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ABSTRACT 28 

   Three-dimensional (3D) computer-generated models of plants are urgently needed to support both 29 

phenotyping and simulation-based studies such as photosynthesis modelling. However, the 30 

construction of accurate 3D plant models is challenging as plants are complex objects with an 31 

intricate leaf structure, often consisting of thin and highly reflective surfaces that vary in shape and 32 

size, forming dense, complex, crowded scenes. We address these issues within an image-based 33 

method by taking an active vision approach, one that investigates the scene to intelligently capture 34 

images, to image acquisition. Rather than use the same camera positions for all plants, our technique 35 

is to acquire the images needed to reconstruct the target plant, tuning camera placement to match 36 

the plant’s individual structure. Our method also combines volumetric- and surface-based 37 

reconstruction methods and determines the necessary images based on the analysis of voxel 38 

clusters. We describe a fully automatic plant modelling/phenotyping cell (or module) comprising a 39 

six-axis robot and a high-precision turntable. By using a standard colour camera, we overcome the 40 

difficulties associated with laser-based plant reconstruction methods. The 3D models produced are 41 

compared with those obtained from fixed cameras and evaluated by comparison with data obtained 42 

by X-ray μ-computed tomography across different plant structures.  Our results show that our 43 
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method is successful in improving the accuracy and quality of data obtained from a variety of plant 44 

types. 45 

 46 

 47 

INTRODUCTION 48 

 With the population increasing and expected to reach 9 billion within the next four decades it is 49 

no wonder that demand for food is increasing (Sticklen 2007; Paproki et al. 2012; Faaij 2008). 50 

Moreover, developing countries, such as China and India, are increasing food intake per capita and 51 

driving the demand for a richer, more varied diet, such as meats and dairy. Climate change, leading 52 

to more frequent and severe flooding, and a shortage of arable land constitute additional challenges. 53 

Furthermore, it has been predicted that without crop climate adaptation the production of food will 54 

deteriorate (Challinor et al. 2014; Adeloye 2010). In order to deal with such demands, innovative 55 

approaches to increasing agricultural production are necessary.  56 

 Connections between the underlying genetic code and visible physical structures and functions 57 

of plants (i.e. phenotyping) can aid the identification of more productive crop species. A 58 

comprehensive understanding of plant phenotypes informs breeding and genetic selection, 59 

facilitating, for example, more effective nutrient use and photosynthetic activity, thereby increasing 60 

crop yield and stability across more extreme environments (Quan et al. 2006). The relationship 61 

between phenotype and genotype has received an increased amount of attention over recent years, 62 

with significant progress made in the study of genetics. The recovery and analysis of traits such as 63 

plant growth, development and tolerance, however, remains a serious bottleneck (Furbank., & Tester 64 

2011). Two-dimensional (2D) approaches to plant phenotyping have been used extensively, though 65 

they have numerous limitations; most notably the inability to accurately reflect 3D quantities. For 66 

example, a curved leaf in a 2D image will have a significantly smaller surface area than in a 3D model. 67 

2D methods struggle to capture plant structure and accurate measurement of growth is challenging. 68 

The use of 3D models overcomes many of these difficulties, allowing more and more traits to be 69 

accurately obtained. Once a 3D model of a given plant has been built it can be re-analysed, should 70 

new trait measurements be required. This may not be possible in 2D approaches, where image 71 

acquisition is often designed to provide a particular, limited, set of data. Access to accurate 3D 72 

models also supports simulation-based studies of plant functions, such as photosynthesis (Burgess et 73 

al. 2015; Burgess et al. 2017).  74 

The construction of accurate 3D models of plants is extremely challenging. Existing approaches 75 

fall into the two categories of rule-based or image-based (Remondino & El-Hakim 2006). Rule-based 76 

approaches use knowledge of plant structure, forming and generating example models consistent 77 

with that knowledge. Though rule-based approaches can produce satisfactory results, their use often 78 

requires expert knowledge, and rules are usually targeted towards specific plant types. Plant 79 

structure also varies significantly across species and environments, making it difficult to predict 80 

structures a priori. More importantly, though they can generate visually realistic models, the 81 

representations produced may not correspond to any real, existing plant. Consequently, rule-based 82 

models are unsuitable for high resolution phenotyping tasks. In contrast, image-based methods 83 

develop accurate 3D models of real, viewed plants. These models can be used to support both 84 

simulations of plant function and the extraction of trait measurements (e.g. Burgess et al. 2015; 85 

Burgess et al. 2017). 86 

One of the more popular approaches to 3D modelling is Multi-View Stereo (MVS). Here a 87 

number of images (several tens) are captured from distinct viewpoints. Given sufficient overlap 88 

between views, it is possible to match features between images and produce a 3D point cloud, to 89 

which a surface can be fitted. Though MVS has been successful in a variety of domains, plants are 90 
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particularly challenging objects to model. Individual leaves can be very similar in appearance, and 91 

densely-packed; occluding each other from many viewpoints. They often lack the surface texture 92 

needed when matching image features, assuming local coherence and smoothness. The leaves of 93 

many species are also highly reflective, making alternative laser scanning approaches less effective. 94 

