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Abstract

The spike-diffuse-spike (SDS) model describes a passive dendritic
tree with active dendritic spines. Spine-head dynamics is modeled
with a simple integrate-and-fire process, whilst communication be-
tween spines is mediated by the cable equation. In this paper we
develop a computational framework that allows the study of multiple
spiking events in a network of such spines embedded on a simple one-
dimensional cable. In the first instance this system is shown to support
saltatory waves with the same qualitative features as those observed
in a model with Hodgkin-Huxley kinetics in the spine-head. Moreover,
there is excellent agreement with the analytically calculated speed for
a solitary saltatory pulse. Upon driving the system with time-varying
external input we find that the distribution of spines can play a crucial
role in determining spatio-temporal filtering properties. In particular,
the SDS model in response to periodic pulse train shows a positive
correlation between spine density and low-pass temporal filtering that
is consistent with the experimental results of Rose and Fortune [1999,
‘Mechanisms for generating temporal filters in the electrosensory sys-
tem’. The Journal of Experimental Biology 202, 1281–1289]. Further,
we demonstrate the robustness of observed wave properties to natural
sources of noise that arise both in the cable and the spine-head, and
highlight the possibility of purely noise induced waves and coherent
oscillations.

spike-diffuse-spike, dendritic spines, filtering, noise

1 Introduction

In 1891 Ramón y Cajal showed that dendritic spines are present in the den-
drites of many neurons of the cerebral cortex of mammals [Cajal1891]. Den-
dritic spines are small mushroom like appendages with a bulbous head and
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a tenuous stem (of length around 1µm) and may be found in their hundreds
of thousands on the dendritic tree of a single cortical pyramidal cell. These
extensions of the dendritic tree provide junction points for the axons of other
neurons (i.e., provide surface area for synapses), and thus serve as loci for
receiving inputs. In the cerebral cortex approximately 80% of all excitatory
synapses are made onto dendritic spines. Since the biophysical properties
of spines can be modified by experience in response to patterns of chemical
and electrical activity, morphological and electro-chemical changes in popu-
lations of dendritic spines are thought to provide a basic mechanism for Heb-
bian learning in the nervous system. In fact as far back as 1899 Cajal (Ca-
jal1899) was arguing that spines could be involved in learning and that physi-
cal changes in spines were associated with neuronal function, suggesting that
they might grow with activity and retract during inactivity or sleep. These
notions continue to be influential in the study of the function of dendritic
spines even today [Yuste and Bonhoeffer2001, Yuste and Majewska2001].

In recent years the properties of spines have also been linked with the
implementation of logical computations [Shepherd and Brayton1987] coin-
cidence detection [Larkum et al.1999] orientation tuning in complex cells of
visual cortex [Mel et al.1998] and the amplification of distal synaptic inputs
[Miller et al.1985]. At the organismal level there is now evidence to sug-
gest that the density of dendritic spines may reflect overall mental agility
[Zito and Murthy2002]. Conversely, many neurological diseases resulting in
mental retardation have been associated with spine loss or spine morphology
changes (such as Fragile X-syndrome1). However, the focus of this paper
will be on the implication of excitable channels in the spine-head membrane
for single neuron dynamics. The benefits of excitable membrane for the
amplification of excitatory synaptic inputs was first discussed by Jack et
al. (Jack75). If dendritic spines possess excitable membrane, the spread
of current from one spine along the dendrites may bring adjacent spines
to threshold for impulse generation, resulting in a saltatory propagating
wave in the distal dendritic branches [Shepherd et al.1985]. However, it is
only relatively recently that confocal and two-photon microscopy observa-
tions have confirmed the generation of action potentials in the dendrites (see
[Segev and Rall1998] for a perspective).

