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Abstract

The stirring of a body of viscous fluid using multiple stirring rods is known
to be particularly effective when the rods trace out a path corresponding to a
nontrivial mathematical braid. The optimal braid is the so-called “pigtail braid”, in
which three stirring rods execute the usual “over–under” motion associated with
braiding (plaiting) hair. We show how to achieve this optimal braiding motion
straightforwardly: one stirring rod is driven in a figure-of-eight motion, while the
other two rods are baffles, which rotate episodically about their common centre.
We also explore the extent to which the physical baffles may be replaced by flow
structures (such as periodic islands).
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1 Introduction

This paper concerns laminar mixing of a viscous fluid in a batch mixer. A
simple conceptual model for a batch mixer comprises a vat of fluid which
is stirred by means of a number of stirring rods. The central design problem,
addressed here, is then to devise an effective stirring protocol for the mixer, i.e.,
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a manner in which the stirring rods should move to maximize some measure
of the mixing quality.

It is well known [1,2] that even laminar fluid flows can stir a fluid effectively,
provided that the Lagrangian particle paths are chaotic. However, it is an
unfortunate fact of life that the stirring quality of the resulting flow can be
drastically altered by changes to the parameters such as the relative diame-
ters of the vat and rods, the precise path followed by the stirring rods while
executing their protocol, or the cross-sectional profiles of the vat or rods.

Some renewed hope of designing robust mixing devices, which are not so sensi-
tive to the vagaries of “accidental” parameter variations was provided recently
by Boyland, Aref and Stremler [4], who pointed out, on the basis of Thurston–
Nielsen theory, that a certain rate of material line stretch can be guaranteed if
at least three stirring rods are used, and if they execute a motion correspond-
ing to a nontrivial mathematical braid. The resulting flows appear in practice
to possess a significant region in which the lower bound on the line stretch
rate is achieved or exceeded [11], given only the topology of the boundary
motions that generate the flow (although the underlying Thurston–Nielsen
theory does not predict the size of this region, merely its existence). A recent
review is provided by Thiffeault and Finn [16].

For three stirring elements, the optimal braid word, in the sense that it max-
imizes an appropriately defined entropy, is the “pigtail braid” [7]. (We stress
here that the concept of optimality is used throughout this paper only in a
certain restricted sense, which is explained more explicitly below, at the end
of Section 2.) However, it seems difficult to design a mixer that achieves such
a braid and is also simple to construct. We demonstrate in this paper one
straightforward means for accomplishing the pigtail braid using simple tech-
nology: a single stirring rod together with a pair of baffles that can rotate on
a turntable.

The structure of the paper is as follows. In Section 2 we briefly introduce some
concepts and notation associated with mathematical braids, and summarize
some results pertinent for our fluid mechanical application. In Section 3 we
demonstrate our design for implementation of the pigtail braid. Numerical
simulations of Stokes flow in our device are described in Section 4, where
we compare our results with theoretical predictions. We shall see that flow
structures such as periodic orbits (and associated regular islands in the flow)
act as barriers to transport and thus effectively serve as additional baffles; such
flow structures have recently been named “ghost rods” [12]. Our conclusions
are drawn in Section 5.
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2 Mathematical background

We consider batch mixing devices that comprise a vat of fluid stirred by m
stirring elements. These stirring elements are either mobile stirring rods or
baffles. (It turns out, somewhat counterintuitively, that the judicious intro-
duction of baffles, usually stationary, can significantly improve the mixing.)
Our model will assume two-dimensional flow, and to simplify matters still
further, the vat and the stirring rods will all have circular cross-section.

As the stirring rods move, the topology of their motion relative to each other
and to the baffles is usefully described using the mathematical language of
braids. We therefore begin by briefly recalling some necessary terminology
relating to braids. A more comprehensive account, again from the perspective
of applications in fluid mechanics, is given in [4].

We suppose that initially the stirring elements are arranged in some order,
from left to right according to some observer. Then the motion of the stirring
rods may be characterized topologically in terms of successive interchanges
in their order. For instance, the interchange of the jth and (j + 1)th stirring
elements (counting from the left), clockwise, is represented by the symbol σj,
called a “braid letter”; a corresponding anticlockwise interchange is denoted
by σ−1

j .