For a review of 3D modelling algorithms for plants readers are encouraged to see (Gibbs et al. 2017). 95 

The high-throughput phenotyping systems deployed in plant and crop science are now routinely 96 

gathering large numbers of images from which 3D models might be obtained. Current installations, 97 

however, typically rely on fixed viewpoints that are not adapted to the specific plant being examined, 98 

or are designed with one species in mind. Some systems rotate the plant during imaging, but still use 99 

static camera positions. The relation between viewpoints and plant therefore remains fixed, 100 

regardless of the structure of the plant, which may vary widely. This means that, in many cases, the 101 

images captured are far from optimal for the given plant.  In order to capture 3D models useful for 102 

phenotyping, there is a need for a more intelligent image capture system optimised for 3D 103 

reconstruction, and sensitive to variations in plant architecture. 104 

In this work we show that active computer vision (Aloimonos et al. 1988) can aid the 105 

reconstruction of complex plants by providing reactive, and therefore improved, image acquisition 106 

strategies. Active vision systems automatically control and manipulate camera viewpoints to gather 107 

information to best support the task at hand. Active vision methods have already played a role in 108 

other plant-related tasks. For example, Hemming et al. (2014) attach a camera to a robot arm in 109 

order to identify peppers to be collected. The effect of camera placement on fruit picking has also 110 

been investigated (Hemming et al. 2014), with active vision used to address the problem of 111 

occlusion. The process of capturing images for 3D reconstruction, known as image selection, is, 112 

however, currently an insufficiently considered resource in image-based 3D reconstruction (Hornung 113 

2008).  114 

We propose a framework to automatically capture a set of images suitable for use in 3D 115 

modelling, via MVS, of different and contrasting plant structures. This work directly addresses the 116 

competing demands placed on image acquisition; too large a set of images can introduce 117 

redundancy and results in excessive processing times, whilst too few images results in an incomplete 118 

model. We identify a set of viewpoints that enable a reliable 3D model to be reconstructed without 119 

excessively scanning the plant. We present a solution suitable for deployment in an automated, high-120 

throughput phenotyping system. The present paper describes a fully automated, active vision cell 121 

(AVC) that is capable of manipulating a camera’s viewpoint to produce high quality 3D models of a 122 

wide range of plants by adapting to the visual information available, without user intervention. The 123 

approach described here offers more flexibility than existing large-scale phenotyping systems by 124 

adapting to the natural variation of individual plants. This is achieved by investigating an initial, crude 125 

representation of plant structure in order to re-position the camera and obtain improved data. 126 

 127 
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SET UP/ METHOD DEVELOPMENT 128 

The accuracy and reliability of 3D models depends heavily on the quality of images, whilst its 129 

computational requirements are dependent on the number of images. Images do not contribute 130 

equally to the quality of a reconstruction; some are redundant while others add large amounts of 131 

high quality, necessary data (Seitz et al. 2006). Here, we propose an AVC designed to provide 132 

sufficient data to ensure a reliable representation without the need for specific expertise on the part 133 

of the user and with the ability to adapt to different plant structures, and without analysing excess 134 

numbers of images. 135 

 136 

Cell Design and Calibration 137 

Our AVC is comprised of three main components: a high precision turntable (LT360EX – Linear X 138 

Systems, Portland, USA) with a resolution of 0.0015 degrees, a robot arm providing 6 degrees of 139 

freedom (UR5 – Universal Robots, Odense, Denmark) and a standard colour camera (Canon 650D – 140 

Canon, Tokyo, Japan) mounted on the robot arm (Figure 1). A single software interface is used to 141 

control each of the hardware components. The UR5 is sent commands using strings via sockets, the 142 

LT360EX is controlled using serial communications and the Canon 650D via an Software Development 143 

Kit (SDK). 144 

 145 

Calibration, the process of obtaining reliable 3D camera parameters for each view, is an 146 

important first-step in any 3D reconstruction pipeline. Calibration is usually an automatic process, 147 

determining the physical parameters of each hardware component, and quantifying the relationships 148 

between them and the viewed environment. The calibration process can be organised into four 149 

stages; camera calibration, robot calibration, calibration of the remaining unknowns and turntable 150 

calibration. All four calibration steps are required to determine the position of the camera for active 151 

vision. In simple terms, the calibration aims to estimate the position and orientation of each 152 

component in the setup (the robot and turntable), and the camera lens and sensor.  153 

 154 

Camera Calibration is used to estimate the intrinsic and extrinsic parameters of the camera 155 

which are used to determine its location for the calibration of the robot. A standard checkerboard 156 

calibration target, in which the dimensions of the squares are known, is placed on the turntable. 157 

