For each x0 satisfying ai ≤ f(x0) ≤ ai+1 for some 0 ≤ i ≤ m− 1,245

(3.2) ai ≤ AMλ (fK)(x0) ≤ ai+1 .246

(iii) AMλ (fK)(x0) = a0 for x0 ∈ Va0 .247

Remark 3.2. (a) A sufficient condition for the level set Γa to be compact is that f is continuous and either248

lim|x|→∞ f(x) = +∞ or lim|x|→∞ f(x) = −∞.249

(b) It might happen that there is an open subset of {x ∈ Rn, ai ≤ f(x) ≤ ai+1} on which AMλ (fK)(x) = ai or250

AMλ (fK)(x) = ai+1. Therefore Theorem 3.1 gives a weak maximum principle.251

(c) In R2, it is not difficult to see that if two neighbouring level sets are parallel lines, then our interpolation252

gives a plane passing through these two lines. However, if the function under consideration is not contin-253

uous, different level-sets can ‘intersect’ each other. In general, it is not clear what the natural level-set254

approximations for functions with jump discontinuity will be like. In Section 6 we will present a prototype255

example of two level lines which are not parallel to each other and work out an analytical expression of the256

interpolation operator AMλ (fK) for such a case.257
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We next give an error estimate for our level set average approximation AMλ (fK), which is obtained by applying258

Corollary 2.7 [55, Corollary 3.9]. We first introduce some further definitions that are needed for the application of259

this result. Under the assumptions of Theorem 3.1, for i = 0, 1, . . . ,m− 1, define the open set260

(3.3) Ωi = {x ∈ Rn, ai < f(x) < ai+1} ,261

and then for x ∈ Ωi, define di(x) using (2.8) with Q = Ωi. Suppose that Vam is compact, let R > 0 be such that262

Vam ⊂ B(0; R), and set V mR = Vam ∪Bc(0; R). Then define the auxiliary function263

f̃Vm
R

(x) =

{
f(x), x ∈ Vam ,

am + 1, x ∈ Bc(0; R) .
264

We consider the following two cases.265

(i) If f is continuous, f̃Vm
R

is bounded and uniformly continuous in V mR . Therefore, by the Tietze extension266

theorem [21, pag. 149], f̃Vm
R

can be extended to Rn as a bounded uniformly continuous function. We267

denote this extension by f̃ and by Ã0 > 0 an upper bound of |f̃ |. Clearly, f̃(x) = f(x) for x ∈ Vam .268

Furthermore, we denote by ω̃(t) the least concave majorant of the modulus of continuity of f̃ , which is269

itself a modulus of continuity, thus satisfies the properties (2.2), and in particular, can be bounded from270

above by an affine function, that is, there exist some constants ã ≥ 0 and b̃ ≥ 0 such that ω̃(t) ≤ ãt+ b̃ for271

all t ≥ 0.272

(ii) If f is Lipschitz continuous with Lipschitz modulus L > 0, then f̃Vm
R

is bounded and Lipschitz continuous273

in V mR with a possibly different Lipschitz modulus L̃ such that274

(3.4) L̃ ≤ max
{
L, max

Vam

|f |+ |am + 1|
}
.275

By Kirszbraun’s theorem [24, pag. 202], f̃Vm
R

can then be extended to Rn as a bounded Lipschitz function.276

Again we denote this extension by f̃ and assume that |f̃(x)| ≤ Ã0 for all x ∈ Rn.277

With the notation above, we have the following error estimates for AMλ (fK).278

Proposition 3.3. Suppose f : Rn → R is continuous and that for a0 < a1 < · · · < am, the sublevel sets279

Va0 ⊂ Va1 ⊂ · · · ⊂ Vam are non-empty and compact. Let Γai be the level set of f of level ai, K = ∪mi=0Γai , and280

di(x), Ωi be defined by (2.8), (3.3), respectively, for i = 0, 1, . . . ,m − 1. Denote by f̃ the function defined in (i)281

above, and by Ã0 an upper bound of |f̃ |. If λ > am − a0 + 1 and M > Ã0 + λ(2R + 1)2, then for all x ∈ Ωi,282

i = 0, . . . ,m− 1, we have283

(3.5) |AMλ (fK)(x)− f(x)| ≤ ω̃

di(x) +
ã

λ
+

√
2b̃

λ

 ,284

where ω̃ is the least concave majorant of the modulus of continuity of f̃ . If we further assume that f is a globally285

Lipschitz function of Lipschitz constant L > 0, λ > am − a0 + 1 and M > Ã0 + λ(2R + 1)2, then for all x ∈ Ωi,286

i = 0, . . . ,m− 1, we have287

(3.6) |AMλ (fK)(x)− f(x)| ≤ L̃di(x) +
L̃2

λ
,288

where L̃ is defined by (3.4).289

4. Scattered Data Approximations. We now turn our attention to the so-called case of ‘scattered data’290

approximation [51] corresponding to a discrete sampled set K. Since for any function f : Rn → R, the restriction291

fK of f to a finite set K is always a Lipschitz function, the following result provides a sufficient condition for our292

upper and lower transforms to be interpolations in this case.293
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Theorem 4.1. Suppose K = {x1, x2, . . . , xm} ⊂ Rn is a finite set with distinct points and assume f : K ⊂294

Rn → R is a function. Assume −M < f(xj) < M for j = 1, . . . ,m and let L > 0 be the Lipschitz constant of295

f : K ⊂ Rn → R. Define α = min{|xi − xj |, xi, xj ∈ K, i 6= j} > 0. Then for λ ≥ L/α,296

Cuλ (f−MK )(xj) = f(xj) and Clλ(fMK )(xj) = f(xj) for xj ∈ K .297

Let K ⊂ Rn be a finite set. Without loss of generality, from now on, we assume that dim(co[K]) = n, that is, that298

co[K] ⊂ Rn is a convex body. In the case dim(co[K]) = k < n, we can simply translate K so that 0 ∈ K, and299

let Ek = span(co[K]) where span(co[K]) is the k-dimensional subspace spanned by co[K]. In this case, Ek ⊂ Rn300

is a supporting plane of co[K] and we only need to work in Ek given that in our interpolation problem we are301

only interested in values of our approximation in co[K]. We can therefore reduce our approximation/interpolation302

problem to Ek by applying Proposition 2.8.303

In order to describe our approximation/interpolation results, we first need to introduce notions related to the304

Voronoi diagram and Delaunay triangulation for a finite set K [18, 38, 22].305

Let K = {x1, . . . , xm} be a finite set of distinct points of Rn, and denote m = #(K). We define V(K), the Voronoi306

diagram of K, to be the partition of Rn into m cells, one for each point of K, with the property that a point x ∈ Rn307

belongs to the cell corresponding to the point xi ∈ K if |x − xi| < |x − xj | for each xj ∈ K with j 6= i. We then308

denote by M(K) the Voronoi edges of the Voronoi diagram V(K) of K, meaning the set of the edges of V(K) where309

a point y ∈M(K) if there are at least two different points xi, xj ∈ K such that dist(y, K) = |y−xi| = |y−xj | > 0.310

Then there are finitely many points y1, . . . , yl ∈M(K), called Voronoi vertices and whose set is denoted by V (K),311

with the property that there are corresponding radii r1, . . . , rl > 0, such that for each yi ∈ V (K), there are312

mi ≥ n+ 1 points xi1, . . . , x
i
mi
∈ K such that dist(yi, K) = |yi − xij | = ri so that the open ball B(yi; ri) does not313

intersect K and B̄(yi; ri)∩K = {xi1, . . . , ximi
}. If we write Ki = {xi1, . . . , ximi

} for each i ∈ {1, . . . , l}, we also have314

that dim(co[Ki]) = n, ∪lj=1 co[Kj ] = co[K], and if i 6= j, either dim(co[Ki] ∩ co[Kj ]) < n or co[Ki] ∩ co[Kj ] = ∅315

[38].316

For each i = 1, . . . , l, co[Ki] is referred to as a Delaunay cell with generator Ki, centre yi and radius ri and the ball317

B(yi; ri) is called the associated open ball of the Delaunay cell co[Ki]. We have Ki = K ∩ ∂B(yi; ri) while K ∩318

B(yi; ri) = ∅. A Delaunay cell is then said regular if it is an n-dimensional simplex (so in particular, a triangle if n =319

2 and a tetrahedron if n = 3). If each Delaunay cell co[Ki] in co[K] is regular, the set {co[K1], co[K2], . . . , co[Kl]}320

is said to be the regular Delaunay triangulation of co[K].321

In the following, we consider two different situations.322

(i) Each Delaunay cell co[Ki] is an n-dimensional simplex, that is, co[K] has a regular Delaunay triangulation;323

(ii) For some or for all Ki’s, dim(co[Ki]) = dim(co[K]) = n and #(Ki) > n+ 1, that is, the Delaunay cell is a324

convex polytope that is not an n-dimensional simplex.325

We will show that if (i) holds, that is, if we have a regular Delaunay triangulation of co[K], then our average326

approximation AMλ (fK) defines the usual piecewise affine interpolation based on this Delaunay triangulation [38,327

page. 191] when λ > 0 and M >> λ are sufficiently large. If (ii) occurs, our average approximation AMλ (fK) will328

be the average of the minimum and maximum piecewise affine interpolations of fK in the cell.329

Remark 4.2. A remarkable difference between our average approximation AMλ (fK) and the usual design of330

piecewise affine constructions is that we do not need to know or compute the Delaunay cells in advance. Our331

method simply directly generates the piecewise affine function.332

Before we state our first structural theorem on the effect of the upper, lower and average approximations over a333

regular cell, we need the following lemma.334

Lemma 4.3. Let B(x∗; r) ⊂ Rn be the open ball centred at x∗ with radius r > 0 and S = {x1, x2, . . . , xm} ⊂335

∂B(x∗; r) be a finite set with distinct points and with #(S) = m ≥ n + 1. Assume co[S] ⊂ B̄(x∗; r) to be the336

convex hull of S satisfying dim(co[S]) = n. Suppose fS : S → R is a real-valued function with Lipschitz constant337

L > 0. If there is an affine function `s : Rn → R such that `s(xi) = fS(xi) for all xi ∈ S, then there is a constant338

Cs > 0 such that the gradient of ` satisfies |D`s(x)| ≤ CsL.339
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Remark 4.4. In Lemma 4.3, if m = n+1, then co[S] is a n-dimensional simplex and there is an affine function340

`s such that `s(x) = fS(x) for x ∈ S. However if m > n+1, in general one can not find an affine function satisfying341

`s(x) = fS(x) for x ∈ S. We will deal with such a case together with a more general one in Lemma 4.9 and in342

Theorem 4.11.343

We now calculate the transforms Cuλ (f−MK ), Clλ(fMK ) and AMλ (fK) in a regular Delaunay cell co[S] satisfying344

m = #(S) = n+ 1 and dim(co[S]) = n. For each regular cell co[S], define345

σs = min
{
|xj − xs| − rs, xj ∈ K \ S

}
> 0346

where xs, rs are the centre and radius respectively of the associated Delaunay ball B(xs; rs) of co[S], and let Cs be347

the constant given by Lemma 4.3 for the affine function `s associated with {(x, fS(x)), x ∈ S}. We then have the348

following result.349

Theorem 4.5. Let K = {xi}mi=1 ⊂ Rn be a finite set with distinct points and let fK : K → R be a function with350

Lipschitz constant L > 0 and bound A0 > 0, that is, |fK(x)| ≤ A0 for x ∈ K. Suppose S = {x1, x2, . . . , xl+1} ⊂ K351

satisfies that co[S] is a regular Delaunay cell with associated Delaunay ball B(xs; rs). Let `s : Rn → R be the affine352

function given by Lemma 4.3 for S and fK restricted on S. Then, for every x ∈ co[S],353

(4.1)

Cuλ (f−MK )(x) = λ|x− xs|2 − λr2
s + `s(x), Clλ(fMK )(x) = λr2

s − λ|x− xs|2 + `s(x),

AMλ (fK)(x) =
Cuλ (f−MK )(x) + Clλ(fMK )(x)

2
= `s(x) ,

354

whenever355

(4.2) λ >
2A0

σs(2rs + σs)
+
CsL

σs
356

and357

(4.3) M > λr2
s + CsLrs +A0 +

C2
sL

2

4λ
.358

Remark 4.6. If we replace our functions f−MK and fMK by f−∞K and f∞K , respectively, defined by359

f−∞K (x) =

{
fK(x), if x ∈∈ K ,

−∞, if x ∈ Rn \K
and f∞K (x) =

{
fK(x), if x ∈ K ,

+∞, if x ∈ Rn \K ,
360

then Condition (4.2) alone is sufficient to obtain (4.1). Although by setting M = +∞ we have a mathematically361

simpler statement, the resulting approximations would not, however, meet the Hausdorff stability property (see [55,362

Thm. 4.12] for a Hausdorff stability theorem for AMλ (fK)).363

If we further assume that for the given finite set K there is a regular Delaunay triangulation of co[K], which thus364

consists of n-dimensional simplices, we can then easily give global explicit descriptions of Cuλ (f−MK ) and Clλ(fMK ),365

and hence of AMλ (fK) in each n-dimensional Delaunay simplex. This, however, requires λ > 0 and M > 0 to be366

sufficiently large.367

Corollary 4.7. Let K ⊂ Rn be a finite set with distinct points such that it admits a regular Delaunay368

triangulation D(K) of co[K] thus comprising of the n-dimensional simplices co[S1], . . . , co[Sl] where V (K) the set369

of vertices of the Voronoi diagram V(K) of K with #(V (K)) = l. For each Delaunay cell Si for i = 1, . . . , l,370

consider its associated open ball B(yi; ri) such that B(yi; ri) ∩ K = ∅ and K ∩ B̄(yi; ri) = Si for i = 1, . . . , l.371

Define σi = min{|x− yi| − ri, x ∈ K \ Si}.372

This manuscript is for review purposes only.



