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ABSTRACT: Ga1-xMnxN films grown on semi-insulating GaAs(001) substrates at 680°C with 

fixed Mn flux and varied Ga flux demonstrated a transition from zinc-blende/wurtzite mixed 

phase growth for low Ga flux (N-rich conditions) to zinc-blende single phase growth with 

surface Ga droplets for high Ga flux (Ga-rich conditions). N-rich conditions were found 

favourable for Mn incorporation in GaN lattice. α-MnAs inclusions were identified extending 

into the GaAs buffer layer. 

 

 

1. INTRODUCTION 

 

III-V ferromagnetic semiconductors are of interest because of their potential application within 

spintronic device structures (Wolf et al 2001). Theoretical prediction of the Curie temperature for 

various semiconductors (Dietl et al 2000) suggests that a TC value above room temperature is 

possible for zinc-blende GaN containing 5 at% Mn and a hole concentration of 3.510
20

cm
−3

. In view 

of the limited solid solubility of Mn in GaN, it becomes necessary to use non equilibrium growth 

techniques such as plasma-assisted molecular bean epitaxy (PAMBE) to establish appropriate 

conditions for the growth of uniform Ga1-xMnxN alloys. To date, high p-type Ga1-xMnxN layers with 

carrier concentrations exceeding 10
18

cm
-3

 have been obtained by PAMBE (Novikov et al 2004). 

Earlier work on the growth of zinc-blende GaN suggests that exact control of the III:V ratio 

close to the stoichiometric condition allows the production of single phase zinc-blende epitaxial 

layers, whilst deviation to Ga or N-rich conditions reportedly produces mixed zinc-blende and 

wurtzite material (Brandt et al 1995; Giehler et al 1995; Ruvimov et al 1997). More recently, various 

Mn-N or Ga-Mn-N precipitations have been reported for wurtzite GaN epilayers grown on sapphire 

substrates (e.g. Kuroda et al 2003 and Nakayama et al 2003).  

In this paper, the influence of the Ga:N ratio on the microstructural development of Ga1-

xMnxN/GaAs(001) grown by PAMBE is assessed using a variety of complementary analytical 

techniques.  

 

2. EXPERIMENTAL 

 

Zinc-blende Ga1-xMnxN epilayers were grown on semi-insulating (001) oriented GaAs 

substrates at 680°C by PAMBE. Briefly, a GaAs buffer layer of thickness ~0.15µm was deposited to 

provide a clean surface for epitaxy. Following initiation of the N plasma, the Mn and N shutters were 

opened whilst the As shutter was closed. The Mn flux was fixed at a level of 1.010
-8

 mbar while the 

Ga:N ratio was varied by changing the Ga flux from 7.510
-8

 mbar to 1.2x10
-6 

mbar. This 
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corresponded to a transition from N-rich to Ga-rich conditions, with the latter being identified by the 

development of Ga droplets on the growth surface. An overall chamber pressure of 2-310
-5

 mbar 

was maintained by a flow of N2. The growth conditions for the sample set are summarised in Table 1. 

 The bulk and fine scale defect microstructure of each sample was assessed. A Philips X-pert 

Diffractometer was initially used to assess the bulk crystal structure of the deposited epilayers. The 

complementary technique of reflection high energy electron diffraction (RHEED) using a modified 

Jeol 2000fx transmission electron microscope, with as-grown or HCl etched specimens mounted 

vertically, immediately beneath the projector lens, was then applied to appraise the sample near 

surface microstructure. Sample morphology was assessed using an FEI XL30 scanning electron 

microscope operated at 15-20kV. Samples for TEM investigation across the stoichiometric range 

were prepared in plan-view and cross-sectional geometries using sequential mechanical polishing and 

argon ion beam thinning. Samples were assessed using conventional diffraction contrast techniques 

using Jeol 2000fx and 4000fx instruments and energy dispersive X-ray (EDX) analysis using an 

Oxford Instruments ISIS system. 

