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SUMMARY

Objectives: To address the hypothesis that different types of established osteoarthritis (OA) pain be-
haviours have associations with different aspects of articular pathology, we investigated the relationship
between structural knee joint pathology and pain behaviour following injection of a low vs a high dose of
monosodium iodoacetate (MIA) in the rat.
Methods: Rats received a single intra-articular injection of 0.1 mg or 1 mg MIA or saline (control). Pain
behaviour (hind limb weight bearing asymmetry (WB) and hindpaw withdrawal threshold (PWT) to
punctate stimulation) was assessed. Cartilage and synovium were examined by macroscopic visualisation
of articular surfaces and histopathology.
Results: Both doses of MIA lowered PWTs, 1 mg MIA also resulted in WB asymmetry. Both doses were
associated with cartilage macroscopic appearance, proteoglycan loss, abnormal chondrocyte
morphology, increased numbers of vessels crossing the osteochondral junction, synovitis and macro-
phage infiltration into the synovium. PWTs were more strongly associated with chondrocyte
morphology, synovitis and macrophage infiltration than with loss of cartilage surface integrity.
Conclusions: Both pain behaviours were associated with OA structural severity and synovitis. Differences
in pain phenotype following low vs higher dose of MIA were identified despite similar structural pa-
thology. OA structural pathology as traditionally measured only partially explains the MIA-induced pain
phenotype.
© 2016 The Authors. Published by Elsevier Ltd on behalf of Osteoarthritis Research Society International.
This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

Introduction

The classification of radiographic OA depends on the presence of
osteophytes and joint space narrowing (JSN). Radiographic evi-

Osteoarthritis (OA) is a chronic debilitating disease affecting
around 8.8 million people in the UK. Pain is the commonest clinical
symptom that leads OA sufferers to seek medical care. OA pain
contributes to loss of joint function, disability and reduced quality
of life in the ageing population?, and is an important unmet clinical
need. Our incomplete knowledge of the sources of OA pain, and the
relationship between pain phenotypes and pathology hinders
progress in the identification of better targets for treatments which
improve OA pain.
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dence of OA is associated with pain®*, but this association is often
only weak>®. Some patients report pain despite minimal radio-
graphic changes’, whilst others with abnormal knee radiographs
report no pain®. Magnetic resonance imaging (MRI) has revealed
associations of bone marrow lesions or synovitis with pain® !
although their contributions as direct sources of OA pain remain
uncertain®. Central sensitization can moderate the link between
joint damage and pain, through complex pain-amplifying neuro-
plastic alterations to the central nervous system'?.

Preclinical models of knee OA have potential to extend under-
standing of OA pain mechanisms, and the contributions of specific
structural features to OA pain. Intra-articular injection of the
glycolysis inhibitor monosodium iodoacetate (MIA) into the rat
tibiofemoral joint produces cartilage and subchondral bone pa-
thology that are similar to those seen in human OA knees™°. Intra-
articular MIA injection also leads to pain-related behaviours
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(weight bearing (WB) asymmetry and reduced hindpaw with-
drawal thresholds (PWTs) to punctate stimulation)®’ that resemble
pain on WB and more widespread reduced pain thresholds'®
observed in human OA. Lowered PWTs implicates a contribution
of central sensitisation', whereas WB asymmetry likely reflects a
combination of peripheral and central sensitisation.

Identifying specific aspects of joint pathology that contribute to
different OA pain phenotypes might help identify pain phenotype-
specific peripheral treatment targets. We hypothesised that
different types of established OA pain behaviours may have asso-
ciations with different aspects of articular pathology. To address
this question, we have used two doses of MIA that result in two
different pain profiles in the rat and then identified associations
between WB asymmetry and lowered PWTs and a range of
macroscopic and histopathological changes in the knee. A sec-
ondary question addressed is whether there is delayed progression
of structural pathology in the lower dose MIA model.