Given a series of images of this calibration object at distinct viewpoints, it is possible to recover the 158 

position, orientation and internal parameters of the camera that captured each image. Internal 159 

parameters are often termed intrinsic parameters, and consist of the focal length, offset and axis 160 

skew (Zhang 2000). The 3D plant models produced are expressed in world coordinates – with respect 161 

to a coordinate frame located on the checkerboard. The bottom right corner of the checkerboard is 162 

the world origin (0, 0, 0). Camera calibration provides a transformation between world coordinates 163 

and a coordinate frame centred on the camera. This transformation can be used to project any 3D 164 

world position into a 2D camera position in its image frame. 165 

Robot calibration estimates the position and orientation of the end of the robot arm (i.e. the 166 

end effector). Also known as forward kinematics, robot calibration is achieved using a simultaneous 167 

closed-form quaternion approach (Dornaika & Horaud 1998). This produces a transformation matrix 168 

specifying the relationship between the base of the robot and the end effector. This transformation 169 

matrix provides the rotation and translation needed to transform one robot position to another.  170 

Calibration of unknowns. After transformations linking the base of the robot to the camera, and 171 

the camera to the world (turntable) are available, it is possible to calculate the relationship between 172 

the base of the robot and the turntable (world). The remaining calibrations can be calculated as 173 

linear equation in the form of AX=YB, where A [the world to camera] and B [the robot base to the 174 
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end effector] are now known and where Y [the world to robot base] and X [the camera to the end 175 

effector] are the two unknowns. A closed form approach to the linear equation has been used to 176 

determine the remaining unknowns (Dornaika & Horaud 1998). 177 

Turntable calibration. Rotating the turntable, which is necessary to provide complete access to 178 

the plant, changes the relationship between robot/camera and world-coordinates. To calibrate the 179 

turntable, it is rotated by 90° four times. The camera is re-calibrated each time, giving four positions 180 

for the world coordinate origin. Plotting the four origins obtained from the calibration in two 181 

dimensions and connecting the diagonal origins using a straight line allows the centre of rotation to 182 

be solved as a line intersection problem. The centre of rotation is used to calculate a new world-183 

coordinate frame each time the turntable is rotated. At this point, we have a fully parameterised 184 

relationship between the camera system, robotic arm and the turntable. 185 

Active Image Acquisition 186 

There are two stages to 3D modelling within the AVC; the first requires the creation of a crude, 187 

initial plant model, represented by a series of voxels, the second stage involves an analysis of this 188 

initial representation to identify under- and over-sampled (imaged) regions of the plant. The robot 189 

arm is then automatically directed to acquire more data, while unnecessary images are removed. 190 

Note that the images used to construct the volumetric proxy are also determined automatically, on 191 

the basis of 2D image features, as described below. 192 

 193 

An Initial Volumetric Plant Representation 194 

To acquire an initial volumetric representation of a plant we capture a series of images. These 195 

are taken from automatically determined camera locations circling the plant at three different 196 

heights. The first image is acquired after positioning the camera so that its principle axis (line of 197 

sight) lies in the plane of the turntable and passes through its centre of rotation. A Euclidean colour 198 

filter, which filters pixels where the colour is inside or outside of an Red, Green and Blue (RGB) 199 

sphere with a specified centre and radius, is applied to separate plant pixels from the white 200 

background. We then apply three simple rules to move the camera to centre the plant (which may be 201 

of arbitrary size, asymmetric, etc.) within the camera’s field of view (FOV); these are: 1. if there is too 202 

much white space surrounding the plant region (i.e. if the distance from the plant region to the edge 203 

of the image is greater than a specified threshold), move the camera forwards. 2. If one side of the 204 

plant is outside the camera’s FOV, move laterally to ensure it is inside, 3. If more than one side is 205 

outside the camera’s FOV, move the camera backwards. The resulting camera location forms the 206 

starting point for image acquisition. Once an acceptable viewpoint has been determined a series of 207 

images is captured by rotating the plant and acquiring an image every 36 degrees, producing 10 208 

images with the camera fixed at the initial elevation.  209 

Space carving (Seitz 2000) is used to generate the initial 3D model from the first image sequence. 210 

Space carving operates by projecting the silhouette of the target object (the plant) into 3D space to 211 

define the volume possibly occupied by the object. Projecting silhouettes extracted from multiple 212 

images, and taking the intersection of the volumes they produce, reduces the size of this volume, 213 

creating an increasingly more accurate model.  214 

This 10-image model of a complex plant (Figure 2) is of limited value, but does allow an estimate 215 

of the plant height to be made. The camera is raised to be level with the top of the plant, 216 

automatically re-centred as described above, and a further 10 images are acquired by rotating the 217 

turntable. This is known as the level 2 position, having moved up along the z-axis in one increment, 218 

where the first set of images were captured at level 1, in line with the turntable. To improve 219 

coverage, the turntable is rotated 12 degrees before image acquisition begins. This means that the 220 
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level 1 and 2 camera positions are not aligned vertically but offset by 12 degrees. The new images 221 

are then used to refine the volumetric model, and therefore, plant height estimation. 222 

To complete the volumetric representation, the camera is raised to twice the newly estimated 223 

height of the plant, a further 12 degrees offset is added and a final 10 images acquired. By increasing 224 

the height of the camera to above the height of the plant, it is possible to get a set of top down 225 

images uncovering new information, particularly useful for plants with wide flat leaves, such as 226 

broadleaf species including legumes and squashes. 227 

This image acquisition strategy is designed to achieve a set of varying viewpoints that sample the 228 

area around the plant while keeping the plant in view. Note that we do not re-centre the plant in 229 

each image, only the first captured at each level. However, given plants with a high degree of 230 

asymmetry the rules above could be applied after each rotation of the turntable.    231 

