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Abstract

We consider the a posteriori error analysis and hp-adaptation strate-
gies for hp-version interior penalty discontinuous Galerkin methods for
second—order partial differential equations with nonnegative characteristic
form on anisotropically refined computational meshes with anisotropically
enriched elemental polynomial degrees. In particular, we exploit duality
based hp-error estimates for linear target functionals of the solution and
design and implement the corresponding adaptive algorithms to ensure
reliable and efficient control of the error in the prescribed functional to
within a given tolerance. This involves exploiting both local isotropic
and anisotropic mesh refinement and isotropic and anisotropic polyno-
mial degree enrichment. The superiority of the proposed algorithm in
comparison with standard hp—isotropic mesh refinement algorithms and
an h—anisotropic/p—isotropic adaptive procedure is illustrated by a series
of numerical experiments.

1 Introduction

Adaptive finite element methods, capable of approximating solutions to com-
plex multi-dimensional partial differential equations with guaranteed error con-
trol, are an invaluable computational tool. In general, the construction of an
adaptive strategy involves three key steps: the derivation of a sharp a posteri-
ori error bound for the finite element approximation of the partial differential
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equation under consideration, which is then used as a stopping criterion to
terminate the adaptive algorithm once the desired level of accuracy has been
achieved; the design of an appropriate refinement indicator to identify regions
in the computational domain where the error is locally large; and the design
of the corresponding mesh-modification/adaptive algorithm which is capable of
automatically selecting the local mesh width h and/or the local degree p of the
approximating polynomial in order to deliver reliable and efficient control of
the discretisation error. While, in recent years, considerable progress has been
made on both the a posteriori error analysis of finite element methods for a wide
range of partial differential equations of practical interest, and the theoretical
and computational assessment of local refinement indicators; see, for example,
[1, 5, 10, 38, 41, 42] and the references cited therein, the state of development
of “optimal” mesh modification strategies which are capable of delivering the
greatest reduction in the error for the least amount of computational cost, is far
less advanced.

Clearly, adaptive finite element methods that exploit both local polynomial—
degree variation (p-refinement) and local mesh subdivision (h-refinement) offer
much greater flexibility and improved efficiency than mesh refinement algo-
rithms which only incorporate h-refinement or p—refinement in isolation. Since
the early analytical paper of Gui and Babuska [16], the benefits of hp—version
finite element methods have been clearly established for elliptic boundary value
problems (see, for example, the monograph of Schwab [36]), particularly in the
field of linear elasticity. The application of Ap—version finite element methods
to hyperbolic/nearly—hyperbolic problems is less standard, although their po-
tential in compressible gas dynamics was first demonstrated by J.E. Flaherty
and collaborators (see [6, 8], for example); for more recent work in this area,
we refer to our series of papers [23, 25, 26, 39, 40]. The argument in favour
of using an hp—version finite element method for the numerical solution of a
hyperbolic/nearly-hyperbolic equation rests on the observation that while so-
lutions to these equations may exhibit local singularities and discontinuities, in
large parts of the computational domain the solution is typically a real ana-
lytic function. Such large variations in the smoothness of the solution can be
captured in a particularly simple and flexible manner by using a finite element
method based on discontinuous piecewise polynomials, such as the discontinuous
Galerkin finite element method.

Typically, singularities arising in the analytical solution of partial differen-
tial equations of hyperbolic/nearly—hyperbolic type are anisotropic in character,
i.e., the solution exhibits a strong variation in the direction normal to a lower—
dimensional manifold, but only a small variation in the tangential direction.
For example, in two space dimensions, a shock in the solution to a nonlin-
ear hyperbolic conservation law occurs along a one-dimensional line. Thereby,
adaptive methods which only refine the mesh in an isotropic fashion, will in
general lead to an excessive number of degrees of freedom in order to accurately
resolve such structures present in the analytical solution. In the recent pio-
neering work of T. Apel and co-workers (see [2, 3, 4], for example), it has been
clearly demonstrated that employing adaptive algorithms which can automati-
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cally align the computational mesh in the direction of these localised structures
in the solution through the means of anisotropic mesh refinement offer greater
flexibility and efficiency over standard isotropic subdivision methods; see also
[7, 11, 29, 30, 31, 32, 35, 37]. However, to date, the development of anisotropic
mesh refinement algorithms has largely focused on the h—version of the finite
element method, where the degree of the approximating polynomial is kept fixed
at some low value.

In this work, we consider the a posteriori error estimation of the hp-version
of the interior penalty Galerkin finite element method (DGFEM, for short)
applied to second—order partial differential equations with nonnegative charac-
teristic form on general finite element spaces consisting of an anisotropic compu-
tational mesh with anisotropic polynomial degree approximation orders. Here,
we shall be interested in the reliable and efficient approximation of certain lin-
ear target functionals of the underlying analytical solution of practical interest,
such as the mean value of the field over the computational domain and the
normal flux through the outflow boundary. In particular, (weighted) Type I
a posteriori error bounds are derived, based on employing the dual weighted
residual approach, cf. [5, 18, 26, 38], for example. Based on the a posteriori
error bound we design and implement the corresponding adaptive algorithm
utilizing anisotropic hp-refinement to ensure the reliable and efficient control of
the error in the prescribed target functional to within a given tolerance. Within
this strategy, once elements have been marked for refinement/derefinement, on
the basis of the size of the local error indicators, the proposed adaptive al-
gorithm consists of two key steps: (a) Determine whether to undertake h— or
p-refinement /derefinement; (b) Select a locally optimal anisotropic/isotropic re-
finement. Step (a) is based on assessing the local analyticity of the underlying
primal and dual solutions, on the basis of the decay rates of Legendre series
coefficients; see our previous articles [17, 28, 38], together with [9]. Step (b)
is based on employing a competitive refinement strategy, whereby the “opti-
mal” refinement is selected from a series of trial refinements. This entails the
numerical solution of a series of local primal and dual problems which is rel-
atively cheap and fully parallelizable. This algorithm represents the extension
to the hp—version setting of the strategy developed in [13] for the case when
the polynomial order is kept fixed. The superiority of the proposed algorithm
in comparison with both standard hp-isotropic mesh refinement, and an h—
anisotropic/p—isotopic refinement strategy is illustrated by a series of numerical
experiments.