Materials and methods
Animals

Studies used male Sprague—Dawley rats (Charles River, Kent,
UK) (n = 64) weighing 250—300 g at time of intra-articular injec-
tion. Studies were conducted in accordance with UK Home Office
regulations and followed the guidelines of the International Asso-
ciation for the Study of Pain. Rats were housed in groups of four per
cage under standard conditions with a 12 h light/dark cycle, with
unlimited access to food and water. Rats, anaesthetised with iso-
flurane (2% in O3), received a single intra-articular injection of MIA
(0.1 mg/50 pl or 1 mg/50 pl, based on previous studies' %) in
sterile 0.9% normal saline through the infrapatellar ligament of one
knee. In two separate experiments (experiment 1 = 24 rats,
experiment 2 = 40 rats), rats were randomly assigned to the
experimental (MIA) and control groups (saline) and results from
both studies combined. The groups included 1 mg MIA; n = 18,
0.1 mg MIA; n = 18 and saline-injected rats; n = 8 stopped at day 20
and 0.1 mg MIA; n = 10 and saline-injected rats; n = 10, stopped at
day 42 (Supplementary Fig. 1). Rats were killed by an overdose of
carbon dioxide and tissues harvested at 20 days (1 mg; n = 18 and
0.1 mg MIA; n = 18) or 42 days (0.1 mg MIA; n = 10) post-injection.
Previous studies indicated that OA pathology and pain behaviour
were fully developed by 20 days after intra-articular injection of
1 mg MIA". All outcome measurements were carried out by an
experimenter blinded to intra-articular injections.

Behavioural measurements of OA pain

Pain behaviours were measured as withdrawal thresholds (g) to
punctuate stimulation of the hind paw'® and as hind limb weight-
bearing asymmetry. Weight-bearing asymmetry was assessed as
difference between hind limbs as a percentage of total weight
borne through both hind limbs'®. Measurements were obtained
immediately prior to intra-articular injection (day 0) and at regular
intervals from day 3—20 (1 mg or 0.1 mg MIA) or day 42 (saline and
0.1 mg MIA).

Joint pathology

Synovia with patellae from both knees were harvested at sac-
rifice and immediately embedded in optimal cutting temperature
(OCT) and snap frozen over melting isopentane. Tibiofemoral joints
were then isolated and dissected to assess the severity of damage to
the chondral surfaces. Macroscopic lesions were graded using the
method of Guingamp'”; grade 0 = normal appearance, 1 = slight

yellowish discolouration of the chondral surface, 2 = little cartilage
erosion in load bearing areas, 3 = large erosions extending down to
the subchondral bone and 4 = large erosions with large areas of
subchondral bone exposure. Five chondral compartments of the
knee: femoral groove, medial and lateral femoral condyles and
medial and lateral tibia plateaus were scored then summated to
give a maximum possible score of 20.

Following macroscopic scoring, joints were fixed in neutral
buffered formalin for 48 h, and then decalcified in 10% formic acid-
formalin for 7 days at room temperature, split into anterior and
posterior blocks, and embedded in paraffin. Six frontal sections per
rat (three anterior and three posterior) were stained with haema-
toxylin and eosin (H&E) and corresponding consecutive sections for
Safranin-O-Fast green’’. Chondropathy and chondrocyte
morphology were scored on H&E sections whereas proteoglycan
content of the cartilage was scored on Safranin-O Fast green stained
sections. Chondropathy was scored using the Janusz method as
previously described”'. It was evaluated from 1 (minimal superficial
damage) to 5 (severe full thickness degeneration to tidemark). This
score was multiplied by the extent of cartilage area involved (1/3, 2/
3 or 3/3). Chondrocyte morphology and proteoglycan content of the
cartilage were evaluated using the modified Mankin score as pre-
viously described using a Zeiss Axioscop-50 microscope (Carl Zeiss
Ltd, Welwyn Garden City, UK) at 4x objective lens?2>. Chondrocyte
morphology was scored from 0 (normal) to 3 (complete chon-
drocyte death or hypocellularity) and proteoglycan content from
0 (no loss) to 4 (complete loss of proteoglycan). Other histological
assessments used a 20x objective lens. Osteochondral junction
integrity was assessed as the number of vascular channels present
in the articular cartilage per length of tibial plateau section (num-
ber per mm) on H&E sections?>.

