Detecting Botnets Through Log Correlation

Yousof Al-Hammadi and Uwe Aickelin
School of Computer Science
University of Nottingham, Nottingham,
NG8 1BB, UK
yxa,uxa@cs.nott.ac.uk

Abstract—Botnets, which consist of thousands of compromised against them [11]. In addition, monitorin®C traffic patterns
machines, can cause significant threats to other systems byon standard ports used BRC clients generates some false
launching Distributed Denial of Service (DDoS) attacks, keylog- negaives since bots can run on non-standard ports. Moreover,
ging, and backdoors. In response to these threats, new effecwethere are no simple characteristics of communication channels
techniques are needed to detect the presence of botnets. In s ; .
this paper, we have used an interception technique to monitor that can be used for detection. For instance, the outgoing
Windows Application Programming Interface (API) functions connections have different lengths and the number of bytes
calls made by communication applications and store these calls transferred per connection is not fixed [2].
with their arguments in log files. Our algorithm detects botnets 1, g4qress these problems, our aim is to detect botnets
_based on monitoring ab_normal activity by correlating the changes b o h h f behavi in | fil .
in log file sizes from different hosts. y monitoring the change of behaviour in log file sizes

: across several hosts and find the correlation between these

Keywords-IRC; DDoS; Bots; Botnets; API function calls changes. This is due to the fact that bots are responding to
the commands simultaneously which produce the same rate of
change in each log file. Our approach does not prote€s

Recently, an explosive growth of coordinated attacks hasaiffic searching for specific patterns. Therefore, the amount
been noticed [1][6]. This kind of attack is performed by usingf processing time required to detect botnets will be reduced.
Internet Relay ChatIRC) networks to control compromised|n addition, we do not monitor standard ports and worry about
machines Zombie¥ and establish a distributed attack againsincrypted traffic, because our approach monitors the change
other systems. These zombies are infected by a piece of mafibehaviour in the system not the content of each packet.
cious code namedlaot[1][6]. Malicious bots are programmed We discuss the mechanism of collecting traffic from hosts
to respond to various instructions generated by the attackein section two. Section three explain how to design and

A collection of compromised machines that are connect@giplement such system. We present our results in section four
to a single channel ofRC networks forms gBotnet) These as well as explain our idea of detecting botnets. Finally, we
machines can be controlled remotely by the attacker wll conclude and discuss our future work in section five.
command and contrIC&C) to perform malicious activities
such asDDoS attack. A DDoS attack is established when Il. DATA COLLECTION
many bots start to flood other networks by sending them largeOur main goal is to detect botnets by monitoring the change
numbers of packets. Current botnets usage trends focusobrbehaviour of log file sizes from different hosts and find
email spamming/bombing, steal system information, progratie correlations between these log file sizes. To achieve this
termination and extorting money from on-line businessegal, we use a technique implemented by [5] to interdept
[31[6][7]. socket function calls produced by communication applications

Most current bots are implemented to use a centralizémlgenerate our data. The intercepfd@l socket function calls
network, which allow them to receive instructions from and their arguments are stored in log files.
central point. This makes the process of tracing the bot herdeiWe use a system-wide intercepting technique [8] which
(i.e. the attacker) a relatively easy task. A more dangerommnitors all threads currently running on the system to inter-
threat appears when the bot herder designs his/her botscéptAPI socket function calls such a&nd(), sendto(), recv(),
work in a Peer-to-PeeP@P) environment, which makes therecvfrom(), or connect()One way to intercept aAP| socket
tracing process more complex. We focus on detecting botn&iaction calls is to implement a Dynamic Link Librarip(L)
that use a centralized network. Detecting botnets iR2® file which replaces the target function to be intercepted (e.g.
network forms our future work. recv()) with an intercepted function (e.g. myrecv()) and then

There have been several studies in detecting and tragkject the DLL file into the address space of target process
ing botnets using a non-productive resoufbeneypot)and [4][10] (e.g Internet Relay Chat client - mIRC).
analysing traffic patterns [2][3]. A honeypot is a system Once theDLL is loaded into the target process (mIRC),
resource that is not meant to provide any services to legitimdtenodifies the address of the target function (e.g. recv()) in
users. One problem with using honeypots is that they canrbé target process (mIRC) so that it jumps to the replacement
detect suspicious traffic without receiving activity directeflinction in the DLL (myrecv()).

