
Detecting Botnets Through Log Correlation
Yousof Al-Hammadi and Uwe Aickelin

School of Computer Science
University of Nottingham, Nottingham,

NG8 1BB, UK
yxa,uxa@cs.nott.ac.uk

Abstract— Botnets, which consist of thousands of compromised
machines, can cause significant threats to other systems by
launching Distributed Denial of Service (DDoS) attacks, keylog-
ging, and backdoors. In response to these threats, new effective
techniques are needed to detect the presence of botnets. In
this paper, we have used an interception technique to monitor
Windows Application Programming Interface (API) functions
calls made by communication applications and store these calls
with their arguments in log files. Our algorithm detects botnets
based on monitoring abnormal activity by correlating the changes
in log file sizes from different hosts.

Keywords-IRC; DDoS; Bots; Botnets; API function calls

I. I NTRODUCTION

Recently, an explosive growth of coordinated attacks has
been noticed [1][6]. This kind of attack is performed by using
Internet Relay Chat (IRC) networks to control compromised
machines (zombies) and establish a distributed attack against
other systems. These zombies are infected by a piece of mali-
cious code named abot [1][6]. Malicious bots are programmed
to respond to various instructions generated by the attacker.

A collection of compromised machines that are connected
to a single channel onIRC networks forms a(Botnet). These
machines can be controlled remotely by the attacker via
command and control(C&C) to perform malicious activities
such asDDoS attack. A DDoS attack is established when
many bots start to flood other networks by sending them large
numbers of packets. Current botnets usage trends focus on
email spamming/bombing, steal system information, program
termination and extorting money from on-line businesses
[3][6][7].

Most current bots are implemented to use a centralized
network, which allow them to receive instructions from a
central point. This makes the process of tracing the bot herder
(i.e. the attacker) a relatively easy task. A more dangerous
threat appears when the bot herder designs his/her bots to
work in a Peer-to-Peer (P2P) environment, which makes the
tracing process more complex. We focus on detecting botnets
that use a centralized network. Detecting botnets in aP2P
network forms our future work.

There have been several studies in detecting and track-
ing botnets using a non-productive resource(honeypot)and
analysing traffic patterns [2][3]. A honeypot is a system
resource that is not meant to provide any services to legitimate
users. One problem with using honeypots is that they cannot
detect suspicious traffic without receiving activity directed

against them [11]. In addition, monitoringIRC traffic patterns
on standard ports used byIRC clients generates some false
negatives since bots can run on non-standard ports. Moreover,
there are no simple characteristics of communication channels
that can be used for detection. For instance, the outgoing
connections have different lengths and the number of bytes
transferred per connection is not fixed [2].

To address these problems, our aim is to detect botnets
by monitoring the change of behaviour in log file sizes
across several hosts and find the correlation between these
changes. This is due to the fact that bots are responding to
the commands simultaneously which produce the same rate of
change in each log file. Our approach does not processIRC
traffic searching for specific patterns. Therefore, the amount
of processing time required to detect botnets will be reduced.
In addition, we do not monitor standard ports and worry about
encrypted traffic, because our approach monitors the change
of behaviour in the system not the content of each packet.

We discuss the mechanism of collecting traffic from hosts
in section two. Section three explain how to design and
implement such system. We present our results in section four
as well as explain our idea of detecting botnets. Finally, we
will conclude and discuss our future work in section five.

II. DATA COLLECTION

Our main goal is to detect botnets by monitoring the change
of behaviour of log file sizes from different hosts and find
the correlations between these log file sizes. To achieve this
goal, we use a technique implemented by [5] to interceptAPI
socket function calls produced by communication applications
to generate our data. The interceptedAPI socket function calls
and their arguments are stored in log files.

We use a system-wide intercepting technique [8] which
monitors all threads currently running on the system to inter-
ceptAPI socket function calls such assend(), sendto(), recv(),
recvfrom(), or connect(). One way to intercept anAPI socket
function calls is to implement a Dynamic Link Library (DLL)
file which replaces the target function to be intercepted (e.g.
recv()) with an intercepted function (e.g. myrecv()) and then
inject the DLL file into the address space of target process
[4][10] (e.g Internet Relay Chat client - mIRC).

Once theDLL is loaded into the target process (mIRC),
it modifies the address of the target function (e.g. recv()) in
the target process (mIRC) so that it jumps to the replacement
function in the DLL (myrecv()).

Algorithm 1 : Correlation Algorithm

forall logfiles do
read file sizes of eachlogfiles
if all current file sizes did not change from the previous
sizesthen

outfile = generatezeros correlation
else if all current file sizes changed from the previous sizes
then

outfile = generateones correlation
else

/* some current file sizes changed */
outfile = generate uncorrelation

end
while !eof.outfile do

if zeros correlation || ones correlation then
CV + + /* Correlated Value (CV) */

else /* Uncorrelated Value (UCV) */
UCV + +

end
end
if CV > Threshold then

suspicious activity is detected
end

III. D ESIGN AND IMPLEMENTATION

System-wide interception can be used to monitor commu-
nication applications. For example, it can be used to intercept
API socket functions. Using this, we describe our algorithm
in more details in this section.

