
The generic approximation lemma

Graham Hutton
University of Nottingham

Jeremy Gibbons
University of Oxford

January 2000

Abstract

The approximation lemma is a simplification of the well-known take
lemma, and is used to prove properties of programs that produce lists of
values. We show how the approximation lemma, unlike the take lemma,
can naturally be generalised from lists to a large class of datatypes, and
present a generic approximation lemma that is parametric in the datatype
to which it applies. As a useful by-product, we find that generalising the
approximation lemma in this way also simplifies its proof.

Keywords: Programming calculi; Functional Programming

1 Introduction

The standard proof method for programs that consume lists of values is struc-
tural induction. However, this method is not applicable to the dual case of
programs that produce lists of values, because in general such programs do not
have a list argument over which to perform induction. Proof methods that are
applicable to such programs have recently been surveyed in [6], and include
fixpoint induction [4], the take lemma [3], coinduction [7], and fusion [8].

All but one of the above proof methods for programs that produce lists are
not specific to the datatype of lists, but can naturally be generalised to a large
class of other datatypes. The exception is the take lemma, which is formulated
specifically for lists, and has not proved possible to generalise in a uniform way
to other datatypes. This is unfortunate, because the take lemma is perhaps the
most widely-used proof method for programs that produce lists.

Recently, the take lemma has been superseded by the approximation lemma
[2], which is equivalent in power but is simpler to prove and apply. We show
how the approximation lemma, unlike the take lemma, can be generalised in a
uniform way to other datatypes, and present a generic approximation lemma
that is parametric in the datatype to which it applies. The generic lemma is
proved once, for an arbitrary datatype, and can then simply be instantiated as
required for each new datatype. As a useful by-product, we find that general-
ising the approximation lemma in this way also simplifies its proof.

1

The programming paradigm used in the article is that of a pure functional
language with non-strict semantics, such as SASL, Miranda, Gofer, Lazy ML, or
Haskell. Using a pure functional language permits proofs by simple equational
reasoning, while the use of non-strict semantics permits a natural treatment of
infinite structures, such as infinite lists (streams) and infinite trees.

2 The approximation lemma

Suppose that the empty list is denoted by [], while non-empty lists are con-
structed using an infix operator (:) that prepends a value to the start of a list.
Now recall the standard list-processing function take n that returns the first n
elements of a list, defined recursively as follows:

take 0 xs = []
take (n+ 1) [] = []
take (n+ 1) (x : xs) = x : take n xs

For example, if the infinite list ones = 1 : 1 : 1 : 1 : . . . is defined by ones =
1 : ones, then take 3 ones evaluates to the finite list 1 : 1 : 1 : []. The
approximation lemma is based upon a function approx n that is defined in the
same way as take n, except that the base case for n = 0 is removed:

approx (n+ 1) [] = []
approx (n+ 1) (x : xs) = x : approx n xs

Because n+ 1 patterns only match integers greater than 0, removing the extra
base case means that, by case exhaustion, approx 0 xs = ⊥ for all lists xs,
where ⊥ represents an undefined value. For example, approx 3 ones evaluates
to the partial list 1 : 1 : 1 : ⊥ that ends with ⊥ rather than with [].

Suppose that xs and ys are two finite, partial or infinite lists. Then the
approximation lemma [2] is given by the following equivalence:

xs = ys ⇔ ∀n. approx n xs = approx n ys

This equivalence states that two lists are equal precisely when all their approx-
imations, as produced by approx, are equal. Replacing the use of approx by
take gives the well-known take lemma [3], which is formally equivalent to the
approximation lemma. However, the approximation lemma supersedes the take
lemma, in the sense that it is simpler to prove and apply.