The paper is structured as follows. In order to highlight the general frame-
work of the dual-weighted-residual approach adopted in this paper, in Section
2 we present an overview of goal-oriented a posteriori error estimation. In Sec-
tion 3 we introduce the model problem and formulate its discontinuous Galerkin
finite element approximation. Then, in Section 4 we derive a Type I a poste-
riort bound on the error measured in terms of certain linear target functionals
of practical interest. Guided by our a posteriori error analysis, in Section 5
we design an adaptive finite element algorithm exploiting both local anisotropic
h— and anisotropic p-refinement. The performance of the resulting refinement
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strategy is then studied in Section 6 through a series of numerical experiments.
Finally, in Section 7 we summarise the work presented in this paper and draw
some conclusions.

2 A paradigm for a posteriori error estimation

In this section we present an overview of the general theoretical framework of
duality—based a posteriori error estimation developed by C. Johnson and R.
Rannacher and their collaborators. For a detailed discussion, we refer to the
series of articles [5, 10, 22, 38|, and the references cited therein.

Let X and Y be two Hilbert spaces. Further, we write B(-,-): X xY — R
to denote a bi-linear form. We suppose that u is the unique solution to the
variational problem: find u in X such that

B(u,v) =0 YveY. (1)

Problem (1) can be thought of as the weak formulation of a partial differential
equation on X whose unique solution is u € X. In practice (1) cannot be solved
in closed form but needs to be approximated numerically. For the purposes of
this paper, we shall consider general hp—version finite element approximations
to (1). In order to construct a Galerkin approximation to this problem, we
consider a sequence of finite-dimensional spaces {X}, ,}, parameterised by the
positive discretisation parameters h and p; we have X, C X for each pair
{h,p} for conforming methods and X, ¢ X for non-conforming methods,
such as the DGFEM described below. Simultaneously, consider a sequence of
finite-dimensional spaces {Y},,,}. For the purposes of this paper, X}, , and Y}, ,,
can be thought of as finite element spaces consisting of piecewise polynomial
functions of degree p on a partition 7, of granularity h, of the computational
domain. The Galerkin approximation up gy, of u is then sought in X}, as the
solution of the finite-dimensional problem

B(uhyp, vhyp) =0 V’Uh_’p S Yhyp. (2)

For simplicity of presentation, we assume that X}, and Y}, ,, are suitably chosen
finite element spaces to ensure the existence of a unique solution up , to (2).

In many problems of physical importance the quantities of interest may
be a series of target or error functionals J;(-), ¢ = 1,...,N, N > 1, of the
solution. Relevant examples include the mean flow across a line, the point
value of the solution, and the drag and lift coefficients of a body immersed into
an inviscid fluid. For simplicity, we restrict ourselves to the case of a single
linear target functional, i.e., N = 1, and write J(-) = J1(-); for the extension
of the proceeding theory to multiple target functionals, see [19]. In order to
obtain a computable a posteriori bound on the error between the true value of
the functional J(u) and the computed value J(up ), we begin by noting the
Galerkin orthogonality of the discretisation (2):

B(w,vp,p) — B(tn,p, Vnp) = Bl — Upp,0pp) =0 Yopp € Yy p. (3)



DG methods on hp-anisotropic meshes IT 5)

This will be a key ingredient in the following a posteriori error analysis.

We now introduce the following dual or adjoint problem: find z € Y such
that

B(w,z) =J(w) Ywe X. (4)

We assume that (4) possesses a unique solution. Clearly, the validity of this
assumption depends on both the definition of B(-,-) and the choice of the func-
tional under consideration. Important examples which are covered by our hy-
pothesis are discussed in [26].

For the proceeding error analysis, we must therefore assume that the dual
problem (4) is well-posed. Under this assumption, employing the Galerkin
orthogonality property (3) we deduce the following error representation formula:

JW) = J(upp) = Ju—upp) = Bu—upp,2)
= B(u—up,z— 2znp) = —B(un,z — 2znp) (5)

for all zp, in the finite element space Y} ,. On the basis of the general error
representation formula (5), a posteriori estimates which provide upper bounds
on the true error in the computed target functional J(-) may be deduced. The
simplest approach is to first decompose the right—hand side of (5) as a summa-
tion of local error indicators n° over the elements x in the computational mesh
Ty, i.e., we write

J(w) = J(unp) = =B(unp, 2 = znp) = EG (unp, hyp, 2 — 2np) = Z M
KETH

then, upon application of the triangle inequality, we deduce the following weighted
or Type I a posteriori error bound.

Theorem 2.1 Let u and un, denote the solutions of (1) and (2), respectively,
and suppose that the dual problem (4) is well-posed. Then, the following Type
I a posteriori error bound holds:

| (u) = I (unp)| < EG (unps hp,z = 2np) = D - (6)
k€Th

We remark that the local error indicators n$’ appearing on the right-hand

side of (6) involve the multiplication of finite element residuals depending only
on up , with local weighting terms involving the difference between the dual so-
lution z satisfying (4) and its projection/interpolant zp_, onto the finite element
space Y} p; in Section 4, we provide a concrete example arising from the discon-
tinuous Galerkin approximation of second—order partial differential equations
with nonnegative characteristic form. These weights represent the sensitivity
of the error in the target functional J(-) with respect to variations of the local
element residuals; indeed, they provide invaluable information concerning the
global transport of the error, which is essential for efficient error control. Since
the solution to the dual problem is usually unknown analytically it must be nu-
merically approximated; see [5, 13, 18] for details. In this article we approximate
z using piecewise polynomials of degree p, p > p, on the same finite element
mesh 7, employed for the primal problem, cf. Section 5.
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3 Model problem and discretization

We start by first introducing the function spaces that will be used throughout
this paper. Given a bounded domain w in R?, d > 1, we denote by H*®(w)
the standard Hilbertian Sobolev space of index s > 0 of real-valued functions
defined on w; we also set L?(w) = HO(w).

