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Abstract24

This study describes the properties of an amphotericin B-containing mucoadhesive25

nanostructured lipid carrier (NLC), with the intent to maximize uptake within the gastrointestinal26

tract. We have reported previously that lipid nanoparticles can significantly improve the oral27

bioavailability of amphotericin B (AmpB). On the other hand, the aggregation state of AmpB within28

the NLC has been ascribed to some of the side effects resulting from IV administration. In the29

undissolved state, AmpB (UAmpB) exhibited the safer monomeric conformation in contrast to AmpB30

in the dissolved state (DAmpB), which was aggregated. Chitosan-coated NLC (ChiAmpB NLC)31

presented a slightly slower AmpB release profile as compared to the uncoated formulation,32

achieving 26.1 % release in 5 hours. Furthermore, the ChiAmpB NLC formulation appeared to33

prevent the expulsion of AmpB upon exposure to simulated gastrointestinal pH media, whereby up34

to 63.9 % of AmpB was retained in the NLC compared to 56.1 % in the uncoated formulation. The35
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ChiAmpB NLC demonstrated mucoadhesive properties in pH 5.8 and 6.8. Thus, the ChiAmpB NLC36

formulation is well-primed for pharmacokinetic studies to investigate whether delayed37

gastrointestinal transit may be exploited to improve the systemic bioavailability of AmpB, whilst38

simultaneously addressing the side-effect concerns of AmpB.39

Keywords: amphotericin B, nanostructured lipid carriers, oral, mucoadhesion, aggregation states40

41

1. Introduction42

Amphotericin B (AmpB) is a broad spectrum antifungal agent commonly used to treat invasive43

systemic fungal infections and visceral leishmaniasis (Legrand et al. 1992). It has a large glycosylated44

lactone ring, coupled with asymmetrical distribution of hydrophobic polyene chromophore and45

hydrophilic polyhydroxyl groups (Jung et al. 2009; Silva et al. 2013). Due to its amphipathic nature,46

AmpB tends to self-aggregate in aqueous solutions, forming, dimers or polyaggregates. The dimers47

are usually associated with the most toxic properties of AmpB and unfortunately this is the48

predominant state in the reconstituted marketed intravenous (IV) formulation, Fungizone® (Barwicz et49

al. 1992; Raquel Espada et al. 2008). AmpB exerts its antifungal properties by binding to ergosterol50

within fungal membranes, forming transmembrane pores that allow depletion of intracellular ions,51

which eventually lead to the cell death. In a similar fashion, AmpB also binds to mammalian52

cholesterol within the plasma membrane, which lead to severe side effects, notably nephrotoxicity53

(Butani et al. 2016). This is the hallmark of the toxic effects of the dimers mentioned above (Radwan54

et al. 2017). There is evidence that when delivered orally, these side-effects are minimized primarily55

due to the omission of the excipients used in the IV formula and crucially because of an impeded rate56

and extent of absorption of raw AmpB from the gastrointestinal tract (Kayser et al. 2003; Radwan et57

al. 2017; Liu et al. 2017). The oral bioavailability of AmpB can be boosted through formulation58

intervention as we have recently shown using solid lipid nanoparticles (SLNs) (Hilda Amekyeh et al.59

2015). However, it was the extent of absorption that is improved rather than the rate of absorption,60

which suggests a possible lymphatic uptake pathway for the SLN. On the other hand, nanostructured61
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lipid carriers (NLC) comprise of an admixture of solid lipids and liquid oils which distort the solid62

lipid matrix hence arrests crystal growth and drug expulsion during storage as the case is with SLNs63

(Muchow et al. 2008). In addition, the NLC protect against possible enzymatic degradation and can64

accommodate relatively higher levels of cargoes than the SLNs (Yoon et al. 2013; Yostawonkul et al.65

2017; Liu et al. 2017).66

Several investigations on the oral delivery of AmpB have been conducted which employ a wide67

range of carrier systems. Some of these include polymeric nanoparticle carbon nanotubes,68

nanosuspensions, polymer lipid hybrid nanoparticles, solid lipid nanoparticles (SLN), cubosomes,69

emulsions and cochleates (Santangelo et al. 2000; Nahar et al. 2008; Italia et al. 2009; Wasan et al.70