As a simple application of the approximation lemma, consider the standard
functions iterate and map defined recursively as follows:

iterate f x = x : iterate f (f x)

map f [] = []
map f (x : xs) = f x : map f xs

2

Then by the approximation lemma, the familiar property

map f (iterate f x) = iterate f (f x)

is equivalent to

∀n. approx n (map f (iterate f x)) = approx n (iterate f (f x))

which can be verified by a routine induction on the natural number n. Further
applications and a proof of the approximation lemma are given in [2].

3 Generalising the approximation lemma

The function approx is not specific to lists, but can naturally be defined for
many other datatypes. The general pattern is that approx n is defined in
the same way as the recursive identity function for a datatype, except that
the numeric argument n is decremented at each recursive call. For example,
assuming that new datatypes are defined using a BNF-like syntax, the function
approx can be defined for a datatype Tree of binary trees of integers,

Tree ::= Leaf | Node Tree Int Tree

approx (n+ 1) Leaf = Leaf
approx (n+ 1) (Node l x r) = Node (approx n l) x (approx n r)

and for a datatype Expr of simple arithmetic expressions:

Expr ::= Const Int | Add Expr Expr | Mult Expr Expr

approx (n+ 1) (Const x) = Const x
approx (n+ 1) (Add l r) = Add (approx n l) (approx n r)
approx (n+ 1) (Mult l r) = Mult (approx n l) (approx n r)

Note that the function take n can also be defined for the datatype Tree, with
take 0 t = Leaf , but cannot be defined for Expr because this datatype does not
provide a nullary constructor (such as Leaf) to return in the case n = 0. The
function approx n avoids this problem by simply removing the case for n = 0,
which by case exhaustion means that approx 0 x = ⊥ for any value x.

Similarly, the approximation lemma itself is not specific to lists, but can
naturally be formulated and proved for any datatype for which the function
approx can be defined. For example, for either of the datatypes Tree and Expr
defined above, the approximation lemma is given by the following equivalence,
which has a proof similar to that outlined in [2] for lists:

x = y ⇔ ∀n. approx n x = approx n y

3

While it is straightforward to redefine approx and reprove the approximation
lemma for new datatypes, repeating similar definitions and (particularly) proofs
again and again is tedious, time consuming and prone to error. The solution is
to define a generic version of approx that is parametric in the datatype to which
it applies, and then prove a generic version of the approximation lemma based
upon this definition. In this way, the function approx and the approximation
lemma are defined and proved once, for an arbitrary datatype, and can then
simply be instantiated as required for each new datatype.

4 The generic approximation lemma

The generic approximation lemma is founded upon the standard denotational
approach to the semantics of functional languages [9]. In particular, we assume
that types are cpos (partially-ordered sets with a least element ⊥ and limits of
non-empty chains) and programs are continuous functions (functions between
cpos that are monotonic and preserve the limit structure). The key to the
generic approximation lemma itself is to define recursive datatypes as least
fixpoints of functors, a standard technique in generic programming [1].

Recall that a functor is a mapping F that takes types to types and functions
to functions, such that F preserves function typings, identity functions, and the
composition of functions. The appropriate notion of a fixpoint for a functor F
is a type A for which FA is isomorphic to A, in the sense that there exist two
functions in : FA → A and out : A → FA that are each other’s inverses. A
functor is called locally continuous if its mapping on functions is itself contin-
uous. A standard fixpoint theorem [10, 5] states that every locally continuous
functor F on cpos and continuous functions has a unique (up to isomorphism)
fixpoint A for which the identity function id : A→ A is the unique solution to
the recursive equation f = in · Ff · out. This unique fixpoint is called the
least fixpoint of the functor F , and is denoted by µF .

A large class of recursive datatypes can be defined as least fixpoints of locally
continuous functors. In particular, all polynomial datatypes — for example, any
sum-of-products datatype — can be defined in this way. This result generalises
to mutually recursive, parameterised, exponential and nested datatypes, but
for simplicity we only consider polynomial datatypes in this article.