Let Q be a bounded open (curvilinear) polygonal domain in R, d > 1, and
let T signify the union of its (d — 1)—dimensional open faces. We consider the
advection—diffusion—reaction equation

Lu=—-V-(aVu)+ V- (bu)+cu=f, (7)

where f € L?(Q) and ¢ € L>(Q) are real-valued, b = {b;}%_, is a vector func-
tion whose entries b; are Lipschitz continuous real-valued functions on Q, and
a = {a;; }gjzl is a symmetric matrix whose entries a;; are bounded, piecewise
continuous real-valued functions defined on Q, with

¢Ta(x)¢ >0 Y¢CeR?, ae xeQ. (8)

Under this hypothesis, (7) is termed a partial differential equation with nonneg-
ative characteristic form. By n(x) = {n;(x)}%, we denote the unit outward
normal vector to I" at x € I'. On introducing the so called Fichera function b-n
(cf. [34]), we define

Iy = {xeT: n(x) a(x)n(x) >0},
. = {xel'\Ily: b(x) n(x) <0},
s = {xel'\lp: b(x) -n(x)>0}.

The sets I'_ and I'y will be referred to as the inflow and outflow boundary,
respectively. Evidently, ' = ToUT'_ UT';. If 'y is nonempty, we shall further
divide it into disjoint subsets I'p and I'y whose union is I'g, with I'p nonempty
and relatively open in I'. We supplement (7) with the boundary conditions

v = gp on I'puUTl_,
(aVu)-n = gn on I'y, 9)

and adopt the (physically reasonable) hypothesis that b-n > 0 on I'y, whenever
I'y is nonempty. Additionally, we assume throughout that

1
(co(x))? = e(x) + 3 V-b(x)>0 ae. x€0. (10)
For the well-posedness theory (for weak solutions) of the boundary value prob-

lem (7), (9), in the case of homogeneous boundary conditions, we refer to [24, 27].

3.1 Meshes and finite element spaces

For simplicity of presentation, from this point onwards we assume that d = 2;
however, we note that all of the results presented in this work naturally gener-
alise to the case d = 3, by exploiting analogous arguments to those presented



DG methods on hp-anisotropic meshes IT 7

1,1
A a1 F Qx

.’L‘l EJ

S . g P .
K, hg

Y T

" ? Tof / Lo
(-1,-1) , i L

z, T
Figure 1: Construction of elements via composition of affine maps and diffeo-
morphisms.

subsequently in this article. Let 7; be a subdivision of the polygonal domain
2 C R? into disjoint open (curvilinear) quadrilateral elements » constructed via
the mappings Q o F;, where F}, : & := (—1,1)? — & is an affine mapping of the
form

Fo(x) := Apx + by, (11)
with A, := 1 diag(hf,h5), where hf and h% are the lengths of the edges of &

-

parallel to the z;- and Zs-axes, respectively, b, is a two-component real-valued
vector, and @ : K — k is a smooth diffeomorphism (cf. Figure 1).

Heuristically, we can say that the affine mapping F}; defines the size of the
element x and the diffeomorphism @, defines the “shape”. For this reason,
we shall be working with diffeomorphisms that are close to the identity in the
following sense: the Jacobi matrix Jg, of @), satisfies

Cfl < det JQN < C’17
1(JQ. )ijll Loy < Ca, 4,5 =1,2

for all k € 73, uniformly throughout the mesh for some positive constants C
and CQ.

The above maps are assumed to be constructed so as to ensure that the
union of the closures of the disjoint open elements k € 7}, forms a covering of
the closure of 2, i.e., Q = UkeT, K- We shall restrict ourselves to meshes that are
unions of diffeomorphic images of rectangles and to tensor-product polynomial
spaces.

Also, we define the broken Sobolev space of composite order s on the open
set 2, subject to the subdivision 73 of 2, as

H3(Q,T) = {u € L*(Q) : u|, € H*(r) V& € Ty},

with s,; denoting the local Sobolev index on the element k, and s := (s, : & €
T1), together with the corresponding norm. When s, = s for all k € 7, we
shall write H*(Q,7p,).

Let I = (—1,1) and 2 = I x I = (=1,1)2% On the interval I we denote the
space of polynomials of degree p or less by Pp(f). Then, for p := (p1,p2), the
anisotropic tensor-product polynomial space Qp on & is defined by Qp(&) =
Py, (I) @ Pp,(I), where @ denotes the standard functional tensor product.
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Let 7; be a subdivision of the computational domain €2 into elements xk € 7j,
and let F = {F,; : k € T}, Q = {Q« : &k € T}, where F,,Q, are the maps
defined above.

Definition 3.1 Let p := (ps : kK € Tp) be the composite polynomial degree
vector of the elements in a given subdivision T,. We define the finite element
space with respect to Q, T, F, and p by

Spp(Q,Th) ={ue L*(Q) :uls0Qx o0 Fl, € Qp,.(k)}.

For brevity we write Sp, p in lieu of Sp, p(€2, 77) when it is clear from the context
the definition of the computational domain 2 and the finite element mesh 7j,
employed.

3.2 Interior penalty discontinuous Galerkin method

We introduce the (symmetric) interior penalty DGFEM discretization of the
advection—diffusion-reaction problem (7), (9). To this end, we introduce the
following notation.