APPROXIMATIONS AND INTERPOLATIONS 11

Let fK : K ⊂ Rn → R be a function with Lipschitz constant L > 0 satisfying, for some A0 > 0, |fK(x)| ≤ A0373

for all x ∈ K. Let `i be the affine function defined in Lemma 4.3 for Si, such that `i(x) = fK(x) for x ∈ Si and374

|D`i(x)| ≤ CiL for some constant Ci > 0, i = 1, . . . , l. Then in each simplex co[Si], i = 1, . . . , l, and for every375

x ∈ co[Si], we have376

(4.4)

Cuλ (f−MK )(x) = λ|x− xi|2 − λr2
i + `i(x), Clλ(fMK )(x) = λr2

i − λ|x− xi|2 + `i(x) ,

AMλ (fK)(x) =
Cuλ (f−MK )(x) + Clλ(fMK )(x)

2
= `i(x) ,

377

whenever378

(4.5) λ > max
1≤i≤m

(
2A0

σi(2ri + σi)
+
CiL

σi

)
379

and380

M > max
1≤i≤m

(
λr2
i + CiLri +A0 +

C2
i L

2

4λ

)
.381

Remark 4.8. A similar observation to Remark 4.6 for Theorem 4.5 can be made for Corollary 4.7. Under the382

assumptions of Corollary 4.7, condition (4.5) is sufficient to ensure that (4.4) holds with f−∞K , f∞K and A∞λ (fK),383

respectively, for i = 1, . . . , l and for every x ∈ co[Si].384

Let S = {x1, . . . , xm} ⊂ Rn. Next we study the structure of our upper, lower transforms and average approxima-385

tions when the n-dimensional Delaunay cell co[S] is not a simplex, that is, #(S) = m > n+ 1. In this case, we say386

that the n-dimensional Delaunay cell co[S] is not regular. Without loss of generality we may assume that there is387

an open ball B(0; r) centred at 0 with radius r > 0, such that S ⊂ ∂B(0; r). Let fS : S → R be a given function,388

and write fS(xi) = vi, i = 1, . . . ,m. Let Γs = {(xi, vi), i = 1, . . . ,m} be the graph of fS in S ×R, we may assume389

that the convex envelope co[Γs] ⊂ Rn ×R of Γs is an n+ 1-dimensional convex polytope, otherwise there will be a390

single affine function as in Lemma 4.3 satisfying `s(xi) = vi and we are back to the situation of Theorem 4.5.391

Let D = co[S] ⊂ Rn and Γ = ∂ co[Γs] be the boundary of the convex polytope co[Γs]. We have the following result.392

Lemma 4.9. Let S, fS and Γs be as defined above. Then393

(i) There are two continuous piecewise affine functions p+(x) and p−(x) in D = co[S] defined by394

p+(x) = max{v, (x, v) ∈ co[Γs]}

= max

{
m∑
i=1

λivi, xi ∈ S, λi ≥ 0, i = 1, . . . ,m,

m∑
i=1

λi = 1,

m∑
i=1

λixi = x

}
,

p−(x) = min{v, (x, v) ∈ co[Γs]}

= min

{
m∑
i=1

λivi, xi ∈ S, λi ≥ 0, i = 1, . . . ,m,

m∑
i=1

λi = 1,

m∑
i=1

λixi = x

}
,

395

where p+ and p− are piecewise affine concave and convex functions in D respectively;396

(ii) For every x ∈ D̊, the interior of D, p−(x) < p+(x).397

(iii) The convex polytope D ⊂ Rn has two decompositions D = ∪ki=1D
+
i and D = ∪lj=1D

−
j such that D+

k and D−j398

are closed convex n-dimensional polytopes, D̊+
i ∩D̊

+
j = ∅ and D̊−i ∩D̊

−
j = ∅ for 1 ≤ i 6= j ≤ l. On each D+

k399

(respectively, D−j ), p+(x) (respectively, p−(x)) is an affine function, that is, p+(x) := `+k (x) = a+
k · x+ b+k ,400

x ∈ D+
k (respectively, p−(x) := `−j (x) = a−j · x + b−j , x ∈ D−j ). Furthermore, the affine function `+k (x)401
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(respectively, `−j (x)) defined in Rn as above, satisfies `+k (x) ≥ p+(x) (respectively, `−j (x) ≤ p−(x)) for402

x ∈ D.403

(iv) Let S+
k ⊂ D+

k be the set of all vertices of D+
k for k = 1, . . . ,m, then S+

k ⊂ S, and ∪mk=1S
+
k = S. On each404

S+
k , p+(x) = fS(x).405

(v) Let S−j ⊂ D−j be the set of all vertices of D−j for j = 1, . . . , l, then S−j ⊂ S, and ∪lj=1S
−
j = S. On each406

S−k , p−(x) = fS(x).407

Remark 4.10. In Lemma 4.9, the piecewise affine functions p+ and p− are replacements of `s in Theorem408

4.5. For the average approximation, the average p+ + p−
2 of the piecewise affine functions p+ and p− gives the new409

interpolation formula in D = co[S], replacing the affine function `S. This means that our interpolation AMλ (fK)410

might introduce extra nodes in co[S] in a unique way, in the sense that D is the union of q n-dimensional convex411

polytopes Dav
i , i ∈ {1, . . . , q}, such that p+ + p−

2 is affine on each Dav
i but not all vertices of Dav

i are contained in412

S.413

The following is a generalisation of Theorem 4.5.414

Theorem 4.11. Let K = {xi}mi=1 ⊂ Rn be a finite set with distinct points and let fK : K → R be a function415

with Lipschitz constant L > 0 and bound A0 > 0, that is, |f(x)| ≤ A0 for x ∈ K. Suppose S = {x1, x1, . . . , xm} ⊂ K416

generates a Delaunay cell co[S] satisfying dim(co[S]) = n and dim(co[Γs]) = n+1, where Γs = {(x, fK(x)), x ∈ S}417

is the graph of fK restricted to S. Let B(ys; rs) be the associated open ball of the cell co[S]. Let p+ : co[S]→ R be418

the piecewise affine concave function and p− : co[S]→ R be the piecewise affine convex function defined in Lemma419

4.9, and let co[S] = ∪mk=1D
+
k and co[S] = ∪lj=1D

−
j be the decompositions of co[S] given by Lemma 4.9. Let420

C+
s L = max

1≤k≤m
C+
k L, C−s L = max

1≤j≤l
C−j L, CsL = max{C+

s L, C
−
s L} ,421

where C+
k L and C−j L are the positive upper bounds given by Lemma 4.3 for |Dp+(x)| and |Dp−(x)|, respectively,422

on D+
k and D−j . Let σs = min{|x− xs| − rs, x ∈ K \ S} > 0. Then for every x ∈ co[S],423

(4.6)

Cuλ (f−MK )(x) = λ|x− xs|2 − λr2
s + p+(x) , Clλ(fMK )(x) = λr2

s − λ|x− xs|2 + p−(x) ,

AMλ (fK)(x) =
p+(x) + p−(x)

2
,

424

whenever425

(4.7) λ >
2A0

σs(2rs + σs)
+
CsL

σs
426

and427

(4.8) M > λr2
s + CsLrs +A0 +

C2
sL

2

4λ
.428

Remark 4.12. Under the assumptions of Lemma 4.9 and Theorem 4.11, we see that p+(x) and p−(x) are the429

maximal and minimal piecewise affine interpolations over co[S]. It is well-known [38] that in this irregular case,430

there still exist Delaunay triangulations of co[S] consisting of n-dimensional simplices, but the triangulation is not431

unique. The average approximation432

AMλ (fK)(x) =
p+(x) + p−(x)

2
433

given by Theorem 4.11 is exactly the average of the maximal and minimal interpolation in a Delaunay cell.434
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5. Inpainting revisited. Consider now inpainting of damaged areas of an image. This is the problem where435

we are given an image that is damaged in some parts and we want to reconstruct the values in the damaged part on436

the basis of the known values of the image. To specify the setting of the problem, let Λ ⊂ Rn be a convex compact437

set representing the domain of the image f which, without loss of generality, we assume to be a grayscale image,438

and is thus represented by a function f : Λ ⊂ Rn → R. We assume that f is bounded and uniformly continuous.439

See below, in Remark 5.2 and the comments on Example 5.3, for a discussion of this assumption in the case of an440

image.441

Denote by Ω ⊂ Λ an open set representing the damaged areas of the image and let K = Λ \ Ω. We have then442

Ω ⊂ co[K].443

On the basis of the values of f in K, we reconstruct the values of f in Ω by using the average approximation444

AMλ (fK). In this section, we want to assess the error of this approximation.445

The next result, which follows from an application of Corollary 2.7, is the main error estimate for our inpainting446

method.447

Proposition 5.1. Let Λ ⊂ Rn be a convex compact set and Ω ⊂ Λ a non-empty open set. Assume f : Λ ⊂448

Rn → R be bounded and uniformly continuous, such that for A0 > 0 we have that |f(x)| ≤ A0 for all x ∈ K = Λ\Ω.449

Let f̃ be a bounded and uniformly continuous extension of f to Rn, derived by the Tietze extension theorem, with450

f̃(x) = c0 outside an open ball B(0; r) with r > 0 and such that K ⊂ B(0; r). For R > r, define KR = K∪Bc(0;R)451

and let fKR
(x) = fK(x) for x ∈ K and fKR

(x) = c0 for x ∈ Bc(0;R). Denote by ω the least concave majorant452

of the modulus of continuity of f̃ . Let a ≥ 0, b ≥ 0 be such that ω(t) ≤ at + b for t ≥ 0. Then for all λ > 0,453

M > A0 + λ(R+ r)2 and all x ∈ co[K], we have454

(5.1) |AMλ (fK)(x)− f̃(x)| ≤ ω

(
rc(x) +

a

λ
+

√
2b

λ

)
,455

where rc(x) ≥ 0 is the convex density radius of x with respect to K.456

If we further assume that f is a globally Lipschitz function with Lipschitz constant L > 0, then for λ > 0,457

M > A0 + λ(R+ r)2 and all x ∈ co[K], we have458

(5.2) |AMλ (fKR
)(x)− f(x)| ≤ Lrc(x) +

L2

λ
.459

If we further assume that f̃ is a C1,1 function such that |Df̃(x)−Df̃(y)| ≤ L|x− y| for all x, y ∈ Rn with L > 0460

the Lipschitz constant of Df̃ , then for λ > L, M > A0 + λ(R+ r)2 and all x ∈ co[K], we have461

(5.3) |AMλ (fKR
)(x)− f̃(x)| ≤ L

4

(
λ+ L/2

λ− L/2
+ 1

)
r2
c (x) .462

Furthermore, in this case, AMλ (fKR
) is an interpolation of fK in Rn.463

Remark 5.2. (i) Using (2.9), it follows that the estimates (5.1) and (5.3) hold with rc(x) replaced by464

d(x). Although the resulting estimates are less sharp, they have a clearer meaning in light of the geometric465

interpretation of the gap d(x).466

(ii) While the assumption of boundedness of the image f is a plausible one, the assumption on the continuity of f467

seems to be less reasonable for applications to images which might have sharp changes in grayscale intensity.468

However, Example 5.3 at the end of this section, illustrates the fact that our average approximation operator469

well approximates jump discontinuities.470

It is interesting to compare our error estimates (5.1) and (5.3) with the error analysis for image inpainting discussed471

in [15]. Let Ω ⊂ R2 be a smooth domain, which is the damaged area of the image to be reconstructed, and let u be472
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14 K. ZHANG, E. CROOKS, AND A. ORLANDO

a C2 function in a larger domain containing Ω̄. Let u0 = u on ∂Ω and consider the solution v of the boundary value473

problem ∆v(x) = 0 with v = u0 on ∂Ω. The function v is the reconstruction of u within Ω. The error estimate474

obtained in [15] is then given by475

(5.4) |v(x)− u(x)| ≤ Tβ2

4
, x ∈ Ω ,476

where T = max{|∆u(x)|, x ∈ Ω̄} and β is the shorter semi-axis of any ellipse covering Ω. [15] also contains477

variations of estimate (5.4) by deforming (if possible) a general long thin domain into one for which β is reasonably478

small.479

Note that in light of Remark 5.2(i), the error bound (5.3) depends explicitly on d(x) and the Lipschitz constant L of480

the gradient Df̃ , which is comparable with the bound T for the Laplacian of u. Moreover, our assumptions on the481

smoothness of the domain Ω and the underlying function are weaker than those considered in [15]. In fact, we do482

not require any smoothness of the boundary ∂Ω. Our estimate is particularly sharp for more general thin domains483

given its dependance on d(x). As remarked in [15], the short semi-axis β2 used in the error estimate for harmonic484

inpainting cannot be replaced by d2(x) which better accounts for the geometric structure of the damaged area to485

be inpainted. Due to the Hausdorff stability property of the average approximation (see [55, Theorem 4.12]), if Ωε486

is another domain whose Hausdorff distance to Ω is small, we can also obtain similar results to estimate (5.3) for487

such domains.488

Reference [15] contains also error estimates for the TV inpainting model using the energy
∫

Ω
|v(x)|dx under the489

Dirichlet condition v|∂Ω = u0. However, it is not clear how such estimates can be made rigorous. Comparing490

with Proposition 5.1 where we assumed the underlying function to be bounded and uniformly continuous, the TV491

model, in contrast, allows the function to have jumps, thus the TV inpainting model tries to preserve such jump492

discontinuities. However, such a model cannot be Hausdorff stable. Also, in order to establish the existence of493

solutions for this model, we note that the boundary condition has to be relaxed. Even for the more regular minimal494

graph energy
∫

Ω

√
1 + |Dv(x)|2dx, existence of solutions for the Dirichlet problem may not be guaranteed [31].495

On the other hand, the average approximation always exists and is unique. See Example 6.5 in Section 6 for an496

illustration of this.497

Compared with our model for inpainting, we also note that for the relaxed Dirichlet problem of the minimal graph498

or of the TV model, as the boundary value of the solution does not have to agree with the original boundary value,499

extra jumps can be introduced along the boundary. By comparison, since our average approximation is continuous,500

it will not introduce such a jump discontinuity at the boundary.501

One of the motivations for using TV related models [17] for the inpainting problem is that functions of bounded502

variations can have jump discontinuities [3]. Some authors argue that continuous functions cannot be used to503

model digital image related functions as functions representing images may have jumps [17]. However, from the504

human vision perspective, it is hard to distinguish between a jump discontinuity, where values change abruptly,505

and a continuous function with sharp changes within a very small transition layer. The following is a simple one-506

dimensional example showing the effects of our upper, lower and average compensated convex transforms on a jump507

function. More explicitly calculated prototype examples of inpainting by using our method over jump discontinuity508

and continuous edges are given in Section 6.509

Example 5.3. Let f(x) = sign(x) be the sign function defined by sign(x) = 1 if x > 0, sign(x) = −1 if x < 0.510
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For λ > 0, we have511

Clλ(f)(x) =


−1, x ≤ 0,

1− λ(x−
√

2/λ)2, 0 ≤ x ≤
√

2/λ,

1, x ≥
√

2/λ;

Cuλ (f)(x) =


−1, x ≤ −

√
2/λ ,

λ(x+
√

2/λ)2 − 1, −
√

2/λ ≤ x ≤ 0 ,

1, x ≥ 0;

1

2
(Clλ(f)(x) + Cuλ (f)(x)) =



−1, x ≤ −
√

2/λ,

λ

2
(x+

√
2/λ)2 − 1, −

√
2/λ ≤ x ≤ 0,

1− λ

2
(x−

√
2/λ)2, 0 ≤ x ≤

√
2/λ,

1, x ≥
√

2/λ;

(5.5)512

Figure 1 displays the graphs of these transforms with λ = 100 which give very good approximations of the513

jump function with the square of the L2-error equal to 2
√

2/(5
√
λ) for the average approximation and equal to514 √

2/(5
√
λ for the lower and upper transform. Therefore these transforms can be used quite well to replace the jump515

discontinuity. For further prototype examples of inpainting with jump discontinuity, see Section 6.516

(a) (b) (c)

Figure 1. (a) Lower transform of the sign function for λ = 100. (b) Upper transform of the sign function for λ = 100. (c)
Average approximation of the sign function for λ = 100.