Inflammation was assessed as joint swelling (knee diameter)
(mm) using digital callipers (Miyutoyo UK Ltd., Andover, UK)**,
synovitis score and macrophage infiltration into the synovium.
Synovial sections (5 um) were either stained with H&E to assess
lining thickness and cellularity from a scale of 0 (lining layer,
12 cells thick) to 3 (lining layer >9 cells thick and/or severe in-
crease in cellularity)”>. Macrophage infiltration was visualised by
immunohistochemistry using the monoclonal antibody ED1
directed to CD682°, avidin—biotin—peroxidase conjugate (ABC) and
developed with diaminobenzidine using the glucose oxidase/
nickel-enhanced method”®. Macrophage fractional area was the
percentage of synovial section area immunoreactive for CD68 from
four fields view on one section per rat analysed using a Zeiss
Axioscop-50 microscope (Carl Zeiss Ltd, Welwyn Garden City, UK)
andzea KS300 image analysis system (Image Associates, Thame,
UK)?S.

Reagents

Monoclonal antibody to CD68 (clone ED1) was from Serotec
(Oxford, UK). Biotinylated rat-adsorbed horse anti-mouse antibody
and avidin—biotin complexes (Vectastain® Elite ABC Kits) from
Vector laboratories (Peterborough, UK). Other reagents used were
from Sigma—Aldrich UK.

Statistical analysis

Data were analysed using Prism v6 (GraphPad, San Diego, Cali-
fornia, USA). Tests for normal distribution were made using the
Kolmogorov—Smirnov test and were found to be non-parametric.
Therefore, groups were compared using the Kruskal-Wallis test
followed by post hoc Dunn's tests. Pain behaviours were analysed
using area under the curve (AUC) for the comparison data between
arthritic and non-arthritic. Associations were evaluated between
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either pain behaviour endpoint measured on the day of sacrifice
and joint pathology in all groups of rats and then in the MIA
injected rats using univariate and multivariable linear regressions
(Statistical package for the Social Sciences v.22 (SPSS Inc., Chicago,
[llinois, USA)). Numerical and graphical data are presented as
mean + 95% confidence interval to denote statistical uncertainty of
estimates. Association data are presented as unstandardized ( co-
efficients and 95% CI. A two-tailed P value of less than 0.05 was
taken as significant. A standard method of assessing whether the
95% ClIs of the regressions contained zero was used and the null
hypothesis of the means being significantly different was rejected if
it did contain zero®’.

Results

Dose specific effects of MIA on pain behaviour and not altered over
time

Intra-articular injection of the low dose of MIA did not signifi-
cantly alter WB asymmetry compared with saline control, at either
the early (day 0—20, P > 0.99) or the later time points studied (days
24—42) (0.1 mg MIA; 76.5 [31.3—141.5], saline: 34.5 [18.3—92.8]
AUC, P = 0.17) [Fig. 1(A) and (C)]. Intra-articular injection of 1 mg of
MIA was associated with WB asymmetry tested between days 0 and
20 (320 [152—422] AUC) compared with saline-injected rats (66
[22—101] AUC, P < 0.001) and rats injected with 0.1 mg MIA (38
[21—113] AUC, P < 0.001) [Fig. 1(A) and (B)]. Intra-articular injection
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of both doses of MIA resulted in lowered PWTs between days 0 and
20 (0.1 mg; 120 [84—203] AUC, P < 0.001, 1 mg; 162 [90—199] AUC,
P =0.004), compared with the saline-injected rats (285 [259—300])
[Fig. 1(D) and (E)]. PWTs remained lowered at the later time points
(days 24—42) following injection of the lower dose (0.1 mg) of MIA
(114 [62.3—205.5] AUC), compared to saline-injected rats (270
[170—270] AUC, P = 0.01) [Fig. 1(D) and (F)].

MIA-induced knee inflammation

Both doses of MIA resulted in an acute and significant increase
in ipsilateral knee diameter at 3 days post-injection, compared to
the saline-injected rats [Fig. 2(A)]. Knee diameters did not differ
significantly between the two doses of MIA (Fig. 2). By day 14, there
were no significant differences in knee diameter between the MIA
groups and the saline groups (Fig. 2).

