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Abstract. We formulate the Becker-Döring equations for cluster growth in the

presence of a time-dependent source of monomer input. In the case of size-independent

aggregation and fragmentation rate coefficients we find similarity solutions which are

approached in the large time limit. The form of the solutions depends on the rate of

monomer input and whether fragmentation is present in the model; four distinct types

of solution are found.
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1. Introduction

Until recently, self-similar behaviour in the Becker-Döring equations has been almost

unknown. However self-similar behaviour in the Smoluchowski coagulation equations

[24] is commonplace and widely studied, for example, see Leyvraz [17] for a recent

review. In the pure aggregation formulation of the Smoluchowski model [24]

dcr
dt

= 1
2

r−1∑

s=1

as,r−scscr−s −
∞∑

s=1

ar,scrcs, (1.1)

attraction to self-similar solutions are observed in the explicitly solveable cases ar,s = a

and ar,s = ars as well as many other kernels. The former has the form cr(t) = t−2ψ(r/t)

with ψ(η) = (4/a2%)e−2aη/%; existence and convergence results have been proved for

various cases by Kreer [16], da Costa [7] and Menon & Pego [21, 22]. The gelling solution

for the kernel ar,s = ars was first found by Leyvraz & Tschudi [18]. For arbitrary initial

data, this system undergoes a gelation transition at tg = 1/a
∑

∞

r=1 r
2cr(0); for t > tg

the solution has the form cr(t) = t−1φr with φr independent of time, which is formally

a similarity solution, and attracting for all initial data.

Krapivsky & Redner [15] have studied the differences in asymptotic structure

between constant monomer and constant mass formulations of aggregation problems.

Their study, however, was on the Smoluchowski coagulation equations, which allows
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coalescence between clusters of any size, perturbed by the addition of either Becker-

Döring aggregation or Becker-Döring fragmentation processes. The Smoluchowski

coagulation equations in the presence of monomer input have been analysed by Davies

et al [11] who highlighted the important role which self-similar behaviour plays in the

kinetics of aggregation. Lushnikov & Kulmala [19, 20] have studied a continuous form of

the Smoluchowski coagulation equations in the presence of an input term and analysed

the existence and form of similarity solutions in the large-time limit.

In this paper we consider the Becker-Döring equations in the more general form

ċ1 = J0(t) − J1 −
∞∑

r=1

Jr (1.2)

ċr = Jr−1 − Jr (1.3)

Jr = arc1cr − br+1cr+1, (1.4)

with J0(t) being a term representing the time-dependent input of monomers. This

statement of the problem includes both of the more commonly quoted forms of the

Becker-Döring equations. These are the constant monomer concentration formulation

which corresponds to J0 = J1 +
∑

∞

r=1 Jr, giving ċ1 = 0; this form was originally studied

by Becker & Doring in [3]; and the constant mass formulation, which corresponds to

J0(t) ≡ 0. This latter form was proposed by Penrose & Lebowitz [23] and conserves the

total mass of the system, defined by

M1(t) =
∞∑

r=1

rcr, (1.5)

Explicit solution for the case of constant mass (that is J0 ≡ 0) and pure aggregation

(br = 0 for all r) with rates of the form ar = ar has been found by Brilliantov &

Krapivsky [5]. The solution for the constant monomer formulation with br = 0 and

ar = ar is given in King & Wattis [14]. Brilliantov & Krapivsky [5] also consider

the case of constant input rate in the purely aggregative Becker-Döring system with

aggregation rates given by ar = arγ and 0 ≤ γ ≤ 1. The Becker-Döring system of

equations with monomer input has also been studied by Blackman & Marshall [4], who

consider a constant rate of input into a system with aggregation and fragmentation

rates given by ar = arp and br = br−q. Several authors have analysed systems similar

to (1.2)–(1.4) in the context of epitaxial growth; for details, see the work of Bales &

Chrzan [2], Evans & Bartlet [12], and Gibou et al [13]. We comment further on these

works in the Discussion.

We shall consider input rates of the more general form J0(t) = αtw and, as with the

Smoluchowski equations, we find self-similar behaviour. However, we find self-similar

solutions in the case with fragmentation as well as in the case of pure aggregation.

1.1. Time-dependent input

In this paper we will analyse the Becker-Döring system given by (1.2)–(1.4) equations

with the addition of a source of monomer which increases the concentration at a rate
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given by J0(t) = αtw with w > −1. We consider the initial data cr(0) = 0 for all r. The

first moment of the distribution, M1, which is the total mass in the system (1.5) then

satisfies Ṁ1 = αtw, thus

M1 =
αtw+1

(w + 1)
, (1.6)

provided w > −1. It is also useful to define the quantity M0 given by

M0 =
∞∑

r=1

cr, (1.7)

which represents the total number of clusters (including monomers). In this paper we

will restrict ourselves to aggregation and fragmentation rates which are independent of

cluster size, that is we will assume ar = a and br = b for all r. The restriction to size-

independent rates enables us to develop explicit formulae for the large-time behaviour

of all concentrations. We cover both the cases b = 0 and b 6= 0; however, the theory and

results for these two cases are quite distinct so will be considered separately.

In the case of pure aggregation (b = 0) for w = 0 da Costa et al [8] have rigorously

proved that

c1 → 0, M0 → +∞, M0c1 → αtw, (1.8)

as well as cr → 0 as t→ ∞ for all r. We would like to know the parameter ranges of w for

which such large-time asymptotic results hold, and if they persist when fragmentation

is reintroduced into the model (i.e. when b 6= 0).

2. The Becker-Döring system with fragmentation

2.1. Equilibrium theory

In the case of the constant mass Becker-Döring system there are equilibrium solutions,

and the properties of these will be useful in motivating some of the following results.