The first step towards the development of a spiny dendritic tissue model
that might be used to explore these issues can be attributed to Baer and
Rinzel (Baer91) who considered a passive uniform unbranched dendritic
tree coupled to a population of excitable dendritic spines. In this contin-

uum model the active spine-head dynamics is modeled with Hodgkin-Huxley
(HH) kinetics whilst the (distal) dendritic tissue is modeled with the cable
equation. The spine-head is coupled to the cable via a spine stem resistance
that delivers a current proportional to the number of spines at the con-

1http://www.fraxa.org/
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tact point. There is no direct coupling between neighboring spines; voltage
spread by diffusion along the cable is the only way for spines to interact.
Although the numerical studies of Baer and Rinzel (Baer91) show traveling
wave solutions, the underlying continuous nature of the model precludes the
possibility that these waves are truly saltatory. The saltatory nature of a
propagating wave in a spiny neuron may be directly attributed to the fact
that active spines are physically separated. Although we can numerically
simulate the nonlinear and nonuniform properties of biologically realistic
dendritic trees with discrete and clustered distributions of spines, based
around natural extensions of the Baer-Rinzel (BR) model, there is a lack
of analytical tools for dealing with such systems. However, recent work by
Coombes, Bressloff and Lord [Coombes and Bressloff2000, Coombes2001b,
Lord and Coombes2002, Coombes and Bressloff2003] has shown that the ac-
tive membrane dynamics of spines can be treated using an analytically
tractable integrate-and-fire (IF) process. The resulting model has been
termed the Spike-Diffuse-Spike (SDS) model since spine-head dynamics is an
all-or-nothing action potential response, whilst the dendritic cable is mod-
eled as a passive structure. Not only can saltatory wave propagation be
naturally analyzed in the SDS framework, the model is computationally in-
expensive and ideally suited for the study of neural response to complicated
spatio-temporal patterns of synaptic input that typically occur in cortical
neurons. It is precisely these points we choose to highlight in this paper.

In section 2 we review the SDS framework and extend previous work
by showing how one may express solutions in terms of a Dyson-like series
expansion. Moreover, we discuss the numerical implementation of analyti-
cal solutions to the SDS model that depend upon numerically determined
firing events. For comparison with more conventional (numerical PDE) ap-
proaches we also develop an implementation of the SDS model within the
neuron simulation environment [Hines and Carnevale2003]. As a first il-
lustration of the usefulness of the SDS model of spiny dendritic tissue we
present a case study of saltatory propagating waves in a model with regu-
larly spaced spines. Also in section 3 we treat wave propagation (and its
failure) for more irregular distributions of spines and relevant parameters.
After establishing the ability of the SDS model to accurately describe the
sorts of saltatory waves one finds in the more biophysically detailed BR
model, we turn next, in section 4, to the issue of the active dendritic tree
as a nonlinear filter. In particular we use the SDS model to address the ob-
servation of Rose and Fortune (Rose99) that there is a positive correlation
between spine density and low-pass temporal filtering. In section 5 we test
the robustness of observed wave and filtering properties to natural sources
of noise that arise both in the cable and the spine-head, and highlight the
possibility of purely noise induced waves and coherent oscillations. Finally,
in section 6, we look forward and describe some of the open problems in sin-
gle neuron function that may be readily addressed with a further analysis
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of SDS dynamics.

2 The spike-diffuse-spike model

We consider a uniform passive dendritic cable with a given distribution of
spines along its length. A schematic diagram of the SDS model is shown in
Figure 1. The dynamics of membrane voltage in the cable V = V (x, t) is

threshold

Dendritic cable (passive)

Spine-head (active)

IF IF

Figure 1: A schematic representation of the SDS model showing a passive
cable with electrically connected active spines.

described by the equation

πaCm
∂V

∂t
=

πa2

4Ra

∂2V

∂x2
− πa

Rm
V + ρ(x)Isp. (1)

Here a is a diameter of the cable (measured in µm), Ra is the specific
cytoplasmic resistivity (in Ω·cm), Cm and Rm are respectively the specific
membrane capacity (in µF/cm2) and a resistance across a unit area of passive
membrane (in Ω·cm2). Spines are connected to the cable at the discrete
points xn with the distribution function ρ(x) =