We conclude this section by presenting a result on inpainting in bounded convex domains which we state only for517

continuous functions defined on the closure of the domain. For Lipschitz and C1,1 functions, similar results can be518

established.519

Corollary 5.4. Suppose Ω ⊂ Rn is a non-empty, bounded, open and convex set and U ⊂ Ū ⊂ Ω is an open520

subset whose closure Ū is contained in Ω. Suppose f : Ω̄ → R is a continuous function. Let f̃ be any bounded521

uniformly continuous extension of f to Rn and ω be the least concave majorant of the modulus of continuity of f̃522

which is itself a modulus of continuity. Let K = Ω̄ \ U and define for M > 0523

fM,∞
K (x) =

 f(x), x ∈ K,
M, x ∈ U,
+∞, x ∈ Rn \ Ω̄,

f−M,−∞
K (x) =

 f(x), x ∈ K,
−M, x ∈ U,
−∞, x ∈ Rn \ Ω̄.

524
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Then the average approximation in Ω̄ defined by525

(5.6) AM ;∞
λ (fK)(x) =

1

2

(
Clλ(fM,+∞

K )(x) + Cuλ (f−M,−∞
K )(x)

)
526

for x ∈ Ω̄ satisfies527

|AM,∞
λ (fK)(x)− f(x)| ≤ ω(rc(x) + a/λ+

√
b/λ)528

for all x ∈ Ω̄, where rc(x) is the convex density radius of x ∈ Ω̄ with respect to K.529

Remark 5.5. The average approximation defined by (5.6) is the same average approximation as defined on the530

bounded domain Ω̄531

AMλ (fK ; Ω̄)(x) =
1

2

(
Clλ(fMK ; Ω̄)(x) + Cuλ (f−MK ; Ω̄)(x)

)
532

for x ∈ Ω̄, where fMK (x) and f−MK (x) are defined by (1.2), restricted to Ω̄. We can also state the average approxi-533

mation under the Dirichlet boundary condition in a similar way. We leave this to interested readers.534

6. Prototype Models. In this section we present explicitly calculated average approximations for some535

particular simple functions of two variables. Recall that such approximations A∞λ (fK) are obtained by first finding536

lower and upper compensated convex transforms and then taking their arithmetic mean, and that the approximation537

properties of A∞λ (fK) hold for (x, y) ∈ co[K]. For some examples we also give expressions for the constituent lower538

and upper transforms to help illustrate the construction of the approximations. Such examples serve the dual539

purpose of providing insight into this new class of approximations based on compensated convexity transforms,540

and of verifying numerical methods for computing such approximations. In fact, in Section 7 below, we will see541

numerical examples that show that, at a sufficient level of magnification, the conditions that occur in practice for542

the approximation of general functions often look essentially like one of these prototypes.543

6.1. Simple prototypes.544

Example 6.1. These two examples give average approximations A∞λ (fK) for simple sampled functions over545

non-regular Delaunay cells. In each case, the average approximation is an interpolation of the sampled function546

values.547

(i) Consider the four point set K = {(±1, 0), (0, ±1)} and define fK(1, 0) = fK(0, 1) = 1 and fK(−1, 0) =548

fK(0,−1) = −1. The upper and lower compensated convex transforms are then for λ > 0549

Clλ(f∞K )(x, y) =

 2λ− 1− x+ y − λ(x2 + y2), if x ≥ −1, y ≤ 1 and x ≤ y,
2λ− 1 + x− y − λ(x2 + y2), if y ≥ −1, x ≤ 1 and x ≥ y,
+∞, if |x| > 1 or |y| > 1;

Cuλ (f−∞K )(x, y) =

 −2λ+ 1 + x+ y + λ(x2 + y2), if x ≥ −1, y ≥ −1 and x+ y ≤ 0,
−2λ+ 1− x− y + λ(x2 + y2), if x ≤ 1, y ≤ 1 and x+ y ≥ 0,
−∞, if |x| > 1 or |y| > 1 .

550

so that, for (x, y) ∈ D := co[K] = {(x, y) ∈ R2 : |x| ≤ 1, |y| ≤ 1}, we have551

A∞λ (fK)(x, y) =


y, if x ≤ y and x+ y ≤ 0,
−x, if x ≤ y and x+ y ≥ 0,
x if x ≥ y and x+ y ≤ 0,
−y, if x ≥ y and x+ y ≥ 0.

552

This is the continuous piecewise affine interpolation of fK inside the square D. The graph of A∞λ (fK) is553

shown in Figure 2(a).554
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(ii) Consider the eight point set K ⊂ R2 consisting of the eight points on the unit circle with polar angles kπ/4,555

k = 0, 1, 2, . . . , 7, and define fK(cos(kπ/4), sin(kπ/4)) = (−1)k. The upper and lower compensated convex556

transforms are then for λ > 0557

Clλ(f∞K )(x, y) =



√
2+1√
2−1
− 2|y|√

2−1
if |x| ≤ 1, |y| ≥ 1 and |y|+ (

√
2− 1)|x| ≤

√
2,

√
2+1√
2−1
− 2|x|√

2−1
if |y| ≤ −1, |x| ≥ 1 and |x|+ (

√
2− 1)|y| ≤

√
2,

1 if |x| ≤ 1, and |y| ≤ 1

0 otherwise;

Cuλ (f−∞K )(x, y) =



√
2+1√
2−1
−
√

2|x−y|√
2−1

if |x+ y| ≤
√

2, |x− y| ≥
√

2 and

|x− y|+ (
√

2− 1)|x+ y| ≤ 2,
√

2+1√
2−1
−
√

2|x+y|√
2−1

if |x+ y| ≥
√

2, |x+ y| ≥
√

2 and

|x+ y|+ (
√

2− 1)|x− y| ≤ 2,

1 if |x+ y| ≤
√

2 and |x− y| ≤
√

2

0 otherwise;

558

whereas A∞λ (fK)(x, y) is obtained by taking the arithmetic mean of Clλ(f∞K )(x, y) and Cuλ (f−∞K )(x, y).559

Figure 2(b) shows the graph of A∞λ (fK) in co[K], which is the inside of the regular octagon with vertices560

at the eight points of K. As in (i), A∞λ (fK) is a continuous piecewise affine interpolation of fK in co[K].561

(a) (b)

Figure 2. Graphs of the average approximation operators A∞λ (fK) in Example 6.1, when K is (a) a four point set on the circle
of unit radius and (b) an eight point set on the circle of unit radius. In both (a) and (b), the average approximation operator is an
interpolation operator over co[K].

Example 6.2. These two examples give average approximations A∞λ (fK) for unbounded sets K with co[K] =562

R2.563

(i) Consider the set K = `−∪`+ with `− = {(x, x), x ∈ R}, `+ = {(y,−y), y ∈ R}, and define fK(x, x) = −x2564

and fK(y,−y) = y2. To simplify the calculations, first consider the scaled and rotated function gK̃ defined565

on the set K̃ = {(x, 0), x ∈ R} ∪ {(0, y), y ∈ R}, with gK̃(x, 0) = −x2 and gK̃(0, y) = y2. Then for566

(x, y) ∈ R2, the lower and upper compensated convex transforms of gK̃ are567

Clλ(g∞
K̃

)(x, y) = y2 + 2|x||y| − x2, Cuλ (g−∞
K̃

)(x, y) = y2 − 2|x||y| − x2,568
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and the average approximation of gK̃ is569

A∞λ (gK̃)(x, y) =
1

2

(
Clλ(g∞

K̃
)(x, y) + Cuλ (g−∞

K̃
)(x, y)

)
= y2 − x2 .570

The average approximation A∞λ (fK) of fK is then obtained from A∞λ (gK̃) via a change of variables, and is571

A∞λ (fK)(x, y) =
1

2

(
A∞λ (gK̃)

(
x+ y√

2
,
x− y√

2

))
= −xy .572

Figure 3(a) shows the graph of A∞λ (fK).573

(ii) Let K = {(x, 0), x ∈ R} ∪ {(0, y), y ∈ R} and define fK by fK(x, 0) = |x| for x ∈ R and fK(0, y) = −|y|574

for y ∈ R. For (x, y) ∈ R2, the lower and upper compensated convex transforms of fK are575

Clλ(f∞K )(x, y) =

{
2|x| − 1

4λ − λ(x2 + y2), if |x|+ |y| ≤ 1
2λ ,

|x|+ 2λ|x||y| − |y|, if |x|+ |y| ≥ 1
2λ ,

Cuλ (f−∞K )(x, y) =


−2|y|+ 1

4λ + λ(x2 + y2), if |x|+ |y| ≤ 1

2λ
,

|x| − 2λ|x||y| − |y|, if |x|+ |y| ≥ 1

2λ
,

576

and the average approximation operator is577

A∞λ (fK)(x, y) = |x| − |y| ,578

which here coincides with the natural interpolation of fK by the piecewise affine function f(x, y) = |x|−|y|,579

(x, y) ∈ R2. The graph of A∞λ (fK) is shown in Figure 3(b).580

(a) (b)

Figure 3. Graphs of the average approximation operators A∞λ (fK) in Example 6.2(i) and (ii), respectively.

6.2. Inpainting prototypes. Examples 6.3 and 6.4 are prototype models for the inpainting problem. Our581

question is, to what extent our method can preserve singularities on the boundary based on the given boundary582

values. Our calculations show that if the domain is narrow and similar singular boundary values appear on both583

sides of the narrow gap, the inpainting function A∞λ (fK) can preserve the singular shape across the gap, subject584

to a λ-dependent regularisation of the singularity due to the local smoothing effect of the compensated convex585

transforms.586

Example 6.3. (i) For r > 0, h > 0, let K = {(±r, y), |y| ≤ h} ⊂ R2 i.e. two parallel line segments a587

distance r apart (see Figure 4(a)), and define fK(±r, y) = 1 − |y|. Let D = co[K] = {(x, y) ∈ R2 : |x| ≤588
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r, |y| ≤ h}. Then for λ > 1/2h,589

Clλ(f∞K )(x, y) =


1− 1

4λ + λr2 − λx2 − λy2, if |x| ≤ r and |y| ≤ 1
2λ ,

1 + λr2 − λx2 − |y|, if |x| ≤ r and 1
2λ ≤ |y| ≤ h,

+∞ otherwise,

Cuλ (f−∞K )(x, y) =

{
1− λr2 + λx2 − |y|, if |x| ≤ r and |y| ≤ h;

−∞ otherwise,

590

and for (x, y) ∈ D, the average approximation operator is591

A∞λ (fK)(x, y) =

{
1− 1

8λ −
λy2

2 −
|y|
2 , if |x| ≤ r and |y| ≤ 1

2λ ,

1− |y|, if |x| ≤ r, and 1
2λ ≤ |y| ≤ h .

592

The graph of A∞λ (fK) is shown in Figure 4(b).593

594

Note that this example shows that if we only sample the two gables K of the roof, the whole roof can be595

recovered well for any r > 0 and h > 0. On the other hand, we will see in the next example that the596

situation is more complicated if the other two sides, (x,±h) for |x| ≤ r, are added to the sample set.

(a) (b)

Figure 4. Example 6.3(i). (a) The sample set K shown in bold, with the sample function fK = 1 − |y|. (b) Graph of A∞λ (fK)
for λ = 1.

597
(ii) Next let D = {(x, y), |x| ≤ r, |y| ≤ h} with h > 0 and r > 0, take the sample set K = ∂D = {(±r, y), |y| ≤598

h} ∪ {(x,±h), |x| ≤ r}, and define599

fK(x, y) =

{
h− |y|, x = ±r, |y| ≤ h,

0, y = ±h, |x| ≤ r .
600

For large λ, the shape of A∞λ (fK(x, y)) in D now depends on whether h > r, h < r or h = r.601

(a) If h > r, the two gables of the roof h− |y| at x = ±r are close to each other and we have a very good602

approximation of the whole roof h− |y| for (x, y) ∈ D when λ is sufficiently large. For (x, y) ∈ D, the603

approximation A∞λ (fK(x, y)) is604

A∞λ (fK)(x, y) =

{
h− 1

4λ − λy
2, if |y| ≤ 1

2λ and |x| ≤ r,

h− |y|, if 1
2λ ≤ |y| ≤ h and |x| ≤ r ,

605

which yields the explicit error estimate606

|A∞λ (fK)(x, y)− f(x, y)| ≤ 1
8λ .607
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In particular, the ridge of the roof is preserved well in this case.608

(b) If h = r and λ > 0 is large, the roof dips in the middle, while the ‘ridge’ is still preserved.609

(c) If h < r and λ > 0 is large, the roof falls inside D = co[K] and touches the ground. In this case, the610

ridge is no longer preserved at all.611

In summary, the average approximation can approximate well the non-smooth function given on two sides612

of K provided the two gables are close enough. In this case, we could say that by symmetry we have a613

behaviour similar to the one seen in Example 6.3(a). As opposite, when the two gables are far apart, i.e.614

when h/r < 1, it is somehow the effect of fK = 0 on the sides y = ±h to make it feel its presence, by615

having a zero interpolation in the middle of the domain. We stress again that this situation is different616

from the one seen in Example 6.3(a) where fK was sampled only on the sides x = ±r. Figure 5 shows the617

graphs of A∞λ in each of the three cases, together with the sample set K.618

(a) (b)

(c) (d)

Figure 5. Example 6.3(ii). (a) The sample set K shown in bold, with the sample function fK . Average approximation in D for
the following parameters: (b) h = 1, r = 0.9, λ = 10. (c) h = 1, r = 1, λ = 10. (d) h = 0.9, r = 1, λ = 10.

A preliminary one-dimensional prototype of the inpainting of a region when the boundary values have discontinuities619

was given in Example 5.3. We next explore how our inpainting method can preserve jumps in a two-dimensional620

example.621

Example 6.4. Consider the inpainting of the region D = {(x, y), |x| ≤ r, |y| ≤ h}, for r, h > 0, in the case of622

narrow gap, that is, when h < r. The sample set is the boundary of the domain D, that is, K = ∂D, and the sample623

function fK is taken as fK(x, y) = sign(x). Then for λ > 0 large enough, the average approximation operator is in624
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fact given by (5.5), that is, for (x, y) ∈ D,625

A∞λ (fK)(x, y) =



−1, if x ≤ −
√

2/λ and |y| ≤ h ,
λ
2 (x+

√
2/λ)2 − 1, if −

√
2/λ ≤ x ≤ 0 and |y| ≤ h ,

1− λ
2 (x−

√
2/λ)2, if 0 ≤ x ≤

√
2/λ and |y| ≤ h ,

1, if x ≥
√

2/λ and |y| ≤ h .

626

Figure 6(a) shows the graph of the average approximation A∞λ (fK) in this case. The approximation A∞λ (fK)(x, y)627

is different from sign(x) in the range [−
√

2/λ,
√

2/λ] × [−h, h] due to the smoothing effect of the compensated628

transform in the neighbourhood of the singularity. The width of such a neighbourhood depends on
√
λ
−1

. The full629

recovery of the sign function in D requires taking the limit limλ→∞A∞λ (fK)(x, y).630

631

Note that if, on the other hand, h > r, the gap is ‘wide’ and the graph of A∞λ (fK) starts to collapse in the middle of632

the domain, similar to what happens in Example 6.3(ii)(c). In the collapsed region, the approximation looks like an633

affine function connecting the two sides {x = ±r} of D on which fK is given by the constants +1, when x = +r,634

and −1, when x = −r.635

(a) (b)

Figure 6. Example 6.4. Inpainting in the closed set D = {(x, y), |x| ≤ l, |y| ≤ h} by the boundary value of the sign function on
the sample set K = ∂D. (a) Graph of A∞λ (fK) for h = 0.6, r = 1, λ = 25, showing that the jump is preserved across the domain D.
(b) Sample set K shown in bold with the sampled function fK = sign(x).