I. INTRODUCTION

Algorithm 1: Correlation Algorithm and 1GB RAM. The virtuallRC network consists of four

forall logfiles do machines. One machine run Windows XP Pro SP2 and it is
read file sizes of eaclvog files used as atRC server. The remaining machines run Windows
if all current file sizes did not change from the previous xp pro SP2 and havéRC clients. Different experiments
sizesthen are conducted to analyse normal behaviour and abnormal

out file = generatezeros correlation
else ifall current file sizes changed from the previous sizesPehaviour. Each experiment was running for 10 minutes in

then order to collect a reasonable amount of traffic.
out file = generateones correlation
else
I* some current file sizes changed */ B. Experiments
end outfile = generate uncorrelation We conducted some initial experiments to determine if
while leof.outfile do network statistics Logs alone are sufficient to detect bots.
if zeros correlation || ones correlation then For example, we monitor the change of behaviour of Internet
Cv++ [* Corelated Value (CV) */ Explorer (IE) vs. sdbot[9]. The results show that there is a
eIseUCV+ 4 [+ Uncorrelated Value (UCV) */ sudden increase in log file size when the bot herder uses his bot
end to perform UDP, or ICMP flood against other systems. On the
end other handJE, which is used for browsing, checking emails,
it C'V > Threshold then and other services not including downloading/uploading files,

suspicious activity is detected

end shows a smooth increase in log file size. After that, we

investigate the normal behaviour of an mIRC clients vs. the
sdbot Monitoring changes of behaviour of normal mIRC

clients andsdbotshows that there is a sudden change in the
[Il. DESIGN AND IMPLEMENTATION case of transferring large files between mIRC clients similar to

System-wide interception can be used to monitor commbot attack. In order to distinguish normal behaviour of mIRC
nication applications. For example, it can be used to intercéents and abnormal behaviour of bots, we analysed two cases:
API socket functions. Using this, we describe our algorithi€ normal case and the attack case. In the normal case, we
in more details in this section. analysed two scenarios:

First, we intercepAPI socket function calls used by com- o Three users having normal conversation.
munication programs, and store them with their arguments into, Three users having normal conversation and sending files
a log file. During this, another program is used to record the to each other.
change of log file size. This record is made every second for
a period of timet. We assume that the log files are protected
and the attacker can not erase the log files. After a time ¢ Three bots join adRC channel and remain idle for two
the recorded data is passed to the analyser. The analyser readsMinutes. After the idle period, the bots start to receive
the recorded data for each host and checks to see if there is commands from their master (not including flood attack
a change from current state (etg) with previous state (e.g. commands).
t1) for all recorded data from different hosts. If there is a ¢ Three bots join anRC channel and remain idle for two
change, a value of one is produced, otherwise, a value of zero minutes. After the idle period, the bots start to receive
is produced. Note that we are not considering the amount of commands from their herder including flood attack com-
change at the moment. Both all zeros (i.e. no change between Mands.
log files is made from different hosts) and all ones (i.e. all The generated results are passed to our correlation algorithm
log files from different hosts are changed) mean correlatien distinguish normal behaviour and abnormal behaviour. Note
between data. that we have normalised the x-axis 160 bytes in order to

For example, if there is no change between data sets at timake the graphs more comparable. The next section explain
t1, (logfilel1=0,logfile2=0,logfile3=0,...), then we hawzeros our results in more detail.
change correlation. If there are changes in all data sets at time
t1, (logfile1=1,logfile2=1,logfile3=1,...), we hawneschange IV. RESULTS
correlation. Otherwise, an uncorrelated event is recorded. We
will consider the amount of change between data sets in ouWe monitor the change of behaviour between mIRC clients
future work. Our correlation algorithm is shown in Algorithmand sdbot The results in Figure 1 show that it might be

In the attack case, we analysed two scenarios:

1. difficult to distinguish the normal behaviour from malicious
.) behaviour because there is a noticeable change of log file size
A. Full details of Architecture generated during a file transfer. We also notice that it is not

To perform our experiments, we set up a small virtuaufficient to just look at network statistics. Therefore, we use
IRC network on a VMWare machine. The VMWare machineur correlation algorithm to distinguish between normal and
runs under a Windows XP P4 SP2 with a 2.4GHz processaibnormal behaviour.

