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Abstract

In this paper we establish, from extensive numerical experiments, that the two dimensional

stochastic fire-diffuse-fire model belongs to the directed percolation universality class. This model

is an idealized model of intracellular calcium release that retains the both the discrete nature of

calcium stores and the stochastic nature of release. It is formed from an array of noisy threshold

elements that are coupled only by a diffusing signal. The model supports spontaneous release

events that can merge to form spreading circular and spiral waves of activity. The critical level of

noise required for the system to exhibit a non-equilibrium phase-transition between propagating

and non-propagating waves is obtained by an examination of the local slope δ(t) of the survival

probability, Π(t) ∝ exp(−δ(t)), for a wave to propagate for a time t.
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Ca2+ waves provide a highly versatile mechanism for intra- and inter-cellular signaling

[1]. Cellular calcium signals generally do not occur uniformly throughout a cell but are

initiated at specific sites and spread in the form of saltatory waves [2]. The fluorescent

imaging of localized Ca2+ release events has now made it clear that Ca2+ release dynamics

is a stochastic process that occurs at spatially discrete sites that are clusters of IP3 receptors

in the endoplasmic reticulum or ryanodine receptors in the sarcoplasmic reticulum [3, 4].

In this paper we describe the two dimensional stochastic fire-diffuse-fire (FDF) model of

Ca2+ release and use extensive numerical simulations to highlight the interesting statistical

properties for the waves generated by the model. One of the main advantages of this model is

that it is both biophysically realistic and computationally inexpensive. A threshold process

is used to mimic the nonlinear properties of Ca2+ release channels. Moreover, release events

have a simple on/off temporal structure and release sites are embedded at a discrete set of

points within the cell model. The stochastic nature of release events is incorporated via the

introduction of a simple probabilistic rule for the release of calcium from internal stores.

Using numerical simulations we are able to identify a critical level of noise defining a non-

equilibrium phase-transition and show that the model belongs to the directed-percolation

(DP) universality class (in two-dimensions).

A recent review of the main features of the stochastic FDF model can be found in [5],

where it’s historical development is traced from the original FDF model of Keizer et al.

[6–8]. This report not only builds upon this body of work, but is complementary to that of

Falcke [9, 10], which focuses on more biophysically detailed models of the stochastic release

of calcium from internal stores.

In the two dimensional stochastic FDF model (see also [5, 11]), it is assumed that release

times occur at multiples of the duration, τ , of a release event (which is small relative to

other time-scales in the model). Let u(r, t) denote the concentration of Ca2+ at a point

r ∈ R2 at time t ∈ R+. Then the dynamics for pτ < t < (p + 1)τ , p ∈ Z, is determined in

terms of the release function an(p) and initial data up(r) = u(r, pτ) as

u(r, t) =
σ

τ

∑
n∈Γ

an(p)G(r− rn, t− pτ) + (G⊗ up)(r, t), (1)

where

G(r, t) =
1

4πDt
exp

(
− t

τd

)
exp

(
− r2

4Dt

)
, (2)
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and r = |r|. The decay time τd in (2) is associated with the action of linear SERCA

pumps that resequester the Ca2+ back into the stores. The transport of Ca2+ in the model

is assumed to be the result of isotropic Ca2+ diffusion between Ca2+ release sites with a

diffusion coefficient D. Although, in real cells, calcium is heavily buffered, recent work by

Strier et al. [12] suggests that working with an effective diffusion constant is reasonable

(even for slow buffers) if the spacing between release sites is not too large. The vectors rn

in (1) determine the locations of the (point) Ca2+ release sites and Γ is a discrete set that

indexes these release sites. The pth release event at the nth site is a binary process, where

the an(p) ∈ {0, 1} act as coefficients in the expansion of the solution over a set of functions

G(r − rn, t − pτ). The strength of the release event is given by σ. The second term on the

right hand side in (1) represents a spatial convolution of the propagator G(r, t − pτ) with

initial data up(r):

(G⊗ up) (r, t) =

∫
R2

G(r− r′, t− pτ)up(r
′)dr′. (3)

Hence, the dynamics is naturally separated into a part that keeps track of release from

internal stores and another that describes the spread of Ca2+ by diffusion. Note that (1)

only has to be sampled in discrete time to fully specify cell behaviour since the an(p) remain

unchanged over the duration of release.

The stochastic nature of localised Ca2+ release is incorporated within the model via the

introduction of a simple probabilistic rule. It is assumed that the probability of a release

event (i.e. the probability that an(p) = 1) is given in terms of the probability that u(rn, pτ)

is bigger than some threshold uc, i.e.

P (an(p) = 1) = f(un(p)− uc)

min(R,p)∏
m=1

[1− f(un(p−m)− uc)], (4)

for some function f(u). Here un(p) ≡ u(rn, pτ) and R ∈ Z. The first term on the right

in (4) is the probability that un(p) > uc whilst the second term ensures that release events

are unlikely to be closer than Rτ , which we take to be the refractory time-scale. A natural

choice for f(u) is

f(u) =

{
1

1 + e−βu
− 1

1 + eβuc

}
(1 + e−βuc), (5)

where β > 0, so that the probability of release is zero when u = 0 and tends to one as

u →∞. Importantly, the level of noise can be linked to the number, N , of calcium release

channels per cluster. In [5] it is shown that a sigmoidal form for the probability of release
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emerges from the mathematical analysis of a more detailed stochastic receptor cluster model,

with steepness of the sigmoid controlled by N . Hence, in this heuristic model we use the

parameter β to mimic finite size effects, such that with decreasing β the system becomes

more noisy (as expected with decreasing N). Thus, the stochastic FDF model is defined by

(1) with the an(p) treated as random variables such that P (a = 1) is given by (4).