 
Table 1. Growth details of Ga1-xMnxN /GaAs(001) sample set 

Sample Tg / °C 
N2 / 

10-5 mbar 

Ga flux / 

10-7 mbar 

Mn flux / 

10-8 mbar 

XRD 

FWHM/° 
Ga:N ratio 

A 680 2-3 0.75 1 1.15 N-rich 

B 680 2-3 1.5 1 0.97 N-rich 

C 680 2-3 2.5 1 1.07 N-rich 

D 680 2-3 4.6 1 1.17 ~1:1 (slightly N-rich) 

E 680 2-3 8.0 1 0.95 Ga-rich 

F 680 2-3 10 1 0.75 Ga-rich 

G 680 2-3 12 1 0.86 Ga-rich 

 

3. RESULTS AND DISCUSSION 

 

The formation of zinc-blende Ga1-xMnxN was confirmed by XRD spectra obtained across the 

sample set. Variation in the full width at half maxima (FWHM) values for the 002 reflection across 

the stoichiometric range (Table 1) suggests that the layer structural quality becomes optimised for 

conditions of slightly Ga rich growth. However, no evidence for the presence of second phase 

wurtzite material was discerned for any of the spectra. As observed using SEM, the sample grown 

closest to ~1:1 stoichiometric conditions appears specular, indicative of a smooth surface. Samples 

grown under N-rich conditions appear to exhibit a slightly rougher surface, whilst samples grown 

under Ga-rich conditions showed increasing amounts of Ga droplets on the sample surface with 

increasing Ga flux. 

RHEED patterns recorded along <110> projections for samples A, D and G are presented in 

Fig. 1(a-c). It is noted that clear, sharp spots was only obtained for the Ga-rich samples after removal 

of surface Ga droplets using boiling HCl. All the samples demonstrated the cubic structure with extra 

spots and/or streaks indicating varying degrees of mixed phase growth and stacking disorder on 

inclined {111} planes. In particular, a transition from mixed hexagonal/cubic (α/) phase growth for 

N-rich conditions to single phase cubic material for Ga-rich conditions was observed (as distinct 

from the previous indications of XRD). 

By way of example, for sample A grown under N-rich conditions, dominant diffraction spots 

from both cubic and hexagonal material were identified (Fig. 1a). The indexing of Fig. 1a is clarified 

with reference to the schematic diagram of Fig. 1d which illustrates the orientation relationship 

between the two phases, with <110> // <11 2 0> and {111} // {0001}. It is noted that the extra 

spots due to the hexagonal phase became faint with increasing Ga flux, disappearing when the Ga:N 

ratio approached 1:1 stoichiometry (Fig. 1b). 

For samples grown under N-rich conditions and ~1:1 stoichiometry, streaks preferentially 

aligned along one <111> direction were also observed, indicating the preferential alignment of planar 

defects (i.e. thin microtwins and stacking faults) inclined to the growth surface on just one set of 

{111} planes (Figs 1 a and b).  Similar streaks were observed along both <111> directions for  

samples grown under Ga-rich conditions, again attributable to a high density of inclined planar  



 

 

 

 

 

 

 

 

 

 

 

 

 

 

defects (Fig. 1c). It is noted that samples grown under N-rich and nearly 1:1 stoichiometric 

conditions exhibited strong anisotropy in the distribution of planar defects, being present for just one 

<110> sample projection, whilst samples grown under Ga-rich conditions exhibited planar defects 

for both orthogonal <110> and <110> sample projections. This variation in the anisotropic 

distribution of planar defects suggests that this effect is associated with the transition from N-rich to 

Ga-rich growth, i.e. due to differences in III:V stoichiometry at the growth surface during the process 

of epilayer nucleation, rather than being due to slight vicinality of the substrate surface. In addition, 

the presence of streaks perpendicular to the shadow edge of samples grown under Ga-rich conditions 

(Fig. 1c), following HCl etching, are attributed to patches of relatively smooth surface. More 

precisely, however, the diffraction effect of streaks perpendicular to the growth surface is attributed 

to the material that is not perfectly flat, but with slight local misorientations combined with some 

degree of surface disorder (Cowley 1992).  
Overall, the indication from these RHEED patterns together with XRD spectra and SEM 

observation is that nearly 1:1 stoichiometry (or slightly Ga-rich conditions) correspond to an 

optimised microstructure. 