2009; Benincasa et al. 2011; Jain et al. 2012; Van De Ven et al. 2012; Yang et al. 2012; Tan & Billa71

2014; H. Amekyeh et al. 2015; Chaudhari et al. 2016; Hussain et al. 2016; Amekyeh et al. 2017).72

In terms of novelty on the current work and in advancement of the oral AmpB SLN formulation73

developed in our labs (Amekyeh et al. 2015), we have sought to exploit a sluggish transit of the NLC74

within the gastrointestinal tract in order to maximize uptake via the lymphatic pathway by way of75

coating the NLC with chitosan. Chitosan, a natural, non-toxic, biocompatible polycationic76

polysaccharide, derived from partial deacetylation of chitin was employed as the mucoadhesive77

polymer coating (Sandri et al. 2017). Therefore, this piece of work reports on the formulation and78

characterisation of uncoated and chitosan-coated AmpB-loaded NLC. We hypothesise that through79

mucoadhesion of the NLC we will confer a prolonged gastrointestinal transit in the small intestine80

which would result in improved uptake via lymph and hence improve bioavailability of AmpB.81

Furthermore, we are cognizant of the correlation between the aggregated state of AmpB and its82

toxicity. We exploited the pH-solubility and stability profiles of AmpB under alkaline conditions83

during the formulation of the NLC, which assumes the monomeric configuration. This configuration84

is known to manifest fewer side effects (Lance et al. 1995; Gagoś et al. 2008; Santos et al. 2012; 85

Caldeira et al. 2015).86

2. Materials and method87

2.1. Materials88
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Beeswax and coconut oil were purchased from Acros Organics, New Jersey, USA. Chitosan (low89

molecular weight), porcine gastric mucin (type III), phosphate buffered saline tablets (PBS) and90

potassium phosphate monobasic were purchased from Sigma Aldrich Co. LLC., Missouri, USA;91

amphotericin B from Fisher Scientific, India. Soya lecithin was purchased from MP Biomedicals92

(Illkirch, France) and acetic acid was obtained from R&M Chemicals, India. All reagents and solvents93

used of analytical and HPLC grades respectively. Deionised water used was 18.2 MΩ.cm at 25 °C 94

filtered through a Milli-Q filter, (Millipore Corp., Bedford, USA).95

2.2. Formulation of AmpB-loaded NLC (AmpB NLC)96

AmpB was incorporated during the formulation of the NLC either in a dissolved state97

(DAmpB) or undissolved state (UAmpB), at the initial step of preparation (method 1) or at the final98

step in the NLC formulation (method 2). DAmpB comprised of 10 mg/mL of AmpB in 0.1 M NaOH.99

Method 1: Briefly, the oily phase (OP), comprised of 290 mg of beeswax and 10 mg of coconut100

oil was melted at 70 °C. AmpB either in undissolved or dissolved state was added to the melted lipids101

and mixed. The aqueous phase (AP), consisted of 50 mg of lecithin, 50 mg of Tween - 80 and 10 mL102

of deionised water was stirred at 500 rpm using a magnetic stirrer for 45 minutes at 70 °C and then103

added to the melted OP above. The resulting mixture was homogenised at 12,400 rpm for 8 minutes104

using a high speed homogeniser (Ultra-Turrax T25, Germany). The coarse emulsion was further105

subjected to probe ultrasonication (Q500 QSonica, Newtown, CT, USA) at 20 % amplitude for 8106

minutes. Finally, the emulsion was added into sufficient deionised water (4 °C) under stirring to a107

total of 100 mL.108

Method 2: The preparation of AmpB NLC formulation was similar to method 1 except that the109

incorporation of AmpB occurred at the final step of the formulation, in which the AmpB was added to110

the deionised water (4 °C) after ultrasonication of the emulsion (Santos et al. 2012; Caldeira et al.111

2015). The incorporation of UAmpB was not feasible under this method due to precipitation thus,112

only DAmpB was utilised.113

2.3. Formulation of chitosan-coated AmpB-loaded NLC (ChiAmpB NLC)114
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The physical adsorption of chitosan on the formulated NLC was done by addition of 0.2 %w/v115

chitosan solution in 1 % acetic acid dropwise into the NLC formulations at a ratio of 1:40 v/v under116

mechanical stirring at 250 rpm for 15 minutes at room temperature.117

118

119

2.4. Physical properties of the formulations120

2.4.1. Particle size, polydispersity index (PDI) and zeta potential121

The particle size, polydispersity index (PDI) and zeta potential (ζ) of the AmpB NLC and 122