An interior edge of Ty, is defined as the (non-empty) one—dimensional interior
of Ok; N Okj, where k; and k; are two adjacent elements of 7, not necessarily
matching. A boundary edge of T}, is defined as the (non-empty) one-dimensional
interior of 0k NT", where k is a boundary element of 7;,. We denote by T'j¢ the
union of all interior edges of 7;,. Given an edge e C D'y, shared by the two
elements «; and k;, where the indices ¢ and j satisfy ¢ > j, we write n. to denote
the (numbering—dependent) unit normal vector which points from k; to x;; on
boundary edges, we put n, = n. Further, for v € H'(Q,7;,) we define the jump
of v across e and the mean value of v on e, respectively, by [v] = v|ox;ne —V|ok,ne
and <'U> = % ('U|8/<iﬁe + 'U|6/<jﬂe)-

On a boundary edge e C Jk, we set [v] = v|gxne and (v) = v|grne. Finally,
given a function v € H'(Q,7,) and an element x € 7, we denote by v,
(respectively, v, ) the interior (respectively, exterior) trace of v defined on 0k
(respectively, Oxk\I'). Since below it will always be clear from the context which
element & in the subdivision 7j the quantities v and v, correspond to, for the
sake of notational simplicity, we shall suppress the letter x in the subscript and
write, respectively, v and v~ instead.

Given that k is an element in the subdivision 73, we denote by dx the union
of one—dimensional open edges of k. Let x € 9k and suppose that n,(x) denotes
the unit outward normal vector to dk at x. With these conventions, we define
the inflow and outflow parts of Ok, respectively, by

0_k={x€0k: b(x) ngx) <0}, O0irk={x€0k: b(x) ng(x)>0}.

For simplicity of presentation, we suppose that the entries of the matrix a are

constant on each element k in 7; i.e., a € [Sh,o]s;nzl- We note that, with minor
2X2

sym’
the analysis proceeds in a similar

changes only, our results can easily be extended to the case of \/a € [Sh, ¢

2X2

q > 0; moreover, for general a € L>(Q)7,



DG methods on hp-anisotropic meshes IT 9

manner, based on employing the modified DG method proposed in [15]. In the
following, we write a = |\/a |3, where |- |5 denotes the matrix norm subordinate
to the lo—vector norm on R? and @, = .

The DGFEM approximation of (7), (9) is defined as follows: find upg in
Sh,p such that

B(upg,v) = £(v) (12)
for all v € Sp, p. Here, the bilinear form B(-,-) is defined by

B(w,v) = Z {/ﬁan-Vvdx—/(wb-Vv—cwv)d:v

r€TH r

+/ (b-nn)w+v+ds+/ (b-n,)w v" ds}
o4k O_rk\I'

) /rp (@) n)lelds— [ (Vo) nfu]ds

TintUT'D
+/ J[w][v]ds ,
TintUT'D

and the linear functional ¢(-) is given by

lv) = Z {/fUdI‘F/ QNUerS—/ (b-n,)gpvtds
K OxNI'n O_kN(TpUl'_)

r€TH

_/ gp((aVv™) - n,)ds + / dgpvt ds} )
OkNI'p OrNI'p

Here, 9 is called the discontinuity-penalization function and is defined by 9|, =
¥ for e C Tjyy U I'p, where ¥, is a nonnegative constant on edge e. Before
we give the precise definition for the discontinuity-penalization function 9, we
require some notation. We define the function h in L*°(T'yy U T'p), as h(x) =
min{hf, hf/ }, if x is in the interior of e = 9xNIK’ for two neighboring elements «,
« in the mesh 7}, and é = Q! (e) is parallel to the #;-axis, for i,j = 1,2, i #
we also define h(x) = h¥, if x is in the interior of e = dxNI'p and € = Q' (e) is
parallel to the Z;-axis, for i,j = 1,2, i # j. We note that in the isotropic setting
we observe that h ~ h, where h denotes the local mesh size. Similarly, we define
the function p in L (T UTp), as p(x) = max{p;-”‘,p’;l}, for K, k' as above; we
also write p(x) = p§, if x is in the interior of a boundary edge as above. Also,
we define the function a in L (T, UTp) by a(x) = max{ay, a. } if x is in the
interior of e = Ok N Ox’, and a(x) = @, if x is in the interior of dxk N T'p.
With this notation, we define the discontinuity-penalization parameter ¢
arising in (12) by
ap?
Ve =09 = CﬂT for e C Tt UTD, (13)

where Cy is a positive constant. Selecting Cy to be sufficiently large (a value of
10 usually suffices) guarantees the well-posed of the interior penalty DG method
(12); see [12, 14] for details.
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We shall assume that the solution u to the boundary value problem (7), (9)
is sufficiently smooth: namely, u € H3/2t¢(Q,7;), ¢ > 0, and the functions
u and (aVu) - n. are continuous across each edge e C Ox\I' that intersects
the subdomain of ellipticity, Q, = {x € © : ¢ a(x)¢ > 0 V¢ € R4}, Of
course, in regions where a vanishes the above smoothness requirements can be
further weakened; we avoid such issues of a technical nature, however, to enhance
the clarity of the presentation. If this smoothness requirement is violated, the
discretization method has to be modified accordingly, cf. [24]. We note that

under these assumptions, the following Galerkin orthogonality property holds:

BDg(u — UDG, 1)) =0 Wwe Shyp. (14)

4 A posteriori error estimation

Suppose that TOL > 0 is a prescribed tolerance and J(-) is a given target func-
tional. In this section, we consider the measurement problem concerned with
computing the numerical approximation upg from S, p such that

|J(u) — J(upg)| < TOL. (15)

Recalling the notation introduced in Section 2, we define the following dual or
adjoint problem: find z € H3/?*¢(Q,T},), € > 0, such that

B(w,2) = J(w) Yw € H*(Q,7). (16)

For the purposes of the proceeding analysis, we assume that (16) possesses a
unique solution. Clearly, the validity of this assumption depends on the choice
of the linear functional under consideration, cf. [26]. Under this assumption,
we have the following general result.