At 20 days post-injection, inflammation grade and macrophage
fractional area of the synovium were significantly increased in
groups of rats injected with either 0.1 mg or 1 mg MIA, compared
with saline-injected controls (Table I). There were no significant
differences between the synovial inflammation grade, nor macro-
phage fractional area, for the two doses of MIA studied. At the later
timepoint (day 42), synovial inflammation and increased macro-
phage fractional area remained significantly increased following
intra-articular injection of 0.1 mg MIA, compare to saline-injected
controls (Table I).
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Fig. 1. Effect of MIA on pain behaviour. Intra-articular injection of 1 mg MIA-induced pain behaviour measured as both increased hind-limb WB asymmetry (A and B) and reduced
PWT to punctuate stimulation (D and E). Intra-articular injection of 0.1 mg MIA resulted in reduced PWTs (D—F) without significant increases in WB asymmetry (A—C). WB
asymmetry was significantly greater following 1 mg MIA than following 0.1 mg MIA (B). Data indicate mean + 95% confidence interval for n = 10—18 rats per group. Differences
between groups were analysed using area under the curve for 0—20 days (B and E) and 24—42 days (C and F) then Kruskal—Wallis test followed by post hoc Dunn's tests. Significance
of post hoc tests are denoted by the number of symbols, e.g.,: *: P < 0.05; **: P < 0.01; ***: P < 0.001. Asterisks (*) denote significant differences from saline-injected non-arthritic
controls. Plus (+) signs denote significant differences from 0.1 mg MIA injected arthritic rats.
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Fig. 2. Evidence of inflammation following OA induction. Small changes in knee diameter were observed after intra-articular injection of MIA or saline, as indicated by dif-
ferences between injected and contralateral knees (A). Knee diameter differences between injected and non-injected contralateral knees were greater in MIA injected rats compared
to the saline-injected rats at day 3 after MIA injection (A). Panels B—E show synovium with H&E stain and F—I show synovium with an immunohistochemical (ED1) stain. Synovitis
was characterised as synovial lining thickness/cellularity (B—E) and macrophage infiltration (F—I). Extensive synovial hyperplasia (red arrows) was apparent in the d20-1 mg and
d42-0.1 mg MIA-induced OA rats (D & E) compared with non-arthritic saline controls (B). Macrophage infiltration (indicate by black staining for immunoreactivity with ED1; F—I)
was higher for the d20-1 mg and d42-0.1 mg rats (H & I) compared to non-arthritic saline controls (F). Black arrows indicate synovial surface. Photomicrographs show H&E stained
sections of synovial tissue from a rat with the median synovitis score from each group. Scale bars = 50 um. Data indicate mean + 95% confidence interval for n = 10—18 rats per
group. Differences between groups were analysed using Kruskal—Wallis test followed by post hoc Dunn's tests. Significance of post hoc tests are denoted by the number of symbols,
e.g.,: *: P <0.05; **: P < 0.01. Asterisks (*) denote significant differences from saline-injected non-arthritic controls (A).

Table I

Pathological features in articular cartilage and subchondral bone 20 and 42 days after intra-articular injection of MIA
Structural changes (range) D42-Saline D20-1 mg MIA D20-0.1 mg MIA D42-0.1 mg MIA
Macroscopic cartilage appearance (0—20) 3.4 (1.8-5.0) 11 (8.4—13); <0.001* 9.2 (7.4—11); 0.005* 9.6 (7.7—12); 0.002*
Cartilage surface integrity (0—24) 0.67 (0.33—1) 3.2 (2.0-4.4); <0.001* 2.5(1.9-3.2); <0.001* 3.1(2.1-4.2); <0.001*
Abnormal chondrocyte morphology (0—3) 0.62 (0.37—0.87) 2(1.8—2.3); <0.001* 1.9 (1.6—2.2); <0.001* 1.5 (1.0—2.0); 0.049*
Osteochondral junction integrity (vessels/mm) 0.5 (0.39—-0.60) 1.1 (0.91-1.3); 0.02%, 0.02+ 1 3(1.1-1.5); <0.001*, <0.001+ 0.49 (0.36—-0.62)
Proteoglycan loss (0—4) 2(1.7-2.2) 2.7 (2.5-3.0); <0.001* 4 (2.0—-2.8) 2.2 (1.7-2.7)
Synovitis (0—3) 0.82 (0.41-1.2) 2.4 (2.1-2.7); <0.001* 1 8 (1.4-2.2) 2.7 (1.9—-3.4); <0.001*
Macrophage fractional area (%) 5.4 (3.2-7.6) 14 (11-18); <0.001* .3 (5.8—11) 16 (11-22); <0.001*