∑
n∈Γ δ(x − xn), where Γ

is a discrete set that indexes the spines. Each spine generates a sequence
of action potentials in its spine-head given by the function V̂ (x, t). As a
result the spine that just “fired” passes the spine current Isp = (V̂ − V )/r
into the cable. The spine stem resistance of an individual spine is given by
r. Denoting Tm

n , m ∈ Z as the time of the mth firing event of the nth
spine the function V̂ (xn, t) is given by V̂ (xn, t) =

∑
m η(t − Tm

n ). Here η(t)
specifies the universal shape of an action potential. The generator of action
potentials in the nth spine-head evolves according to

Ĉ
∂Un

∂t
= −Un

r̂
+

Vn − Un

r
− Ĉh

∑

m

δ(t − Tm
n )

︸ ︷︷ ︸
reset

, (2)
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where Vn = V (xn, t). Here the parameters Ĉ and r̂ describe the electrical
properties of the spine-head membrane, namely its capacitance and resis-
tance respectively. The spine’s firing times Tm

n are defined in terms of the
IF process according to

Tm
n = inf{t | Un(t) ≥ h, t > Tm−1

n + τR}. (3)

Hence, a spine fires whenever Un, driven by current from the shaft, crosses
some threshold potential h. Just after the firing event the variable Un resets
to zero, modeled by the last term in equation (2). Multiple spiking events
from an individual spine are controlled by a refractory time-scale τR during
which the spine can not fire.

It is convenient to rewrite (1) in the standard form

∂V

∂t
= D

∂2V

∂x2
− V

τ
+ Draρ(x)

V̂ − V

r
, (4)

where D = λ2/τ denotes the diffusion coefficient of the cable, τ = CmRm is
the membrane time constant, λ =

√
aRm/4Ra is the electronic space con-

stant and ra = 4Ra/πa2 denotes the intracellular resistance per unit length
of cable. The integration of this equation gives us an implicit expression for
the membrane potential in the form

V (x, t) =
Dra

r

∑

k∈Γ

∫ t

0
ds G(x − xk, t − s)[V̂ (xk, s) − V (xk, s)]. (5)

Here, G(x, t) is the Green’s function of the infinite uniform passive cable

G(x, t) =
1√

4πDt
e−εt e−x2/(4Dt)Θ(t), (6)

where ε = 1/τ and Θ(t) is the Heaviside step function. The expression
for the cable voltage (5) has a Dyson-like form [Bressloff and Coombes1997]
suggesting a Neumann series solution, obtained by repeated substitution of
(5) into itself. Introducing the parameter Λ = Dra/r, and generating just
the first two terms in this expansion gives

V (x, t) = Λ
∑

k

∫ t

0
dsG(x − xk, t − s)V̂ (xk, s) (7)

−Λ2
∑

k,p

∫ t

0
dsG(x − xk, t − s)

∫ s

0
ds′G(xk − xp, s − s′)V̂ (xp, s

′),

where {p, k} ∈ Γ. Under the approximation that Λ ≪ 1, only the first term
in (7) significantly contributes to the full solution. This first term is an exact
solution of the SDS model in the presence of a partial current Isp = V̂ /r from
the spine-head into the cable instead of the original full current. This gives
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rise to the so-called partial SDS model. For typical biophysically realistic
parameter values Λ may vary between 0.01 and 0.3. This estimation is based
on values of D = 10−5 m2/s, ra = 1.5× 109 Ω/cm, and using the estimated
range of r = 5− 150 MΩ taken from the work of Svoboda et al. (Svoboda).
Therefore, the partial model is a good approximation to the full model. In
this case the solution takes the explicit form

V (x, t) = Λ
∑

k∈Γ,m

H(x − xk, t − Tm
k ), max

k,m
{Tm

k } ≤ t < T ℓ
j , (8)

where m = m(k) counts firing events at each spine and H(x, t) =
∫ t
0 G(x, t−

s)η(s)ds. For a simple action potential shape given by a rectangular pulse
η(t) = η0Θ(t)Θ(τS − t) (with strength η0 and duration τS), the function
H(x, t) can be found in closed form [Coombes and Bressloff2003] as H(x, t) =
Aε(x, t−min(t, τS))−Aε(x, t) with a standard integral Aε(x, t) given in Ap-
pendix A. Equation (8) holds for times t between maxk,m{Tm

k } (i.e., the last
firing event from the set of all spine firing times), and T ℓ

j the time of the
new firing event at the ℓth spine.