At equilibrium, all fluxes, Jr = 0, so that cr = (ac1/b)
r−1c1, for arbitrary c1. Such a

solution has number and mass given by

M0 =
bc1

b− ac1
, M1 =

b2c1
(b− ac1)2

. (2.1)

The value of c1 adopted by the system at equilibrium is determined by equating M1 (2.1)

to the initial mass of the system (1.5). For c1 < b/a, both M0 and M1 are finite, they

diverge as c1 → b/a, since in this limit cr = c1 for all r; and for c1 > b/a the distribution

function cr increases with size r. Thus if the mass or the number of clusters diverges,

then the system cannot be converging to an equilibrium solution with c1 < b/a, but

rather must have c1 → C ≥ b/a or be attracted to some other non-equilibrium solution.

For w < −1, the problem with input must be reposed so that the input term in

(1.2) is J0(t) = α(t+t0)
w rather than J0(t) = αtw, since this latter form has a singularity

at t = 0. With t0 > 0, the total mass in the system is finite, being given by

M1(t) = M1(0) + α(tw+1
0 − (t+ t0)

w+1)/(−1 − w). (2.2)
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We define %∞ to be the large time limit of M1(t), then the system as a whole will

approach the solution cr = (a/b)r−1cr1 with c1 given by

c1 =
b2

2a2%∞


1 +

2a%∞
b

−
√

1 +
4a%∞
b


 . (2.3)

2.2. Accelerating input, w > 1

For large w, it may be assumed that monomers are added to the system so fast that the

monomer concentration rises without limit. In this case we assume that c1 ∼ Ctγ with

γ > 0, and cr(t) = c1(t)ψ(r, t). Equation (1.3) then implies

1

b

∂ψ

∂t
+
γψ

bt
=
(
1 − aCtγ

b

)
∂ψ

∂r
+ 1

2

(
1 +

aCtγ

b

)
∂2ψ

∂r2
. (2.4)

From this we can see that the leading-order balance depends on the sign of γ. For γ > 0,

if we assume that ψ varies slowly with r, then we have at leading order

1

b

∂ψ

∂t
+
γψ

bt
= −aCt

γ

b

∂ψ

∂r
. (2.5)

This equation is solved by the similarity solution ψ(r, t) = f(η) where η = r/t1+γ,

f(η) =





(
1 − (γ + 1)η

aC

)γ/(γ+1)

η < ηc :=
aC

γ + 1
0 η > ηc.

(2.6)

and the constant of integration has been determined from the boundary condition

f(0) = 1. However, C and γ remain to be determined. The shape of f(η) is illustrated

in Figure 1, for a range of w-values.
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Figure 1. Illustration of the self-similar form of the cluster size distribution f(η) for

w = 1.1, 1.4, 2, 3, 4, 5, with α = 1, a = 1, b = 1.
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To find C and γ we carry out a similar analysis to that above, but on on equation

(1.2), which yields

γ

bt
=
αtw−γ

bC
− 1 −

(
aCtγ

b
− 1

) ∫
∞

η=0
f(η) dη t1+γ , (2.7)

where η(r, t) = r/t1+γ describes the similarity solution for ψ(r, t). At leading order, the

balance is between the input term involving which is O(tw−γ) and the loss term which

is O(t1+2γ). This implies that

γ = 1
3
(w − 1), and C = ((1 + 2w)α/3a2)1/3; (2.8)

thus

c1(t) ∼
(

(1 + 2w)α

3a2

)1/3

t(w−1)/3, cr(t) ∼ c1(t)f(r/t(w+2)/3), (2.9)

where f(η) is given by (2.6). Since this solution is only valid for γ > 0, it corresponds

to the case w > 1.

The evolution of a cluster of large size r � 1 follows a two-stage process:

firstly the concentration remains small for a long time. Since the front moves so

that its position is given by r = (9αa(1 + 2w))1/3t(w+2)/3/(w+ 2), it takes a time

tc(r) ∼ ((w+2)3r3/9αa(1+2w))1/(w+2) to reach the cluster size r � 1. After this

there is a rapid phase of growth during which the concentration rises to O(t(w−1)/3), and

in the second phase the concentration cr continues to grow, asymptoting to c1(t) given

by (2.9). This behaviour can be seen in Figure 2.
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Figure 2. Illustration of the self-similar form of the cluster size distribution cr(t) with

w = 3, α = 1, a = 1, b = 1.
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2.3. The case w = 1

The problem of input with w = 1 is related to a previously studied case, since it

corresponds to the constant monomer form of the Becker-Döring equations. However,

with input, the large-time limit of the monomer concentration is a priori unknown and

depends on the input parameter α.

First we assume that c1 → C as t → ∞, and then write the other concentrations

as cr = Cψ(r, t). For large r the quantity ψ(r, t) is then determined by the continuum

limit equation

∂ψ

∂t
= 1

2
(aC + b)

∂2ψ

∂r2
− (aC − b)

∂ψ

∂r
. (2.10)

Imposing the boundary conditions ψ = 1 at r = 1 and ψ → 0 as r → ∞, we find the

solution

ψ = 1
2
erfc


 r − s(t)√

2(aC + b)t


 , (2.11)

with s(t) = aC − b. For this solution we have M1 ∼ 1
2
s2C, and so Ṁ1 ∼ C(aC − b)2)t

as t→ ∞; this solution corresponds to input of the form αt with

α = C(aC − b)2. (2.12)

This equation determines the remaining unknown parameter C in terms of α.