ChiAmpB NLC formulations were measured using Zetasizer Nano ZS (Malvern, UK). Prior analysis,123

the samples were diluted appropriately using deionised water to avoid multiple scattering. All124

measurements were carried out in triplicate at 25 °C and results were expressed as mean ± standard125

deviation.126

2.4.2.Aggregation states of AmpB NLC and ChiAmpB NLC formulations127

The predominant aggregation state of AmpB in the different formulations was characterised using128

a UV-visible spectrometer (Epoch Microplate Spectrophotometer, Bio Tek Instruments, USA).129

Absorption spectra from the formulations were recorded from 300-450 nm with a resolution of 1 nm130

at room temperature. All formulations were diluted with deionised water (1:10 v/v) so that results131

were within the linear sensitivity of the instrument. The absorbance from the blank formulations was132

also measured in order to eliminate effects due to artifacts. The predominant aggregation state of133

AmpB within each spectrum was determined by calculating the ratio of absorbance at 332 nm (peak134

of the dimer) to that at 407 nm (peak of the monomer).135

2.4.3.Morphology and topography136

The morphology and topography of the formulations were examined using a scanning137

transmission electron microscopy (STEM) system, Quanta 400F (FEI Company, USA). Prior to138

analysis, the undiluted samples were applied on a formvar-coated copper grids without fixation and139

air-dried. Samples were observed under scanning transmission of 20 kV in high vacuum.140
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2.4.4.Encapsulation efficiency (% EE) and drug loading (% DL)141

A direct method was used to determine the encapsulation efficiency (% EE) and drug loading142

(% DL) in AmpB NLC and ChiAmpB NLC formulations. Briefly, 1 mL of the formulation was143

precipitated by addition of 10 mL of acetonitrile. The resulting mixture was centrifuged at 20 000 rpm144

for 10 minutes at 4 °C. The supernatant was decanted and DMSO: MeOH (1:1) was added to the145

pellet containing the encapsulated drug which was heated at 70 °C. The amount of AmpB was146

measured using high performance liquid chromatography (HPLC) system (1260 Series, from Agilent147

technologies, Waldbronn, Germany, equipped with a 15 cm x 4.6 mm reversed-phase C-18 column,148

Hypersil Gold, ThermoFisher Scientific, Waltham, United States, 5 µm particle size stationary phase).149

A mixture of 60 % 2.5 mM EDTA and 40 % acetonitrile was used as the mobile phase at a flow rate150

of 1.2 mL/min, with the wavelength set at 408 nm. Results are expressed as mean ± standard151

deviation. The linear regression of the calibration curve was obtained for AmpB at a concentration of152

0.1-100.0 µg/mL in DMSO: MeOH (408 nm) with r2 of 0.9998. The % EE and % DL were calculated153

using the following equations:154

100%
TW

Ws
EE  …………………………………………………….. (1)155

100%
NW

Ws
DL  ……………………………………………………. (2)156

where, WT is the amount of AmpB in the system, WS is the amount of AmpB detected in the sediment157

and WN weight of nanoparticles obtained from freeze-dried sediments.158

2.5. In vitro release studies159

A 50 µl aliquot of AmpB NLC or ChiAmpB NLC formulations was mixed with 950 µl160

phosphate buffered saline (pH 7.4) containing 1 % Tween - 80 into six seeded tubes and rotated at 120161

rpm in a rotary shaker (WiseCube®, Witeg Inc., Germany) maintained at 37 oC. Sink conditions for162

AmpB were maintained in each tube. At predetermined time intervals (15 min, 1, 2, 3, 4 and 5 hour),163

one tube was removed and the nanoparticles were precipitated using 1000 µl acetonitrile, followed by164
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centrifugation at 20 000 rpm for 10 minutes at 4 °C to pellet the particles. The amount of AmpB165

released was determined by analyzing the supernatant using the HPLC system described above after166

correction for free AmpB. Three independent runs were conducted and the results are expressed as167

mean ± standard deviation.168

Since the formulations were designed for absorption from the upper gastrointestinal tract, the169

effect of variable pH on the retention of AmpB within the AmpB NLC and ChiAmpB NLC170

formulations were investigated. A 1:20 v/v dilution of the formulations in phosphate buffer pH 5.8171