Fig. 1e shows a centred dark field image formed from a diffraction spot attributed to only 

wurtzite Ga1-xMnxN, as distinct from a overlap of spots due to wurtzite Ga1-xMnxN and microtwin 

spots from the zinc-blende Ga1-xMnxN located at 1/3<111> positions. This indicates the localisation 

of small grains of wurtzite Ga1-xMnxN at the growth surface. However, the overlap from stacking 

fault streaks through the objective aperture, due to slight imaging beam convergence, also contributes 

to this dark field image, partially highlighting the stacking disorder on one set of {111} planes. Since 

selected area diffraction experiments provided no evidence for the presence of wurtzite domains 

through the bulk of the epilayer and no evidence was found for hexagonal phase material at the 

epilayer/substrate interfaces, the formation of wurtzite Ga1-xMnxN are attributed to a cool down effect 

at the end of growth whereby a slight change in surface stoichiometry might have occurred under N-

rich conditions, allowing small grains of the more stable hexagonal phase to be established. The 

small volume fraction of these surface hexagonal grains explains why there were not detectable by 

XRD. 

EDX measurements from the epilayers during TEM observation indicated a variation in the 

Mn content across the sample set, with a relatively uniform Mn content of ~3.3at% for sample A, 

peaking at a value of  40.3% for sample D, while the Mn content was below the detectability limit 

of EDX for samples grown under Ga rich conditions. This is consistent with reports of MBE grown 

wurtzite Ga1-xMnxN/sapphire which demonstrate that N-rich (and Mn-rich) conditions are required 

for the successful incorporation of Mn into the crystal lattice (Haider et al 2003; Kuroda et al 2003), 

as assessed using EDX and SIMS respectively.  

By way of illustration, Fig. 2a presents a dark field image of Sample A, demonstrating the 

highly faulted nature of the epilayer, and pyramidal precipitates (arrowed) extending into the GaAs 

buffer layer. EDX measurements confirmed the presence of Mn and As within such inclusions (Fig. 

2c), whilst associated selected area electron diffraction patterns (Fig. 2b) confirmed that the 

inclusions comprised α-MnAs. The indexing of Fig. 2b is clarified with reference to the schematic 

diagram of Fig. 2d. The orientation relationship here between α-MnAs and GaAs is given by 

<112 0>MnAs // <110>GaAs and {0001}MnAs // {111}GaAs. It is emphasised that such MnAs inclusions 

Fig. 1 <110> RHEED patterns for as-

grown Ga1-xMnxN/GaAs(001): (a) 

sample A, (b) sample D and (c) 

sample G (HCl etched). (d) Schematic 

illustration for (a) denoting diffraction 

spots corresponding to the zinc-blende 

(open circles) and wurtzite (solid dots) 

phase; (e) Dark-field, cross-sectional 

TEM image of the near surface 

microstructure of sample A suggesting 

that the wurtzite GaMnN phase arises 

due to localised small grains at the 

growth surface (arrowed). 

 



extending into the buffer layer were identified within all the samples with decreasing size upon 

transition to Ga-rich growth conditions. No evidence for Ga-Mn-N or Mn-N inclusions was found in 

these samples. 

 

 
Fig. 2 (a) 002 dark field image of sample A showing α-MnAs inclusions extending into the GaAs buffer layer. 

(b) Selected area diffraction pattern recorded from the region of an inclusion. (c) EDX spectra demonstrating 

the inclusions predominantly comprise Mn and As. (d) Schematic illustration denoting diffraction spots due to 

zinc-blende Ga1-xMnxN (open triangles); GaAs (open circles) and α-MnAs (solid dots).  

 

In view of the very different levels of hardness of the epilayer and substrate, it is considered 

that voids present within the GaAs buffer layer as marked in Fig. 2a arise due to preferential ion 

beam milling of localised strain centres.  However, some co-operative mechanism associated with 

MnAs precipitate formation during the process of growth might also be implicated in their initial 

formation. 

In summary, N-rich conditions are required for the incorporation of Mn within Ga1-xMnxN, 

whilst slightly Ga-rich conditions are associated with optimised structural properties. All samples 

exhibited MnAs inclusions extending into the GaAs buffer layer, arising from the limited solid 

solubility of Mn in GaN. 
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