6.3. Level-set prototypes. We next present prototype models for the approximation of functions sampled636

on contour lines.637

Example 6.5. This example examines the behaviour of A∞λ (fK) when the contour lines of f are (i) smooth638

and (ii) not smooth.639

(i) For 0 < r < R, let K = Γr ∪ ΓR with Γr and ΓR circles of radius r and R, respectively, as displayed in640

Figure 7(a), and define the sample function fK by fK(x, y) = 0 for (x, y) ∈ Γr and fK(x, y) = M > 0 if641
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(x, y) ∈ ΓR. Then for λ > M/(R2 − r2),642

Cuλ (f−∞K )(x, y) =

 M + λ(x2 + y2 − r2), if
√
x2 + y2 ≤ r,

λ(x2 + y2 −R2) + M+λ(R2−r2)
R−r (R−

√
x2 + y2), if r ≤

√
x2 + y2 ≤ R ,

Clλ(f∞K )(x, y) =

 M + λ(r2 − x2 − y2), if
√
x2 + y2 ≤ r,

λ(R2 − x2 − y2)− λ(R2−r2)−M
R−r (R−

√
x2 + y2), if r ≤

√
x2 + y2 ≤ R ,

643

so that for (x, y) ∈ D = co[K] = {(x, y) : x2 + y2 ≤ R2}, the average approximation A∞λ (fK) is644

A∞λ (fK)(x, y) =

 M, if
√
x2 + y2 ≤ r,

M(R−
√
x2+y2)

R−r , if r ≤
√
x2 + y2 ≤ R .

645

The graph of A∞λ (fK) is shown in Figure 7(b).646

Note that a common method for the interpolation of function values assigned on contour lines is to solve647

the Dirichlet problem for the minimal surface equation div Du√
1+|Du|2

= 0 over the annulus domain r ≤648 √
x2 + y2 ≤ R with boundary conditions u(x, y) = 0 if (x, y) ∈ Γr and u(x, y) = M if (x, y) ∈ ΓR. It is649

then known that this problem does not have a regular solution [31]. Moreover, the interpolation obtained650

by solving the total variation equation div Du
|Du| = 0 faces the same type of issue, because to obtain its651

numerical solution, the denominator |Du| is usually replaced by the term
√
ε2 + |Du|2, thus obtaining the652

scaled minimal surface equation div Du√
ε+|Du|2

= 0 whose solution, as mentioned above, may not be regular.653

As a result, these models must be relaxed and one must look for generalised solutions [30]. In contrast, the654

method we propose yields the natural, easy to compute and expected interpolation A∞λ (fK) between the two655

level lines.

(a) (b)

Figure 7. Example 6.5(i). (a) Sample set K given by the two circular level lines Γr and ΓR with fK(x, y) = 0 for (x, y) ∈ Γr
and fK(x, y) = M > 0 if (x, y) ∈ ΓR. (b) Graph of A∞λ (fK) with r = 1, R = 2, M = 5 and λ = 10.

656

(ii) For a, λ > 0, consider the sample set K = K1 ∪ K2 with K1 = {(x, y) : |y| = ax, x ≥ 0} and657

K2 = {(x, y) : |y| = a(x −
√

1+a2

a
√
λ

), x ≥
√

1+a2

a
√
λ
}, and define the sample function fK by fK(x, y) = 1 for658
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(x, y) ∈ K1 and fK(x, y) = 2 for (x, y) ∈ K2. The set K along with fK are shown in Figure 8(a). For659

(x, y) ∈ D = co[K] = {(x, y) : |y| ≤ ax, x ≥ 0}, the average approximation operator A∞λ (fK) is660

A∞λ (fK)(x, y) =



1, if |y| ≤ ax and 0 ≤ x ≤ 1
a
√

1+a2
,

1 +

√
1+a2

(
− 1
a
√

1+a2
+x

)
a , if x ≥ 1

a
√

1+a2
and x+a|y|√

1+a2
≤ 1

a
√
λ
,

2−
∣∣∣ 1√

λ
+ −ax+|y|√

1+a2

∣∣∣ if − 1√
λ
≤ −ax+|y|√

1+a2
≤ 0 and 1

a
√
λ
≤ x+a|y|√

1+a2
,

2, if −ax+|y|√
1+a2

≤ − 1√
λ

and x ≥
√

1+a2

a
√
λ
.

661

The graph of A∞λ (fK) is displayed in Figure 8(b). Note that the interpolation A∞λ (fK) takes the constant662

value 1, which is the value given on the level set K1, inside a triangle next to the corner of K1, which is663

then pieced continuously to K2 by a continuous piecewise affine function.664

(a) (b) (c)

Figure 8. Example 6.5(ii). (a) Sample set K given by two non-smooth level sets K1 and K2 with a = 1 and fK(x, y) = 0 for
(x, y) ∈ K1 and fK(x, y) = 2 if (x, y) ∈ K2. (b) Graph of A∞λ (fK) with λ = 1. (c) Isolines of A∞λ (fK).

We conclude this section with a prototype example of level-set approximation for a function with a jump disconti-665

nuity at the point (0, 0).666

Example 6.6. For α, m > 0, consider the sample set K given by K = `+∪`− with `+ = {(x, y), y = −αx, x >667

0} and `− = {(x, y), y = αx, x > 0}, and define fK(x, y) = m on `+ and fK(x, y) = −m on `+. The set K along668

with fK are displayed in Figure 9(a). To describe the average approximation of fK in co[K] = {(x, y), |y| ≤669

αx, x > 0} which we denote by S+, we use a parameterised description of the graph (x, y,A∞λ (fK)(x, y)) in terms670

of two new parameters. This is to avoid solving quartic equations when we find the lower and the upper transforms.671

Let cλ = 2m/λ. To calculate the lower transform Clλ(f∞K ) in S+ we need to find the common tangent planes for672

f∞K (x, y)+λ(x2 +y2) of both `+ and `−. We can write the coordinates of the convex envelope as (x, y, co[f∞K (x, y)+673

λ(x2 + y2)]) by674 (
(1− tl)

√
s2
l + cλ + tlsl√

1 + α2
,
−α(1− tl)

√
s2
l + cλ + αtlsl√

1 + α2
, λs2

l + 2λ(1− tl)cλ −m

)
,675

where 0 ≤ tl ≤ 1 and sl ≥ 0. Similarly, the coordinates of (x, y, co[λ(x2 + y2)− f−∞K (x, y)]) are676 (
(1− tu)sutu

√
s2
u + cλ√

1 + α2
,
−α(1− tu)su + αtu

√
s2
u + cλ√

1 + α2
, λs2

u + 2λtucλ −m

)
,677

where 0 ≤ tu ≤ 1 and su ≥ 0. However, the (x, y) coordinates in these two cases do not represent the same points.678
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Therefore we need to set them equal so that679

(6.1) tl =

√
s2
u + cλ

(√
s2
l + cλ − su

)
√
s2
u + cλ

√
s2
l + cλ − susl

, tu =
sl

(√
s2
l + cλ − su

)
√
s2
u + cλ

√
s2
l + cλ − susl

.680

As 0 ≤ tl, tu ≤ 1, we see that |s2
u − s2

l | ≤ cλ. Thus if we let681

x(sl, su) =
(1− tl)

√
s2
l + cλ + tlsl√

1 + α2
, y(sl, su) =

−α(1− tl)
√
s2
l + cλ + αtlsl√

1 + α2
,682

and683

A∞λ (fK)(sl, su) =
1

2

(
λ(s2

l − s2
u) + 2λcλ((1− tl − tu))

)
,684

the graph of the average approximation of fK in the sector S+ defined above is685

ΓS+,λ =
{

(x(sl, su), y(sl, su), A∞λ (fK)(sl, su)) , su ≥ 0, sl ≥ 0, |s2
u − s2

l | ≤ cλ
}
,686

where tl and tu are given by (6.1).687

Although it is not easy to write the graph in the standard Euclidean system, observe that the graph is smooth in the688

interior region {(sl, su), sl > 0, su > 0, |s2
l − s2

u| < cλ}. By our construction, we also note that the surface ΓS+,λ689

is formed by the average of two families of parameterised line segments. Also when λ > 0 is large, outside a small690

sector, say, Sλ+ = {|y| ≤ α, 0 < x < 2
√

2m/λ}, our formula is an interpolation in S+ \ Sλ+. Figure 9(b) shows a691

portion of the graph of A∞λ (fK).692

(a) (b)

Figure 9. Example 6.6. (a) Sampled set K with the definition of fK that presents a discontinuity jump at (0, 0). (b) Graph of
A∞λ (fK) with α = 0.25, m = 1 and λ = 5.

7. Numerical Examples. For more complicated sets K and functions fK , the average approximation op-693

erators AMλ (fK) and A∞λ (fK) must be evaluated numerically. Figure 10 sketches the steps needed for their im-694

plementation. It is noted that the numerical realization relies mainly on the availability of numerical schemes for695

computing the upper and lower transform of a given function, which in turn means the availability of schemes to696

compute the convex envelope of a function. Because of the locality property of the compensated convex transforms697

(see for instance Theorem 3.10 in [57], where quantitative estimates of the neighbourhood size are also given),698

it is possible to develop fast schemes that depend only on the local behaviour of the input function. This is in699
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sharp contrast to the evaluation of the convex envelope of a function which is a global evaluation. In the current700

context, we consider a generalization of the scheme introduced in [37] which is briefly summarized in Algorithm 1701

and described below. Given a uniform grid of points xk ∈ Rn, equally spaced with grid size h, let us denote by Sxk
702

the d−point stencil of Rn with center at xK defined as Sxk
= {xk + hr, |r|∞ ≤ 1, r ∈ Zn} with | · |∞ the `∞-norm703

of r ∈ Zn and d = #(S). At each grid point xk we compute the convex envelope of f at xk by an iterative scheme704

where each iteration step m is given by705

(co f)m(xk) = min
{
f(xk),

∑
λi(co f)m−1(xi),

∑
λi = 1, λi ≥ 0, xi ∈ Sxk

}
706

with the minimum taken between f(xk) and only some convex combinations at the stencil grid points. For the707

full algorithmic and implementation details of the scheme, the convex combinations that one needs to take, and its708

convergence analysis we refer to [53].709

Figure 10. Flow chart for the numerical evaluation of AMλ (fK).

Algorithm 1 Conceptual implementation of the scheme that computes the convex envelope of f .

1: Set m = 1, (co f)0 = f, tol
2: ε = ‖f‖L2

3: while ε > tol do
4: ∀xk, (co f)m(xk) = min

{
f(xk),

∑
λi(co f)m−1(xi),

∑
λi = 1, λi ≥ 0, xi ∈ Sxk

}
5: ε = ‖(co f)m − (co f)m−1‖L2

6: m← m+ 1
7: end while

In this section, we present some illustrative numerical experiments of the applications described above, namely,710

for surface reconstruction from contour lines, point clouds and image inpainting. For the first two applications, we711

discuss examples of approximation of a smooth function, of a continuous but non-differentiable function and of a712

discontinuous function. The quality of the approximation is measured by computing the relative L2-error713

(7.1) ε =
‖f −AMλ (fK)‖L2(Ω)

‖f‖L2(Ω)
,714

where f is the original function that we want to approximate and AMλ (fK) is the average approximation of the715

sample fK of f over K. We mainly postpone a thorough comparison with other state-of-art methods to forthcoming716

papers, just giving some first comparisons with the AMLE method presented in [2, 13] and applied to surface717

reconstruction and image inpainting. Image denoising for salt & pepper noise and image inpainting were solved by718

the TV-model described in [14] and in [29], respectively.719

We conclude this short introduction by stating that at least for the examples and methods we have considered720

here, we have observed higher accuracy of the AMλ (fK) interpolant and the faster execution time for its numerical721

evaluation compared to the other methods.722
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7.1. Surface reconstruction from contour lines. We describe next some numerical experiments on surface723

reconstruction from sectional contours. This is the problem of reconstructing the graph of a function f by knowing724

only some contour lines of f , and has applications in medical imaging, computer graphics, reverse engineering and725

terrain modelling, among others. The underlying function f : R2 ⊃ Ω → R is assumed to have various regularity726

properties. Consider first the reconstruction of an infinitely differentiable function given by the Franke test function727

[25], and then the reconstruction of functions with less regularity. In addition to the relative L2-error ε defined by728

(7.1), which gives a measure of how close AMλ (fK) is to f , we also compute729

(7.2) εK =
‖fK −AMλ (fK)K‖L2(K)

‖fK‖L2(K)
,730

where fK is the sample function and AMλ (fK)K the restriction of AMλ (fK) to K, to assess the quality of AMλ (fK)731

as an interpolant of fK . We will thus verify that in the examples where f is continuous, the average approximation732

AMλ (fK) represents an interpolation of fK , consistently with the theoretical results established in Section 3.733

(a) (b) (c)

Figure 11. Example 7.1.1. (a) Graph of the Franke test function f defined by Equation (7.3). (b) Sample set K of 10-contour
lines of f at equally spaced heights equal to (max(f)−min(f))/10, defining the sample function fK . (c) Sample set K of 50-contour
lines of f at equally spaced heights equal to (max(f)−min(f))/50, defining the sample function fK .

7.1.1. Franke test function. The Franke function was introduced in [25] as one of the test functions for734

the evaluation of methods for scattered data interpolation [26]. The function consists of two Gaussian peaks and735

a sharper Gaussian dip superimposed on a surface sloping toward the first quadrant [25] and is defined by736

f(x, y) =
3

4
e−((9x−2)2+(9y−2)2)/4 +

3

4
e−((9x+1)2/49+(9y+1)2/10) +

1

2
e−((9x−7)2/4−(9y−3)2)/4

− 1

5
e−((9x−4)2+(9y−7)2) .