For example, our datatype of binary trees can be defined by Tree = µT ,
where the functor T is defined on types and functions as follows:

T A ::= Leaf | Node A Int A

T f Leaf = Leaf
T f (Node a x b) = Node (f a) x (f b)

Similarly, Expr = µE , where the functor E is defined by:

4

E A ::= Const Int | Add A A | Mult A A

E f (Const x) = Const x
E f (Add a b) = Add (f a) (f b)
E f (Mult a b) = Mult (f a) (f b)

By the fixpoint theorem for locally continuous functors F , a generic identity
function id for an arbitrary datatype µF can be defined recursively by id =
in · F id · out. Hence, using our intuition that approx n is defined in the same
way as the recursive identity function except that the numeric argument n is
decremented at each recursive call, a generic version of approx for an arbitrary
datatype µF can now be defined as follows:

approx (n+ 1) = in · F (approx n) · out

Instantiating this definition to any specific datatype µF gives the expected
definition. For example, for the datatype Tree = µT of binary trees, with
constructors defined by leaf = in Leaf and node l x r = in (Node l x r), a
simple calculation shows that the generic definition of approx (written as app
below for conciseness) is equivalent to the specific definition for Tree:

app (n+ 1) = in · T (app n) · out
⇔ { in and out are inverses }

app (n+ 1) · in = in · T (app n)
⇔ { composition, case analysis }

app (n+ 1) (in Leaf) = in (T (app n) Leaf)
app (n+ 1) (in (Node l x r)) = in (T (app n) (Node l x r))

⇔ { definition of T }
app (n+ 1) (in Leaf) = in Leaf
app (n+ 1) (in (Node l x r)) = in (Node (app n l) x (app n r))

⇔ { definition of leaf and node }
app (n+ 1) leaf = leaf
app (n+ 1) (node l x r) = node (app n l) x (app n r)

Prior to stating and proving the generic approximation lemma itself, we
present two properties of the generic function approx. The first of these prop-
erties states that approximation functions form a chain,

∀n. approx n v approx (n+ 1)

and can be proved by induction on the natural number n. The base case n = 0
is trivially true because, by case exhaustion, approx 0 x = ⊥ for all x. For the
inductive case n = m+ 1, we calculate as follows:

5

approx (m+ 1)
= { definition of approx }

in · F (approx m) · out
v { induction hypothesis }

in · F (approx (m+ 1)) · out
= { definition of approx }

approx (m+ 2)

As well as being generic, the above proof is simpler than the corresponding proof
for the special case of lists [2], which requires a (non-inductive) case analysis
on lists in addition to the use of induction on natural numbers.

The second property states that the limit of the chain of approximation
functions predicted by the first property is the identity function:⊔

n{approx n} = id

To prove this property, we exploit the fact that the identify function for an
arbitrary datatype µF is, by the fixpoint theorem, the unique solution to the
equation f = in · F f · out. Hence, the above equation is equivalent to⊔

n{approx n} = in · F (
⊔
n{approx n}) · out

which we can then verify by the following calculation:⊔
n{approx n}

= { separating out n = 0 }
approx 0 t

⊔
n{approx (n+ 1)}

= { definition of approx }
λx.⊥ t

⊔
n{in · F (approx n) · out}

= { λx.⊥ is the unit for t on functions }⊔
n{in · F (approx n) · out}

= { continuity of (in ·) and (· out) }
in ·

⊔
n{F (approx n)} · out

= { local continuity of F }
in · F (

⊔
n{approx n}) · out

Again, the above proof is simpler than the standard proof for the special case of
lists [2], which makes use of structural induction on lists. Indeed, by exploiting
the fact that the identity function is the unique solution to a certain equation,
we have completely avoided the use of any form of induction!