The final volumetric model remains comparatively crude and low resolution, giving a ‘blocky’ 232 

appearance, and is unable to represent some features at all, such as concavities. It does however 233 

provide a sufficient intermediate representation for evaluation via forward ray tracing (Vasquez-234 

Gomez et al. 2013), in which rays from the camera are projected into the scene to determine 235 

intersection with the object, and so determines which cameras can see what parts of the developing 236 

3D model. 237 

 238 

Plant Model Refinement  239 

 The next step is the automatic refinement of the image set, removing those that are 240 

unnecessary, and obtaining further images of under-represented sections of the plant. Images are 241 

removed if each voxel in the plant proxy representation is still seen by more than 3 cameras after 242 

their removal. In practice MVS produces higher quality results when an area has been seen 3 times 243 

or more. 244 

View planning is then performed to determine which additional data to capture. Traditionally,   245 

view planning evaluates each possible view on a per voxel basis; each voxel is evaluated 246 

independently for every possible camera position in the view sphere (Massios & Fisher. 1998; Wong 247 

et al. 1999). If we were to do this in our cell, and if we limit robot movements in whole degrees, it is 248 

possible to move 180 points from top to bottom and 360 points around the view sphere, resulting in 249 

64,800 camera positions that would require evaluation. We reduce this complexity by clustering 250 

voxels together and evaluating specific views on a per-cluster basis. There are four stages here: 1. 251 

Clustering, 2. Cluster evaluation, 3. Camera placement and 4. Data acquisition. 252 

 253 

 1. Clustering. Each voxel is represented by a single point lying at its centre, and the K-nearest 254 

neighbour (k-NN) algorithm is used to cluster the point set. k-NN is a simple machine learning 255 

algorithm that clusters the point set into a series of k nearest neighbours. That is, points are added to 256 

some cluster which are within the range of the centroid when given some radius. K-NN finds the k 257 

nearest neighbours to a point which are within some radius of the centre of the cluster, the starting 258 

point. We implement this algorithm using a KD-tree data structure, which significantly improves 259 

performance when applying nearest-neighbour searchers to points in K dimensions. 260 

 261 

2. Cluster evaluation. Each cluster must be evaluated to determine whether additional images 262 

need to be captured and thus to ensure that the object is sufficiently scanned. We propose a simple 263 

evaluation method that operates on the number of views in which a cluster is visible, and the angle 264 

between the cameras which have seen the cluster (Furukawa & Ponce 2010). If a cluster has a low 265 

score then we mark the cluster as requiring additional viewpoints. The evaluation metric used is 266 

given in (Eq. 1): 267 

 268 
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𝑆𝑐𝑜𝑟𝑒 =  
1

𝐶𝑛
 ∑ (

𝑠𝑒𝑒𝑛(𝐶𝑗)

𝑖𝑚𝑔𝐶𝑟𝑖𝑡
+ 

𝑚𝑎𝑥𝐴𝑛𝑔𝑙𝑒(𝐶𝑐𝑎𝑚, 𝐶𝑐𝑎𝑚)

𝑎𝑛𝑔𝑙𝑒𝐶𝑟𝑖𝑡
)

𝐶𝑛

𝑗=1

 ×  0.5   

                                                                                                                                                                         (Eq. 1) 269 

 270 

where 𝒔𝒆𝒆𝒏(𝑪𝒋) refers to the number of times each voxel has been seen in the cluster and 𝒊𝒎𝒈𝑪𝒓𝒊𝒕 271 

is the number of times a point must be seen to ensure an accurate representation (we use 3 to 272 

match our PMVS settings). 𝒎𝒂𝒙𝑨𝒏𝒈𝒍𝒆(𝑪𝒄𝒂𝒎, 𝑪𝒄𝒂𝒎) is the maximum angle between any of the 273 

cameras that can see the voxel, and 𝒂𝒏𝒈𝒍𝒆𝑪𝒓𝒊𝒕 is the minimal angle difference between cameras, to 274 

ensure different views (we use 20 degrees, determined empirically).  275 

We determine whether a cluster has been seen by a given camera via ray tracing. This simulates 276 

projection of a ray of light from the camera to the cluster centroid. In order to improve performance, 277 

we implement a Hierarchical Ray Tracing (HRT) (Vasquez-Gomez et al. 2013) approach rather than a 278 

Uniform Ray Tracing (URT) method. URT traces dense rays through the scene irrespective of whether 279 

an intersection with a voxel occurs. HRT traces sparse rays, only increasing the resolution when 280 

voxels are touched by a ray. Starting at a coarse resolution HRT continues until the maximum 281 

resolution is reached. 282 

 283 

3. Camera placement. Given a series of under sampled clusters we proceed to calculate a series 284 

of viewpoints that can be used to capture additional information. We first determine the distance 285 

the camera is required to be from the object, to ensure the plant is completely within the field of 286 

view, without excess white space, using the camera parameters and object size. The size of our view 287 

sphere (Error! Reference source not found.) is then determined by (Eq. 2):  288 

 289 

 FOV = 2 ∙ atan(
1

2
∙ 

𝑠

𝑓
) 