The firing times for the construction of solution (8) may be found from
the set of threshold conditions Un(t) = h, with Un(t) obtained by integrating
equation (2). In particular, to find a new firing time T ℓ

j > max{Tm
k } cor-

responding to the spine at location xj we have to solve the set of threshold
conditions for the functions

Un(t) =
Dra

Ĉr2

∑

k,m

Ĥ(xn − xk, t − Tm
k ) − h

∑

m

e−ε0(t−T m
n ), (9)

where

Ĥ(x, t) =

∫ t

0
eε0(s−t)H(x, s)ds, (10)

and ε0 = (1/r̂ + 1/r)/Ĉ. For ε > ε0 this integral can be found in closed
form as Ĥ(x, t) = (Aε(x, 0)(e−ε0(t−min(t,τS)) − e−ε0t) + Â(x, t−min(t, τS))−
Â(x, t))/ε0 with

Â(x, t) = e−ε0t [Aε−ε0
(x, 0) − Aε(x, 0) − Aε−ε0

(x, t)] + Aε(x, t). (11)

Alternatively the integral in (10) can be readily evaluated numerically for
the explicitly given function H(x, t).

By solving the set of threshold conditions with Un(t) defined by (9) we
obtain a vector of times showing when each spine is able to reach the thresh-
old h. The smallest time from this vector, T ℓ

j , that satisfies the refractory

restriction T ℓ
j − T ℓ−1

j > τR defines a new spiking event at location xj . The
firing times of an individual spine have to be separated by at least τS , so
the refractory time is restricted by τR ≥ τS . As a result of finding the newly
fired spine extra terms have to be added into both sums in (9). The same
routine is then repeated to obtain subsequent firing events.

6



2.1 Numerical implementation of the SDS model

The analytical integration of the equations of motion to get the explicit
equations (8) and (9) for the partial SDS model obviates the need for the
numerical solution of a partial differential equation. In the computations
below we have taken ε > ε0 so that the explicit solution (10) and (11) can
be used. Up to determining the firing times this gives us an analytic solution.
The numerical scheme for the explicitly defined solution was implemented in
matlab and the firing times (defined from the threshold conditions Un(t) =
h) were determined numerically using the root-finding routine fzero. For
each time interval the number of equations used for finding the earliest
threshold crossing event can be reduced by excluding the spines that are still
in the refractory state. Once the latest firing event has been determined then
V (x, t) can be evaluated (in terms of a sum over all spines and all previous
firing events). Since contributions from firing events in the distant past
are exponentially decaying it is safe to truncate this sum over events, and
further improve numerical efficiency, though we do not do so in this paper.

In the following section we compare and validate the results from the
(quasi) analytic solution of (10) and (11) detailed above. We show conver-
gence by solving the explicit equation (7) for V (x, t) rather than (8) which
requires the solution of the differential equation (2) for each spine. We also
compare to the SDS model given as a system of differential equations imple-
mented in neuron [Hines and Carnevale2003]. We solve the partial model
with current Isp = V̂ /r from the spine-head into the cable as well as the full
SDS model (1) and (2). We also compare to the BR model with discrete
spines, again implemented in neuron. All code is available upon request to
the authors.

3 Validation of models and saltatory wave propa-

gation

We validate the different models and their numerical solution by comparing
the propagation of a solitary saltatory wave. We start by noting that for the
(quasi) analytic case a solitary wave can be determined from the solution of
a nonlinear algebraic equation.