For large α, C can be approximated by

C ∼ (α/a2)1/3, so that s(t) ∼ (αa)1/3t, (2.13)

and we see that the input is so fast that the monomer concentration is determined by

a balance of the input rate α and the aggregation rate a, that is the parameters which

determine how fast monomer is added and how fast it can be used up in aggregation

processes, and the fragmentation rate plays no role in determining C. For small α the

appropriate approximation is

C ∼ b/a+
√
α/ab, so that s(t) ∼

√
αa

b
t, (2.14)

and we see that the monomer concentration is only slightly above the largest possible

for an equilibrium solution to exist. In particular we see that at leading order the input

rate plays no role at all, we simply have C ∼ b/a, so that the monomer concentration

is a balance of aggregation and fragmentation rates. Only in the first order correction

term does the presence of the input term influence the monomer concentration.

2.4. The case 0 < w < 1

As in the case w = 1 we now have γ = 0; and as suggested by the small α limit of the

case w = 1, namely (2.14), we have C = b/a. Formally the leading order balance in (2.7)

is then between the two terms in large brackets. However, to fully determine the leading
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order expressions for the concentrations cr(t) we need to know the first correction term

to the monomer concentration, hence we postulate

c1(t) ∼
b

a

(
1 + Ct−p

)
, as t→ ∞, (2.15)

cr(t) ∼
b

a
ψ(r, t). (2.16)

From (1.3) we then obtain the partial differential equation

1

b

∂ψ

∂t
=
∂2ψ

∂r2
− C1t

−p∂ψ

∂r
, (2.17)

with leading order solution ψ = H(s(t) − r), with the position of the wave front, s(t)

given by ṡ = bCt−p. We find a more accurate solution of (2.17) by transforming from r

to z = r − s(t), which yields ψt = bψzz. These equations are solved by

s(t) ∼ bCt1−p

1 − p
, and ψ = 1

2
erfc

(
z

2
√
bt

)
. (2.18)

However, the quantities p and C remain undetermined; they are found from the

equation for ċ1, namely (1.2). In place of (2.7) we have

−pbC1t
−p−1

a
= αtw − b2C1t

−ps(t)

a
. (2.19)

At large-times, the two terms on the right-hand side form the leading order balance,

implying p = 1
2
(1 − w) and C1 =

√
αa(1 + w)/2b3 (we take the positive root since we

require ṡ > 0 in (2.18)). Thus we have

c1(t) ∼
b

a
+

√
α(1 + w)

2 a b t1−w
, and s(t) ∼

√√√√2α a t1+w

b(1 + w)
, (2.20)

wherein we note that the monomer concentration always approaches its equilibrium

value from above, even though the initial data has c1(0) < b/a. For small w in the

range 0 < w < 1 the monomer concentration approaches its equilibrium value with the

difference decaying close to 1/
√
t, however, for w near unity (and w < 1) the approach

to equilibrium is extremely slow. The cluster size distribution is given by

cr(t) ∼
b

2a
erfc

(
r − s(t)

2
√
bt

)
. (2.21)

For w just below unity the diffusive wavefront moves to increasingly large aggregation

numbers almost linearly in time (r = s(t) = O(t)). For w just above zero, the diffusive

wavefront moves to large aggregation numbers only slightly faster than r = s(t) =

O(
√
t). See Figure 3 for an example where w = 0.5 –the middle of the range 0 < w < 1.

2.5. The case w = 0

As with the case 0 < w < 1, the case w = 0 corresponds to keeping the monomer

concentration fixed at c1 = b/a; however, to determine the solution in the presence of

continuous input, we again require knowledge of the first correction term to the monomer

concentration in order fully determine the solution for larger cluster sizes. The solution
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Figure 3. Illustration of the form of the cluster size distribution cr(t) at large-times,

with w = 0.5, α = 1, a = 1, b = 1.

in this case is thus a generalisation of the solution found in Wattis & King [25], since the

extra parameter α, which determines the input rate affects the solution. With c1 = b/a

the aggregation and fragmentation effects are exactly balanced.

By continuity with the results of (2.20) in the limit w → 0, we expect that at large

times, the monomer concentration will be given by

c1 =

(
b

a

)(
1 +

χ√
t

)
. (2.22)

The difference between the cases w = 0 and w > 0 occur in the form of the size-

distribution: when w > 0 ‘advection’ of matter to larger cluster sizes dominated diffusion

as is seen through s(t) �
√
t in (2.20). When w = 0 we expect the s(t)/

√
t term in

(2.21) to become a constant.

We follow the analysis of earlier sections, and write cr(t) = bψ/a for large r and

large t, obtaining

∂ψ

∂t
= b

∂2ψ

∂r2
− bχ√

t

∂ψ

∂r
, (2.23)

which has a similarity solution of the form ψ = ψ(r/
√
t). Equation (2.23) is subject to

the boundary conditions ψ(r, t) → 0 as r → ∞ and ψ(1, t) = 1. The solution of (2.23)

is then

ψ =
erfc((r/2

√
bt) − χ

√
b)

erfc(−χ
√
b)

. (2.24)

There remains the problem of determining the constant χ and how it depends on the

input rate α.
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We determine this by calculating the mass M1 in two ways; from the input rate we

have M1 ∼ αt as t→ ∞. Secondly, from the definition of the mass, M1 =
∑

∞

r=1 rcr, the

formula cr(t) = (b/a)ψ(r, t) and the known form of ψ (2.24) we find

M1 ∼
4b2t

a erfc(−χ
√
b)

∫
∞

0
η erfc(η − χ

√
b) dη, (2.25)

We thus have the equation

αa

4b2
= 1 + 2χ2b+

2χ
√
b e−χ2b

√
π erfc(−χ

√
b)

(2.26)

for χ in terms of α. Whilst this is a transcendental equation for χ we can obtain the

qualitative behaviour by considering it as an explicit equation for α in terms of χ, and

evaluating the right-hand side in limits χ→ ±∞.