— 5ot - udp Aood —— user- file transfer —user 1 ——user2 ——user3
120 120
0 T S
e B A mm e
L
3 o
o =
1 S @ B0 |
e [
T L e | R e e
e S | S WA S 20 4--4-|- J.I ..
D n] D e .
1 46 91 136181226 271 316 361 406 4571 496 541 586 631 676 721 766 811 856 901 131 61 91 121151181 211 241 271 301 331 361 391 421 451 487 511 541 571
Time (sec) Time (sec)

Fig. 1. Change of log file size (a user transfers files vs. a bot using UDFFig. 3. Normal users behaviour with sending files. (80248 bytes)
and ICMP flood. (100= 275085 bytes)

—hot 1 ——hot 2 ——hot 3 |

| —user 1 —Lser 2 —Lus5er 3 120

120

L Y, - > Elli llblbt obzAktj

100 4

LTI e R
80

60 4

File size

60 1

File size

40 1
40 4

20
20 -

o

u}

1 28 95 82 109 136 163 190 217 244 271 298 325 352 379 406 433 460 487 514 241

131 61 81 121 151 181 211 241 271 301 331 361 391 421 451 481 511 541 571 Time (sec)

Time (sec)

Fig. 4. Attack behaviour without flood. (108 4121 bytes). The dot points
Fig. 2. Normal users behaviour without sending files. (¥9@754 bytes) represents a high correlation between bots

A. Botnet Detection through Distributed Log Correlation | the first experiment, we investigate the attack scenario of
The results from the previous experiment show that somiiree bots receiving commands from their bot herder. No
times it is difficult to distinguish the normal behaviour fronflood attack commands were received. We notice that the
malicious behaviour, e.g. when there is a sudden changegeherated data is small but there is a high correlation between
log file size. Therefore, we present our correlation detectithe changes of log file sizes (Figure 4). In the second attack
scheme to distinguish between these two cases. scenario, the bots receive flood commands from their herder.
The basic idea is to find correlated events in different hostBhe results show that there is an obvious malicious activity in
Since we are dealing with botnets, there is a high probabilitje network. This can be seen from the sudden change of the
of having correlated events such as sending similar amouatsount of data generated and the high correlation between the
of data to a bot herder that occur within a specified time, ehanges of log file sizes (Figure 5).
generating similar amounts of traffic to attack other systems.The results from the correlation algorithm is shown in
As a result, a high correlation between events is generatéigure 6. The x-axis represents the normalized data while the
A high correlation represents malicious activity, while a low-axis represents the conducted experiments. We can see from
correlation represents normal activity. the figure that we have a large number of uncorrelated events
We investigate the normal scenario of three users havimgthe normal case. This represents a normal behaviour in
normal conversation and using some IRC commands withauir case since users are responding randomly to others. On
transferring files to each other. The results show that there other hand, the uncorrelated events in the attack case are
is a low correlation generated from the three users (Figugenerated due to the fact that sometimes there is a delay of
2). We also investigate the normal scenario of transferrimgsponding to the bot herder's commands. We also notice that
files between users. The results show that even with a suddeere is a large number of correlated events in the normal case.
change in log file size generated due to file transfer by usEnere are many reasons for this. The first reason is that we
3, we still notice a low correlation between data (Figure 3).are running our experiments in virtual machines and switching
After simulating the normal cases, the three machines wdyetween virtual machines takes some time. Another reason is
infected bysdbotO5b This represents the two attack caseshat we are recording our data every second. Since, we have

—hat 1

——hat 2

——hot 3

120

File size

1
u]

00 oo m oo oo on ool

B o mme oo oo

T

T T

T -

Time ({sec)

1 30 59 85 117 146 175204 233 262 2091 320 349 373 407 436 465 494 523 552 581

Fig. 5. Attack behaviour with UDP flood. (108 94050 bytes)

||:| Total arOUNT of data m Tatal comelated data o Uncorrelated data|

100

number of data (normalized)
m
=}

bot - udp flood

T
bot- noflood

experiments

normal - file transfer

normal - na file
transfer

only one person (simulating to be three), recording data every

Fig. 6.