Data are presented as mean 95% CI. Significance of post hoc tests is denoted by the P value with a symbol of either an asterisks (*) to denote significant differences from saline-
injected non-arthritic controls or Plus signs (+) denote significant differences from rats 42 days after 0.1 mg MIA injection. Day 42-saline and 0.1 mg MIA (n = 10), day
20—1 mg and 0.1 mg MIA (n = 18).
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Cartilage and bone changes following MIA injection

Changes to the articular cartilage and subchondral bone were
measured as pathological features of OA (Fig. 3 and Table I). Irre-
spective of the dose of MIA used, or the duration of the model, all
groups which received intra-articular injection of MIA showed OA
structural changes at both timepoints (Table [). Macroscopic
chondropathy and histological evidence of cartilage damage and
abnormal chondrocyte morphology were each higher in MIA-
injected rats, compared to saline-injected controls. At 20 days
post-injection, both cartilage damage and abnormal chondrocyte
morphology were comparable for the two doses of MIA studied.
However, proteoglycan loss only reached statistical significance for
the 1 mg MIA group, compared to the saline-injected controls
(Table I). There was no evidence that the period of exposure to MIA
was a factor as measures of OA structural severity were comparable
between 20 and 42 days following intra-articular injection of
0.1 mg MIA. The only exception to this was that the numbers of
vascular channels penetrating into articular cartilage were higher
at 20 days compared with 42 days post-MIA injection (Table I).

Associations between joint pathology and pain behaviour

Using all groups of rats, WB asymmetry and PWTs were each
significantly associated with macroscopic cartilage appearance and
abnormal chondrocyte morphology (Table II). WB asymmetry was
also significantly associated with proteoglycan loss. PWTs were
significantly associated with the number of vessels crossing the
osteochondral junction, and synovitis (Table II). PWTs were more
strongly associated with abnormal chondrocyte morphology than
with loss of cartilage surface integrity, proteoglycan loss or
macrophage fractional area (Table II).

AT
- N

Strengths of associations with pathological features did not
significantly differ between WB asymmetry or PWTs by calculating
the t-statistic and comparing the two means or the 95 percent
confidence intervals for the difference between the two means®’.

When using data from only the MIA injected rats, there were no
significant associations between structural OA and pain pheno-
types, except for macrophage fractional area and PWTs (Table III).

Using multivariable regression models for WB asymmetry and
PWTs, it was evident that only a small proportion of the variability
in pain behaviours between rats was accounted by the inclusion of
all of the measured histological outcome variables, as indicated by
the low R? values (WB asymmetry all R? < 0.21, PWTs all R? < 0.34).
This observation suggests that other cellular or biochemical factors
may contribute to the pain behaviour reported.

Discussion

The major finding of this study is that different doses of MIA are
associated with different profiles of pain behaviour and that
extending the period of exposure of the low dose of MIA did not
result in any further change in the magnitude or type of pain
behaviour. Specifically, the lower dose of MIA was associated with
lowered PWTs but no WB asymmetry at both the early or later
timepoint studied (20 and 42 days), despite synovitis and osteo-
chondral pathology comparable to rats injected with 1 mg of MIA.
These data suggest that the low dose of MIA is a model of milder OA
rather than more slowly progressing OA.

In our control OA group, the rapid onset and persistence of pain
behaviours after injection of 1 mg of MIA into rat knees was similar
to previous reports'%?4, OA structural pathology developed within
2 weeks of intra-articular injection of 1 mg MIA%®, and resembled
human OA by day 20 in the current study. The MIA model being a
rapidly progressive model leads to the rapid degeneration of joint

Fig. 3. Articular cartilage pathology 20 and 42 days after OA induction. Histological images of the tibial plateau (A—D). Joints were sectioned in a frontal plane and stained with
Safranin O-Fast green and corresponding consecutive sections stained with H&E. A; saline-treated control showing smooth cartilage and normal joint margin and chondrocyte
morphology. B, C; 1 mg and 0.1 mg MiA-injected rats at day 20 and D; 0.1 mg MIA-injected rat at day 42 show degeneration of the cartilage. Proteoglycan loss (B—D) and
chondrocyte cloning (B) are also present in the arthritic cartilage. Scale bars = 200 um. Images are of knees with median cartilage surface integrity scores from each group.
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Table II
Associations of pain behaviour phenotypes with OA structural features