All of our stirring protocols are time-periodic, and the sequence of braid letters
corresponding to the full sequence of stirrer interchanges during one period
is the “braid word”. In this paper, braid words are to be read from right to
left, although the opposite convention is followed in some other accounts. For
example, the braid word σ1σ

−1
2 , for m = 3, means that first the middle and

rightmost stirring elements are interchanged in an anticlockwise fashion, then
the (new) middle and leftmost stirring elements are interchanged clockwise.
Braid words may often be simplified, using the following rules: (i) σ−1

j σj =
σjσ

−1
j = ı, where ı is the identity braid; (ii) σj−1σjσj−1 = σjσj−1σj; (iii) for

|i− j| ≥ 2, σiσj = σjσi. In what follows, we shall have at most three stirring
elements, so that m ≤ 3, and the last rule will not apply.

It seems inappropriate in a paper of this length to attempt a full description
of Thurston–Nielsen theory; a description in a fluid mechanical context, and
further references to the literature may be found in [4], whose pertinent results
we now summarize. For our purposes it is sufficient to note that the only input
to the theory is the topology of the motions of the stirring elements and the fact
that the fluid to be mixed is a continuum. No details of the constitutive relation
(or, specifically, of the Reynolds number for a Newtonian fluid) are required.
An output of the theory is a classification of the stirring protocol into one of
three classes, of which the one of most current interest is the pseudo-Anosov, or
“p-A”, class. Any protocol in the p-A class has associated with it a dilatation
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parameter λ, which is a stretching factor enjoyed by (certain) material lines
during each period. The value of λ is independent of the material properties
of the fluid being mixed, and of any details of the stirring protocol except its
braid word, and thus the theory is rather powerful. Of course, from topological
considerations alone it is not possible to predict the size of the region of the
flow domain enjoying the predicted dilatation. From a practical perspective,
this is a severe limitation, and one which necessitates corresponding numerical
simulations (or experiments), whose results for the size of the mixing region
are then specific to the model (or flow regime) concerned. In this paper, for
definiteness, we describe numerical simulations of Stokes flow (creeping flow).
The Stokes flow regime possesses some significant advantages for numerical
simulations (for example, uniqueness of the flow, given the boundary motions,
and the relative simplicity of simulation in a time-varying geometry).

For m = 3, each braid letter has a corresponding matrix, which can be used
in determining the line stretch rate associated with any given braid word. We
have, corresponding to σ1 and σ2, respectively,

s1 =

 1 −1

0 1

 , s2 =

 1 0

1 1

 .

The corresponding matrix for σ−1
j is simply s−1

j (for j = 1, 2). The matrix
associated with a braid word is then the product of the matrices associated
with the component braid letters. For example the braid word σ1σ1σ

−1
2 σ−1

2 is
associated with the matrix

s1s1s
−1
2 s−1

2 =

 5 −2

−2 1

 . (1)

The dilatation λ is predicted by the spectral radius (i.e., the larger of the mag-
nitudes of the two eigenvalues) of the associated braid matrix. For s1s1s

−1
2 s−1

2 ,
λ = 3 +

√
8 ≈ 5.8. If the spectral radius of the braid matrix is unity, the

corresponding braid is said to be trivial (i.e., not in the p-A class).

It has been shown [7] that for three stirring elements in a bounded domain,
such as here, the optimal braid is the so-called pigtail braid σ1σ

−1
2 [4], which

has λ = λmax ≡ (3 +
√

5)/2 ≈ 2.62. Here “max” refers to the maximum
dilatation over braid words comprising two braid letters; such a notation re-
flects the definition of optimality used in this paper, namely “providing the
maximal dilatation per braid letter”. (The restriction to a bounded domain
is significant – for example, Thiffeault and Finn [16] show how λmax may be
exceeded in a spatially periodic mixing device.) Furthermore, in a bounded do-
main the largest λ for a braid word of length n constructed from σ1 and σ−1

2
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is obtained by taking these two braid letters alternately. However, the pigtail
braid is difficult to generate with a mechanically simple device. We show in
the next section how to devise a stirring protocol with braid word of the form
(σ1σ

−1
2 )n for some positive integer n, which should also be straightforward to

construct.

3 A simple batch mixer design for the pigtail braid

In this section we give details of a simple batch mixer design that generates
the pigtail braid.