Correlation between log files

ROC Curve

threshold <= 71%

True Positive Rate

1 B e e
i L
a 0.1 0.2 0.3 04 0.8 0.6 0.7 0.8 0.8 1
False Positive Rate
Fig. 7. The ROC curve - false positive rate vs. true positive rate. The

percentages represent the threshold used.

based on not only finding correlation between events, but also
monitoring the number ofPI function calls to detect a single
bot in the host. We will use this approach to detect abnormal
behaviour in Peer-to-Peer network.

ACKNOWLEDGMENT

This research is supported in part by the Automated
Scheduling, Optimisation and Planning (ASAP), The Univer-
sity of Nottingham. The authors would like to thank Etisalat
College of Engineering and Emirates Telecommunication Cor-
poration (ETISALAT), United Arab Emirates, for providing
financial support for this work.

REFERENCES

[1] Botnets - the threat to the Critical National Infrastructurblational
Infrastructure Security Co-ordination Centre (NISCC). NISCC Monthly
Bulletin. London, October 17 2005.

second produces a large number of correlated events in thg E. cCooke, F. Jahanian, and D. McPhersdihe Zombie Roundup:

normal case.

To test how good our algorithm is in detecting botnets,
we use a Receiver Operating Characteri@f#©C)analysis as
shown in Figure 7. The x-axis represents a cumulative false
positive rates while the y-axis represents the cumulative true

positive rates.

We set our threshold as a percentage of log file size. As
we vary the threshold from 0% to 100%, we notice that ou
correlation algorithm detects abnormal activity when the value

Understanding, Detecting, and Disrupting Botnels Proceedings of
Usenix Workshop on Stepts to Reducing Unwanted Traffic on the
Internet (SRUTI 05), Cambridge, MA, July 2005.

[3] F. C. Freiling, T. Holz, and G. WicherskBotnet Tracking: Exploring

a Root-Cause Methodology to Prevent Distributed Denial-of-Service
Attacks. Technical Report AIB-2005-07, RWTH Aachen University,
April 2005.

[4] G. Huntand D. Brubachebetours: Binary Interception of Win32 Func-
tions In Proceedings of the 3rd USENIX Windows NT Symposium,
pages 135-143, Seattle, WA, July 1999.

[5] HookAPI Source CodeRetrieved Jun2™? 2006 fromhttp://www.
codeproject.com/system/Paladin.asp

of threshold is above 70% of the total amount of data an&b] J. CanavanThe Evolution of Malicious IRC bat&Vhite Paper: Syman-

produce zero true negative. Reducing our threshold to 70%

tec Security Response. In Proceedings of Virus Bulletin Conference
2005. Dublin, Ireland. October 5-7 2005.

generates one false positive (i.e. normal behaviour detected @f M. Overton. Bots and Botnets: Risks, Issues and PreventlanPro-
attack). Setting the threshold below 70% generates two false ceedings of Virus Bulletin Conference 2005. Dublin, Ireland. October
positive while maitaining 100% detection rate.

V. CONCLUSION AND FUTURE WORK

Our results show that it is sometimes difficult to distinguishi®] Sdbot05b.
between normal behaviour and malicious behaviour. Ther[(f(-)

5-7 2005.

[8] R. Kuster. Three ways to Inject Your Code into Another Process
Retrieved Jun2™¢ 2006 fromhttp://www.codeguru.com/Cpp/
W-P/system/processesmodules/article.php/c5767 .

Retrieved Jun.2"¢ 2006 from http://www.

securityforest.com/downloads/bots/sdbot05b.zip .

S. Kim. Intercepting System API CallsRetrieved Jun. 27¢

fore, we used an algorithm to detect bots based on changeé 2006 from hitp://cache-www.intel.com/cd/00/00/21/

of behaviour by correlating events from different hosts. The
correlation algorithm shows that there is a high number bt

70/217023_217023.pdf . May 13 2004.
] Y. Al-Hammadi, and C. LeckieAnomaly Detection for Internet Worms.
In Proceedings to the&*" IFIP/IEEE International Symposium on

correlated events in attack case generated by bots compared t0ntegrated Network Management. pp. 133-126, Nice, France, May 15-19

normal users. Our future work will focus on detecting botnets

2005.