Weight bearing asymmetry (%)

Paw withdrawal threshold (g)

8 (95% Cl); P

8 (95% CI); P

Macroscopic cartilage appearance
Cartilage surface integrity
Abnormal chondrocyte morphology
Osteochondral junction integrity
Proteoglycan loss

Synovitis

Macrophage fractional area

1.10 (0.24 to 1.96); 0.01
1.18 (—0.02 to 2.37); 0.053
3.03 (0.25 to 5.81); 0.03
4,80 (—0.27 to 9.86); 0.06
3.76 (0.47 to 7.06); 0.03
1.29 (~0.95 to 3.52); 0.25
0.10 (~0.24 to 0.44); 0.54

—0.52 (—0.98 to —0.07); 0.03
~0.61 (~1.31 to 0.10); 0.09
—3.28 (—4.75 to —1.80); <0.001
—3.04 (—5.60 to —0.49); 0.02
~1.86 (—3.82 to 0.10); 0.06
—1.64 (—2.89 to —0.40); 0.01
~0.02 (~0.22 to 0.18); 0.84

Univariate associations expressed as unstandardised g coefficients from regression analyses of pain behaviour on the day of sacrifice and joint pathology in all
groups of rats; n = 64/pathology score except macroscopic pathology and osteochondral junction integrity (n = 40). Data are presented as mean (95% CI) with

corresponding P value and highlighted in bold if statistically significant.

Table III

Associations of pain behaviour phenotypes with OA structural features in MIA injected rats

Weight bearing asymmetry (%)

Paw withdrawal threshold (g)

8(95% Cl); P

8(95% Cl); P

Macroscopic cartilage appearance (n = 52)
Cartilage surface integrity (n = 102)
Abnormal chondrocyte morphology (n = 76)
Osteochondral junction integrity (n = 60)
Proteoglycan loss (n = 76)

Synovitis (n = 102)

Macrophage fractional area (n = 55)

1.08 (—0.54 to 2.71); 0.18
0.53 (~1.12 to 2.18); 0.52
0.65 (~3.12 to 10.02); 0.29
3.45 (—0.41 to 3.46); 0.12
2.79 (~1.59 to 7.16); 0.21
~0.31(~3.79 to 3.16); 0.86
—0.10 (~0.54 to 0.34); 0.65

~0.16 (—0.87 to 0.56); 0.66
0.52 (~0.27 to 1.30); 0.19
~1.32 (~3.73 to 1.08); 0.27
~1.36 (~4.19 to 1.47); 033
~0.31 (—2.45 to 1.83); 0.77
0.41 (~1.26 to 2.07); 0.63
0.24 (0.03 to 0.44); 0.03

Univariate associations expressed as unstandardised § coefficients from regression analyses of pain behaviour on the day of sacrifice and joint pathology in arthritic rats
only; n = 46/pathology score except macroscopic pathology and osteochondral junction integrity (n = 30). Data are presented as mean (95% CI) with corresponding P

value and highlighted in bold if statistically significant.

cartilage, synovitis and disruption of the underlying subchondral
bone which ensues from the MIA-induced death of chondrocytes?°.
The aetiology of OA is unknown and OA in humans may not
necessarily arise only due to chondrocyte death, which is evident in
the MIA model®’. A feature of the MIA model at early stages is the
proliferation of cells in the outer margins which form large osteo-
phytes at earlier time points®°. Although we do not see the for-
mation of osteophytes in this study owing to maybe the doses used
and the time points tested, osteophytes are typical OA features and
patients with OA differ in the extent of osteophytosis (e.g., previous
classifications of OA as atrophic or hypertrophic). Therefore sup-
porting the view that different animal models might reflect
different human OA phenotypes®>'. Despite the disadvantages to the
use of this model for studies of earlier time point mechanisms, end-
stage pathology in this model is similar to human OA.