Finally, given an arbitrary locally continuous functor F , the generic approx-
imation lemma for the datatype µF is stated as follows:

x = y ⇔ ∀n. approx n x = approx n y

The ⇒ direction is trivially true by the substitutivity property of pure func-
tional languages, which states that applying a function to equal arguments gives
equal results. Conversely, the ⇐ direction is a simple consequence of our two
properties of approx and the substitutivity property for limits:

6

x = y
⇔ { definition of id }

id x = id y
⇔ { properties of approx }⊔

n{approx n} x =
⊔
n{approx n} y

⇔ { continuity of application }⊔
n{approx n x} =

⊔
n{approx n y}

⇐ { limits }
∀n. approx n x = approx n y

Applications of instances of the generic approximation lemma abound. We
conclude this section with an application of the generic approximation lemma
itself. Given an arbitrary locally continuous functor F , consider the following
definition for a generic function unfold for an arbitrary datatype µF :

unfold g = in · F (unfold g) · g

This function forms the basis of a simple but powerful calculus for defining and
reasoning about programs that produce values of recursive datatypes [8, 6].
The calculus is founded on the fact unfold g is not just the least solution to
its defining equation, but is in fact the unique solution. That is, we have the
following universal property for the generic function unfold :

h = unfold g ⇔ h = in · F h · g

This property is normally proved using fixpoint induction. However, a simpler
proof is possible using the generic approximation lemma. The ⇒ direction is
trivially true because substituting h = unfold g into the right-hand side gives
the definition for unfold g . Conversely, in the ⇐ direction we have:

h = unfold g
⇔ { extensionality }

∀x. h x = unfold g x
⇔ { generic approximation lemma }

∀x. ∀n. approx n (h x) = approx n (unfold g x)
⇔ { composition, extensionality }

∀n. approx n · h = approx n · unfold g

The final line above can now be verified by a routine induction on the natural
number n, using the assumption that h = in · F h · g.

5 Summary and conclusions

We have shown how a useful proof method for lists can be generalised to a
generic proof method that is parametric in the datatype to which it applies.
This work is part of a continuing effort in programming language research to
increase the reusability of programs and proofs by abstracting away from un-
necessary details, in this case the details of the underlying datatype.

7

Acknowledgements

Thanks to Roland Backhouse for suggestions that improved the presentation of
the paper, and to Paul Blampied for technical expertise regarding the fixpoint
theorem. The first author is supported by EPSRC grant Structured Recursive
Programming and ESPRIT Working Group Applied Semantics.

References

[1] R. Backhouse, P. Jansson, J. Jeuring, and L. Meertens. Generic program-
ming: An introduction. In D. Swierstra, P. Henriques, and J. Oliveira,
editors, Advanced Functional Programming, LNCS 1608, pages 28–115.
Springer-Verlag, 1999.

[2] R. Bird. Introduction to Functional Programming using Haskell (second
edition). Prentice Hall, 1998.

[3] R. Bird and P. Wadler. An Introduction to Functional Programming. Pren-
tice Hall, 1988.

[4] J. de Bakker. Mathematical Theory of Program Correctness. Prentice-Hall,
1980.

[5] M. Fokkinga and E. Meijer. Program calculation properties of continuous
algebras. Technical Report 91-4, Centre for Mathematics and Computer
Science (CWI), Amsterdam, 1991.

[6] J. Gibbons and G. Hutton. Proof methods for structured corecursive pro-
grams. In Proceedings of the 1st Scottish Functional Programming Work-
shop, Stirling, Scotland, Aug. 1999.

[7] A. Gordon. Bisimilarity as a theory of functional programming. BRICS
Notes Series NS-95-3, Aarhus University, 1995.

[8] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with
bananas, lenses, envelopes and barbed wire. In J. Hughes, editor, Proc.
Conference on Functional Programming and Computer Architecture, num-
ber 523 in LNCS. Springer-Verlag, 1991.

[9] D. A. Schmidt. Denotational Semantics: A Methodology for Language
Development. Allyn and Bacon, Inc., 1986.

[10] M. B. Smyth and G. D. Plotkin. The category theoretic solution of re-
cursive domain equations. SIAM Journal of Computing, pages 761–783,
1982.

8