(7.3)737

Consider f defined in the unit square Ω =]0, 1[2. Its graph is displayed in Figure 11(a). Approximations using738

two different sets of contour lines have been computed by applying the methods described in this paper and by739

the AMLE model introduced in [13] and applied in [2] to the interpolation of digital elevation models. The two740

sets of contour lines consist of 10 and 50 equally spaced level lines, respectively. Given the smoothness of f , the741

isolines are also smooth curves. The two sample sets are displayed in Figure 11(b) and Figure 11(c), respectively,742

whereas the graph of the corresponding average approximations AMλ (fK) are shown in Figure 12(a) and Figure743

12(c). Figure 12(b) and Figure 12(d) display, on the other hand, the corresponding contour lines which, compared744

to the same equally spaced level lines of f displayed in Figure 11(c) show a good quality of the reconstruction given745

by AMλ (fK). This is also confirmed by the values of the relative L2-error ε equal to 0.01986 and 0.00218 for the746
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(a) (b)

(c) (d)

Figure 12. Example 7.1.1. (a) Graph of the interpolation function AMλ (fK) computed for λ = 1 · 104, M = 1 · 105, and
corresponding to the set K of 10-contour lines of f displayed in Figure 11(b). Relative L2-Errors: ε = 0.01986, εK = 3.33 · 10−15.
(b) Isolines of AMλ (fK) at equally spaced heights equal to (max(f) − min(f))/50. (c) Graph of the interpolation function AMλ (fK)
computed for λ = 1 · 104, M = ·105, and corresponding to the set K of 50-contour lines of f displayed in Figure 11(d). Relative
L2-Errors: ε = 0.0021, εK = 2.62 · 10−15. (d) Isolines of AMλ (fK) at equally spaced heights equal to (max(f)−min(f))/50.

two sample sets K of contour lines, respectively. Note the clear reduction of error by increasing the density of the747

data set. For the two average approximations, the value of εK is of the order of 10−15, confirming that the average748

approximation AMλ (fK) interpolates exactly fK .749

Figure 13 displays the reconstruction obtained by the AMLE method. The numerical results were obtained750

by using the MatLab code described in [39]. In this case, for a number of iterations equal to 106, we found a751

relative L2-error higher than the one generated by AMλ (fK) with ε equal to 0.0338 and 0.0101 for the two sample752

set K of 10 and 50 level lines, respectively. Consistently with the findings of [35], also here we find that the AMLE753

interpolation generates additional kinks which are not present in f and might be the cause for the reduced quality754

of the approximation compared to AMλ (fK).755

7.1.2. Continuous piecewise affine function. We describe now the approximation of the continuous piece-756

wise affine function f associated with the triangulation shown in Figure 14(a) where also the node values of f are757

given while Figure 14(b) displays the graph of f . Two different sample sets of contour lines have been considered.758

One consists of 6 isolines whereas the other one is formed by 15 isolines. The isolines are not equally spaced759

and are displayed in Figure 14(c) and Figure 14(d), respectively, whereas the graphs of the corresponding average760

approximations AMλ (fK) are shown in Figure 15(a) and Figure 15(c) along with the isolines corresponding to 50761

equally spaced isolevels. In this example the isolines are not smooth curves so that locally, around their singulari-762

ties, for the interpretation of the results, it can be useful to recall and compare with the behaviour of the average763

approximation described in the Prototype Example 6.5(ii) in Section 6. The average approximation displays a step764
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(a) (b)

(c) (d)

Figure 13. Example 7.1.1. (a) Graph of the AMLE interpolation function of fK with K the set of 10-contour lines of f displayed
in Figure 11(b). Relative L2-Error ε = 0.0338. (b) Isolines of the AMLE interpolation function of fK at equally spaced heights equal
to (max(f) −min(f))/50. (c) Graph of the AMLE interpolation function of fK with K the set of 50-contour lines of f displayed in
Figure 11(d). Relative L2-Error ε = 0.0101. (d) Isolines of the AMLE interpolation function of fK at equally spaced heights equal to
(max(f)−min(f))/50

.

which reduces by increasing the number of isolines. Note that these steps are also visible in the Matlab display765

of the graph of the function f , thus they are errors of the interpolation scheme that is used. We find that for766

the reconstruction of the function sampled on the 6-contour line set, the relative L2-error ε is equal to 0.019302.767

This value reduces to 0.004805 for the reconstruction of the function sampled on the 15-contour line set K. For768

both these two examples, it is confirmed that the average approximation AMλ (fK) interpolates fK given that the769

computed value of εK is of the order of 10−16.770

The AMLE method appears yielding slightly better results for the reconstruction from the sample set K of 6771

contour lines. In this case, we find a relative L2-error ε equal to 0.01675, slightly lower than the one produced by772

AMλ (fK). Figure 16(a) displays the graph of the AMLE interpolant which does not contain steps along the edges773

of the pyramid, whereas Figure 16(b) shows its isolines for 50 levels of equally spaced heights. For the AMLE774

interpolant of the sample set K of 15 contour lines, whose graph is displayed in Figure 16(c) and the isolines in775

Figure 16(d), the relative L2-error ε is equal to 0.00713, which is slightly higher than the one produced by AMλ (fK)776

for the same sample set K. Note also here the appearance of additional kinks in the graph of the AMLE interpolant777

which might reduce the global quality of the AMLE approximation compared to AMλ (fK).778

7.1.3. Discontinuous piecewise affine function. The approximation of discontinuous functions has not779

been covered by the theoretical developments of Section 3, where we assumed f to be continuous. Now we present780

a test case where we examine how our average approximation performs numerically and verify that also in this781
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(a) (b)

(c) (d)

Figure 14. Example 7.1.2. (a) Triangulation with nodal values used to construct a continuous piecewise affine function. (b)
Graph of f associated with the triangulation defined in (a). (c) Sample set K of 6-contour line of f , defining the sample function fK .
(d) Sample set K of 15-contour line of f , defining the sample function fK .

case AMλ (fK) represents a continuous interpolation of fK . We consider the following discontinuous piecewise affine782

function783

f : (x, y) ∈]0, 1[2→ 200, f(x, y) =



x+ y − 1, if 1/2 ≤ x ≤ 1, 1/2 ≤ y ≤ 1

x− y − 1/2 if 1/2 ≤ x ≤ 1, 0 ≤ y < 1/2

−x+ y − 1/2 if 0 ≤ x < 1/2, 1/2 ≤ y ≤ 1

−x− y if 0 ≤ x < 1/2, 0 ≤ y < 1/2

784

whose graph is displayed in Figure 17(b) while Figure 17(a) shows the equation of f in each of its affine parts.785

We compare the reconstruction of f for two sample sets K, one formed by 20 equally spaced isolines and786

the other by 100 equally spaced isolines. Such sets are displayed in Figure 17(c) and Figure 17(d), respectively.787

Notably, for both sample sets K, AMλ (fK) coincides exactly with the original function f . We find, indeed, for788

both sample sets K, ε and εK the order 10−15 by taking λ = 107, M = 106. This occurs because of an exact789

sampling of the discontinuity jump, thus we are able to reproduce exactly the affine parts of f , consistently with790

the theoretical findings of Section 3. Furthermore, given the high value of λ and recalling the behaviour of the791

jump in the Prototype Example 5.3, we are able to describe the sharp discontinuity.792

For the case where we do not have an exact sampling of the discontinuity jump, we refer to Example 7.2.3793

concerning the surface reconstruction from point clouds with sampling points not necessarily on the discontinuity.794

A different behaviour is displayed by the AMLE interpolation. Consistently with the observations in [35], the795
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(a) (b)

(c) (d)

Figure 15. Example 7.1.2. (a) Graph of the interpolation function AMλ (fK) with K given in Figure 14(c), and λ = 1 · 105,

M = 1 · 105, tol = 10−9. Relative L2-Errors: ε = 0.019302, εK = 4.50 · 10−16. (b) Isolines of AMλ (fK) at equally spaced heights

equal to (max(f) − min(f))/50. (c) Graph of the interpolation function AMλ (fK) with K given in Figure 14(d), and λ = 1 · 105,

M = 1 · 105, tol = 10−9. Relative L2-Errors: ε = 0.004805, εK = 8.68 · 10−16. (d) Isolines of AMλ (fK) at equally spaced heights equal
to (max(f)−min(f))/50.

level lines of the AMLE interpolant are smooth [44], thus discontinuities cannot be recovered. A better visual796

appreciation of this fact is obtained by looking at the graphs of the AMLE interpolant shown in Figure 18(a) and797

Figure 18(c) for the two sample sets K, and at their isolines displayed in Figure 18(b) and Figure 18(d), respectively.798

The isolines at the two sides of the jump should ‘end’ in the discontinuity but they are somehow enforced to join799

each other by the continuous isolines of the AMLE interpolant. In this case we find values of the relative L2-error800

ε, with ε = 0.1071 and ε = 0.06738 for the two sample sets, respectively.801

Table 1 summarizes the relative L2-errors of AMλ (fK) and the AMLE interpolant for the examples considered802

in this section.803

7.2. Scattered data approximation. We turn now to some numerical experiments on scattered data ap-804

proximation. In particular, in the terminology of [36], we consider the problem of function reconstruction from805

point clouds, where the sample points that form the set K do not meet any particular condition as to spacing or806

density. As in the previous section, the set of test problems consists of three test functions with different regularity:807

an infinitely differentiable function given by the Franke test function, a continuous piecewise affine function and a808

discontinuous piecewise affine function. The three test functions are all to be approximated in Ω =]0, 1[2. In the809

numerical implementation of the method, the domain Ω is discretized with a grid of 201× 201 points and the two810

sample sets K are obtained by sampling the grid points using a random number generator with different levels of811

density. The two sample sets K, corresponding to a coarse and a dense sampling, are displayed in Figure 19(a)812

and Figure 19(b), respectively. The reason for taking such a regular discretization of Ω is because the numerical813
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(a) (b)

(c) (d)

Figure 16. Example 7.1.2. (a) Graph of the AMLE interpolation function of fK with K the set of 6-contour lines of f
displayed in Figure 14(c). Relative L2-Error ε = 0.01675. (b) Isolines of the AMLE interpolant at equally spaced heights equal to
(max(f)−min(f))/50. (c) Graph of the AMLE interpolation function of fK with K the set of 15-contour lines of f displayed in Figure
14(d). Relative L2-Error ε = 0.0071297. (d) Isolines of the AMLE interpolant at equally spaced heights equal to (max(f)−min(f))/50.

ε
f K AMλ (fK) AMLE

F
10 level lines 0.0199 0.0338
50 level lines 0.0021 0.0101

CPA
6 level lines 0.0193 0.0167
15 level lines 0.0048 0.0071

DPA
20 level lines 8.7 · 10−15 0.1071
100 level lines 1.5 · 10−16 0.0674

Table 1
Summary of the accuracy of the compensated convexity based interpolant AMλ (fK) and of the AMLE interpolant for the Examples

considered in Section 7.1. Legenda: K Sample set. ε Relative L2-error. εK Relative L2-error on the sample set K. F Franke test
function (Example 7.1.1). CPA Continuous piecewise affine function (Example 7.1.2). DPA Discontinuous piecewise affine function
(Example 7.1.3).

scheme we use to compute the convex envelope (see Algorithm 1), is particularly suitable for applications to image814

processing where such discrete geometry is related to the image resolution.815

For the measure of the global quality of the approximation AMλ (fK) we compute the relative L2-error ε defined816

by Eq. (7.1) whereas we will use the relative L2-error εK defined by817
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(a) (b)

(c) (d)

Figure 17. Example 7.1.3. (a) Equations of each affine part of f . (b) Graph of f . (c) Sample set K of 20-contour line of f at
equally spaced heights equal to (max(f) −min(f))/20, defining the sample function fK . (d) Sample set K of 50-contour lines of fat
equally spaced heights equal to (max(f)−min(f))/50, defining the sample function fK ;

(7.4) εK =

√∑
k∈K

|f(xk)−AMλ (fK)(xk)|2

√∑
k∈K

|f(xk)|2
818

to assess the quality of AMλ (fK) as interpolant of fK . In this case too, we will find that the average approximation819

AMλ (fK) is an interpolation of fK , consistently with the theoretical findings of Section 4. We then conclude this820

section by giving an example of digital elevation model reconstruction starting from real data, and another of salt821

& pepper noise removal as an application of scattered data approximation to image processing.822

7.2.1. Franke test function. In this example, the Franke test function f defined by Eq. (7.3) is sampled823

over the two sets K of scattered points displayed in Figure 19(a) and Figure 19(b), respectively. For the resulting824

sample functions fK we compute the corresponding average approximations AMλ (fK) whose graphs are displayed825

in Figure 20, along with the respective isolines. Specifically, the comparison of the isolines of AMλ (fK) displayed826

in Figure 20(b) and in Figure 20(d) for the coarse and dense sample sets K, respectively, with the isolines of the827

Franke function f displayed in Figure 11(d), allows a visual appreciation of the quality of the reconstruction. This828
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(a) (b)

(c) (d)

Figure 18. Example 7.1.3. (a) Graph of the AMLE interpolation function of fK with K the set of 20-contour lines of f
displayed in Figure 17(c). Relative L2-Error ε = 0.1071. (b) Isolines of the AMLE interpolant at equally spaced heights equal to
(max(f)−min(f))/50. (c) Graph of the AMLE interpolation function of fK with K the set of 50-contour lines of f displayed in Figure
17(d). Relative L2-Error ε = 0.06738. (d) Isolines of the AMLE interpolant at equally spaced heights equal to (max(f)−min(f))/50.

is also confirmed by the computed values of the relative L2-error ε. For the coarse sample set we get ε = 0.0206829

whereas, for the denser sample set, ε = 0.00157. Finally, also in this case, we verify that AMλ (fK) is an interpolant830

of fK given that for both approximations the relative L2-error εK defined by Eq. (7.4) is of the order of 10−15.831

The AMLE method as introduced in [13] can be applied also in this case for the interpolation of isolated points.832

In fact, this is one of its particular feature out of the pde based interpolators. The graphs of the AMLE interpolants833

for the two sample sets are displayed in Figure 21, which contains also the plot of the corresponding isolines for 50834

level lines of equally spaced heights. The plot of these isolines, once compared with the same isolines of f displayed835

in Figure 11(c), allows a visual assessment of the quality of the reconstruction. As in the Example 7.1.1 concerning836

with the reconstruction from contour lines, we note also here the introduction of artificial artefacts in the form of837

krinks in the graph of the interpolant, which, in contrast, are not present in the graph of AMλ (fK). For the coarse838

and dense sampling set we find that the relative L2-error of the AMLE interpolant amounts to ε = 0.05764 and839

ε = 0.010902, respectively, which are slightly higher than the values produced by AMλ (fK).840

7.2.2. Continuous piecewise affine function. The continuous piecewise affine function f introduced in841

Section 7.1.2 is evaluated here over the two sample sets K of Figure 19(a) and Figure 19(b), defining two test cases842

of sample function fK . The graph of the corresponding average approximation AMλ (fK) is displayed in Figure 22843

along with the respectives isolines whereas Figure 23 shows those of the AMLE interpolating along with its isolines844

of equally spaced heights. The drawing of the isolines allows a visual assessment of the quality of the reconstruction845

if these are compared to the isolines of the original function f displayed in Figure 15(c). A first observation about846

the graphs of AMλ (fK) is the nearly absence of the steps along the edges of the pyramid due to the constraint847
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(a) (b)

Figure 19. Set K of sample points of a grid of 201×201 points in ]0, 1[2 for two levels of sampling density: (a) Coarse sampling
with 400 grid points out of 40401. (b) Dense sampling with 4061 grid points out of 40401.