A key finding of this study is that despite similarities in the
extent of joint pathology produced, the two doses of MIA are
associated with different pain phenotypes, which is reminiscent of
patients with OA and might reflect different balances between
nociceptive and central sensitisation mechanisms to OA pain. The
mechanisms that drive WB asymmetry are likely to include pe-
ripheral and central sensitization'>. Lowered PWTs from the
hindpaw are associated with spinal indices of central sensitisation
in rats with OA'32 and may reflect a convergence of inputs from
both the knee and the hind paw onto neurones in the spinal cord>>.
Additionally, at higher doses of MIA, lowered PWTs might reflect
the presence of nerve damage as previously reported with the 1 mg
MIA dose**. There is mounting evidence that central sensitisation
can modulate the relationship between joint structure and OA pain
both in our animal models, and in patients®>. Our data demon-
strating the presence of lowered PWTs in the absence of WB
asymmetry is counter-intuitive when considering the dogma that
central sensitization is at least triggered by overt nociceptive input,
which is considered to be the basis for WB asymmetry. Indeed, our

data indicate that, at least in rats, either pain phenotype can
manifest shortly after model induction, and once developed per-
sists throughout the experiment. A centrally augmented pain
phenotype need not necessarily, as sometimes suggested>®, be
restricted to end stage OA.

We hypothesised that the relationship between pain phenotype
and features of joint pathology might provide fundamental clues to
the origins of OA pain. We report stronger associations of lowered
PWTs with abnormal chondrocyte morphology than with proteo-
glycan loss or cartilage surface integrity. The primary mode of ac-
tion of MIA to kill chondrocytes by inhibiting glycolysis, which
likely explains the predominant associations observed between
pain behaviours and chondrocyte morphology rather than other
structural features observed in this study. Loss of significance in
multivariable regression analysis indicates that these associations
might be explained by other covariates, although possible direct
mediation of pain behaviour and neuronal sensitisation by chon-
drocyte products deserves further study’’. Indeed, chondrocytes
can produce neuronal sensitisers such as nerve growth factor (NGF)
in humans>® supporting possible direct contributions of chon-
drocytes to OA pain.

Both pain phenotypes were each similarly associated with the
various structural features of OA, including macroscopic cartilage
appearance, abnormal chondrocyte morphology and macrophage
fractional area although not all associations reached statistical sig-
nificance in the current study. Similar to findings in human OA®°, the
proportion of variation in pain behaviour that could be explained by
joint structural changes was small (~20—35%), suggesting that other
cellular or biochemical changes in the joint may account for differ-
ences in the pain phenotype generated by the two MIA doses, or that
are apparent in different rats or people with OA. Analysis of arthritic
rats alone, revealed that macrophage fractional area was significantly
associated with lowered PWTs, suggesting a contribution of pe-
ripheral inflammatory cells within the joint to the spread of pain to
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the hindpaw. In view of the known association between activated
macrophages with human OA pain*®*!, our preclinical observation
warrants further investigation. We show associations between a
model of established OA and pain behaviour, and it may also be of
interest to investigate whether these associations are present in this
model at earlier time points. Guzman et al. (2003), report chon-
drocyte degeneration at 1 day post 1 mg MIA injection and complete
chondrocyte loss with collapse of necrotic cartilage, 5 days after MIA
injection”’. The presence of these features at earlier time points may
contribute to the pain behaviour observed in the 1 mg MIA model
compared to the 0.1 mg MIA model. Further studies would be
required in order to confirm this.

A limitation of this study is the numbers of rats used as regres-
sion analyses using only the arthritic rats show significant associa-
tions for only one of the OA structural features. Therefore although
we observed relationships between structural histopathology and
pain, we cannot fully conclude that the pain observed in these rats
are primarily mediated by the pathology. Increasing the numbers of
arthritic rats may help with confirming the involvement of the
features of OA pathology in mediating pain in this model. The
relationship observed between histopathological OA features and
pain explains only a small proportion of variability between rats.

In conclusion, the absence of WB asymmetry even 42 days after
injection of 0.1 mg MIA indicates that this lower dose produced a
discrete OA pain phenotype, rather than producing a more slowly
developing OA model than that induced by 1 mg MIA injection®?.
Our study demonstrates that varying experimental procedures
such as dose of MIA generates discrete OA pain phenotypes that
may model pain phenotypes in human OA, which may aid the
elucidation of the diverse mechanisms underlying OA pain and
develop targeted treatments suitable for phenotypic subgroups.
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