 

 Distance =
1

2
∙ 

max (𝑤, ℎ)

sin (FOV)
  

    (Eq. 2) 

 290 

where 𝑠 is the sensor size, 𝑓 is the focal length, both of which are obtainable from the camera 291 

specification. 𝑚𝑎𝑥(𝑤, ℎ) returns the maximum value of the object with respect to the height, ℎ, and 292 

width, 𝑤. 293 

Traditional view-planning methods evaluate every possible position on the view sphere; we 294 

significantly reduce the heavy computational requirements this brings by incrementally expanding 295 

our search should a view fail. A starting camera position is defined as the intersection of the normal 296 

of the cluster with the view sphere. The view is evaluated for correctness in two ways, the first is to 297 

perform inverse kinematics to ensure that the robot is able to reach the position, the second is ray 298 

tracing from the camera position into the scene to ensure the cluster is not occluded from this 299 

viewpoint. If either of the evaluations fail we incrementally expand over the view sphere, first 300 

evaluating positions in green (Figure 3) and then yellow, and so on, expanding outwards from the 301 

starting position until an acceptable viewpoint is found. This process is performed for each cluster 302 

that requires additional viewpoints to be captured, until views of all clusters have been obtained. 303 

 304 

4. Data acquisition. Once we have a series of camera positions, additional images are captured 305 

as necessary, and PMVS (Furukawa & Ponce 2010) is used to generate a point cloud that can support 306 

surface reconstruction.  307 

 308 
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EVALUATION AND DISCUSSION 309 

Active Cell Evaluation 310 

Having a more accurate set of points that closely represent the surface of some unknown object 311 

significantly improves the quality of any subsequent 3D model as they more faithfully represent the 312 

actual shape of the object. Moreover, a larger number of points further facilitates the faithful 313 

reconstruction by providing more detail of the plant structure.  314 

Ground truth model 315 

 In order to evaluate our AVC’s point clouds, X-ray images of our target plants were obtained 316 

using a GE v|tome|x M scanner housed in the University of Nottingham’s Hounsfield Facility. The 317 

v|tome|x M provides volumetric images with a voxel resolution of 5 - 150 µm and, more importantly, 318 

is not subject to the occlusion problems faced by visible light imaging. Though some X-ray 319 

segmentation tasks are highly challenging, plant material and air are easily separated in the density 320 

data provided by µCT and, following noise reduction with a median filter, plant material was 321 

identified by applying a user-defined threshold. A complete image of the plant is formed. The surface 322 

of each plant was then represented in a standard triangular mesh format, providing a data structure 323 

(i.e. a ground truth model) against which point clouds obtained from the AVC can be compared. 324 

It is worth noting that while the µCT scanner produces accurate, highly detailed models, it is ill 325 

suited for general use in phenotyping shoots due to size restrictions, time requirements (typically 326 

taking hours to scan a single object, in comparison to minutes taken by the method here) and the 327 

exceptionally high start-up costs. Moreover, thin structural areas of the plant can still be missed, 328 

resulting in an incomplete reconstruction. However, it is useful for creating 3D ground truth models 329 

with which to compare a visual imaging system, as occlusion is not a problem for x-ray µCT. 330 

Comparative image-based models 331 

The AVC-derived model was compared to traditional static and arbitrary camera placements. 332 

Static setups use one or more cameras that remain fixed in place, irrespective of the plant being 333 

modelled. Typically, the plant is rotated and images are captured. In the experiments conducted in 334 

this work the method ‘one static’ refers to the use of a single static camera placed horizontally 335 

alongside the plant, such that the whole plant is visible in the camera’s field of view. ‘Two static’ uses 336 

two fixed cameras, using the same placement as one static and adding a further camera placed 337 

higher, vertically, above the other such that a top down view of the plant is obtained. ‘Arbitrary’ 338 

refers to the process of capturing images of the plant at distinct random positions and is commonly 339 

the method used when users manually capture images of plants.  340 

Two evaluation metrics were employed; number of points obtained and the distance from those 341 

points to the surface of the x-ray µCT ground truth. Euclidean distance was used to determine the 342 

error of a point in the gathered data with respect to the surface of the ground truth. Six experiments 343 

were performed on plants varying in size, structure and complexity, namely; Bromeliad (Vriesea sp.), 344 

Aloe (Aloe vera), Cordyline (Cordyline sp.), Brassica (Brassica napus), chilli (Capsicum sp.) and 345 

pumpkin (Cucurbita pepo). The method is not limited to these plants and can be applied to plants 346 

which are much larger such as wheat (Triticum sp.), maize (Zea mays) and barley (Hordeum vulgare), 347 

or other important crop species, with the only size restrictions relating to the reach of the robot arm. 348 

 349 

Experiment One 350 

 351 

Experiment one was conducted on a bromeliad (Vriesea sp. Figure 4). The Bromeliaceae are a 352 

family of monocot flowering plants in which over 3,400 species are known, native to the tropical 353 