(a) (b)

(c) (d)

Figure 20. Example 7.2.1. (a) Graph of AMλ (fK) for λ = 1 ·104, M = 1 ·105 and the set K of Figure 19(a). Relative L2-Errors:

ε = 0.020252, εK = 5.31 · 10−15. (b) Isolines of AMλ (fK) at equally spaced heights equal to (max(f) − min(f))/50. (c) Graph of

AMλ (fK) for λ = 5 · 103, M = 1 · 105 and the set K of Figure 19(b) Relative L2-Errors: ε = 0.0015548, εK = 4.13 · 10−15. (d) Isolines

of AMλ (fK) at equally spaced heights equal to (max(f)−min(f))/50.
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(a) (b)

(c) (d)

Figure 21. Example 7.2.1. (a) Graph of the AMLE interpolation function of fK with K the set of scattered points displayed
in Figure 19(a). Relative L2-Error: ε = 0.05764. (b) Isolines of the AMLE interpolant at equally spaced heights equal to (max(f) −
min(f))/50. (c) Graph of the AMLE interpolation function of fK with K the set of scattered points displayed in Figure 19(b). Relative
L2-Error: ε = 0.010902. (d) Isolines of the AMLE interpolant at equally spaced heights equal to (max(f)−min(f))/50.

enforced by the fixed contour lines, on the contrary the graphs of the AMLE interpolant present, even for this848

example, artefacts in the form of artificial krinks and valleys. The relative L2-error ε produced by AMλ (fK) is849

equal to 0.0215 for the coarse sample set and to 0.00390 for the denser sample set, whereas it is ε = 0.053594850

and ε = 0.012515 for the AMLE interpolant of the coarse and dense sample set, respectively. Compared with the851

reconstruction of f from contour lines, where the sample points can be considered to be somehow organized, we852

observe that both the reconstructed function AMλ (fK) and the AMLE interpolant appear to be less regular, which853

reflects the fact that the sample points are scattered over Ω without any requirement of spacing or density. This854

effect clearly reduces by increasing the density of the sample points, though for the AMLE interpolant we note855

that the relative L2-errors for the two cases of sampling density remains of the same order of magnitude. For this856

example too, we finally verify that AMλ (fK) is an interpolation of fK given that the relative L2-error εK is of the857

order 10−16 for both the two test cases.858

7.2.3. Discontinuous piecewise affine function. The discontinuous piecewise affine function f introduced859

in Section 7.1.3 is evaluated here over the two sample sets K displayed in Figure 19(a) and Figure 19(b), to form860

two sample functions fK corresponding to a coarse and a dense sample set, respectively. The graph of AMλ (fK)861

is displayed in Figure 24 for the two cases, along with their isolines, whereas Figure 25 shows the graph of the862

AMLE interpolants along with their isolines with equally spaced heights. Also here, it is useful to compare such863

isolines with those of the original function f displayed in Figure 18(d) for a visual assessment of the quality of864

the reconstructions. Unlike the reconstruction of f from contour lines, where we had the exact sampling of the865

discontinuity which was coincident with the grid lines, here we note an irregular behaviour for AMλ (fK) around the866
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(a) (b)

(c) (d)

Figure 22. Example 7.2.2. (a) Graph of AMλ (fK) for λ = 5 ·104, M = 1 ·105 and the set K of Figure 19(a). Relative L2-Errors:

ε = 0.021574, εK = 4.4626 · 10−16. (b) Isolines of AMλ (fK) at equally spaced heights equal to (max(f) − min(f))/50. (c) Graph of

AMλ (fK) for λ = 5 · 104, M = 1 · 105 and the set K of Figure 19(b). Relative L2-Errors: ε = 0.003914, εK = 6.2983 · 10−16. (d)

Isolines of AMλ (fK) at equally spaced heights equal to (max(f)−min(f))/50.

discontinuities of f . Such irregular behaviour reduces by increasing the sampling density, especially if such density867

increase occurs in the neighborhood of the singularities. On the other hand, the AMLE interpolant displays around868

the singularities a behaviour similar to the one obtained from the contour lines, with the difference that now the869

transition from one affine part of f to the other appears to be smoother. As for the accuracy of the reconstructions,870

for AMλ (fK) we find that ε = 0.173 for the coarse sample set and ε = 0.0901 for the denser sample set, whereas871

the relative L2-error εK on both sample sets K is of the order of 10−16, confirming that again, AMλ (fK) is an872

interpolant of fK . For the AMLE interpolant, even in this case, we find higher values for the relative L2-error, with873

ε = 0.22577 and ε = 0.13897 for the coarser and denser sample set, respectively. We note also the introduction of874

artificial artefacts in the graph of the AMLE interpolant.875

The relative L2-errors obtained for scattered data approximation using AMλ and AMLE interpolation are876

summarized in Table 2 for the examples considered in this section.877

7.2.4. DEM Reconstruction. We consider here the problem of producing a Digital Elevation Map from a878

sample of the the NASA SRTM global digital elevation model of Earth land. The data provided by the National879

Elevation Dataset [27] contain geographical coordinates (latitude, longitude and elevation) of points sampled at880

one arc-second intervals in latitude and longitude. For our experiments, we choose the region defined by the881

coordinates [N 40◦48′50′′, N 40◦52′50′′] × [E 14◦45′50′′, E 14◦50′00′′] extracted from the SRTM1 cell N40E014.hgt882

[1]. Such region consists of an area with extension 7.413 Km × 5.844 km and height varying between 266 m and883

1600 m, with variegated topography features. In the digitization by the US Geological Survey, each pixel represents884
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(a) (b)

(c) (d)

Figure 23. Example 7.2.2. (a) Graph of the AMLE interpolation function of fK with K the set of scattered points displayed in
Figure 19(a). Relative L2-Error: ε = 0.053594. (b) Isolines of the AMLE interpolant at equally spaced heights equal to (max(f) −
min(f))/50. (c) Graph of the AMLE interpolation function of fK with K the set of scattered points displayed in Figure 19(b). Relative
L2-Error: ε = 0.012515. (d) Isolines of the AMLE interpolant at equally spaced heights equal to (max(f)−min(f))/50.

ε
f K AMλ (fK) AMLE

F
coarse 0.0203 0.0576
dense 0.0016 0.0109

CPA
coarse 0.0216 0.0536
dense 0.0039 0.0125

DPA
coarse 0.1673 0.2258
dense 0.0876 0.1390

Table 2
Accuracy of the interpolation for the examples considered in Section 7.2. Legenda: K Sample set. ε Relative L2-error. εK Relative

L2-error on the sample set K. F Franke test function (Example 7.1.1). CPA Continuous piecewise affine function (Example 7.1.2).
DPA Discontinuous piecewise affine function (Example 7.1.3).

ε
Sample set AMλ (fK) AMLE

K1 0.0156 0.02137
K2 0.0117 0.02261

Table 3
Relative L2-error for the DEM Reconstruction from the two sample sets using the AMλ (fK) and the AMLE interpolant.

This manuscript is for review purposes only.



38 K. ZHANG, E. CROOKS, AND A. ORLANDO

(a) (b)

(c) (d)

Figure 24. Example 7.2.3. (a) Graph of AMλ (fK) for λ = 1 ·107, M = 1 ·105 and the set K of Figure 19(a). Relative L2-Errors:

ε = 0.16729, εK = 1.2849 · 10−16. (b) Isolines of AMλ (fK) at equally spaced heights equal to (max(f) − min(f))/50. (c) Graph of

AMλ (fK) for λ = 1 ·107, M = 1 ·105 and the set K of Figure 19(b). Relative L2-Errors: ε = 0.088589, εK = 1.459 ·10−16. (d) Isolines

of AMλ (fK) at equally spaced heights equal to (max(f)−min(f))/50.

a 30 m×30 m patch. Figure 26(a) displays the elevation model from the SRTM1 data which we refer in the following885

to as the ground truth model. We will take a sample fK of such data, make the reconstruction using the AMλ (fK)886

and the AMLE interpolant, and compare them with the ground truth model. In the numerical experiments, we887

consider two sample data, characterized by different data density and typo of information. The first, which we888

refer to as sample set K1, consists only of level lines at regular height interval of 66 m and contains the 19% of889

the ground truth real digital data. The second sample set, denoted by K2, has been formed by taking randomly890

the 30% of the points belonging to the level lines of the set K1 and scattered points corresponding to 5% density891

so that the sample set K2 amounts to about 9% of the ground truth points. The two sample sets K1 and K2 are892

shown in Figure 26(b) and Figure 26(c), respectively. The graph of the AMλ (fK) interpolant and of the AMLE893

interpolant for the two sample sets along with the respective isolines at equally spaced heighs equal to 66 m, are894

displayed in Figure 27 and Figure 28, respectively, whereas Table 3 contains the values of the relative L2-error895

between such interpolants and the ground truth model. Though both reconstructions are comparable visually to896

the ground truth model, a closer inspection of the pictures show that the reconstruction from the synthetic data,897

the AMLE interpolant does not reconstruct correctly the mountains peaks, which appear to be smoothed, and898

introduce artificial ridges along the slopes of the mountains. In contrast, the AMλ (fK) interpolant appears to better899

for capturing features of the ground truth model. Finally, we also note that though the sample set K1 contains a900

number of ground truth points higher than the sample set K2, the reconstruction from K2 appears to be better901
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(a) (b)

(c) (d)

Figure 25. Example 7.2.3. (a) Graph of the AMLE interpolation function of fK with K the set of scattered points displayed
in Figure 19(a). Relative L2-Error: ε = 0.22577. (b) Isolines of the AMLE interpolant at equally spaced heights equal to (max(f) −
min(f))/50. (c) Graph of the AMLE interpolation function of fK with K the set of scattered points displayed in Figure 19(b). Relative
L2-Error: ε = 0.13897. (d) Isolines of the AMLE interpolant at equally spaced heights equal to (max(f)−min(f))/50.

(a) (b) (c)

Figure 26. Example 7.2.4. Reconstruction of real-world digital elevation maps. (a) Ground truth model from USGS-STRM1
data relative to the area with geographical coordinates; [N 40◦48′50′′, N 40◦52′50′′] × [E 14◦45′50′′, E 14◦50′00′′]. (b) Sample set K1

formed by only level lines at regular height interval of 66 m. The set K1 contains 19% of the ground truth points. (c) Sample set
K2 formed by taking randomly 30% of the points belonging to the level lines of the set K1 and scattered points corresponding to 5%
density. The sample set K2 contains 9% of the ground truth points.
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(a) (b)

(c) (d)

Figure 27. Example 7.2.4. Reconstruction of real-world digital elevation maps. (a) Graph of AMλ (fK) for sample set K1.

Parameters: λ = 1 ·103, M = 1 ·106. Relative L2-Errors: ε = 0.01560, εK = 0. (b) Graph of AMλ (fK) for sample set K2. Parameters:

λ = 1 · 103, M = 1 · 106. Relative L2-Errors: ε = 0.0117, εK = 0. (c) Isolines of AMλ (fK) from sample set K1 at regular heights of

66 m. (d) Isolines of AMλ (fK) from sample set K2 at regular heights of 66 m.

than the one obtained from K1. This behaviour was found for both interpolations, though it is more notable in the902

case of the AMλ (fK) interpolant. By taking scattered data, we are able to get a better characterization of irregular903

surfaces, compared to the one obtained from a structured representation such as provided by the level lines.904

7.2.5. Salt & Pepper Noise Removal. As an application of scattered data approximation to image pro-905

cessing, we consider here the restoration of an image corrupted by salt & pepper noise. This is an impulse type noise906

that is caused, for instance, by malfunctioning pixels in camera sensors or faulty memory locations in hardware,907

so that information is lost at the faulty pixels and the corrupted pixels are set alternatively to the minumum or908

to the maximum value of the range of the image values. When the noise density is low, about less than 40%, the909

median filter is quite effective for restoring the image. However, this filter loses its denoising power for higher noise910

density given that details and features of the original image are smeared out. In those cases, other techniques911

must be applied; one possibility is the two-stage TV-based method proposed in [14]. In the following numerical912

experiments, we consider the image displayed in Figure 29(a) with size 512 × 512 pixels, damaged by 70% salt &913

pepper noise. The resulting corrupted image is displayed in Figure 29(b) where only 78643 pixels out of the total914

262144 pixels carry true information. The true image values represent our sample function fK whereas the set of915

the true pixels forms our sample set K. To assess the restoration performance we use the peak signal-to-noise ratio916

(PSNR) which is expressed in the units of dB and, for an 8−bit image, is defined by917

(7.5) PSNR = 10 log10

2552

1
mn

∑
i,j |fi,j − ri,j |2

918

where fi,j and ri,j denote the pixels values of the original and restored image, respectively, and m, n denote the919

size of the image f . In our numerical experiments, we have considered the following cases. The first one assumes920
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(a) (b)

(c) (d)

Figure 28. Example 7.2.4. Reconstruction of real-world digital elevation maps. (a) Graph of the AMLE Interpolant from set
K1. Relative L2-Error: ε = 0.0214. (b) Graph of the AMLE Interpolant from set K2. Relative L2-Error: ε = 0.0226. (c) Isolines of
the AMLE Interpolant from sample set K1 at regular heights of 66 m. (d) Isolines of the AMLE Interpolant from sample set K2 at
regular heights of 66 m.

the set K to be given by the noise-free interior pixels of the corrupted image together with the boundary pixels of921

the original image. In the second case, K is just the set of the noise-free pixels of the corrupted image, without922

any special consideration on the image boundary pixels. In analysing this second case, to reduce the boundary923

effects produced by the application of Algorithm 1, we have applied our method to an enlarged image and then924

restricted the resulting restored image to the original domain. The enlarged image has been obtained by padding925

a fixed number of pixels before the first image element and after the last image element along each dimension,926

making mirror reflections with respect to the boundary. The values used for padding are all from the corrupted927

image. In our examples, we have considered two versions of enlarged images, obtained by padding the corrupted928

image with 2 pixels and 10 pixels, respectively. Table 4 compares the values of the PSNR of the restored images929

by our method and the TV-based method applied to the corrupted image with noise-free boundary and to the two930

versions of the enlarged images with the boundary values of the enlarged images given by the padded noisy image931

data. We observe that there are no important variations in the denoising result between the different methods of932

treating the image boundary. This is also reflected by the close value of the PSNR of the resulting restored images.933

For 70% salt & pepper noise, Figure 29(c) displays the restored image AMλ (fK) with K equal to the true set that934

has been enlarged by two pixels, whereas Figure 29(d) shows the restored image by the TV-based method [12, 14]935

using the same set K. Although the visual quality of the images restored from 70% noise corruption is comparable936

between our method and the TV-based method, the PSNR using our method is higher than that for the TV-based937

method in all of the experiments reported in Table 4. An additional advantage of our method is its speed. Our938

method does not require initialisation which is in contrast with the two-stage TV-based method, for which the939

initialisation, for instance, is given by the restored image using an adaptive median filter.940

Finally, to demonstrate the performance of our method in some extreme cases of very sparse data, we consider941
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cases of noise density equal to 90% and 99%. Figure 30 displays the restored image by the compensated convexity942

based method and by the TV-based method for cases where K are padded by two pixels and ten pixels for 90% and943

99% noise level, respectively. As far as the visual quality of the restored images is concerned, and to the extent that944

such judgement can make sense given the high level of noise density, the inspection of Figure 30 seems to indicate945

that AMλ (fK) gives a better approximation of details than the TV-based restored image. This is also reflected by946

the values of the PSNR index in Table 4.947

PSNR
K with noise-free boundary K padded by two pixels K padded by ten pixels

Noise Density AMλ (fK) TV AMλ (fK) TV AMλ (fK) TV
70% (6.990 dB) 31.910 dB 31.175 dB 31.865 dB 31.134 dB 31.869 dB 31.136 dB
90% (5.901 dB) 27.574 dB 26.625 dB 27.506 dB 26.564 dB 27.513 dB 26.566 dB
99% (5.492 dB) 22.076 dB 20.595 dB 21.761 dB 20.469 dB 21.972 dB 20.492 dB

Table 4
Comparison of PSNR of the restored images by the compensated convexity based method (AMλ (fK)) and by the two-stage TV-based

method (TV), for different sets K.