Assuming a large positive value for χ we obtain the asymptotic formula χ ∼√
αa/2b3 valid for α � 1. When χ = 0 we have α = b2/a and for χ large and negative,

we obtain χ ∼ −
√
b/αa corresponding to α→ 0+ (using [1], eq.7.2.5). Thus as α ranges

from small to large values, we obtain a variety of solutions, for which χ ranges from

large negative to large positive values. The range of solutions is illustrated in Figure 4.

The solution for w = 0 and large values of α (hence large positive χ) shares some

common features with the solution for w > 0 in the limit w → 0, notably the form

of a moving diffusive wave. The solution we have generated, also includes the known

solution for the constant monomer formulation of the Becker-Döring equations (χ = 0

implies α = b2/a) and where the monomer concentration approaches its equilibrium

value more quickly than the t−1/2 convergence seen for other values of α. The result for

small α (and hence large negative χ) may give us insight into the form of the solution

in the region w < 0.

0 20 40 60 80 100
r

0
20

40
60

80
100

t

0
0.2
0.4
0.6
0.8

1

0
20

40
60

80
100

r
2000

6000
10000

t

0
0.2
0.4
0.6
0.8

Figure 4. The similarity solution given by (2.24), in the case b = 1, χ = +3 (left)

and χ = −3 (right).
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2.6. The case −1 < w < 0

In this case, even though the rate of input is decaying with time, the total mass in the

system still diverges. Thus we expect the monomer concentration to again approach b/a

but more slowly than in the above case. Including the correction term, the monomer

concentration is now given by

c1 ∼
b

a
− χ

t(w+1)/2
, (2.27)

which we see reduces to the above result in the case w → 0 (2.22). The total number of

clusters M0 must then grow with t(w+1)/2 in order to provide a leading order balance in

the equation for M0, namely

Ṁ0 = αtw + (b− ac1)M0 − bc1. (2.28)

The typical cluster size is then given by M1/M0 ∼ t(w+1)/2, and so we seek a similarity

solution in the variable η = r/t(w+1)/2. We write the size-distribution function as

cr = (b/a)ψ(r, t) and find

∂ψ

∂t
= b

∂2ψ

∂r2
+

aχ

t(w+1)/2

∂ψ

∂r
, (2.29)

with the boundary conditions ψ = 1 at r = 1 and ψ → 0 as r → ∞. Assuming ψ = f(η)

we obtain f ′′ + (aχ/b)f ′ = 0 with f(0) = 1 and f(η) → 0 as η → ∞ from which we

deduce f = exp(−χaη/b).
It remains to determine χ, which is found, as in previous calculations, by evaluating

the mass M1. Given the above solution for ψ we obtain M1 ∼ b3tw+1/a3χ2 which, when

set equal to αtw+1/(w+1), yields χ = (b/a)
√
b(w+1)/aα.

In summary, as t→ ∞ we have

c1 ∼
b

a


1 −

√
b(w + 1)

aαtw+1


 , cr ∼

b

a
exp


−r

√
b(w + 1)

aαtw+1


 . (2.30)

2.7. The case w = −1

This case is very similar to the case −1 < w < 0, with the complication that the scalings

now involve terms in log t, since the mass, M1 scales according to M1 ∼ α log t. The

characteristic size of clusters scales with 1/
√

log t. We have

c1 ∼
b

a

(
1 −

√
b

αa log t

)
, cr ∼

b

a
exp

(
−r
√

b

αa log t

)
, (2.31)

as t→ ∞.

2.8. Summary

Table 1 summarises the results for each of the cases detailed above. The leading order

expressions for c1, M0 and 〈r〉 := M1/M0 are all quoted. In all cases M1 = αtw+1/(w+1).

Note that the exponents of t are continuous across the special cases of w = 1 and w = 0

in the expressions for c1, M0 and 〈r〉.
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w c1 M0 〈r〉

w > 1

(
(1+2w)αtw−1

3a2

)1/3 (
3α2t1+2w

(1+2w)a

)1/3 (
αa

3
(1+2w)

)1/3 t(w+2)/3

(1+w)

w = 1 C > b/a
α=C(aC−b)2

(aC − b)C1t
αt

2(aC−b)C
= 1

2
(aC−b)t

0<w<1
b

a
+ O(t(w−1)/2)

√
2αb

a(1+w)
t(1+w)/2

√
αa

2b(1+w)
t(1+w)/2

w = 0
b

a
+ O(t−1/2) O(t1/2) O(t1/2)

−1<w<0
b

a
+ O(t−(w+1)/2)

√√√√ bαt(w+1)

a(w + 1)

√√√√aαt(w+1)

b(w + 1)

w = −1
b

a

(
1 −

√
b

αa log t

) √
bα log t

a

√
aα log t

b

Table 1. Summary of scaling behaviour for the Becker-Döring equations with

fragmentation and aggregation. In all cases M1 =
∑
∞

r=1
rcr = M1(0)+αtw+1/(w+1);

the average cluster size is given by 〈r〉 := M1/M0.

For w > 1 the monomer concentration grows without bound (scaling with t(w−1)/3),

and the range of cluster sizes existent within the distribution scale with t(w+2)/3. For

w ≤ 1 the monomer concentration saturates, and remains constant in the large time

limit. For w < 1 the limiting concentration is the critical value of b/a. Note the

difference in results between 0 < w < 1 and −1 < w < 0, although the forms of M0 and

〈r〉 are very similar there are differences of a factor of
√

2 due to the ‘advection’ process

which is present in the case of larger w, whereas for the smaller w the kinetics are due

purely to diffusion in cluster size.