Before we proceed further, we make a brief comment on a naming convention
used below. We generally follow convention and use the term “stirring rod”
for a rod that moves through the fluid, and “baffle” for a similar rod, but
stationary. Thus there is a clear distinction between two otherwise identical
objects: one moves, and the other does not. However, an exception to this
nomenclature arises in the mixer design given below that executes the pigtail
braid, in which it is necessary at some phase of the stirring protocol for the
baffles themselves to move! One might then reasonably query the usefulness
of maintaining both terms, since the words “stirring rod” and “baffle” become
effectively interchangeable. However, we believe that it is useful to maintain
the distinction that the former means “rod whose primary role is to be driven
through the fluid to stir it” while the latter means “rod generally kept fixed,
except in rare circumstances, where it must move in order to enable us to
achieve the pigtail braid”. Although we have found it useful ourselves, we
acknowledge that the distinction is slight, once one allows baffles to move
occasionally during a stirring protocol.

We begin by considering a simple figure-of-eight motion for a single stirring
rod. Clearly such a motion is in itself topologically trivial, but it can generate
a nontrivial mathematical braid if a baffle is introduced into each loop [5]. If
the baffles remain stationary then in each period we generate the braid word
σ1σ1σ

−1
2 σ−1

2 , whose associated matrix is given in (1), and which therefore has
dilatation λ ≈ 5.8 [5]. However, this design can readily be modified to generate
three pigtail braids per period, and hence λ = λ3

max ≈ 17.94, as follows.
The initial configuration of stirring elements is shown in figure 1(a): the solid
circles represent the baffles, and the open circle the stirring rod. The pigtail-
braid protocol starts with the stirring rod executing one-half of a figure-of-
eight motion, as illustrated in figure 1(b). Next, the two baffles are rotated
through 180◦ about the centre of the vat, anticlockwise — see figure 1(c).
This interchange is crucial in obtaining the pigtail braid. The remainder of
the protocol involves first the stirring rod completing its figure-of-eight — see
figure 1(d) — then a final, clockwise rotation of the baffles through 180◦ about
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(a) (b) (c)

(d) (e) (f)

Fig. 1. Stirring protocol and baffle placement to achieve the pigtail braid (σ1σ
−1
2 )3.

Solid circles represent baffles; the open circle represents the stirring rod. (a) Initial
positions of rod and baffles. The stirring protocol comprises (b) half a figure-of-eight
motion of the stirring rod, (c) a counterclockwise rotation through 180◦ of the baffles,
(d) the remainder of the figure-of-eight motion of the rod, and finally (e) a clockwise
rotation of the baffles, to return all stirring elements to (f) their original positions.

the centre of the vat — see figure 1(e). Thus all stirring elements return to
their original locations (figure 1(f)). It is readily determined that the braid
word for this protocol is (σ1σ

−1
2 )3.

In order to demonstrate the stirring effectiveness of the mixer design described
above, we simulate the corresponding slow viscous flow (Stokes flow). We
assume that the mixing vat is filled with an incompressible Newtonian viscous
fluid, and that the flow is two-dimensional. Our notation closely follows that
of [10,11]. It is convenient to work in complex variables, with z = x+iy, where
x and y are Cartesian coordinates. The origin is chosen as the centre of the
vat (which is assumed to be fixed), and lengths have been scaled so that the
vat has unit radius, with boundary |z| = 1. The stirring elements have circular
cross-section, with centres at pj(t) and radii aj, for j = 1 . . .m. For simplicity,
the angular velocities of the stirrers about their respective axes are set to
zero in all simulations. For Stokes flow, at vanishing Reynolds number, the
streamfunction ψ satisfies the biharmonic equation∇4ψ = 0 [14], whose means
of solution in this multiply connected domain is described elsewhere [11]. We
now describe the various stirring protocols used in the remainder of the paper.

3.1 Stirring protocols

Here we give details of the stirring protocols considered here. In each case,
with no loss of generality, we normalize the period of the protocol to be unity.

Protocol 1 is a figure-of-eight stirring protocol with a single stirring element;
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thus m = 1. The stirring rod has its centre at

p1(t) = A cos 2πt+ iA sin 4πt (2)

for 0 ≤ t ≤ 1; the value of A will be specified below. This protocol is topolog-
ically trivial, because m = 1.