7.3. Image inpainting. As an example of image inpainting, we consider the problem of removing text948

overprinted on the image displayed in Figure 31(a). If we denote by P the set of pixels containing the overprinted949

text, and by Ω the domain of the whole image, then K = Ω \ P is the set of the true pixels and the inpainting950

problem is in fact the problem of reconstructing the image over P from knowing fK , if we denote by f the original951

image values. To assess the performance of our reconstruction compared to state-of-art inpainting methods, we952

compare our method with the total variation based image inpainting method solved by the split Bregman method953

described in [29] and with the AMLE inpainting reported in [45]. The restored image AMλ (fK) obtained by our954

compensated convexity method is displayed in Figure 31(b), the restored image by the AMLE method is shown955

in Figure 31(d) whereas 31(c) presents the restored image by the the split Bregman inpainting method. All the956

restored images look visually quite good. However, if we use the PSNR as a measure of the quality of the restoration,957

we find that AMλ (fK) has a value of PSNR equal to 42.2066 dB, the split Bregman inpainting restored image gives958

a value for PSNR = 41.0498 dB, whereas the AMLE restored image has PSNR equal to 39.4405 dB.959

Finally, to assess how well AMλ (fK) is able to preserve image details and not to introduce unintended effects960

such as image blurring and staircase effects, Figure 32 displays details of the original image and of the restored961

images by the three methods. Once again, the good performance of AMλ (fK) can be appreciated visually.962

8. Proofs of the Main Results.963

Proof. (Proposition 2.8) We write (x, y) ∈ Rn+m with x ∈ Rn and y ∈ Rm. We only prove the result for the964

upper transform as the proof of the lower transform is similar. By the definition of the upper transform, we have965

co[λ| · |2 − f ](x) = λ|x|2 − Cuλ (f(x)), x ∈ Rn .966

We show that co[λ| · |2 − f ](x) is also the convex envelope of the function λ(|x|2 + |y|2) − g−M (x, y) restricted to967

z = 0. By definition,968

λ|x|2 − Cuλ (f(x)) = co[λ| · |2 − f ](x) ≤ λ|x|2 − f(x) ≤ λ(|x|2 + |y|2)− g−M (x, y)969

as f(x) ≥ g−M (x, y) for all x ∈ Rn and y ∈ Rm. Thus for y = 0,970

co[λ| · |2 − f ](x) ≤ co[λ(|x|2 + |y|2)− g−M (x, y)]|y=0 .971

On the other hand,972

co[λ(|x|2 + |y|2)− g−M (x, y)]|y=0 ≤ λ|x|2 − g−M (x, 0) = λ|x|2 − f(x) .973
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(a) (b)

(c) (d)

Figure 29. Example 7.2.5. (a) Original image with size 512× 512; (b) Original image covered by a salt & pepper noise density
of 70%. PSNR = 6.99 dB; (c) Restored image AMλ (fK) with K the set of the pixels not corrupted by the salt & pepper noise when the
corrupted image is enlarged symmetrically by two pixels on each side, λ = 15 and M = 1E13. PSNR = 31.865 dB. If the boundary
pixels were noise-free, the corresponding restored image would have PSNR = 31.910 dB. (d) Restored image by the two-stage TV-based
method described in [12, 14] with K the set of the pixels not corrupted by the salt & pepper noise when the corrupted image is enlarged
symmetrically by two pixels on each side. PSNR = 31.134 dB. If the boundary pixels were noise-free, the corresponding restored image
would have PSNR = 31.175 dB.

Since the restriction of a convex function to a linear subspace remains convex, we also see that974

co[λ(|x|2 + |y|2)− g−M (x, y)]|y=0 ≤ co[λ| · |2 − f ](x) .975

Thus976

co[λ(|x|2 + |y|2)− g−M (x, z)]|y=0 = co[λ| · |2 − f ](x) ,977

hence the conclusion follows.978

Proof. (Theorem 3.1) Note first that it follows from the fact that a0 < a1 < · · · < am, m ∈ N, that Vai ⊂ Vaj
for all 0 ≤ i < j ≤ m. Also, by the translation invariant property of compensated convex transforms, we may
assume without loss of generality that x0 = 0, so that

Clλ(fMK )(0) = co[fMK + λ| · |2](0), Cuλ (f−MK )(0) = co[λ| · |2 − f−MK ](0).

(i): Suppose that x0 = 0 ∈ Γak and consider the constant function `(x) = ak. Clearly ak = fMK (0) + λ|0|2. Next979

we show that ak ≤ fMK (x) +λ|x|2 for x ∈ Γaj for j 6= k. Thus we need to prove that ak ≤ aj +λ|x|2. Since 0 ∈ Γak980

and x ∈ Γaj , we have |x|2 ≥ δ2
0 . Under our assumption on λ, we see that ak ≤ aj + λ|x|2 holds. Since ak < M , we981
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(a) (b)

(c) (d)

Figure 30. Example 7.2.5. Restoration of 90% corrupted image (PSNR = 5.901 dB) by: (a) Restored image AMλ (fK), with K
the set of the pixels not corrupted by the salt & pepper noise when the corrupted image is enlarged symmetrically by two pixels on each
side, λ = 15 and M = 1E13. PSNR = 27.506 dB. (b) Restored Image by the two-stage TV-based method described in [12, 14] with the
same set K as in (a). PSNR = 26.564 dB. Restoration of 99% corrupted image (PSNR = 5.492 dB) by: (c) Restored image AMλ (fK),
with K the set of the pixels not corrupted by the salt & pepper noise when the corrupted image is enlarged symmetrically by ten pixels
on each side, λ = 15 and M = 1E13. PSNR = 21.972 dB. (d) Restored Image by the two-stage TV-based method described in [12, 14]
with the same set K as in (c). PSNR = 20.492 dB.

have ak ≤ fMK (x) + λ|x|2 for all x ∈ Rn, hence Clλ(fMK )(0) = ak. Similarly we can show that Cuλ (f−MK )(0) = ak, so982

that AMλ (fK)(0) = ak.983

984

(ii): Since (i) clearly ensures that (3.2) holds whenever f(x0) = ai for some 0 ≤ i ≤ m, it remains to consider985

x0 = 0 such that ai < f(x0) < ai+1 for some 0 ≤ i ≤ m− 1. Now define986

(8.1) fM
K−

i

(x) =

{
fMK (x), x /∈ Γai+1

,

ai, x ∈ Γai+1
;

fM
K+

i

(x) =

{
fMK (x), x /∈ Γai ,

ai+1, x ∈ Γai .
987

Clearly fM
K−

i

(x) ≤ fMK (x) ≤ fM
K+

i

(x) and f−M
K−

i

(x) ≤ f−MK (x) ≤ f−M
K+

i

(x) for x ∈ Rn, so that988

(8.2) Clλ(fM
K−

i

)(x) ≤ Clλ(fMK )(x) ≤ Clλ(fM
K+

i

)(x), Cuλ (f−M
K−

i

)(x) ≤ Cuλ (f−MK )(x) ≤ Cuλ (f−M
K+

i

)(x), x ∈ Rn989

and hence by definition,990

(8.3) AMλ (fK−
i

)(x) ≤ AMλ (fK)(x) ≤ AMλ (fK+
i

)(x), x ∈ Rn .991
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(a) (b)

(c) (d)

Figure 31. Example 7.3. Inpainting of the text overprinted on an image: (a) Original image with overprinted text. (b) Restored
image AMλ (fK) with K the set to be inpainted, λ = 250 and M = 1 · 104. Computed value for PSNR = 42.2066 dB; Relative
L2-error ε = 0.016139. (c) Restored image by the AMLE method described in [45, 39]. Computed value for PSNR = 39.4405 dB.
Relative L2-error ε = 0.022192. (d) Restored image by the Split Bregman inpainting method described in [29]. Computed value for
PSNR = 41.0498 dB. Relative L2-error ε = 0.018438.

Next we will prove that992

(8.4) AMλ (fK−
i

)(0) = ai, AMλ (fK+
i

)(0) = ai+1 .993

We first show that co[fM
K−

i

+ λ| · |2](0) ≥ ai. Clearly ai ≤ ai + λ|x|2 = fM
K−

i

(x) + λ|x|2 for x ∈ Γai ∪ Γai+1 . For994

x ∈ Γaj with j 6= i, i + 1, ai ≤ aj + λ|x|2 if ai − aj ≤ λ|x|2. This inequality holds if am − a0 ≤ λδ2
0 , that is, for995

λ ≥ (am − a0)/δ2
0 which is what we have assumed. The inequality |x| ≥ δ0 for x ∈ Γaj can be proved by applying996

the intermediate value theorem to f . If j < i, as f(0) > ai and f(x) = aj < ai, we have, by the intermediate value997

theorem, that there is some ξ ∈ (0, 1) such that f(ξx) = ai, that is, ξx ∈ Γai . Thus |x| > (1− ξ)|x| = |x− ξx| ≥ δ0998

as x ∈ Γaj and ξx ∈ Γai . If j > i + 1, we have f(0) < ai+1 and f(x) = aj > ai+1. Again we can use the same999

method to show that |x| ≥ δ0.1000

By definition of the convex envelope, we see that there is an affine function ` such that `(x) ≤ fM
K−

i

(x) + λ|x|21001

for x ∈ Rn and `(0) = co[fM
K−

i

+ λ| · |2](0). From the proof above, we see that `(0) ≥ ai. Furthermore, if we let1002

Kl = {x ∈ Rn, `(x) = fM
K−

i

(x) + λ|x|2}, then 0 ∈ co[Kl] and `(x) = co[fM
K−

i

+ λ| · |2](x) for x ∈ co[Kl].1003

By [55, Proposition 3.3], we see that Kl ⊂ K. Now we show that Kl ⊂ Γai ∪ Γai+1
. If this is not the case, then1004

Kl ∩ Γak 6= ∅ for some k 6∈ {i, i+ 1}. We consider two different cases: (a): k < i and (b): k > i+ 1. For the case1005
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(a) (b)

(c) (d)

Figure 32. Example 7.3. Comparison of a detail of the original image with the corresponding detail of the restored images
according to the compensated convexity method and the TV-based method: (a) Lips detail of the original image without overprinted
text. (b) Lips detail of the restored image AMλ (fK). (c) Lips detail of the AMLE-based restored image. (d) Lips detail of the TV-based
restored image.

(a), we see that there is some x∗ ∈ Kl ∩ Γak . Thus `(x∗) = ak + λ|x∗|2. As f(0) > ai and f(x∗) = ak < ai, similar1006

to the proof above, by the intermediate value theorem, we have that there is some ξ ∈ (0, 1) such that f(ξx∗) = ai.1007

Therefore, ξx∗ ∈ Γai so that `(ξx∗) ≤ fM
K−

i

(ξx∗). This implies1008

(8.5) (1− ξ)`(0) + ξ`(x∗) ≤ ai + λ|ξx∗|2 .1009

As `(0) ≥ ai and `(x∗) = ak + λ|x∗|2 so that (8.5) implies that1010

(8.6) (1− ξ)ai + ξ
(
ak + λ|x∗|2

)
≤ ai + λ|ξx∗|21011

that is1012

(8.7) ξ(1− ξ)λ|x∗|2 ≤ ξ(ai − ak) .1013

Thus we have found that for 0 < ξ < 11014

(8.8) λ(1− ξ)|x∗|2 ≤ (ai − ak) .1015

Since λ(1− ξ)|x∗|2 ≥ λ(1− ξ)2|x∗|2 ≥ λδ2
0 and ai − ak ≤ am − a0, we have λδ2

0 ≤ am − a0, which contradicts our1016

assumption on λ.1017

If the case (b) occurs, we have f(0) < ai+1 and f(x∗) = ak > ai+1. Again by the intermediate value theorem, there1018

is some ξ ∈ (0, 1) such that f(ξx∗) = ai+1. However note that here the value of fM
K−

i

on Γai+1
is ai. Therefore1019

a similar argument to that for case (a) will lead to a contradiction. Thus in both cases we have proved that1020

Kl ⊂ Γai ∪ Γai+1 .1021

Now we consider Cuλ (f−M
K−

i

)(0) = co[λ| · |2− f−M
K−

i

](0). Let ˆ̀ be the affine function such that ˆ̀(x) ≤ λ|x|2− f−M
K−

i

(x),1022

ˆ̀(0) = co[λ| · |2 − f−M
K−

i

](0) and let Ku = {x ∈ K, ˆ̀(x) = λ|x|2 − f−M
K−

i

(x)}. Again we have ˆ̀(0) ≥ −ai and we can1023
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also show that Ku ⊂ Γai ∪ Γai+1
. By the definition of the convex envelope, we have1024

(8.9)

co[fM
K−

i

+ λ| · |2](0)

= inf

{
n+1∑
k=1

λk

(
fM
K−

i

(xk) + λ|xk|2
)
, xk ∈ Rn, λk ≥ 0,

n+1∑
k=1

λk = 1,

n+1∑
k=1

λkxk = 0

}

= inf

{
n+1∑
k=1

λk

(
fM
K−

i

(xk) + λ|xk|2
)
, xk ∈ Kl, λk ≥ 0,

n+1∑
k=1

λk = 1,

n+1∑
k=1

λkxk = 0

}

= inf

{
n+1∑
k=1

λk

(
fM
K−

i

(xk) + λ|xk|2], xk ∈ Kl ∪Ku, λk ≥ 0,

n+1∑
k=1

λk = 1,

n+1∑
k=1

λkxk = 0

}

= ai + inf

{
n+1∑
k=1

λkλ|xk|2, xk ∈ Kl ∪Ku, λk ≥ 0,

n+1∑
k=1

λk = 1,

n+1∑
k=1

λkxk = 0

}
=: ai + C0 .