3. Irreversible aggregation

In the absence of aggregation, we can rescale time by the aggregation rate and so without

loss of generality it is sufficient to study the equations

ċr = c1(cr−1 − cr) (3.1)

ċ1 = αtw − c21 − c1M0 (3.2)

Ṁ0 = αtw − c1M0. (3.3)

This corresponds to the system (1.2)–(1.3) with b = 0 and a = 1. We might expect such

a simplification to the governing equations to make the ensuing analysis simpler, which

it does, however, the end results for the behaviour of c1 and the distribution cr is no less

complicated than the case for b 6= 0. Note that (3.2)–(3.3) form a closed system of two
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ordinary differential equations for (c1,M0), thus c1 can be determined without knowing

the full solution for cr(t) and r > 1.

3.1. General theory for the distribution of sizes

We assume that the concentrations follow a similarity solution of the form

cr(t) ∼ Ctγf(η) with f(0) = 1 and η = r/tβ as t→ ∞, (3.4)

then c1 ∼ Ctγ . Thus we obtain qualitatively different behaviour for γ > 0, γ = 0 and

γ < 0; the only restriction on parameters is β > 0.

The ordinary differential equation for f(η) is obtained by an expansion of (3.1),

which yields

γCtγ−1f(η) − βCtγ−1ηf ′(η) = −C2t2γ−βf ′(η). (3.5)

As t → ∞ both terms on the lhs are of the same order of magnitude, so a balance

of terms in this equation occurs when β = 1 + γ, then we have γf = (βη − C)f ′,

which implies f = K(C − βη)β/γ for some constant K. The initial condition f(0) = 1

determines K, giving

f(η) =

{
(1 − (1+γ)η/C)γ/(1+γ) η < C/(1 + γ)

0 η ≥ C/(1+γ),
(3.6)

again we observe radically different qualitative behaviour for the cases γ <>− 0. The

condition β > 0 implies γ > −1.

To determine the remaining constants C and γ in terms of the given parameters

α and w we turn to the equation for the total concentration M0. Calculating the total

number of clusters, M0 from above we find

M0 ∼
Ctβ/β∑

r=1

cr ∼
∫ C/β

η=0
Ctγ

(
1 − (1 + γ)η

C

)γ/(1+γ)

tβdη ∼ C2t1+2γ

1+2γ
. (3.7)

The details as to which terms in (3.2) and (3.3) form the leading order balance, depend

on the value of γ and hence on w. We thus consider each parameter range in turn.

3.2. Irreversible aggregation with w > 1

The case w > 1 arises from assuming γ > 0 in (3.4). As already noted (2.2) this arises

from a balance in (3.3) and (3.2) of input (αtw) and loss due to M0c1 ∼ O(t1+3γ). The

leading order balance in both of these equations gives γ = (w − 1)/3 and comparing

coefficients of these terms we find α = C3/(1 + 2γ), thus the monomer concentration is

given by

c1 ∼
(

1
3
α(1 + 2w)

)1/3
t(w−1)/3 as t→ ∞. (3.8)



Similarity solutions of a Becker-Döring system with time-dependent monomer input 13

The distribution of sizes is given by cr(t) ∼ c1(t)f(r/t(w+2)/3) with the self-similar

function f(η) given by

f(η) =





(
1 − w+2

(9(1+2w))1/3
η

) (w−1)
(w+2)

η < ηc :=
(9(1+2w))1/3

(2 + w)
0 η > ηc.

(3.9)

The maximum cluster size in the distribution is

rm ∼ (9(1+2w))1/3t(w+2)/3

(w + 2)
. (3.10)

The behaviour described above is identical to the case of the Becker-Döring

equations with fragmentation as studied in Section 2.2, since as all concentrations

grow arbitrarily large in time with the same exponent the aggregation terms, being the

product of two concentrations form the leading order terms, the fragmentation terms

are subdominant since they are proportional to a concentration.

3.3. Irreversible aggregation with w = 1

Taking the limit w → 1+ in the above section, we deduce that it is possible that

c1 approaches a constant as t → ∞. Such a result will change the shape of the

distribution, since the aggregation and fragmentation terms will then be of the same

order of magnitude in the large-time limit. Much of the asymptotic structure for this

case will be the same as that of the constant monomer concentration formulation of the

Becker-Döring equations. The most important unresolved issue is to determine precisely

to which constant the monomer concentration approaches.

The equation Ṁ0 = αt− c1M0 for M0 implies

c1 ∼ C + χtq, M0 ∼ αt/C +mtµ, (3.11)

for some constants C,m, χ, q, µ. A relationship between these can be established by

solving the equations for M0 and c1 to second order. This yields q = 1, µ = 0 and

m = −(χ + 1)C, leaving χ and more importantly C undetermined. These will be

determined after the shape of the distribution has been found.

Writing cr(t) ∼ Cψ(r, t), we have

1

C

∂ψ

∂t
= −∂ψ

∂r
+

1

2

∂2ψ

∂r2
, (3.12)

which at leading order is solved by ψ = H(Ct− r). This is formally the solution given

by (3.6) in the case γ = 0. To obtain the shape of the transition region near r = Ct, we

put r = Ct+ z, which yields ψt = 1
2
Cψzz, leading to the solution

ψ = 1
2
erfc

(
r − Ct√

2Ct

)
. (3.13)

To determine C we calculate the mass in two ways. The quantity M1 is given by

Ṁ1 = αt so M1 = 1
2
αt2 +M1(0). Also

M1 =
∞∑

r=1

rcr ∼
Ct∑

r=1

rC ∼ 1
2
C3t2. (3.14)
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Thus C = α1/3, and although the form of ψ is no longer as simple as (3.9), the formula

(3.8) for C in terms of α and w remains valid. In summary we have

c1 ∼ α1/3 + O(t−1), cr ∼ 1
2
α1/3 erfc

(
r − α1/3t√

2α1/3t

)
as t→ ∞. (3.15)

Note that this has the same form as the constant monomer case, and is similar to the

form of the solution for the case with fragmentation, namely (2.11) with (2.14). In the

presence of fragmentation, the monomer concentration has a limiting value which is

dependent on the aggregation and fragmentation rates, but agrees with the above result

in the limit of large α.