(British Pharmacopeia) representing the proximal small intestine were firstly incubated for 2 hours,172

followed by adjustment of the pH to 6.8 (distal small intestine) with 6 µl of 3M NaOH and further173

incubated for 4 hours (Ovesen et al. 1986; Evans et al. 1988). The percentage of AmpB retained in the174

formulations were determined similarly as described above.175

2.6. Mucoadhesion studies176

The mucoadhesive properties of the AmpB NLC and ChiAmpB NLC formulations were177

determined turbidimetrically after dispersing the formulations in type III porcine gastric mucin178

(Bonferoni et al. 2010; Sandri et al. 2017). The mucin was dispersed in buffered pH solutions (pH 5.8179

and 6.8) under mild stirring at 0.05, 0.1, 0.25, 0.5, 0.75, 1.0 % w/v concentrations prior to admixture180

with the formulations at 1:1 v/v ratio. The mixture was incubated at 37 °C for and rotated on a shaker181

(WiseCube ®, Witeg Inc., Germany) at 120 rpm for 2 hours. The absorbance of each mixture was182

measured using a UV-visible spectrophotometer (Epoch Microplate Spectrophotometer, Bio Tek183

Instruments, USA) at 650 nm. Pure chitosan was admixed with mucin as a control. Measurements184

were performed in triplicate and results were expressed as mean ± standard deviation. A measure of185

the interaction between the formulations and mucin was determined as the difference in absorbance186

(∆A) between the measured absorbance of formulation-mucin mixture (A) and theoretical absorbance 187

(Atheor). The Atheor was determined as the sum of the absorbances from respective formulations with188

that of mucin solutions. The inference on mucoadhesion was based on the algorithm ∆A = 0 means no 189

interactions took place whilst ∆A ≥ 0 means strong interaction between mucin and the formulations 190

(Bonferoni et al. 2010; Sandri et al. 2017).191



8

2.7. Stability studies192

The AmpB NLC and ChiAmpB NLC formulations were stored at 4 °C and protected from light.193

Aliquots were withdrawn at appropriate time intervals and the particle size, PDI, ζand aggregation 194

state were evaluated.195

The effect of variation in pH on the physical properties of AmpB NLC and ChiAmpB NLC196

formulations was also studied by means of changes in the particle size and ζ. 50 µl of the formulations 197

were mixed in 950 µl of phosphate buffer, pH 5.8 and 6.8 (British Pharmacopeia). The samples were198

incubated at 37 °C using a rotary shaker operated at 120 rpm for 2 hours. The changes in the particle199

size andζwere evaluated using Zetasizer Nano ZS (Malvern, UK). 200

2.8. Statistical analyses201

Statistical evaluation was performed using one-way analysis of variance (ANOVA), Tukey’s post202

hoc test was conducted for multiple comparison between groups and differences were considered203

significant when p < 0.05. All calculations were conducted using IBM SPSS Statistics 24 (IBM204

cooperation, New York, NY).205

206

3. Results and discussion207

Since AmpB is poorly soluble in aqueous media, incorporation of AmpB during formulation208

without organic aids poses a challenge. In this work, we exploit the alkaline pH solubility profile of209

AmpB in incorporating AmpB into the NLC formulations (Santos et al. 2012; Caldeira et al. 2015).210

AmpB is soluble in aqueous media but only at extreme pH values (pH <2 and >11) whereby, the211

alkaline condition presents the safer monomer conformation of AmpB (Gagoś et al. 2008).  212

The AmpB NLC and ChiAmpB NLC were optimized (data not shown) prior to the213

commencement of the present study. The effect of mode of AmpB incorporation during the214

formulation of the AmpB NLC and ChiAmpB NLC was assessed based on particle size,215

polydispersity index (PDI) and zeta potential (ζ), and presented in Table 1.  216
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217

10 mg of AmpB was added during formulation of the NLC either in undissolved state (UAmpB)218