Protocol 2 is a figure-of-eight stirring protocol with two stationary baffles.
Now m = 3: the index 1 refers to the stirring rod, while 2 and 3 refer to the
stationary baffles. For 0 ≤ t ≤ 1, the stirring rod again executes the path
given in (2), while the baffles are centred at p2(t) = R and p3(t) = −R, where
R will be specified below. Note that 0 < R < A so that one baffle lies in each
of the loops of the figure-of-eight.

Protocol 3 is the figure-of-eight stirring protocol described above, and illus-
trated in figure 1, that generates the pigtail braid. Here the figure-of-eight
motion of the stirring rod is punctuated by the episodic rotations of the two
“baffles”. It is convenient to describe the protocol as follows. For 0 ≤ t < 1/4,

p1(t) = A cos 4πt+ iA sin 8πt, p2(t) = R;

for 1/4 ≤ t < 1/2,

p1(t) = −A, p2(t) = −R cos 4πt− iR sin 4πt;

for 1/2 ≤ t < 3/4,

p1(t) = −A cos 4πt+ iA sin 8πt, p2(t) = −R;

for 3/4 ≤ t ≤ 1,

p1(t) = A, p2(t) = R cos 4πt− iR sin 4πt.

At all stages, p3(t) = −p2(t).

In addition, we shall compare results with two further protocols: Protocols 2∗

and 3∗. These are identical, respectively, to Protocols 2 and 3, except that the
stirring element p3 is absent. Although these protocols clearly both give rise
to a trivial mathematical braid (because m = 2 in each case), they provide
useful cases for comparison below.
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(a) (b) (c)

(d) (e)

Fig. 2. Iterated mapping plots for the five Protocols studied. In all plots, the stir-
ring elements have radius a = 0.05; R = 0.30 and A = 0.60. (a) Protocol 1; (b)
Protocol 2∗; (c) Protocol 2; (d) Protocol 3; (e) Protocol 3∗.

4 Results

We use two diagnostics for assessing our stirring protocols. The first is the
iterated mapping plot, or Poincaré section, in which we plot stroboscopically
at times nT (for n = 0, 1, . . . , 1000) the locations of a hundred passive tracer
particles placed initially on a grid within the container. Regions of poor mixing
are revealed as periodic islands; however, such plots are well known to have
some significant shortcomings, for instance that they provide no information
on the rate of separation of fluid particles in the chaotic sea. So in addition,
motivated by the theoretical results above, we compute the stretch rate of a
material line, dynamically inserting points to maintain adequate resolution as
the line stretches [13]. With the length of the line at time t denoted by lt, the
mean stretch factor of the line per period of the flow is Λ(t) ≡ (lt/l0)

T/t, where
the period T of the stirring protocols is normalized to T = 1.

We begin our discussion with Protocol 1, whose iterated mapping plot is shown
in figure 2(a). (Note that in all simulations reported here, except those illus-
trated in figure 5, the stirring rod(s) and any baffles all have the same radius,
here a = 0.05.) We see that although the bulk of the fluid is in a chaotic region,
there are two periodic islands of poor mixing (one triangular, one a crescent).
In figure 2(b), we show the effect of introducing a single stationary baffle into
the flow (Protocol 2∗), roughly at the location of the crescent-shaped island
visible in figure 2(a). Notice that by the introduction of this baffle, we have
significantly reduced the size of the central periodic island in figure 2(a), al-
though the left-hand periodic island remains. (We have obtained qualitatively
similar results by placing a single baffle instead in the left-hand island, at
R = −0.30, in which case this island is essentially removed, but a visible
central island remains.) Two stationary baffles (Protocol 2) considerably im-
prove matters, as shown in figure 2(c) (this improvement was noted previously
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(a) (b) (c)

(d) (e) (f)

Fig. 3. Stretching of a material line in the five Protocols studied. Panels (a)–(e)
correspond to figure 2 (i.e., are in the order Protocol 1, 2∗, 2, 3, 3∗); parameters
are as used there. Initial line length is l0 = 0.40. Length after stretching is: (a)
l2 = 65.62; (b) l2 = 61.91; (c) l2 = 71.44; (d) l1.5 = 98.24; (e) l1.5 = 70.30. The
tremendous rate of stretch in (d) and (e) precludes well-resolved simulation of the
line beyond roughly t = 1.5. (f) log(lt/l0) against time t, for each of (a)–(e). The
lower dotted, dashed and solid curves are, respectively, for (a), (b) and (c), and are
largely indistinguishable. The upper solid and dashed curves are for (d) and (e),
respectively, and are significantly above those for (a), (b) and (c).