Americas. While foliage takes different shapes and forms the one used in this experiment is thin, 354 

broad and flat. Consequently, views from above the plant, clearly seeing the wide leaves, will offer a 355 
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great amount of insight into the plant size and structure. Occlusion however makes this problematic 356 

for static cameras that may be unable to see underlying leaf surfaces.  357 

 358 

  Mean Std.Dev Points Images Per Image 

One Static 0.3574 1.1795 141,073 40 3,526.80 

Two Static 0.3442 0.7450 155,396 40 3,884.90 

Arbitrary 0.2693 1.1267 227,338 40 5,683.50 

AVC 0.1959 0.6773 290,236 36 7,637.80 

Table 1 Experiment One Results - bromeliad 359 

 360 

Table 1 compares the AVC approach to a static camera configuration. Mean refers to the 361 

distance of the points relative to the ground truth model; Std.Dev to error of that distance; Points to 362 

the number of points representing the 3D model and the number of points generated per image 363 

captured. When using a point cloud to drive a surface reconstruction approach (e.g. Pound et al. 364 

2014) higher numbers of points allow a finer granularity on reconstructed surface patches, and 365 

higher number of points per image indicate that more data can be generated for each image 366 

captured. Lower mean and std. dev errors also impact the quality of the surface reconstruction; 367 

where lower values illustrate a more accurate representation when compared to the ground truth. 368 

For the Bromeliad, the AVC cell proposed here significantly out performs the two static methods 369 

obtaining more than 115% points in the first case, primarily due to the structure of the leaves, 370 

making it challenging for static cameras to view the leaf surface. In comparison to the arbitrary 371 

viewpoints we see that we can increase the points per image by almost 35% showing that 372 

intelligently selecting viewpoints in AVC improves performance despite fewer images, that is we are 373 

obtaining more data per image. Furthermore, the reduction in the mean value by 27% shows that a 374 

more accurate point cloud is being produced (Supplementary Figure S1). 375 

 376 

Experiment Two 377 

 378 

Experiment two was conducted on Aloe vera (Figure 5). The upwards leaves occlude plant 379 

structure that lie directly behind them making it challenging for views that are side on. Like the 380 

bromeliad from experiment one it consists of flat wide surfaces with little texture. Table 2 illustrates 381 

the results of the four image acquisition methods. 382 

 383 

  Mean Std.Dev Points Images Per Image 

One Static 1.4517 3.6624 159,870 40 3,996.80 

Two Static 1.6911 3.6143 160,592 40 4,014.80 

Arbitrary 1.8963 4.5674 183,027 40 4,575.70 

AVC 1.3329 3.5930 216,791 31 5,705.00 

Table 2 Experiment Two Results – aloe Vera 384 

 385 

From Table 2, we see our AVC here outperforms each of the standard methods obtaining at least 386 

18% more points while using 22.5% less images. One static view obtains the least amount of points, 387 

unable to deal with the concavities caused by the wide upright leaves.  Two static also has less 388 

points, despite having two views it is unable to obtain the data occluded by the outer leaves. 389 

Arbitrary viewpoints do overcome some of the occlusions but does not capture enough to deal with 390 

it completely. The AVC deals with the occlusions and recovers more accurate points with a reduced 391 

image set. 392 
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 393 

Experiment Three 394 

 395 

Experiment three uses a Cordyline (Cordyline sp.), a genus of approximately 15 species of 396 

monocotyledonous flowering plants in the family Asparagaceae (Figure 6). Unlike the previous two 397 

experiments, experiment three focuses on a thin upright plant which is particularly crowded and 398 

occluded towards the base but relatively sparse towards the tips of the stems.  399 

 

  Mean Std.Dev Points Images Per Image 

One Static 0.7565 2.0167 122,851 40 3,071.30 

Two Static 0.8638 2.8122 94,193 40 2,354.80 

Arbitrary 1.0284 4.7614 80,154 40 2,003.90 

AVC 0.7384 2.0691 143,049 26 3,764.40 

Table 3 Experiment Three Results - Cordyline 400 

 401 

From Table 3, we see our AVC significantly out performs the arbitrary and two static view, but 402 

unlike the previous experiments, it has a smaller improvement over the traditional one static view. 403 

This highlights the fact that randomly adding images does not necessarily lead to an improvement 404 

and, in some cases, additional noise is added. As the plant contains few occlusions and has very thin 405 

non-drooping leaves it is possible to capture a significant amount of information from a side view. 406 