Table 1: Particle size, PDI and zeta potential values of NLCs as a function of mode of AmpB (10 mg)219

incorporation220

or dissolved in 0.1 M NaOH (DAmpB) (section 2.2). The formed NLC formulations were then221

coated with chitosan. Regardless of the stage of AmpB incorporation, the particle size of the NLC222

formulations were below 200 nm, which is desirable in the present pursuit. Furthermore, the PDI223

values were all below 0.3 indicating that the formulations are homogeneous (Tan & Billa 2014). The ζ 224

were strongly negative, ranging from -44 to -63 mV, which is indicative of high repulsive threshold225

against van der Waals interactions (Neupane et al. 2014). Aptly, the ζ of NLC obtained at both steps 226

of addition of DAmpB were significantly higher than those from UAmpB (p <0.005), indicating that227

more anionic components were adsorbed within the Helmholtz layer of the UAmpB NLC228

nanoparticles (Tan et al. 2010; Kumar et al. 2010). The adsorption of chitosan onto the NLC229

formulations was confirmed in all the cases by a significant increase in particle size (p <0.005).230

Furthermore, since chitosan is positively charged under the formulation conditions, the changes231

inζvalues were all towards positivity, reaffirming the physical adsorption of chitosan onto the NLC 232

nanoparticles (Ying et al. 2011; Ridolfi et al. 2012). In method 1, there was an increase in size of the233

ChiAmpB NLC formulated using UAmpB by about 84 nm. There was also an increase in size of the234

ChiAmpB NLC formulated with DAmpB by almost five-fold (1141 ± 28 nm) using method 1 and an235

increase of 35 nm using method 2. Further characterisation on the DAmpB NLC using method 1 was236

not carried out because of the significant increase in size of the NLC after the coating which is not237

Method Particle size (nm) PDI Zeta potential (mV)

AmpB NLC ChiAmpB

NLC

AmpB NLC ChiAmpB

NLC

AmpB

NLC

ChiAmpB

NLC

1 UAmpB 180.6±2.4 265.5±2.3 0.21±0.01 0.34±0.05 -44.8±0.4 27.4±0.5

DAmpB 199.6±4.4 1141±28 0.28±0.01 0.22±0.03 -63.3±0.8* 17.5±1.4

2 DAmpB 140.5±1.0 175.5±1.2 0.11±0.02 0.20±0.03 -51.5±0.7* -31.7±0.2
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practically applicable in the present pursuit. Furthermore, physical instability during storage would238

have to be contended with. An increase in AmpB cargo within the NLC was carried out on UAmpB239

(method 1) and DAmpB (method 2) at a 50 mg AmpB threshold and a stability study was carried out240

on the resulting formulations. The results on particle size, PDI andζof the AmpB NLC and the 241

chitosan-coated counterpart (ChiAmpB NLC) from both methods are presented in Table 2.242

Day Particle size (nm) PDI Zeta potential (mV)

AmpB

NLC

ChiAmpB

NLC

AmpB

NLC

ChiAmpB

NLC

AmpB

NLC

ChiAmpB

NLC

Method 1

(UAmpB)

1 163.1±0.7 348.0±12 0.19±0.01 0.42±0.09 -42.4±1.2 24.3±1.4

35 160.6±1.8 331.4±3.6 0.16±0.03 0.47±0.02 -39.2±0.5* 21.8±0.3

120 161.0±1.4 284.8±7.3* 0.19±0.03 0.38±0.07 -38.4±0.9* 20.0±1.8*

Method 2

(DAmpB)

1 142.6±0.1 184.7±1.6 0.11±0.02 0.26±0.03 -56.2±0.8 -31.4±0.6

35 142.0±0.8 192.1±3.8* 0.12±0.02 0.26±0.04 -54.4±0.8 -30.5±1.4

120 140.2±2.3 198.3±2.1* 0.15±0.01 0.26±0.01 -57.2±0.6 -32.2±2.5

Table 2: Effect of storage on physical properties of NLC at 50 mg cargo load of AmpB243

244

There was a slight decrease in particle sizes of the uncoated NLC series (AmpB NLC) formulated245

using method 1 with 50 mg UAmpB compared to the previous uncoated series formulated with 10 mg246

of UAmpB (Table 1). However as in the initial series (Table 1), there was a decrease in size of the247