in [5]). Now both of the periodic islands have been essentially removed and
visibly the global quality of the fluid mixing is better than in figures 2(a)
and (b). Figure 2(d) corresponds to Protocol 3, which generates the pigtail
braid; from a visual comparison of the iterated mapping plots in (c) and (d),
there seems little to justify the additional complexity of Protocol 3 over Pro-
tocol 2. Finally, figure 2(e) shows the iterated mapping plot for Protocol 3∗,
for which two significant islands are visible.

Figure 3 shows in panels (a)–(e) the effects of the fluid stirring upon a hori-
zontal line whose endpoints are initially at (±0.20, 0). The initial length of the
line is therefore l0 = 0.40. In panels (a)–(c), the line is shown after two peri-
ods of stretching, although the extreme stretching for some parts of the line in
panels (d) and (e) limits well-resolved simulations to approximately t = 1.5,
so in these two cases the line is shown at this time (protocols and parame-
ter values are as in figure 2). Figure 3(f) provides a quantitative comparison
between the various protocols corresponding to panels (a)–(e), demonstrating
the evolution of log(lt/l0) = t log Λ with time. Protocols 1, 2 and 2∗ stretch
the line to a similar extent; for each we estimate Λ ≈ 10. The two remaining
protocols have Λ ≈ 29 (Protocol 3, upper solid curve) and 26 (Protocol 3∗, up-
per dashed curve). Thus the rate of material line stretch is significantly better
for Protocol 3 than for Protocols 1, 2 or 2∗, although only rather marginally
better than for Protocol 3∗. The similar stretch rate for Protocols 1, 2 and 2∗ is
noteworthy, particularly since Protocols 1 and 2∗ do not generate robust topo-
logical chaos, by which we mean that the stirring elements do not generate
p-A mathematical braids (indeed, they can not, since they have, respectively,
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Fig. 4. Position of the stirring rod (five-pointed star) and fixed baffle (eight-pointed
star) at times t = n (n = 0, 1, . . .) for Protocol 3∗. The trajectories of the stirring
rod and baffle are indicated by the dashed and dotted curves, respectively; that of
the ghost rod is indicated by the solid curve.

m = 1 and 2 stirring elements.). It appears that the visible periodic islands in
figure 2(a) and (b), which are barriers to material transport, act as effective
(stationary) baffles, just as in figure 2(c). We confirmed this idea by tracking
over a single period the trajectories of the periodic islands. For example, for
Protocol 1, by considering there to be three stirring elements (the stirring rod
together with the two islands), we find the braid word σ−1

2 σ2
1σ

−1
2 , which is

pseudo-Anosov, with, from (1), λ ≈ 5.8. Similarly, for Protocol 2∗ the three
stirring elements are the stirring rod, the baffle and the large island. Again
we find the braid word σ−1

2 σ2
1σ

−1
2 . This confirms that the periodic islands are

indeed acting as proxy stirring elements, and leading to identifiable p-A braid
words; they are “ghost rods” [12].

The reason for our introduction of Protocol 3∗ should now be clear. The aim
of this protocol is to test whether the optimal pigtail braid might also be
achieved with only one moving baffle, and with a periodic island (ghost rod)
performing the role of the other baffle. Figure 2(e) indicates that when the
left-hand baffle is removed from the optimal Protocol 3, a periodic island does
indeed take its place. However, the periodic island, located near (−0.40, 0.00)
in figure 2(e), does not move in the same way as the physical rod does in
the optimal protocol; indeed, it does not move out of the left-hand lobe of
the figure-of-eight (see figure 4). The corresponding braid word generated by
the two stirring elements together with the ghost rod then turns out to be
σ2σ1σ2σ

−1
2 σ1σ

−1
2 , which is equivalent to the trivial σ2

1. If we consider instead
both this ghost rod and one generated by the periodic island located at ap-
proximately (0.15,−0.27) in figure 2(e) then we find instead a nontrivial braid
word, σ2σ