Theorem 4.1 Let u and upg denote the solutions of (7), (9) and (12), re-
spectively, and suppose that the dual solution z is defined by (16). Then, the
following error representation formula holds:

J(w) = J(upc) = Ealupc h.p.z—2np) = D 1a, (17)
~€TH
where
Ne = / Rini(z — zp,p) do — / (b-n,) Rp(z — zp,p) " ds
K o_ kNIl
+/ (b n,) [upc](z — zn,p) T ds
O_r\I

—/ Rp((aV(z — 2n)T) - ny)ds + / IRp (2 — zpp) T ds
oOkNI'p

OkNI'p

+ Rn(z — zpp) T ds — Iupc](z — znp) T ds (18)
OrNI'N Or\T'

+% /an\p {lupc](aV(z — znp) ") 0, — [(aVupc) - ng(z — znp) T} ds,
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for all zp, , € Shp. Additionally, the internal finite element residual Rine and
the boundary residuals Rp and RN are defined, respectively, by

Rint|n = (f - E’U/DG)|H s
RD|8m(PDuF,) = (9p — U$g)|am(rDur,) )
Rxloknry = (98 — (aVU$G) “10)|ornry

for all elements k in the finite element mesh Tp,.

Thereby, on application of the triangle inequality, we deduce the following
Type I a posteriori error bound.

Corollary 4.2 Under the assumptions of Theorem 4.1, the following Type I a
posteriori error bound holds:

|J(’U,) - J(UDG)| S g\Q|(uDG7 hupa z— Zh,p) = Z |77fi| ) (19)
r€TH

where 0y, is defined as in (19).

As discussed in [18, 38], the local weighting terms involving the difference
between the dual solution z and its projection/interpolant z, onto Shp ap-
pearing in the Type I bound (19) provide invaluable information concerning the
global transport of the error. Thereby, we refrain from eliminating the weighting
terms involving the (unknown) dual solution z and approximate z numerically;
this will be discussed in Section 5.

5 Adaptive algorithm

The a priori error analysis developed in the companion paper [14] clearly high-
lights that in order to minimize the error in the computed target functional J(-)
with respect to the number of degrees of freedom in the finite element space S}, p,
the design of an optimal Ap—mesh distribution must exploit anisotropic informa-
tion emanating from both the primal and dual solutions u and z, respectively.
Indeed, a mesh solely optimized for u may be completely inappropriate for z,
and vice versa, thus there must be a trade-off between aligning the elements
with respect to either solution in order to minimize the overall error in J(-);
cf., also, [13]. Moreover, the theoretical results in [14] highlight the importance
of the ability to resolve directional features of the solution using a combination
of anisotropic meshes with anisotropic polynomial degree distributions. The
construction of an automated procedure which is capable of producing such
desirable anisotropic finite element spaces is the subject of the current section.

Recalling the measurement problem stated in Section 4: the aim of the
computation is to design an appropriate “optimal” finite element space Sj p
such that

|J(u) — J(upa)| < TOL,
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(a) (b) (c)

Figure 2: Cartesian refinement in 2D: (a) & (b) Anisotropic refinement; (c)
Isotropic refinement.

where TOL > 0 is a given user-defined tolerance. By optimal we mean that the
above error control should be attained using a minimal number of degrees of
freedom. For simplicity of presentation, in this section we only consider the case
when Q C R? and 7}, consists of 1-irreqular quadrilateral elements. Following
the discussion presented [26], we exploit the a posteriori error bound (19) with
z replaced by a discontinuous Galerkin approximation Z computed on the same
mesh 7}, used for the primal solution upq, but with a higher degree polynomial,
ie., 2€ Shp, P=P + Pinc; in Section 6, we set pinc = 1, cf. [18, 38]. Thereby,
in practice we enforce the stopping criterion

(cjm‘ = g‘(z'(UDG, zZ— Zh,p) < TOL. (20)

If (20) is not satisfied, then the elements are marked for refinement/derefinement
according to the size of the (approximate) error indicators |7j|; these are defined
analogously to |7,] in (19) with z replaced by 2. In Section 6 we use the fixed
fraction mesh refinement algorithm, with refinement and derefinement fractions
set to 20% and 10%, respectively.

Once an element has been selected for refinement/derefinement a decision
must first be made whether to carry out an h-refinement/derefinement or p-
enrichment/derefinement. To this end, we exploit the technique developed in
[28], whereby the analyticity of the solutions u and z is assessed by studying
the decay rates of their underlying Legendre coeflicients; see, also, [9] for related
work. An approximation of the first few Legendre coefficients of v and z are
readily obtained from the approximate solutions upg and Z, respectively, and
hence a measure of the smoothness of the respective solutions is available for
minimal computational effort. The a priori estimates developed in the prequel
[14], clearly indicate that if either u or z are smooth then a high polynomial
degree is preferable to a small mesh size, whereas if u and z are both nonsmooth
then a small mesh size should be utilized, cf. [17, 38]. With this in mind, should
an element be selected for refinement and both v and z be nonsmooth we perform
a mesh subdivision, otherwise we perform polynomial enrichment. Similarly, if
an element is flagged for derefinement, then if neither v nor z are smooth we
carry out a p-derefinement, else an h-derefinement is undertaken.

Once the h— and p-refinement flags have been determined on the basis of
the above strategy, a decision regarding the type refinement to be undertaken
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— isotropic or anisotropic — must be made. Motivated by the work in our
previous article [13], we employ a competitive refinement technique, whereby
the “optimal” refinement is selected from a series of trial refinements. In the
h—version setting, article [13] proposed two such algorithms, which we shall
now briefly recall. Elements which have been flagged for an h-refinement are
subdivided employing a simple Cartesian refinement strategy; more precisely,
elements may be subdivided either anisotropically or isotropically according to
the three refinements (in two—dimensions, i.e., d = 2) depicted in Figure 2.
The optimal refinement is then selected on the basis of one of the following two
strategies.