First, we interceptAPI socket function calls used by com-
munication programs, and store them with their arguments into
a log file. During this, another program is used to record the
change of log file size. This record is made every second for
a period of timet. We assume that the log files are protected
and the attacker can not erase the log files. After a timet,
the recorded data is passed to the analyser. The analyser reads
the recorded data for each host and checks to see if there is
a change from current state (e.g.t2) with previous state (e.g.
t1) for all recorded data from different hosts. If there is a
change, a value of one is produced, otherwise, a value of zero
is produced. Note that we are not considering the amount of
change at the moment. Both all zeros (i.e. no change between
log files is made from different hosts) and all ones (i.e. all
log files from different hosts are changed) mean correlation
between data.

For example, if there is no change between data sets at time
t1, (logfile1=0,logfile2=0,logfile3=0,...), then we havezeros
change correlation. If there are changes in all data sets at time
t1, (logfile1=1,logfile2=1,logfile3=1,...), we haveoneschange
correlation. Otherwise, an uncorrelated event is recorded. We
will consider the amount of change between data sets in our
future work. Our correlation algorithm is shown in Algorithm
1.

A. Full details of Architecture

To perform our experiments, we set up a small virtual
IRC network on a VMWare machine. The VMWare machine
runs under a Windows XP P4 SP2 with a 2.4GHz processor

and 1GB RAM. The virtualIRC network consists of four
machines. One machine run Windows XP Pro SP2 and it is
used as anIRC server. The remaining machines run Windows
XP Pro SP2 and haveIRC clients. Different experiments
are conducted to analyse normal behaviour and abnormal
behaviour. Each experiment was running for 10 minutes in
order to collect a reasonable amount of traffic.

B. Experiments

We conducted some initial experiments to determine if
network statistics Logs alone are sufficient to detect bots.
For example, we monitor the change of behaviour of Internet
Explorer (IE) vs. sdbot [9]. The results show that there is a
sudden increase in log file size when the bot herder uses his bot
to perform UDP, or ICMP flood against other systems. On the
other hand,IE, which is used for browsing, checking emails,
and other services not including downloading/uploading files,
shows a smooth increase in log file size. After that, we
investigate the normal behaviour of an mIRC clients vs. the
sdbot. Monitoring changes of behaviour of normal mIRC
clients andsdbotshows that there is a sudden change in the
case of transferring large files between mIRC clients similar to
bot attack. In order to distinguish normal behaviour of mIRC
clients and abnormal behaviour of bots, we analysed two cases:
the normal case and the attack case. In the normal case, we
analysed two scenarios:

• Three users having normal conversation.
• Three users having normal conversation and sending files

to each other.

In the attack case, we analysed two scenarios:

• Three bots join anIRC channel and remain idle for two
minutes. After the idle period, the bots start to receive
commands from their master (not including flood attack
commands).

• Three bots join anIRC channel and remain idle for two
minutes. After the idle period, the bots start to receive
commands from their herder including flood attack com-
mands.

The generated results are passed to our correlation algorithm
to distinguish normal behaviour and abnormal behaviour. Note
that we have normalised the x-axis to100 bytes in order to
make the graphs more comparable. The next section explain
our results in more detail.

IV. RESULTS

We monitor the change of behaviour between mIRC clients
and sdbot. The results in Figure 1 show that it might be
difficult to distinguish the normal behaviour from malicious
behaviour because there is a noticeable change of log file size
generated during a file transfer. We also notice that it is not
sufficient to just look at network statistics. Therefore, we use
our correlation algorithm to distinguish between normal and
abnormal behaviour.

Fig. 1. Change of log file size (a user transfers files vs. a bot using UDP
and ICMP flood. (100≡ 275085 bytes)

Fig. 2. Normal users behaviour without sending files. (100≡ 2754 bytes)

A. Botnet Detection through Distributed Log Correlation

The results from the previous experiment show that some-
times it is difficult to distinguish the normal behaviour from
malicious behaviour, e.g. when there is a sudden change of
log file size. Therefore, we present our correlation detection
scheme to distinguish between these two cases.

The basic idea is to find correlated events in different hosts.
Since we are dealing with botnets, there is a high probability
of having correlated events such as sending similar amounts
of data to a bot herder that occur within a specified time, or
generating similar amounts of traffic to attack other systems.
As a result, a high correlation between events is generated.
A high correlation represents malicious activity, while a low
correlation represents normal activity.

We investigate the normal scenario of three users having
normal conversation and using some IRC commands without
transferring files to each other. The results show that there
is a low correlation generated from the three users (Figure
2). We also investigate the normal scenario of transferring
files between users. The results show that even with a sudden
change in log file size generated due to file transfer by user
3, we still notice a low correlation between data (Figure 3).

After simulating the normal cases, the three machines were
infected bysdbot05b. This represents the two attack cases.