NLC formulated using method 2 (DAmpB) compared to the method 1 (UAmpB). Interestingly, the248

size of the DAmpB NLC remained essentially unchanged after we increased the AmpB load from 10249

to 50 mg. Furthermore, the particle size of the DAmpB NLC at 50mg AmpB load also remained250

essentially unchanged during storage from both methods over the 120-day study period: method 1 (p251

= 0.102) and method 2 (p = 0.428). On the other hand, after coating with chitosan there was an252

increase in the sizes of the ChiAmpB NLC at 50 mg AmpB load in both methods of NLC formulation.253

Furthermore, there was a significant increase in size of the ChiAmpB NLC formulated via method 2254

as a function of storage time (p = 0.039), indicating that the formulations from this method may be255
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unstable upon long-term storage (Tan & Billa 2014). It is worth noting that there was a progressive256

reduction in the particle size andζof the ChiAmpB NLC formulated via method 1, from day 1 to 120. 257

This can be explained by the fact that in order to lower the surface free energy of the system, the258

particles tend to minimize their surface area to volume ratio and thus, form larger particles at the259

expense of smaller ones. However, we inferred that in the case of the ChiAmpB NLC system, the260

chitosan imparted stability via slow rearrangement of the polymer chains at the interface during261

storage so that the layer became tightened around the NLC. This ultimately resulted in the formation262

of smaller particles over time (Tan et al. 2010; Kumar et al. 2010).263

Figure 1 presents the UV absorbance spectra of AmpB (UAmpB) within the NLC264

formulations from both methods at 10mg AmpB. Depending on the external milieu, AmpB may265

conform to either the monomer, dimer or polyaggregate state which can be detected readily by UV-266

visible spectroscopy (Barwicz et al. 1992). AmpB dissolved in 0.1 M NaOH (pH = 13) exhibits267

absorption spectra traditionally assigned to the monomer conformation with five distinctive268

absorption bands (407, 384, 365, 348 and 333 nm) with the highest intensity over the long-wavelength269

region (Gagoś et al. 2008).  270
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271

Figure 1: Absorption spectra corresponding to AmpB and ChiAmpB NLC formulations from272

method 1& 2. [M = monomer conformation, D = dimer and P = polyaggregate conformation273

of AmpB]274

275

These distinctive peaks are absent in the absorption spectra displayed by AmpB in the NLC276

formulation prepared using method 1, where the spectra has been assigned to the polyaggregate form277

of AmpB (Espada et al. 2008). AmpB NLC prepared via method 2 displays only four of the five278

distinct absorption peaks but with varied intensities (407, 385, 363 and 332 nm). The principal279

absorption peak occurs at 332 nm indicating that the dimer conformation is the predominant form in280

this NLC formulation (Bianco et al. 2010). However, after 10 days of storage, the absorbance281

intensity at the short-wavelength region dropped by 11 % with a red-shift in wavelength towards 335282

nm while the absorbance at 407 nm, increased by 3-fold. This suggests a growth in the aggregation283

state of AmpB in NLC prepared by method 2 to the monomer conformation during storage. The284

absorption spectra for ChiAmpB NLC prepared via method 1 presented a similar pattern as the285
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uncoated NLC formulation but with lower absorbance intensities. Likewise, the absorption spectra286

from ChiAmpB NLC prepared by method 2 mirrors the spectra of the uncoated NLC which is287

attributable to the dimer conformation.288

The aggregation ratio within each formulation was obtained as the ratio of the absorbance at289

332 nm (peak of the dimer) to that at 407 nm (peak of the monomer). An aggregation ratio > 1290

indicates that more than 50 % of the AmpB is in the aggregated state while ratio < 0.2 reflects nearly291

100 % monomer form. The aggregation ratios of AmpB in uncoated and chitosan coated NLC292

prepared by method 1 were all below 1 over a 120-day period, indicating a predominantly monomeric293

conformation (Figure 2).294

295

Figure 2: Extent of AmpB aggregation in NLC and ChiNLC formulations over 120-day study296

period297

Thus, we inferred that AmpB in uncoated and chitosan-coated NLC prepared by method 1 is a298

mixture of polyaggregates (Figure 1) and monomers (Figure 2), with latter being dominant. Both299
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polyaggregate and monomer are known to be less toxic than the dimer conformation in in vitro300

mammalian cells and in vivo mice studies (Gaboriau et al. 1997; Bartlett et al. 2004; Espada et al.301