However, despite the similarity of results between one static and our AVC points, our AVC uses 35% 407 

less images (26 relative to 40) than the single camera and obtains, on average, 22% more data per 408 

image used. This again shows that manipulating the viewpoint can improve accessibility to data and 409 

thus optimises the processing power and time required to create a 3D model. 410 

 411 

Experiment Four 412 

 413 

Experiment four was conducted on a Brassica (Brassica napus), an agriculturally important 414 

member of the Brassicaceae family (Figure 7). This is a very small plant and, to avoid missing plant 415 

data, views need to be taken much closer than the previous experiments. A traditional static image 416 

acquisition strategy may struggle if not specifically designed for small plant species as the camera will 417 

be positioned much further away from the plant than necessary.  418 

 419 

  Mean Std.Dev Points Images Per Image 

One Static 0.2007 0.7208  97,191   40   2,429.8  

Two Static 0.0867 0.4427 146,743   40   3,668.6  

Arbitrary 0.1682 0.5466 178,418   40   4,460.5  

AVC 0.0354 0.3912 349,311   21   16,633.9  

Table 4 Experiment Four Results - Brassica 420 

 421 

Table 4 indicates that the AVC captures more data despite using only half the images. This 422 

confirms that images in MVS reconstruction do not contribute evenly to the success of a 423 

reconstruction, but rather it is the quality of the images that has the greatest effect on the results. 424 

 425 

Experiment Five 426 

 427 
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Experiment five was conducted using a chilli (Capsicum sp.) which are widely grown in many 428 

countries as a cash crop (Figure 8). Similar to experiment four, the plant used was at an early 429 

developmental stage and thus is of small size. Static cameras may miss data particularly as the leaves 430 

and stems are thin.  431 

 432 

  Mean Std.Dev Points Images Per Image 

One Static 0.2380 0.9420 113,284  40  2,832.1  

Two Static 0.1843 0.4245 247,442  40  6,186.1  

Arbitrary 0.2536 2.2226 199,023  40  4,975.6  

AVC 0.1022 0.4584 285,381  28  10,192.2  

Table 5 Experiment Five Results - Chilli 433 

 434 

Table 5 indicates again that the AVC is capable of capturing more, and, importantly, more 435 

accurate, data points from fewer images when compared with traditional methods. Though the two 436 

static camera approach does have a lower standard deviation, it achieves this with many additional 437 

images.  438 

 439 

Experiment Six 440 

 441 

Experiment six was conducted using a pumpkin (Cucurbita pepo; Figure 9). The large flat leaves 442 

make occlusions for data acquisition a major problem, with the leaves often blocking the stem. 443 

Moreover, flat surfaces of plants are often problematic to reconstruct due to a lack of texture. Table 444 

6 shows the results of the 4 approaches to image acquisition. 445 

 446 

  Mean Std.Dev Points Images Per Image 

One Static 1.1220 1.8674    715,222  40  17,880.6  

Two Static 1.2104 3.4723 517,039  40  12,926.0  

Arbitrary 0.6982 1.8200 852,426  40  21,310.7  

AVC 0.3588 1.3823 1,048,576  30  34,952.5  

Table 6 Experiment Six Results - Pumpkin 447 

The large surface area results in the high number of points produced for this model (Table 6). As 448 

a result of the large surface area, with minimal texture, the standard deviation for all methods is 449 

greater than for previous experiments (above). This is due to the difficulties associated with feature 450 

matching in PMVS. Despite this, the AVC is still able to produce an improved set of images with a 451 

smaller mean and larger set of points per image than any of the other methods. 452 

 453 

Biological Application of the AVC approach 454 

Methods for the accurate 3D representations of plants (that are also accessible to many research 455 

groups) are increasingly important to basic and applied research; for making new discoveries about 456 

plant function in addition to providing new traits for crop improvement. We still do not have a full 457 

understanding about how molecular and leaf level events are scaled to the whole plant and field 458 

level and how this limits productivity. For example, there is a disconnect between phenotypes in 459 

growth rooms and those in more challenging field environments (Poorter et al. 2016). Nor is there a 460 

complete understanding of the ‘canopy factors’ that cause variation in radiation use efficiency 461 

(Reynolds et al. 2000). The display of leaves to the sun and the way in which they influence the level 462 

of saturation of photosynthesis at each level is of huge importance to crop yield and optimising 463 
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architecture (e.g by combining leaf angle traits with leaf density and possibly movement) (Burgess et 464 

al. 2015; Burgess et al. 2017; Long et al. 2006). Rapid and accurate means to achieve high resolution 465 

3D reconstructions, such as the AVC described here, combined with more accurate ray tracing and 466 

physiological models, will enable us to do that. 467 

 468 

The approach described here requires minimal user input; can be applied to any plant type or 469 

structure, with the only limitation on size being the reach of the robot arm. It is more accurate and 470 

requires less images than previous, static imaging approaches (Tables 1-6) and offers more flexibility 471 

than existing large-scale phenotyping systems by adapting to the natural variation of individual 472 

plants. The method is automatic with user input limited to changing the plant and is relatively quick 473 

with image capture and analysis relative to other methods, taking minutes as opposed to hours. 474 

Moreover, the method has reduced set up and running costs compared to some phenotyping 475 

systems such as x-ray µCT scanning. 476 

 477 

CONCLUSION 478 

 We proposed an active vision cell (AVC) for automatically capturing colour images of plants in a 479 

controlled environment, with a view to using them for 3D model reconstruction from multiple views. 480 

We have evaluated our method on varying plant structures and compared it to more traditional 481 

methods using arbitrary camera positions and static cameras, in terms of the number of points 482 

obtained and the accuracy of these with respect to the Euclidean distance to the ground truth. 483 

In all experiments our AVC produces more data of higher accuracy, with a reduced image set. 484 