3.4. Irreversible aggregation with − 1
2
< w < 1

All the scalings as derived in section 3.1 remain valid in this case, however, note that

there are qualitative differences in behaviour between this and the case w > 1. Firstly,

since this case corresponds to γ < 0 the monomer concentration decays to zero instead

of growing without bound, although the total number of clusters M0 given by (3.7)

diverges as t → ∞. Secondly, the function f(η) takes a qualitatively different form,

now diverging at η = ηc rather than taking the value zero and being continuous. An

illustration of f(η) for a range of values of w is given in figure 5.

The leading order balance in (3.3) remains that between the two terms on the

right-hand side, so γ and C are given by the same formulae as in the case w > 1 (§3.2).

Hence (3.8) and (3.10) remain valid along with cr ∼ c1(t)f(r/t(w+2)/3) with f(η) given

by (3.9).

4

3

2

1

0
10.80.60.40.20

Figure 5. Illustration of the form of the form of the self-similar cluster size distribution

of the pure aggregation Becker-Döring system. The function f(η) given by (3.9) is

plotted against η for w = 0.2 (steepest curve), 0.5 (middle curve), and 0.8 (almost flat

at f = 1 for 0 < η < 1). Each value of w gives a different ηc where the curve diverges;

for η > ηc, the distribution is given by f = 0.

This case contains the special case w = 0 which can be analysed more simply by

a variety of techniques, since equations (3.2)–(3.3) are then autonomous. This system
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has been rigorously analysed by centre-manifold theory and Poincaré compactification

by da Costa et al [8], proving the validity of the above results. In section 3.8, we show

that the distribution is not discontinuous across r = rm, rather there is a boundary layer

in which different scalings apply and provide a smooth transition across this region of

rapid change.

3.5. Irreversible aggregation with w = − 1
2

This is a special borderline case, which qualitatively has the same behaviour as

−1
2
< w < 1, but the details of the scalings include log terms. In particular, we

consider the equation
˙̃
M 0 = c21 where M̃0 = M0−c1 and (3.2), and to satisfy the leading

order balance in these equations we require

c1 ∼ (1
3
α)1/3t−1/2(log t)−1/3,

M0 ∼ M̃0 ∼ (3α2)1/3(log t)1/3, as t→ ∞. (3.16)

We then find the size-dependence of the distribution scales according to similarity

variable η = r(log t)1/3/t1/2, yielding an equation for f(η) of the form

−1
2
f − 1

2
ηf ′ = −(1

3
α)1/3f ′, (3.17)

which is solved by f(η) = 1/(1 − 1
2
(1

3
α)−1/3η), which, however, is not integrable. The

cluster of maximum size thus scales with time according to rm ∼ 2(1
3
α)1/3t1/2(log t)−1/3.

3.6. Irreversible aggregation with −1 ≤ w < − 1
2

In this case the total number of clusters M0 saturates, that is tends to a nonzero constant

in the large time limit, whilst the monomer concentration decays. This is most easily

seen if we consider the equation
˙̃
M 0 = c21 for M̃0 = M0 − c1 =

∑
∞

r=2 cr.

We thus find the large-time asymptotic behaviour for M0, c1 is as follows

M0 ∼ M̃0 ∼ K, c1 ∼
α

K
tw as t→ ∞, (3.18)

for some constant K which depends on the initial data. Note that with γ = w, the

function f(η) is not integrable, thus there is no self-similar size distribution in this case.

The interpretation of this is that the kinetics are so slow that the system always retains

a memory of its initial data.

3.7. Summary

See Table 2 for a summary of the large time behaviours of c1, M0 and the ratio M1/M0

which gives the average cluster size in the system. For w < −1 the mass of the system

and the kinetics depends to leading order on the initial conditions, and therefore typically

there is no self-similar behaviour observed.
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w c1 M0 〈r〉

w > 1 (1
3
α(1+2w))1/3t(w−1)/3

(
3α

1+2w

)1/3

t(1+2w)/3 (α(1+2w))1/3

31/3(1+w)
t(2+w)/3

w = 1 α1/3 + O(t−1) α2/3t 1
2
α1/3t

−1
2
< w < 1 (1

3
α(1+2w))1/3t(w−1)/3

(
3α

1+2w

)1/3

t(1+2w)/3 (α(1+2w))1/3

31/3(1+w)
t(2+w)/3

w = −1
2

(1
3
α)1/3t−1/2(log t)−1/3 (3α2)1/3(log t)1/3 (8

3
α)1/3t1/2(log t)−1/3

−1 ≤ w < − 1
2

αtw

C0

C0 O(tw+1)

Table 2. Summary of scaling behaviour for pure aggregation equations. In all

cases M1 =
∑
∞

r=1
rcr = M1(0) + αtw+1/(w + 1); the average cluster size is given

by 〈r〉 := M1/M0. For w ≤ − 1

2
there are no similarity solutions.

3.8. Higher order analysis for − 1
2
< w < 1

Once the large-time behaviour of c1 andM0 have been determined, there is an alternative

way of deriving the size-dependence of the distribution which we shall now describe. The

advantage of the formulation presented below is that it enables higher-order effects to

be determined, and we shall show how the discontinuity at r = rm given by (3.10) is

smoothed.