Release events are easily calculated since Ca2+ concentration at the release sites are

defined as a sum of two terms that are both amenable to fast numerical evaluation. In

particular up(r) may be written in terms of the basis functions G(r − rn, pτ). Since these

are fixed for all time they need only be computed once. The convolution in (1) may be

performed efficiently using Fast Fourier Transform (FFT) techniques. Once again the FFT

of G(r, τ) need only be computed once, so that it is only necessary to successively construct

the FFT of up(r) for p = 0, 1, 2, . . .. The statistical properties of dynamical behavior in

the one dimensional stochastic FDF model have previously been studied in [11]. Note that

the first evidence for directed percolation in a one dimensional model of stochastic calcium

release is due to Bär et al. [13]. In what follows we will focus on the statistical properties

of spreading waves that arise naturally in two dimensions, more realistic of real cells.

Sufficiently large threshold noise in the stochastic FDF model is able to terminate a wave

prematurely suggesting the interesting possibility of a critical noise that defines a border

between waves which survive or eventually go extinct. In the latter case the system becomes

trapped in a completely inactive or absorbing state. This is typical of models which exhibit

a non-equilibrium phase transition belonging to the directed percolation (DP) universality

class. Precisely at the critical point the survival probability, Π(t), that a wave initiated from

a single site has not aborted after t time steps, is expected to scale asymptotically as t−δ,

where δ is a universal scaling parameter. The current estimate for the critical exponent of

DP in two dimensions is δ = 0.451 [14]. The analysis of the DP universality class is highly

non-trivial and it has not been possible to obtain critical exponents for models in this class

analytically.

We shall treat the effective noise parameter β as the one controlling the DP phase tran-

sition and denote the critical value of β at the phase transition between propagating and

abortive waves by βc. To obtain a good estimate of the critical exponent δ we construct the

effective exponent:

δ(t) =
ln[Π(rt)/Π(t)]

ln r
, (6)
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where ln r is the distance used for estimating the slope of Π(t). For β 6= βc, δ(t) will deviate

from a straight line (in the large t limit) so that plots of δ(t) for various choices of β may

be used to predict βc. An estimate of δ is obtained by extrapolating the behavior of δ(t)

to t−1 = 0. In Fig. 1 we plot δ(t) for various β, showing that for our choice of systems
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FIG. 1: (Color online) A plot of −δ(t) as a function of t−1 for three different level of threshold noise,

β = 0.23 (upper curve), β = 0.2 (middle curve) and β = 0.18 (lower curve). System parameters:

D = 30µm2s−1, release site spacing d = 2µm, τ = 10ms, τd = 200ms, R = 50, σ = 1 and uc = 0.1.

parameters βc ∼ 0.2, with the release sites placed on a square lattice of period d. In Fig.

2 we plot the corresponding distribution of survival times for the activation process started

from a single active site placed in the middle of the left-edge of a square lattice. Percolation

has been checked over sites from one (the left) edge to the opposite (right) edge of the square

lattice. Using our value of βc we find δ ∼ 0.45, suggesting that the stochastic FDF model

in two dimensions does indeed belong to the DP universality class.

To date, the critical behavior of DP, especially the values of the critical exponents, have

not yet been confirmed experimentally. They have been estimated in various dimensions only

thanks to extensive numerical simulations, transfer matrix techniques, series expansions,

and field-theoretic calculations [15]. The analysis of the computationally inexpensive two-

dimensional model of calcium release that we have presented here lends further support to the

idea that the experimental realization of DP may be found in cell biology, and specifically

intra-cellular calcium waves [15]. Moreover, simulations of heterogeneous versions of the

model, some of which are presented in [5, 16], show that the qualitative behaviour of the

stochastic FDF model is robust to perturbations in both the spatial distribution of release
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FIG. 2: The distribution of survival times for the stochastic FDF model at the critical noise defining

the transition between propagating and abortive waves. For large t, Π(t) scales as t−0.45, indicating

that this model belongs to the two-dimensional DP universality class.

sites (away from a regular lattice) and the spatial distribution of the threshold (away from

the choice of a fixed threshold at every release site). Since moderate changes in, say, external

[Ca2+] can switch a cell from a saltatory wave propagating regime to a wave-blocking one [2]

further analysis of the stochastic FDF cell model will be useful in determining the critical

levels of extracellular Ca2+, and values of other controllable variables, necessary for an

experiment to exhibit the types of abortive waves that would signal the onset of a DP

phase transition. Since directed percolation is the testing ground for many ideas about non-

equilibrium phase transitions this is a potentially explosive subject area and may encourage

a further cross-fertilization of ideas between the fields of computational cell biology and

non-equilibrium statistical physics.
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