−1
3 σ2σ

2
1σ

−1
2 σ−1

3 σ−1
2 , which has λ ≈ 5.83 (this value was computed

using Bestvina and Handel’s [3] train-track algorithm, as implemented in the
C++ code of Toby Hall, University of Liverpool; it is known that the ma-
trix representation described above gives only a lower bound on λ when more
than three stirring rods – or baffles or ghost rods – are involved, so the more
sophisticated calculation is required). The true stretch-per-period is consider-
ably greater than this value, and so we surmise the existence of further, smaller
ghost rods, which are responsible for the observed stretch rate (cf. [12]). We
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aj A Λ1 Λ3 Λ3∗

0.05 0.60 10 29 26

0.05 0.50 6.5 19 18

0.03 0.50 7 29 28.5

0.03 0.60 10 39.5 38.5

0.07 0.60 8 24.5 22
Table 1
Stretch factors: Λ1 (for Protocols 1, 2 and 2∗, which, to the precision given, all
have the same value of Λ), Λ3 and Λ3∗ (for Protocols 3 and 3∗), for five different
parameter choices. In all cases, R = 0.30, and all stirring rods/baffles have radius
as indicated in the column headed aj .

(a) (b)

Fig. 5. Iterated mapping plots: (a) for Protocol 2∗, with a1 = 0.05, a2 = 0.10,
A = 0.60 and R = 0.30; (b) for Protocol 2, with a1 = 0.05, a2 = a3 = 0.10,
A = 0.60 and R = 0.30. These plots thus (respectively) correspond to figure 2(b)
and (c), but with an increased radius for the baffle(s).

have not attempted to find such ghost rods, largely because of the compu-
tational cost of doing so. To illustrate this potentially high cost, we mention
that Gouillart et al. [12] found orbits up to period nine to be necessary in
determining a reasonably accurate approximation to the observed stretch rate
(this result was obtained for a single stirring rod – and multiple ghost rods –
for which the velocity field is known analytically).

We find a similar qualitative picture for other parameter values, although we
have been unable to deduce any general trends as, say, A, R and the aj are
varied. A sample of results for the stretch factor Λ is given in table 1 (the first
line of data there corresponds to the simulations described in detail above).
For example, we find that repeating the calculations described above with A =
0.50 instead of 0.60 generates a similar qualitative picture, but with smaller
ghost rods and smaller Λ. Variations to the radii of the stirring rods and
baffles likewise lead to similar qualitative results. For example, figure 5 shows
the effects upon Protocols 2∗ and 2 of increasing the baffle radius (keeping all
other parameters as in figure 2(b) and (c)). When there is only a single baffle,
as in figure 5(a) and figure 2(b), it is rather intriguing that the larger baffle
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leads to a larger ghost rod. Similarly, when there are two baffles, an increase
in the baffle radius increases the size of the (small) regular region around each
baffle.

5 Conclusions and discussion

We have demonstrated a practical means of achieving the optimal pigtail braid
in a batch mixing device, and shown that it outperforms similar constructions
that do not generate the pigtail braid, at least in the numerical simulations of
Stokes flow that we have carried out.

An earlier and simpler design of a batch mixer (our Procotol 2) also generates
a topologically nontrivial braid, but it does not achieve the pigtail braid. Pro-
tocol 2 is, however, interesting because either stationary baffle – or, indeed,
both – may be removed and in a wide range of simulations for different param-
eter values (not reported in detail here) flow structures form “proxy” baffles
(the “ghost rods” of [12]), so that the nontrivial braid is maintained, and the
material line stretch rate is largely indifferent to the presence or otherwise
of the physical baffles. Of course, the existence or otherwise of ghost rods —
and the details of their associated braiding motions — must be determined
on a case-by-case basis, in contrast to stirring protocols with m ≥ 3 where
the relative motions of the stirring rods and baffles can be designed to enact
a nontrivial braid.

A similar attempt to remove one of the baffles from our optimal design fails
because, although a periodic island forms to replace the omitted baffle, it does
not move appropriately, and the pigtail braid is lost.

We note that, in all cases, the actual line stretch rate is far in excess of
that predicted by the braid word that forms the basis of the mixer design.
Such a result is consistent with corresponding results of Gouillart et al. [12],
who found that high-period (and small) islands may need to be considered to
predict accurately the observed stretch rate.
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