In the large-time limit, the cr variables are found by making the substitution

cr(t) = c1(t)ψ(r, t) where r is treated as a continuous variable. With τ defined such

that d/dτ = (1/c1)d/dt we obtain

∂ψ

∂τ
= −ψ

c1

dc1
dτ

− ∂ψ

∂r
+ 1

2

∂2ψ

∂r2
. (3.19)

From section 3.4 we know that c1 ∼ O(t(w−1)/3) thus τ ∼ O(t(w+2)/3) and c1(τ) = O(τ ν)

where ν = −(w − 1)/(w + 2). As w ranges from − 1
2

to unity, the parameter ν varies

from −1 to zero.

At leading order, the second derivative term in (3.19) may be ignored, leaving an

equation which has the similarity solution ψ(r, t) = f(η̂) with η̂ = r/τ with f(0) = 1 and

f(∞) = 0 (note that η̂ differs from η in sections 3.2 and 3.4 only through a rescaling by a

constant, so that the discontinuity is at η̂ = 1). The function f(η̂) satisfies (1−η̂)f ′ = νf

where ν is the exponent of the decay of c1(τ); thus f is given by

f(η̂) =





1

(1 − η̂)ν
η̂ < 1

0 η̂ ≥ 1.
(3.20)

Note that this is the same result as (3.9).

The discontinuity at η̂ = 1 can be smoothed by considering the second order

derivative in (3.19). We transform from r to z = r − τ with z � τ and hence obtain

∂ψ

∂τ
= 1

2

∂2ψ

∂z2
+
νψ

τ
. (3.21)
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This equation possesses self-similarity solutions of the form ψ = h(τ)g(ξ) with ξ = z/
√
τ .

For z � −1 we require the solution of this pde to match to the solution ψ = f given by

(3.20). Such a match implies ψ ∼ τ ν/2(−ξ)−ν as ξ → −∞ hence h(τ) = τ ν/2. Equation

(3.21) then becomes

g′′ + ξg′ + νg = 0, (3.22)

which has the solutions

g1(ξ) =
e−ξ2/4

√
ξ
M

−
1
4
+

1
2

ν,
1
4
(1

2
ξ2), g2(ξ) =

e−ξ2/4

√
ξ
W

−
1
4
+

1
2

ν,
1
4
(1

2
ξ2), (3.23)

where Mκ,µ(z) and Wκ,µ(z) are Whittaker’s functions [1]. The functions g1, g2 are

real-valued in ξ > 0, but pure imaginary in ξ < 0, satisfying ig1(ξ) = g1(−ξ) and

ig2(ξ) = g2(−ξ) for ξ < 0.

Solutions to the differential equation valid on ξ ∈ R can be constructed by

piecing together g1 and g2 with real and imaginary premultiplicative constants, or by

constructing even and odd functions according to

g3(ξ) = H(ξ)g1(ξ) −H(−ξ)g1(−ξ) =
ξe−ξ2/2

23/4
M(1 − 1

2
ν, 3

2
; 1

2
ξ2) (3.24)

g4(ξ) = H(ξ)g2(ξ) +H(−ξ)g2(−ξ) =
|ξ|e−ξ2/2

23/4
U(1 − 1

2
ν, 3

2
; 1

2
ξ2) (3.25)

g5(ξ) = H(ξ)g1(ξ) +H(−ξ)g1(−ξ) =
|ξ|e−ξ2/2

23/4
M(1 − 1

2
ν, 3

2
; 1

2
ξ2), (3.26)

where H(·) is the Heaviside function and M(·, ·; ·) and U(·, ·; ·) are Kummer’s

hypergeometric functions [1]. Here, g3 is smooth odd and positive in ξ > 0 whilst both

g4 and g5 are even and positive for all ξ; however, g4 and g5 suffer from a discontinuous

first derivative at ξ = 0. By forming a linear combination of g4 and g5, we construct the

smooth even function

g6(ξ) = 23/4g5(ξ) +
Γ(1

2
− 1

2
ν)

21/4
√
π

g4(ξ). (3.27)

which is positive for all ξ and solves the differential equation (3.22).

Now to satisfy the boundary condition g → 0 as ξ → ∞ we take a linear

combination of g3 and g6 which has the most rapid decay at large ξ. Since g3 ∼
2ν/2−5/4

√
πξ−ν/Γ(1 − 1

2
ν) and g6 ∼ 2ν/2−1/2

√
πξ−ν/Γ(1 − 1

2
ν) as ξ → ∞, this leads

to the solution

g(ξ) = K(g6(ξ) − 23/4g3(ξ)), (3.28)

for some constant K > 0. The function g is positive for all ξ, has a maximum in ξ < 0

and decays monotonically to zero as ξ → ∞. The premultiplicative constant K is chosen

to ensure that g(ξ) ∼ (−ξ)−ν as ξ → −∞ in order that g(ξ) matches correctly back into

f(η̂) as η̂ → 1−. This condition gives K = Γ(1− 1
2
ν)/2ν/2+1/2

√
π. Writing g in terms of

Kummer’s hypergeometric functions we have

g(ξ) =
Γ(1 − 1

2
ν)|ξ|e−ξ2/2

2ν/2−1/2
√
π

(
Γ(1

2
− 1

2
ν)

4
√
π

U(1 − 1
2
ν, 3

2
; 1

2
ξ2)+

+H(−x)M(1 − 1
2
ν, 3

2
; 1

2
ξ2)
)
. (3.29)
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This is plotted in Figure 6. We observe a well defined peak when ν is near unity,

corresponding to w = − 1
2
; and the peak diverges as ν → 1, coinciding with the point

w = −1
2
, where f(η) ceases to be integrable. For w near unity, which corresponds to

ν near zero, the peak is not well-defined, and appears more like a smooth transition

from one plateau at g ≈ 1 to another plateau at g = 0. Thus we observe a qualitative

matching into the behaviour of the special case w = 1 which has the form of a diffusive

wave with erfc shape joining the steady-states cr = c1 and cr = 0.