Algorithm 1: Given an element  in the computational mesh 7, (which has
been marked for h-refinement), we first construct the mesh patches 7, i =
1,2, 3, based on refining x according to Figures 2(a), (b), & (c), respectively. On
each mesh patch, 73 ;, 1 = 1,2, 3, we compute the approximate error estimators

Eni(UDGis 20 — Zhp) = E Mt i

K €Ty 4

fori =1,2, 3, respectively. Here, upg;, ¢ = 1,2, 3, is the discontinuous Galerkin
approximation to (7), (9) computed on the mesh patch 7; 4, ¢ = 1,2, 3, respec-
tively, based on enforcing appropriate boundary conditions on dx computed
from the original discontinuous Galerkin solution upg on the portion of the
boundary Ok of k which is interior to the computational domain 2, i.e., where
OkNT = (). Similarly, 2; denotes the discontinuous Galerkin approximation to z
computed on the local mesh patch 7}, ;, ¢ = 1,2, 3, respectively, with polynomi-
als of degree p, based on employing suitable boundary conditions on dxNT = ()
derived from 2. Finally, 0. i, ¢ = 1,2, 3, is defined in an analogous manner to
M, cf. (19) above, with upg and z replaced by upg,; and Z;, respectively.

The element « is then refined according to the subdivision of x which satisfies

min 1| = |Exi(Uunc.is 2 — 2hp)]
i=1,2,3 #dofs(Sh.p(k, Tn,i)) — #dofs(Sh p(kK, K))

where #dofs(Sh p(k, k)) and #dofs(Sh.p(k, Tn,i)), @ = 1,2, 3, denote the number
of degrees of freedom associated with the local finite element spaces Sy, p(k, k)
and Spp(k,7p,:), @ = 1,2, 3, respectively.

Algorithm 2: This is very similar to Algorithm 1; however, here we only
construct the mesh patches 7 ;, ¢ = 1,2, and compute the approximate local
primal and dual solutions on these meshes only. Given an anisotropy parameter
0 > 1, isotropic refinement is selected when

maxi—1 2 |Exi(Upc.i, 2 — Zhp)|

min;—1 o |€x i (upa.i, 2 — Zhp)|

< 0;

otherwise an anisotropic refinement is performed based on which refinement
gives rise to the smallest predicted error indicator, i.e., the subdivision for which
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Figure 3: Polynomial Enrichment in 2D: (a) & (b) Anisotropic Enrichment; (c)
Isotropic Enrichment.

|€An,i(uDG,i, Zi—znp)l, © = 1,2, is minimal. Based on computational experience,
we select 6 in the range [2, 3].

In [13] Algorithm 2 proved itself to be the most effective algorithm to use
for h-refinement by giving comparable errors to Algorithm 1, but with reduced
computational cost; hence, in this article we restrict ourselves to only employing
this strategy when h-refinement is selected.

For the case when an element has been selected for polynomial enrichment
we consider the p-version counterparts of the above algorithms and solve lo-
cal problems based on increasing the polynomial degrees anisotropically in one
direction at a time by one degree, or isotropically by one degree. Figure 3
provides a visualisation of the local mesh patches in two-dimensions, where the
original polynomial degree vector on the element of interest is p = [p1, p2]. More
precisely, we consider the following two strategies.

Algorithm 3: This algorithm represents the p-version of Algorithm 1
above. Given an element x in the computational mesh 7; (which has been
marked for p-refinement), we first construct the local finite element spaces
Sh.p:i(ky k), © = 1,2,3, based on enriching p according to Figures 3(a), (b)
and (c), respectively. On each finite element space Sy, p,(k, k), i = 1,2,3, we
compute the approximate error estimators

Er,i(UDG,i» Zi — Zh,p) = Tnyis
fori =1,2, 3, respectively. Here, upg,;, ¢ = 1,2, 3, is the discontinuous Galerkin
approximation to (7), (9) computed on the finite element space S, p,(k, k),
1 = 1,2,3. Similarly, z; denotes the discontinuous Galerkin approximation to
z computed on Sh p,+p. (K, K)), © = 1,2,3, respectively, with polynomials of
degree p; + Pinc-
The element « is then refined according to the subdivision of x which satisfies

min M| = 1En,i(UDGi, Zi — Zhp)]
i=1,2,3 #dofs(Sh, p, (k, k)) — #dofs(Sp p(k, K))

Algorithm 4: This is very similar to Algorithm 3; here only the finite
element spaces Sh, p, (K, k), i = 1, 2, corresponding to the anisotropic polynomial
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enrichments are undertaken. Given an anisotropy parameter w > 1, isotropic
enrichment is selected when

maxi—1,2((|1e] — [Ex.i])/(FdOfS(Sh.p, (i, £)) — #dofs(Sh.p (K, £)))))
ming=1 o ((|7x] = [Ex.il) / (#dofs(Sh p; (%, K)) — ##dofs(Sh.p (%, £))))

otherwise an anisotropic enrichment is performed based on which enrichment
gives rise to the smallest predicted error indicator, i.e., the subdivision for which
([ms|=1Ex.il)/ (F#dofs(Sh p, (K, ) —F#dofs(Sp p(k, £))), i = 1,2, is minimal. Here,

for brevity, we have written &.; in lieu of & ;(4pa,i, Zi — Znp), © = 1,2. As
before, based on computational experience, we select w in the range [2, 3].

< w,

For clarity, the fully anisotropic hp-adaptive algorithm presented above can
be viewed as a flowchart in Figure 4.

In the following section we shall study the performance of the fully adap-
tive anisotropic hp-refinement algorithm combining Algorithm 2 with either
Algorithm 3 or Algorithm 4. As in the h—version setting, we shall see that
both anisotropic p-refinement strategies lead to quantitatively the same error
reduction in the target functional J(-) of interest for a given number of de-
grees of freedom. Thereby, the combination of Algorithm 2 and Algorithm 4
is advocated, on the basis of computational efficiency.

6 Numerical experiments

In this section we present a number of experiments to numerically demonstrate
the performance of the hp—anisotropic adaptive algorithms outlined in Section
5.