More points help ensure that the plant has been adequately scanned and that the amount of 485 

unknown object data is minimal. More accurate points ensure that the 3D model can be 486 

reconstructed with increased fidelity which is vital for accurate plant phenotyping. The AVC acquires 487 

more points per image indicating that the images captured provide more value towards 488 

reconstruction. While static camera placement can be effective, there are clear data gains to be 489 

made by employing active vision.  490 

 491 

 492 

Supplemental Data 493 

 494 

Supplemental Figure S1.  3D reconstructions generated by the comparable imaging methods. 495 

 496 

Supplemental Figure S1: Row one; experiment one and two, row two; experiment three and four, 

row three; experiment five and six. The supplementary figure illustrates the 3D reconstructions 

generated by the comparable imaging methods. The 3D points shown here highlight the lack of 

accuracy and detailed when compared to the AVC method proposed here. 

 497 

FIGURE LEGENDS 498 

 499 

Figure 1 The Active Vision Cell comprised of a Canon 650D camera, a Universal Robot 5, and an 500 

LT360EX turntable upon which the plant is placed 501 

 502 

Figure 2 Initial representation; left an original image of a target plant (Bromeliad- Vriesea sp.), middle 503 

the initial representation after 10 images, right the final voxel model showing more object features 504 

after acquiring additional viewpoints 505 

 506 
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Figure 3 The view sphere representation which encloses the plant being modelled such that it is 507 

centred. The Red dot is an example of an initial optimal viewpoint, should this fail it is expanded to 508 

green, then to yellow and so on. 509 

 510 

Figure 4 Experiment one conducted on a bromeliad (Vriesea sp.). The first column is the X-Ray data, 511 

obtained using a CT scanner, the top row presents a side view and the bottom row a top down view. 512 

The second column is a point set obtained using the AVC proposed here. 513 

 514 

Figure 5 Experiment two conducted on Aloe vera. The first column is the X-Ray data, obtained using a 515 

CT scanner, the top row presents a side view and the bottom row a top down view. The second 516 

column is a point set obtained using the proposed AVC. 517 

 518 

Figure 6 Experiment three conducted on a Cordyline (Cordyline sp.). The first column is the X-Ray 519 

data, obtained using a CT scanner, the top row presents a side view and the bottom row a top down 520 

view. The second column is a point set obtained using the AVC proposed here. 521 

 522 

Figure 7 Experiment four conducted on Brassica napus. The first column is the X-Ray data, obtained 523 

using a CT scanner, the top row presents a side view and the bottom row a top down view. The 524 

second column is a point set obtained using the AVC proposed here. 525 

 526 

Figure 8 Experiment five conducted on a chilli plant (Capsicum sp.). The first column is the X-Ray 527 

data, obtained using a CT scanner, the top row presents a side view and the bottom row a top down 528 

view. The second column is a point set obtained using the AVC proposed here. 529 

 530 

Figure 9 Experiment six conducted on the Pumpkin (Cucurbita pepo). The first column is the X-Ray 531 

data, obtained using a CT scanner, the top row presents a side view and the bottom row a top down 532 

view. The second column is a point set obtained using the AVC proposed here.533 
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Figure 1 The Active Vision Cell comprised of a Canon 650D camera, a Universal Robot 5, and an 
LT360EX turntable upon which the plant is placed 
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Figure 2 Initial representation; left an original image of the plant, middle the initial representation 
after 10 images, right the final voxel model showing more object features after acquiring additional 
viewpoints 
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Figure 3 The view sphere representation which encloses the plant being modelled such that it is 
centred. The Red dot is an example of an initial optimal viewpoint, should this fail it is expanded to 
green, then to yellow and so on. 
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Figure 4 Experiment one conducted on a bromeliad (Vriesea sp.). The first column is the X-Ray data, 

obtained using a CT scanner, the top row presents a side view and the bottom row a top down view. 

The second column is a point set obtained using the AVC proposed here. 
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Figure 5 Experiment two conducted on Aloe vera. The first column is the X-Ray data, obtained using a 

CT scanner, the top row presents a side view and the bottom row a top down view. The second 

column is a point set obtained using the proposed AVC. 
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Figure 6 Experiment three conducted on a Cordyline (Cordyline sp.). The first column is the X-Ray 

data, obtained using a CT scanner, the top row presents a side view and the bottom row a top down 

view. The second column is a point set obtained using the AVC proposed here. 
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Figure 7 Experiment four conducted on Brassica napus. The first column is the X-Ray data, obtained 

using a CT scanner, the top row presents a side view and the bottom row a top down view. The 

second column is a point set obtained using the AVC proposed here. 
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Figure 8 Experiment five conducted on a chilli plant (Capsicum sp.). The first column is the X-Ray data, 

obtained using a CT scanner, the top row presents a side view and the bottom row a top down view. 

The second column is a point set obtained using the AVC proposed here. 
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Figure 9 Experiment six conducted on the Pumpkin (Cucurbita pepo). The first column is the X-Ray 

data, obtained using a CT scanner, the top row presents a side view and the bottom row a top down 

view. The second column is a point set obtained using the AVC proposed here. 
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