Fig. 3. Normal users behaviour with sending files. (100≡ 7248 bytes)

Fig. 4. Attack behaviour without flood. (100≡ 4121 bytes). The dot points
represents a high correlation between bots

In the first experiment, we investigate the attack scenario of
three bots receiving commands from their bot herder. No
flood attack commands were received. We notice that the
generated data is small but there is a high correlation between
the changes of log file sizes (Figure 4). In the second attack
scenario, the bots receive flood commands from their herder.
The results show that there is an obvious malicious activity in
the network. This can be seen from the sudden change of the
amount of data generated and the high correlation between the
changes of log file sizes (Figure 5).

The results from the correlation algorithm is shown in
Figure 6. The x-axis represents the normalized data while the
y-axis represents the conducted experiments. We can see from
the figure that we have a large number of uncorrelated events
in the normal case. This represents a normal behaviour in
our case since users are responding randomly to others. On
the other hand, the uncorrelated events in the attack case are
generated due to the fact that sometimes there is a delay of
responding to the bot herder’s commands. We also notice that
there is a large number of correlated events in the normal case.
There are many reasons for this. The first reason is that we
are running our experiments in virtual machines and switching
between virtual machines takes some time. Another reason is
that we are recording our data every second. Since, we have

Fig. 5. Attack behaviour with UDP flood. (100≡ 94050 bytes)

Fig. 6. Correlation between log files

only one person (simulating to be three), recording data every
second produces a large number of correlated events in the
normal case.

To test how good our algorithm is in detecting botnets,
we use a Receiver Operating Characteristic(ROC)analysis as
shown in Figure 7. The x-axis represents a cumulative false
positive rates while the y-axis represents the cumulative true
positive rates.

We set our threshold as a percentage of log file size. As
we vary the threshold from 0% to 100%, we notice that our
correlation algorithm detects abnormal activity when the value
of threshold is above 70% of the total amount of data and
produce zero true negative. Reducing our threshold to 70%
generates one false positive (i.e. normal behaviour detected as
attack). Setting the threshold below 70% generates two false
positive while maitaining 100% detection rate.

V. CONCLUSION AND FUTURE WORK

Our results show that it is sometimes difficult to distinguish
between normal behaviour and malicious behaviour. There-
fore, we used an algorithm to detect bots based on change
of behaviour by correlating events from different hosts. The
correlation algorithm shows that there is a high number of
correlated events in attack case generated by bots compared to
normal users. Our future work will focus on detecting botnets

Fig. 7. The ROC curve - false positive rate vs. true positive rate. The
percentages represent the threshold used.

based on not only finding correlation between events, but also
monitoring the number ofAPI function calls to detect a single
bot in the host. We will use this approach to detect abnormal
behaviour in Peer-to-Peer network.

ACKNOWLEDGMENT

This research is supported in part by the Automated
Scheduling, Optimisation and Planning (ASAP), The Univer-
sity of Nottingham. The authors would like to thank Etisalat
College of Engineering and Emirates Telecommunication Cor-
poration (ETISALAT), United Arab Emirates, for providing
financial support for this work.

REFERENCES

[1] Botnets - the threat to the Critical National Infrastructure. National
Infrastructure Security Co-ordination Centre (NISCC). NISCC Monthly
Bulletin. London, October 17 2005.

[2] E. Cooke, F. Jahanian, and D. McPherson.The Zombie Roundup:
Understanding, Detecting, and Disrupting Botnets. In Proceedings of
Usenix Workshop on Stepts to Reducing Unwanted Traffic on the
Internet (SRUTI 05), Cambridge, MA, July 2005.

[3] F. C. Freiling, T. Holz, and G. Wicherski.Botnet Tracking: Exploring
a Root-Cause Methodology to Prevent Distributed Denial-of-Service
Attacks. Technical Report AIB-2005-07, RWTH Aachen University,
April 2005.

[4] G. Hunt and D. Brubacher.Detours: Binary Interception of Win32 Func-
tions. In Proceedings of the 3rd USENIX Windows NT Symposium,
pages 135-143, Seattle, WA, July 1999.

[5] HookAPI Source Code. Retrieved Jun.2nd 2006 fromhttp://www.
codeproject.com/system/Paladin.asp .

[6] J. Canavan.The Evolution of Malicious IRC bots. White Paper: Syman-
tec Security Response. In Proceedings of Virus Bulletin Conference
2005. Dublin, Ireland. October 5-7 2005.

[7] M. Overton. Bots and Botnets: Risks, Issues and Prevention. In Pro-
ceedings of Virus Bulletin Conference 2005. Dublin, Ireland. October
5-7 2005.

[8] R. Kuster. Three ways to Inject Your Code into Another Process.
Retrieved Jun.2nd 2006 fromhttp://www.codeguru.com/Cpp/
W-P/system/processesmodules/article.php/c5767 .

[9] Sdbot05b. Retrieved Jun. 2nd 2006 from http://www.
securityforest.com/downloads/bots/sdbot05b.zip .

[10] S. Kim. Intercepting System API Calls. Retrieved Jun. 2nd

2006 from http://cache-www.intel.com/cd/00/00/21/
70/217023_217023.pdf . May 13 2004.

[11] Y. Al-Hammadi, and C. Leckie.Anomaly Detection for Internet Worms.
In Proceedings to the9th IFIP/IEEE International Symposium on
Integrated Network Management. pp. 133-126, Nice, France, May 15-19
2005.