6.1 Example 1

We consider the following (singularly perturbed) advection—diffusion problem
equation
—eAu~+ ug +uy = f,

for (x,y) € (0,1)%, where 0 < ¢ < 1 and f is chosen so that
u(z,y) =z +y(l—a) + 7/ —e U/ e V7L (21)

This is a multidimensional variant of the one-dimensional problem considered
by [33], cf. [24]. For 0 < € < 1 the solution (21) has boundary layers along = 1
and y = 1. Here, we suppose that the aim of the computation is to calculate
the value of the (weighted) mean-value of u over the computational domain 2,
ie.,

J(u) = / ut) dx,
Q
where the weight function 1 is chosen as follows:

d(z,y) = 41-2y)1—-e U7 — (1 - )(1 - 2))
+Hy(y — 1" (a - (1-e™)).
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Figure 4: Anisotropic hp-adaptive algorithm.
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Figure 5: Example 1. Comparison between adaptive hp-refinement strategies:
(a) e =1072; (b) e = 1073,

Setting a = 100 gives rise to a strong boundary layer in the analytical solution
z to the corresponding dual problem (16) along the boundary z = 1 and a
weaker boundary layer along y = 0. We remark that 1) has been chosen so that
both u and z have boundary layers along the same portion of the computational
boundary, as this kind of behaviour is quite typical in practical applications; for
example, the computation of the lift or drag on an airfoil immersed within a
viscous fluid, cf., e.g., [20].

Here, we compare the performance of the anisotropic hp-refinement adap-
tive strategies outlined in the previous section using a combination of either
Algorithm 2 and Algorithm 3 or Algorithm 2 and Algorithm 4, together
with a (standard) isotropic hp-refinement strategy, and an h—anisotropic/p—
isotropic refinement algorithm based on employing Algorithm 2 to decide the
anisotropy in the mesh. In both of these two latter strategies, the decision to
perform either h— or p-refinement/derefinement is again based on estimating
the local analyticity of the primal and dual solutions u and z, cf. Section 5. In
all cases, we begin with a uniform (square) mesh with 17 points in each coordi-
nate direction and assign a uniform polynomial degree vector p = [2, 2] on each
element.

In Figures 5(a) & (b) we plot the (square root of the) degrees of freedom em-
ployed in the finite element space S}, p against the error in the computed target
functional J(-), for ¢ = 1072,1073, respectively, using each of the four hp-mesh
refinement algorithms defined above. Firstly, we note that in all cases, the con-
vergence lines are (on average) straight, indicating exponential rates of conver-
gence have been achieved using all four refinement strategies for each e, cf. [14].
Secondly, for each e, we observe that the computed error, for a given number
of degrees of freedom, employing the h—isotropic/p—isotropic strategy is always
inferior to the algorithm employing h—anisotropic/p—isotropic refinement. Simi-
larly, this latter strategy is inferior to exploiting one of the two h—anisotropic/p—
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Figure 6: Example 1. Anisotropic hp-meshes after 4 refinement steps employing
Algorithm 2 and Algorithm 4, with 316 elements and 3767 degrees of freedom:
(a) pz and (b) p,, for e = 1072

anisotropic refinement algorithms proposed in this article. Indeed, for e = 1072,
after the final refinement step, the anisotropic hp—strategies yield over two or-
ders of magnitude improvement over the h—anisotropic/p—isotropic case and
nearly 4 orders of magnitude improvement over the isotropic hp—method. For
€ = 1073, the anisotropic hp-strategies yields around seven orders of magnitude
improvement in the error in the computed target functional J(-) after the final
refinement step, for the same numbers of degrees of freedom, in comparison to
the isotropic hp—refinement strategy, and two orders of magnitude improvement
over the h—anisotropic/p—isotropic refinement algorithm. In this latter case, we
note that the anisotropic hp-refinement algorithms and the h—anisotropic/p—
isotropic strategy perform equally well during the first few refinement steps,
since only h—adaptation is undertaken. However, as soon as p—enrichment is
required the use of anisotropic polynomial degrees becomes clearly advanta-
geous. In contrast, in the former case when ¢ = 1072, we observe an immediate
improvement when employing anisotropic hp—adaptivity. Finally, we mention
that both Algorithm 3 and Algorithm 4 employed within the anisotropic hp—
adaptive strategy to determine the anisotropy in the spectral orders, give rise to
quantitatively similar convergence histories, indicating that Algorithm 4 may
be preferable as it is more computationally efficient.

Figure 6 shows the resultant hp—mesh distribution employing Algorithm 2
and Algorithm 4 after 4 anisotropic hp-refinement steps for ¢ = 1072; here,
Figures 6(a) and (b) show the polynomial degrees employed in the z— and y—
directions, respectively. We observe that anisotropic h-refinement has been
employed in order to resolve the right—hand side boundary layer and anisotropic
p-refinement has been utilized further inside the computational domain. In
particular, we notice that the polynomial degrees have been increased to a higher
level in the x—direction, than in the orthogonal direction, as we would expect.
Quantitatively similar hp-mesh distributions are generated for e = 10~3; for
brevity, we omit these results.
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6.2 Example 2

In this second example we investigate the performance of the proposed hp—
anisotropic refinement algorithms applied to a mixed hyperbolic—elliptic prob-
lem with discontinuous boundary data. To this end, we let 2 = (0,2) x (0,1),
a = e(x)I, where e = (1 — tanh(100(r; — 0.12)(r1 + 0.12)))(1 — tanh(100(ry —
0.12)(r2 + 0.12)))/1000, r1 = = — 1.3 and r = y — 0.3. Furthermore, we set

b — (y,1—2)" ifx<1,
1 (L1100 if x> 1,

¢ =0, and f = 0. On the inflow boundary I'_, we select u(z,y) = 1 alongy = 0,
1/8 < x < 3/4, and u(x,y) = 0, elsewhere. This is a variant of the test problem
presented in [21]. We note that the diffusion parameter ¢ will be approximately
equal to 3.6 x 1073 in the square region (1.18,1.42) x (0.18,0.42), where the
underlying partial differential equation is uniformly elliptic. As (z,y) moves
outside of this region, e rapidly decreases through a layer of width O(0.1);
for example, when 2 = 1.3 and y > 0.7 we have ¢ < 107!, so from the
computational point of view ¢ is zero to within rounding error; in this region,
the partial differential equation undergoes a change of type becoming, in effect,
hyperbolic. Thus, we shall refer to the part of 2 containing this square region
(including a strip of size O(0.1)) as the elliptic region, while the remainder of
the computational domain will be referred to as the hyperbolic region. (Strictly
speaking, the partial differential equation is elliptic in the whole of €.)