2008). On the other hand, the extent of AmpB aggregation in the NLC formulation prepared by302

method 2 decreased over time from a highly aggregated state (3.9) that fell to 0.2 on day 35, which is303

indicative of growth of AmpB to the monomeric state during storage. There was a slight increase in304

the aggregation ratio on day 120 however this was still below the threshold 1. However, after coating305

with chitosan, AmpB (method 2) remained in the aggregated state throughout the 120-day study306

period. In fact, it appears that the aggregated state grew over time. Clearly, the mode of incorporation307

of AmpB is crucial in determining the ultimate conformation. Due to the dimer conformation of308

AmpB and the instability of the formulations from method 2, further studies were discontinued using309

this method and focus is now on AmpB NLC and ChiAmpB NLC formulations using method 1.310

Figure 3 shows the STEM images of the AmpB NLC and ChiAmpB NLC formulations311

whereby the nanoparticles appeared to be spherical and discrete. The particle sizes from both AmpB312

NLC and ChiAmpB NLC formulations are in agreement with the results obtained in Table 2. The313

average encapsulation efficiency of AmpB NLC formulation was 83.4 ± 0.72 % with drug loading of314

12.3 ± 0.11 % (Table 3). This high % EE and % DL can be attributed to the high lipophilicity of315
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316

Figure 3: STEM image of (a) AmpB NLC and (b) ChiAmpB NLC formulations317

318

AmpB and the imperfect crystal of the NLC system provided by the coconut oil (Ridolfi et al.319

2012; Lv et al. 2016). Upon addition of chitosan coating, the mean encapsulation efficiency showed a320

significant increase of about 3% (p < 0.0005) which is in accordance with another study (Li et al.321

2016).322

AmpB NLC ChiAmpB NLC

Encapsulation efficiency (%) 83.4 ± 0.72 86.0 ± 0.33*

Drug loading (%) 12.3 ± 0.11 11.0 ± 0.04

Table 3. Encapsulation efficiency and drug loading of AmpB NLC and ChiAmpB NLC formulations.323

324

This suggests that there is an interaction between the cationic moiety of chitosan polymer325

coating with the anionic segment of the NLC nanoparticles which prevents the expulsion of the AmpB326

(Li et al. 2016). This assertion is supported by an earlier observation that the ChiAmpB NLC prepared327
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by method 1 decreased in size during storage. We attributed this to the reorganisation of the chitosan328

polymer chains on the surface of the NLC in manner that tightens the structure that ensures the AmpB329

is retained.330

The release studies of AmpB from the NLC was carried out on AmpB NLC and ChiAmpB331

NLC formulations prepared using method 1. The release medium was phosphate buffer pH 7.4332

containing 1% Tween - 80. Free AmpB (control) showed rapid release, 97.6 ± 0.1% of AmpB being333

released within 15 minutes and this is in accordance with study by Jain et al. 2014. In contrast, both334

formulations showed a biphasic release profile, with a burst release observed initially, followed by a335

more sustained release, as presented in Figure 4a (Hu et al. 2005).336

337

338

339
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Figure 4: (a) Percentage release of pure Amp B (control) compared with AmpB from NLC340

and ChiNLC formulations in pH 7.4 containing 1% Tween-80 and (b) percentage retention of341

AmpB in pH 5.8 & 6.8 media342

343

The burst release during the first 15 minutes suggests the presence of some of the coconut oil344

at the surface of the NLC due to a difference in the melting points of the beeswax and coconut oil so345

that the former begins to crystallise before the latter during the cooling process of the NLC. The346

crystallisation extrudes some of the coconut oil to the surface as it carries part of the dissolved AmpB347

along. Therefore there is a regional accumulation of AmpB at the outer region of NLC which is348

released as in a burst (Hu et al. 2005; Teeranachaideekul et al. 2007). Furthermore, the release profiles349

of AmpB from AmpB NLC and ChiAmpB NLC formulation were superimposable, albeit a slightly350

lower release from the ChiAmpB NLC which can be attributed to impedance in diffusion of AmpB by351

the chitosan barrier coating.352

The extent to which AmpB was retained within the formulations after dispersion in media at353