1025

Similarly, we have co[λ| · |2 − f−M
K−

i

](0) = −ai + C0, and hence1026

(8.10) AMλ (fK−
i

)(0) =
1

2

(
co[fM

K−
i

+ λ| · |2](0)− co[λ| · |2 − f−M
K−

i

](0)
)

= ai .1027

By using the same argument as above, we can also show that AMλ (fK+
i

)(0) = ai+1 and this proves (8.4).1028

1029

(iii): Suppose f(0) < a0. If we let ` be the affine function such that `(x) ≤ fMK (x)+λ|x|2, `(0) = co[fMK +λ| · |2](0)1030

and let Kl = {x ∈ co[K], `(x) = fMK (x) + λ|x|2}, then in this special case we only need to show that Kl ⊂ Γa0 .1031

As a0 < a1 < . . . < am, we only need to rule out one possibility that Kl ∩ Γi 6= ∅ for any 0 < i ≤ m. By following1032

the arguments of the proof of (ii)(b), we can show that Kl ⊂ Γ0. Similarly we can also show that Ku ⊂ Γ0,1033

where Ku = {x ∈ co[K], ˆ̀(x) = λ|x|2 − f−MK (x)} for the affine function ˆ̀ such that ˆ̀(x) ≤ λ|x|2 − f−MK (x) and1034

ˆ̀(0) = co[λ| · |2 − f−MK ](0). The proof is then similar to that of part (ii). Note that here we do not have to1035

introduce functions fM
K+

0

and fM
K−

0

as in (ii) given that the condition we have is f(0) < a0 while in (ii) we had1036

ai < f(0) < ai+1.1037

Proof. (Proposition 3.3) (i): Without loss of generality, we may assume x0 = 0 ∈ Ωi. Now note that Corollary1038

2.7, applied with f, r and R given by f̃ , R and R+ 1 respectively, gives that1039

(8.11) |AMλ (f̃KR+1
)(0)− f̃(0)| ≤ ω̃

rc(0) +
ã

λ
+

√
2b̃

λ

 .1040

Then since 0 ∈ Ωi ⊂ Vam , it follows that f̃(0) = f(0), and also that rc(0) ≤ di(0), by (2.9). To prove (3.5), it thus1041

remains to show that AMλ (f̃KR+1
)(0) = AMλ (fK)(0). To see this, note first that by arguments similar to those in1042

the proof of [55, Theorem 3.7], we have that1043

(8.12) Clλ(f̃MKR+1
)(0) =

n∗∑
k=1

λk(f̃KR
(xk) + λ|xk|2)1044

for some 2 ≤ n∗ ≤ n + 1, λk > 0, xk ∈ KR+1, k = 1, 2, . . . , n∗, with Σn
∗

k=1λk = 1 and Σn
∗

k=1λkxk = 0. Now if1045

xk ∈ K for each 1 ≤ k ≤ n∗, then f̃KR+1
(xk) = fK(xk), and hence Clλ(f̃MKR+1

)(0) = Clλ(fMK )(0). So suppose, for1046

contradiction, that xk0 ∈ KR+1 \K = Bc(0;R+ 1). Then there exists an affine function ` such that1047

`(y) ≤ f̃MKR+1
(y) + λ|y|2 for all y ∈ Rn, `(xk) = f̃MKR+1

(xk) + λ|xk|2, 1 ≤ k ≤ n∗,1048
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so that1049

`(xk0) = f̃MKR+1
(xk0) + λ|xk0 |2 = am + 1 + λ|xk0 |2.1050

Since f̃MKR+1
(y) = am+1 for all y ∈ Bc(0, R+1), `must be the unique tangent plane to the function y → am+1+λ|y|21051

at y = xk0 , namely1052

`(y) = am + 1 + λ|xk0 |2 + 2λxk0 · (y − xk0), y ∈ Rn.1053

Now it follows from the fact that this plane does not touch the graph of y → am + 1 + λ|y|2 at any other point1054

that xk 6∈ Bc(0, R+ 1) for 1 ≤ k ≤ n∗, k 6= k0, and hence, since n∗ ≥ 2, there must exist xk̂, k̂ 6= k0, with xk̂ ∈ Γaj1055

for some 1 ≤ j ≤ m and `(xk̂) = f̃MKR+1
(xk̂) + λ|xk̂|

2 = aj + λ|xk̂|
2. But then1056

am + 1 + λ|xk0 |2 + 2λxk0 · xk̂ − 2λ|xk0 |2 = aj + λ|xk̂|
2,1057

and hence, since xk0 ∈ Bc(0;R+ 1) and xk̂ ∈ B(0, R),1058

am − aj + 1 = λ(|xk̂|
2 − 2xk0 · xk̂ + |xk0 |2) = λ|xk̂ − xk0 |

2 > λ,1059

which contradicts the assumption on λ. Likewise, Cuλ (f̃−MKR+1
)(0) = Cuλ (f̃−MK )(0), and hence AMλ (f̃KR+1

)(0) =1060

AMλ (fK)(0), as required.1061

(ii): The proof of the Lipschitz case follows similar arguments.1062

Proof. (Theorem 4.1) Similar to the proof of Theorem 3.1(i), we fix xj0 ∈ K and let fλ(x) = λ|x − xj0 |2 −1063

f−MK (x). Define `(x) = −f(xj0) for all x ∈ Rn. Then ` is a constant function, so is affine. Clearly `(xj0) = fλ(xj0).1064

We need to prove that1065

(8.13) `(x) ≤ fλ(x)1066

for all x ∈ Rn so that co[fλ](xj0) = `(xj0) = −f(xj0), hence Cuλ (f−MK )(xj0) = f(xj0). Inequality (8.13) is equivalent1067

to1068

−f(xj0) ≤ λ|x− xj0 |2 − f−MK (x), x ∈ Rn .1069

If x ∈ Rn \ K, fM

K (x) = −M . Since −f(xj0)) < M < λ|x − xj0 |2 + M , we clearly have `(x) ≤ fλ(x) for all1070

x ∈ Rn \K. If xj ∈ K and xj 6= xj0 , we need to prove that1071

−f(xj0) ≤ λ|xj − xj0 |2 − f(xj), or equivalently, f(xj)− f(xj0) ≤ λ|xj − xj0 |2 .1072

Since α = min{|xi − xj |, xi, xj ∈ K, xi 6= xj}, then if λ > L/α, we have1073

f(xj)− f(xj0) ≤ L|xj − xj0 | ≤ λα|xj − xj0 | ≤ λ|xj − xj0 |2 ,1074

which completes the proof.1075

Proof. (Lemma 4.3) We may write `s(x) = a · x + b with a ∈ Rn and b ∈ R. We see that D`s(x) = a and we1076

need to give an estimate of |a|. Since we have `s(xi) = fS(xi) and |`s(xi)− `s(x1)| = |fS(xi)−fS(x1)| ≤ L|xi−x1|,1077

we see that |a · (xi − x1)| ≤ L|xi − x0| for i = 1, 2, . . . , k. As dim(co[S]) = n, there are at least n-vectors, say1078

{x2 − x1, . . . , xn+1 − x1}, which are linearly independent and hence form a basis of Rn. If we let {e1, . . . , en} be1079

any orthonormal basis of Rn, there is an n×n invertible matrix A = (aij)
n
i,j=1 such that ei =

∑n
j=1 aij(xj+1−x1).1080

Hence1081

|a · ei| ≤
n∑
j=1

|aij ||a · (xj+1 − x1)| ≤ L

 n∑
j=1

|aij |2
1/2 n∑

j=1

|xj+1 − x1|2
1/2

.1082

Therefore, the Euclidean norm of a satisfies |a| ≤ L|A|(
∑n
j=1 |xi − x0|2)1/2, where |A| denotes the Frobenius norm1083

of the matrix A, and can then take Cs = |A|(
∑n
j=1 |xi − x0|2)1/2, which completes the proof.1084
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Proof. (Theorem 4.5) We prove the result for the upper transform. The proof of the lower transform follows1085

similar arguments.1086

Let us consider the affine function λr2
s − `s(x). For x ∈ S, clearly1087

(8.14) λr2
s − `s(x) = λr2

s − fK(x) = λ|x− xs|2 − f−MK (x) .1088

If we can show that λr2
s − `s(x) < λ|x− xs|2 − f−MK (x) for x ∈ Rn \ S, then one obtains1089

(8.15) co[λ|(·)− xs|2 − f−MK ](x) = λr2
s − `s(x)1090

for x ∈ co[S] and the proof for the upper transform then follows.1091

We consider two different cases: (i) x ∈ K \ S and (ii) x ∈ Rn \K.1092

For the case (i), let x ∈ K \ S. We need then to prove that1093

(8.16) λr2
s − `s(x) < λ|x− xs|2 − fK(x) ,1094

or, equivalently, that1095

(8.17) λr2
s − `s(x) + fK(x) < λ|x− xs|2 .1096

We have the following estimates for the left hand side of (8.17).1097

λr2
s − `s(x) + fK(x) ≤ λr2

s + |`s(x)− `s(xs)|+ |`s(xs)|+A0

≤ λr2
s + CsL|x− xs|+ CsLrs + 2A0 .

(8.18)1098

We have used the fact that for any x∗ ∈ S,1099

(8.19) |`s(xs)| ≤ |`s(xs)− `s(x∗)|+ |`s(x∗)| ≤ CsLrs +A01100

as `s(x
∗) = fK(x∗). Therefore (8.17) holds if1101

(8.20) λr2
s + CsL|x− xs|+ CsLrs + 2A0 < λ|x− xs|2 .1102

Note that |x− xs| ≥ rs + σs. Let us consider the function1103

(8.21) g(t) = λt2 − λr2
s − CsLt− CsLrs − 2A0 .1104

If we can find conditions for λ such that g(rs+σs) > 0 and g′(t) > 0 when t ≥ rs+σs, then (8.20) holds and (8.17)1105

will be satisfied.1106

We see that g(rs + σs) > 0 is equivalent to1107

(8.22) λ[(rs + σs)
2 − r2

s ] > CsL(2rs + σs) + 2A0 .1108

This last inequality is equivalent to (4.2). Thus (8.17) holds and thus g(rs + σs) > 0.1109

Next we have g′(t) = 2λt−CsL. Since g′(t) itself is an increasing function, we only need to show that g′(rs+σs) > 0,1110

which is equivalent to1111

(8.23) λ >
CsL

2(rs + σs)
,1112

which follows from (4.2). This completes the proof for case (i).1113

1114
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(ii): Let x ∈ Rn \K, hence −f−MK (x) = M . We need to prove that1115

(8.24) λr2
s − `s(x) < λ|x− xs|2 +M .1116

Again we have1117

(8.25) λr2
s − `s(x) ≤ λr2

s + CsL|x− xs|+ CsLrs +A0 .1118

Therefore we prove (ii) if1119

(8.26) λr2
s + CsL|x− xs|+ CsLrs +A0 < λ|x− xs|2 +M .1120

Since (4.2) is satisfied, then by inspection it is easy to verify that (8.26) holds for all non-negative numbers1121

|x− xs| ≥ 0, which completes the proof.1122

Proof. (Lemma 4.9) (i): We see that both p+ and p− are well-defined functions in D and clearly p−(x) ≤ v ≤1123

p+(x) for every (x, v) ∈ co[Γs]. It is also easy to see that the two different expressions for p+(x) and respectively1124

for p−(x) are equal.1125

1126

(ii): Since co[Γs] is a convex polytope, we have, for any x1, x2 ∈ D and for every 0 < t < 1, that1127

t(x1, p+(x1)) + (1− t)(x2, p+(x2)) = (tx1 + (1− t)x2, tp+(x1) + (1− t)p+(x2)) ∈ co(Γs)1128

as both D and co[Γs] are convex. Furthermore, by definition of p+, tp+(x1) + (1− t)p+(x2) ≤ p+(tx1 + (1− t)x2).1129

Thus p+ is concave in D, hence is continuous in D. Similarly we can show that p− is convex, hence continuous in1130

D. Also p+ and p− are both piecewise affine functions. In fact, since co[Γs] is a convex polytope, co[Γs] has finitely1131

many closed n-dimensional faces. We may write ∂ co[Γs] = Γ+ ∪ Γ− ∪ Γ0, where Γ+ = ∪mk=1F
+
k , Γ− = ∪lj=1F

−
j1132

and Γ0 = ∪sr=1F
0
r with F+

k , F−j and F 0
r n-faces of co[Γs]. For F+

k , there is an affine function `+k : Rn → R such1133

that `+k (x) = v if (x, v) ∈ F+
k and `+k (x) > v if (x, v) ∈ co[Γs] \ (F+

k ). Similarly, for F−j , there is an affine function1134

`−j : Rn → R such that `−j (x) = v if (x, v) ∈ F−j and `−k (x) < v if (x, v) ∈ co[Γs] \ (F−j ). Every F 0
r is an n-face1135

whose normal vectors are in Rn×{0} ⊂ Rn×R, that is, F 0
r is perpendicular to D×{0}. Since the vertices of each1136

F+
k are extreme points of co[Γs] and every point x ∈ S is an extreme point of co[S] we see that for every extreme1137

point (x, v) of co[Γs], x is an extreme point of D. Let D+
k = PRn(F+

k ) be the orthogonal projection from F+
k to Rn,1138

then D+
k is a convex polytope contained in D whose vertices are all in S. The projection PRn also maps relative1139

boundary of F+
k to boundary of D+

k , and the relative interior F+
k to interior of D+

k . Also on D+
k , p+(x) = `+k (x).1140

Thus p+(·) is affine on D+
k .1141

Similarly, for each F−j , we define D−j = PRn(F−j ). Then the vertices of D−j belong to S and p−(x) := `−j (x) is1142

affine on D−j .1143

1144

(iii): It is easy to see that D̊+
k ∩ D̊

+
j = ∅ and D̊−k ∩ D̊

−
j = ∅ for k 6= j. Next we show that D = ∪mk=1D

+
k = ∪lj=1D

−
j .1145

If ∪mk=1D
+
k 6= D, there is an interior point x ∈ D \ ∪mk=1D

+
k . By definition (x, p+(x)) ∈ ∂ co[Γs] and we may1146

assume that (x, p+(x)) lies in the relative interior of an n-face F ⊂ ∂ co[Γs]. If F is one of the F−j ’s, this implies1147

p+(x) = p−(x). This cannot happen inside D. If F is one of the F 0
r ’s, then D0

r := PRn(F 0
r ) is an n− 1-dimensional1148

polytope. If E is the (n− 1)-dimensional plane in Rn containing D0
r , then D must lie on one side of D0

r . Therefore1149

D0
r ⊂ ∂D, hence x is a boundary point of D. This contradicts our assumption that x is an interior point of D.1150

Thus D = ∪mk=1D
+
k . Similarly, we can show that D = ∪lj=1D

−
j .1151

The other conclusions also follow from the above arguments.1152
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Proof. (Theorem 4.11) Since co[S] = ∪mk=1D
+
k and on each D+

k , there is an affine function `+k : Rn → R such1153

that `+k (x) = p+
k (x) for x ∈ D+

k and `+k (x) > fK(x) for x ∈ S+
k , where S+

k is the set of extreme points of D+
k given by1154

Lemma 4.9 which is a subset of S. Let C+
k > 0 be the constant given by Lemma 4.3 so that |D`+k (x)| < C+

k L ≤ CsL.1155

If we can show that co[λ|(·) − xs|2 − f−MK ] = λr2
s − `+k (x) for x ∈ D+

k , the proof is finished. As in the proof of1156

Theorem 4.5, we have to consider different cases. If x ∈ Rn or x ∈ Rn \K or x ∈ K \S, the proof for the inequality1157

λr2
s − l+k (x) ≤ λ|x− xs|2 − f−MK (x) is the same as that in the proof of Theorem 4.5. The only new case we have to1158

consider is for x ∈ S \ S+
k .1159

But for x ∈ S \ S+
k , the above inequality is1160

(8.27) λr2
s − `+k (x) ≤ λ|x− xs|2 − fK(x) = λr2

s − fK(x) ,1161

which is equivalent to `+k (x) ≥ fK(x) as S ⊂ ∂B(xs; rs). We also know from Lemma 4.9 that `+k (x) > fK(x) for1162

x ∈ S \ S+
k . Therefore on each D+

k , (8.27) holds as p+(x) = `+k (x) on D+
k . The proof for the lower transform is1163

similar. The proof is finished.1164

Proof. (Corollary 5.4) For the proof of this result, we first follow the proof of Theorem 2.5 so that the points1165

xi’s for the convex envelope are in Ω̄. Then we follow the proof of [55, Theorem 3.7] to show that xi’s can only be1166

in K. The rest of the proof then follows from that of Theorem 2.5.1167
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