0.8

0.60
-4

-2

1

nu0.4
0

2

2 0.2
xi

3

4

4

Figure 6. Illustration of the form of the form of the spike in the distribution of the

pure aggregation Becker-Döring system. The function g(ξ) given by (3.29) is plotted

against ξ for 0.1 < ν < 0.9.

From the scalings introduced at the start of this section, note that the amplitude

of the spike decays with O(t(w−1)/6) which is half of the exponent of c1(t) = O(t(w−1)/3).

The width of the spike is given by ξ = O(1) so in terms of the aggregation number, r,

the width of the peak scales with O(t(w+2)/6).

4. Discussion

In this paper we have analysed the Becker-Döring equations with a range of time-

dependent monomer input functions of the form αtw. Since the monomer concentration

is unknown and has to be solved for as part of the problem, this formulation of the

problem is more complex than the often-studied constant monomer formulation of

the Becker-Döring equations, or the constant mass formulation. The system forms a

useful contribution to the study of more complex physicochemical processes in which a

precursor species decays to provide the monomeric material from which clusters grow,

such as micelle- or vesicle-formation [9, 10].
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3
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r ∼ O(t(w+2)/3)

?
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r ≤ s(t) ∼ α1/3t

}
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r ∼ O(t(w+2)/3)

?

6
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r ∼ O(t(w+2)/3)
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c1 ∼ b/a+ O(t−(1−w)/2)
r ≤ s(t) ∼ O(t(w+1)/2)

? �	 c1 ∼ b/a + O(t−1/2)
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�	 r ∼ O((log t)1/2)

Figure 7. Summary of parameter regimes, and the scalings valid within each.

We have found a variety of self-similar behaviours in the case where aggregation

and fragmentation rates are size-independent. We have considered the aggregation-

fragmentation form of the Becker-Döring equations as well as the pure aggregation

formulation. In both formulations when the monomer input exponent satisfies w > 1,

there are similarity solutions in which the monomer concentration has the largest

concentration of any cluster size present in the system. While the solution approaches

the steady-state solution cr(t) = c1(t); at all times there is a maximum cluster size

beyond which virtually no clusters have yet formed. This maximum cluster size grows

with t(w+2)/3, this behaviour is seen in both the systems with and without fragmentation.

For the cases 0 < w < 1, in the presence of fragmentation, the cluster-size

distribution takes on the form of a diffusive wave which propagates through the space of

cluster sizes to increasingly large sizes, while broadening out. The front moves so that

almost all clusters in the system have a size r < s(t) with s(t) given by (2.20). Clusters

behind the front, have concentrations which approach the critical concentration b/a.

For the power w in the range −1 < w < 0, the concentrations approach b/a by a purely

diffusive process.

For the case w < −1, the total mass of the system approaches a finite constant value,

and so the large-time asymptotics are dominated by the convergence to an equilibrium

solution of the correct value for the total mass in the system. This scenario is not nearly

so interesting as the two regimes described above, and so has been omitted for the sake
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of space. In the special cases w = 1, 0,−1 ‘crossover’ behaviour is observed, these cases

exhibiting some features of each of their neighbouring generic cases.

In the absence of fragmentation, the only active process is aggregation and only

in the case of w = 1 do concentrations approach a nonzero constant. This case has

dynamics similar to those observed in systems with fragmentation. When w > 1 all

concentrations grow without bound, as noted above; when w < 1, all concentrations

approach zero in the large-time limit. This occurs by a distribution which has a large

spike near the maximum cluster size in the system. Whilst decaying in amplitude,

this spike moves to increasingly large cluster sizes, leaving the concentrations behind to

decay back to zero at an algebraic rate.

For a rigorous analysis of the problem of monomer input into an aggregating system

without fragmentation in the case w = 0, see the paper by da Costa et al [8]. In this case

the concentrations behind the spike decay as t−1/3, whereas the spike moves to larger

sizes so that its position is at r = O(t2/3) in a way such that the concentration of cluster

sizes in the spike decays as t−1/6. Here, we have given a more complete description of

the problem of monomer input into a system with no fragmentation. Whilst the analysis

of Section 3.8 is not as rigorous as that presented in [8], the analysis of the wide range

of parameter space w > −1 provides a more complete picture of the behaviour of such

systems. A full summary of the scaling exponents for the monomer concentration and

the typical cluster size for systems with fragmentation and without is given in Figure 7.

The cluster distribution functions of section 3 show similar qualitative features to

the results of the ‘γ-hook’ models analysed by Brilliantov & Krapivsky [5], that is, a

distribution which has a maximum cluster size, a peak in the distribution close to the

maximum cluster size, and a plateau of lower concentrations at smaller cluster sizes

ranging back to the monomer. These ‘hook’ models correspond to the Becker-Döring

system with constant input (w = 0 in our terminology) and rate coefficients of the form

ar = arγ (rather than our assumption of ar = a).

Whilst the models of epitaxial growth used by Gibou et al [13] is not identical to

ours (due to their use of size-dependent growth rates), we note that it has the form of

a pure aggregation Becker-Döring system; Figures 3 and 4 of their work show a striking

similarity with Figure 6 of this paper. Similar comments hold for the results presented

by Evans & Bartelt [12] (Figures 2 and 8) and, to a lesser extent, to Bales and Chrzan

[2].

It is hoped that the methods described above will be of use to more general problems

for example those which involve size-dependent aggregation and fragmentation rates,

and systems in which the time-dependent monomer release is given by more complex

functions, for example, the cases of micelle- and vesicle-formation which have been

studied previously [9, 10].
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