Here, we suppose that the aim of the computation is to calculate the value
of the (weighted) outflow advective flux along x = 2, 0 < y < 1, i.e., J(u) =
fol (b - n)u(2,y)¥(y) dy, where the weight function, in a modification to [13], is

[ (tanh(50(y — 7/40)) +1)/2 y < 17/40,
viy) = { (tanh(—50(y — 27/40)) +1)/2 y > 17/40.

The true value of the functional is given by J(u) = 0.324999805677598.

Given the qualitatively comparable results shown in the previous example,
between exploiting the p-anisotropic algorithms Algorithm 3 and Algorithm
4, in conjunction with the h—anisotropic algorithm Algorithm 2, in this section
we shall only consider the latter approach, i.e., the hp—anisotropic algorithm ex-
ploiting Algorithm 2 and Algorithm 4, as it is more computationally efficient.
However, once again we compare this strategy with both the hp-isotropic and
h—anisotropic/p—isotropic refinement algorithms described in Section 6.1. In
all cases the starting hp—mesh distribution is a uniform 17 x 9 grid, consisting
of uniform square elements, with the uniform polynomial degree distribution
p = [2,2] on each element.

In Figure 7 we plot the (square root of the) degrees of freedom employed
in the finite element space Sy, against the error in the computed target func-
tional J(-), using each of the three hp—mesh refinement algorithms defined above,
namely hp—isotropic refinement, h—anisotropic/p—isotropic refinement, and hp—
anisotropic refinement (employing Algorithm 2 and Algorithm 4). As in the
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Figure 7: Example 2. Comparison between adaptive hp-refinement strategies.

previous example, we note that in all cases, after an initial transient, the con-
vergence lines are (on average) straight, indicating exponential rates of conver-
gence have been achieved using all three refinement strategies. Similarly, we
again observe that the computed error, for a given number of degrees of free-
dom, employing the h—isotropic and p-isotropic strategy is always inferior to
the algorithm employing h—anisotropic and p—isotropic refinement, which is in
turn inferior to hp—anisotropic refinement algorithm proposed in this article.
Evidently the majority of improvement over the hp—isotropic strategy is due to
employing anisotropic h-refinement, cf. the previous example when ¢ = 1073,
yet in the asymptotic regime the hp-anisotropic strategy consistently shows
around an order of magnitude improvement in the error for the same num-
ber of degrees of freedom, when compared with the h—anisotropic/p—isotropic
refinement strategy.

Finally, Figures 8(a) and (b) show the resultant computational mesh and
polynomial degree distribution in the x— and y—directions, respectively, after 8
steps of our Ap—anisotropic refinement strategy. Here, we see that the majority of
h-refinement has taken place primarily along the layer of the analytical solution
u emanating from the point (z,y) = (3/4,0). In other regions p—enrichment
has been favoured; indeed there is a marked difference between the polynomial
degrees employed in the z— and y-directions, with the majority of elements
having had no p-enrichment in the z—direction, while most element have had
some p—enrichment in the y—direction. The p-enrichment in the z—direction
has been concentrated in the left half of the domain as this is where layers in
the primal and dual solutions run parallel to the y—axis, while for the same
reason p—enrichment in the y—direction is concentrated in the right portion of
the computational domain.
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Figure 8: Example 2. Anisotropic hp—meshes after 8 refinement steps employing
Algorithm 2 and Algorithm 4, with 410 elements and 6338 degrees of freedom:

(a) pr and (b) py.

7 Concluding Remarks

This article and its companion paper [14] have been concerned with the a priori
and a posteriori error analyses of the (symmetric) interior penalty discontinuous
Galerkin finite element discretization of second—order partial differential equa-
tions with nonnegative characteristic form, based on employing anisotropically
refined computational meshes with anisotropic polynomial spaces. Indeed in the
present work, we have developed so—called Type I (weighted) a posteriori er-
ror bounds for general linear functionals of practical relevance using the general
dual-weighted-residual method developed by R. Rannacher and co-workers. On
the basis of this computable bound, the key aspect of this article has been the
development of a general purpose hp—adaptive finite element algorithm which is
capable of both anisotropically refining the computational mesh and anisotro-
pically enriching the local polynomial degrees. Here, once elements have been
marked for refinement/derefinement, on the basis of the size of the local er-
ror indicators, the proposed adaptive algorithm consists of two key steps: (a)
Determine whether to undertake h— of p-refinement/derefinement; (b) Select a
locally optimal anisotropic/isotropic refinement. Step (a) is based on assessing
the local analyticity of the underlying primal and dual solutions, on the ba-
sis of the decay rates of Legendre series coefficients; cf., [17, 38, 28], together
with [9]. Step (b) is based on employing a competitive refinement strategy,
whereby the “optimal” refinement is selected from a series of trial refinements.



DG methods on hp-anisotropic meshes IT 22

This entails the numerical solution of a series of local primal and dual prob-
lems which is relatively cheap and fully parallelizable. The performance of the
proposed hp—anisotropic refinement strategy has been studied through a series
of numerical experiments. In particular, we have demonstrated the superiority
of the proposed approach in comparison with both standard hp—isotropic mesh
refinement, and an h—anisotropic/p—-isotopic refinement strategy.
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