pH 5.8 and 6.8 media is presented in Figure 4b. pH 5.8 is the typical pH of the proximal small354

intestine whilst pH 6.8 represents the distal small intestine. Only about 20 % of AmpB was expelled355

from both AmpB NLC and ChiAmpB NLC formulations during incubation in pH 5.8 in the first two356

hours (p = 0.484). In order to mimic the gastrointestinal transit from duodenum, jejunum to ileum, the357

pH of the medium was raised to 6.8, by the addition of 6 µl of 3M NaOH. After only 30 minutes of358

incubation in media with pH 6.8, the percentage of AmpB retained in the AmpB NLC and ChiAmpB359

NLC formulations were 56.1 ± 1.8 % and 63.9 ± 2.8 % respectively. Thus it apparent that the chitosan360

coating shielded AmpB from expulsion from the NLC (Yang et al. 2012).361

In a parallel study, the effect of variable pH on changes in the physical properties of the362

formulations in terms of particle size andζwere conducted and presented in Figure 5.  363
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364

365

Figure 5: Stability of AmpB NLC and ChiAmpB NLC formulations after exposure to pH 5.8366

and 6.8367

368

There was no significant change in the particle size of the AmpB NLC formulation in pH 5.8369

medium (p = 0.332). Although there was a slight increase in particle size in pH 6.8 (p=0.003), it was370

not aggregation-related since the final particle size remained at 208.1 ± 5.0 nm. Despite a decrease371

inζvalues of AmpB NLC formulation of approximately 19 mV, to -16.9 ± 0.8 (pH 5.8) and -16.5 ± 0.3 372

mV (pH 6.8), the formulation remained essentially stable as reflected via the particle sizes, which373

suggests that adequate electrostatic repulsion was maintained among the particles, that prevented374

agglomeration (Amekyeh et al. 2017). In pH 5.8 and 6.8 media, the ChiAmpB NLC formulation375

registered a two-fold increase in particle size with a marked drop in ζ, from +18.8 ± 0.3 to -8.1 ± 1.4 376

(pH 5.8) and -10.9 ± 1.1 mV (pH 6.8). This suggests the neutralisation of the positive charge density377
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on fresh ChiAmpB NLC by the anions present in the phosphate buffer. The reduction in the ζ favour 378

the van der Waals interactions which result in the increase in particle size of the nanoparticles379

(Bhattacharjee 2016).380

The mucoadhesive properties of two types of NLC formulations were evaluated based on381

turbidimetric measurements which measures the increase in turbidity of the system as particles382

agglomerate resulting from the adsorption of mucin onto the nanoparticles (Bonferoni et al. 2010;383

Yostawonkul et al. 2017).  Figure 6 (a and b) illustrates the change in absorbance values (∆A) as a 384

function of mucin concentrations at pH 5.8 and 6.8 respectively. In both pH conditions, AmpB NLC385

formulation presented positive change in absorbance values albeit negatively charged.386

387

Figure 6: Turbidimetric measurements in (a) pH 5.8 and (b) 6.8 media388

389

This suggests that possible interaction between the formulation and the cations present in the390

phosphate buffer, presumably provided by potassium ions (Luo et al. 2015; Sandri et al. 2017).391
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Crucially, the ChiAmpB NLC formulation presented a significantly larger positive change in392

absorbance values compared to AmpB NLC formulation in both pH conditions. We may conclude393

that mucoadhesion properties of the ChiAmpB NLC formulation is mostly driven by electrostatic394

interactions between positively charged chitosan and negatively charged (COO-) mucin protein (He et395

al. 1998; Rençber et al. 2016).396

4. Conclusions397

An AmpB-containing NLC was successfully formulated which demonstrated mucoadhesive398

properties at pH values representing possible absorption regions in the small intestine. Based on a399

previous study, we believe this formulation has the potential for improved uptake from the small400

intestine due to mucoadhesion and hence improved bioavailability of AmpB. Furthermore, the401

UAmpB-containing NLC formulations is more stable and presented the safer conformation of AmpB402

compared to DAmpB-containing NLC formulation. Therefore, this formulation is primed for studies403

to affirm the improved pharmacokinetics of AmpB whilst at the same time the toxicity concerns have404

been addressed.405
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