Assume that the spines are regularly distributed along the cable with
spacing d, i.e., xn = nd. The speed of a solitary wave propagating in such a
system may be determined in a self-consistent manner (see Coombes03) by
the implicit equation

h =
Λ

Ĉr

∞∑

n=1

Ĥ(nd, n∆), (12)

for the partial SDS model. Here ∆ measures the time between successive
threshold crossings at adjacent spine-heads and thus the speed is v = d/∆.
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In Figure 2 we plot this speed (solid curve) as a function of distance between
the spines. If the spines are separated beyond some critical value (to the
right of limit point LP) the wave fails to propagate. From the analysis
in [Coombes2001a] it is further possible to establish that the faster of the
two branches is stable. On the same figure we plot the results obtained
from direct numerical simulations. In all simulations the wave is initiated
from an activated single spine at one end of the cable (and free boundary
conditions are assumed). Crosses indicate the speed obtained by using the
explicit solution of the SDS model given by equations (8) and (9). Stars
demonstrate the speed found by solving the system of differential equations.
There is excellent agreement between both approaches as well as with the
speed found from equation (12). Circles in Figure 2 denote the results of the
full SDS model. The spine current passed into the cable in the full model
is relatively less than in the partial model when other parameters are fixed.
This explains why the wave in the last model propagates faster with the LP
for propagation failure shifted to the right. If the firing events in the model
are defined by using the full form of the solution for V (x, t) given by equation
(5) the results will agree with the numerical solution of the full SDS model.
To demonstrate this convergence of the explicit approach, we evaluate the
speed of wave propagation using the explicit equation (7) for V (x, t) rather
than (8). Equation (7) includes a second order term in Λ and this term has
to be evaluated numerically. In this case the functions Un(t) used for the
determination of firing events are found by solving the differential equation
(2) for each spine. The obtained speed of the wave is indicated by triangles
in Figure 2. The inclusion of the second order term in the expansion for
the full solution yields a slower wave speed (than with just the first order
term). As more terms are included in the expansion the wave speed gets
closer to the solution of the full model. The inner plot in this figure is a
magnified view (for small lattice spacing), and demonstrates that the speed
of the wave attains a maximum for small d. In Figure 3 we plot the speed
of a solitary wave as a function of the spine stem resistance r. As expected
the speed decreases with increasing r and the wave fails to propagate when
r is larger than about r = 11.5. In physical units this corresponds to a value
of spine stem resistance of roughly 230 MΩ for a fixed spine spacing d of
0.01λ. Typical values of λ around 200 µm correspond to a spine spacing of
around 2 µm (consistent with real spine spacing).

3.1 Validation against the Baer-Rinzel model

The SDS model defined in terms of the IF process is a reduced version of
the biophysically realistic model of Baer91 where the spine-head dynamics
are modeled by HH kinetics. To compare these two models, we consider the
BR model with a discrete distribution of spines rather than with the spines
uniformly distributed along the cable (Baer91, Lord02). In this case the
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Figure 2: A plot of solitary wave speed v (in units λ/τ) as a function of
the distance between the spines d (in units λ). Solid line: the solution of
equation (12). Crosses: the solution given by the explicit equations (8) and
(9). Stars and circles: the solutions defined by solving (1) and (2) for the
partial and full SDS model respectively. Triangles: the solution defined by
solving (2) and (7). Non-dimensionalized parameters: D = 1, τS = ε = 1,
η0 = 1, ε0 = 0.8, Ĉ = 2.5, r = 1 (corresponding to r = 20 MΩ in biophysical
units), τR = 10, h̃ ≡ h/Dra = 0.05. Inner plot is a magnified view of a part
of the speed curve showing the LP for v.
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Figure 3: A plot of solitary wave speed v as a function of the spine stem
resistance r when d = 0.01. Other parameters as in Figure 2.
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model is defined by equation (1) and

Ĉ
∂V̂

∂t
= −I(V̂ , m, n, h) − V̂ − V

r
. (13)

Here the function I is the standard HH current, listed in Appendix B for
completeness. The membrane current arises mainly through the conduc-
tion of sodium and potassium ions through voltage dependent channels in
the membrane. A numerical simulation of the BR model with a regular
distribution of spines is presented in Figure 4A which shows a space-time
density plot of V (x, t). This plot nicely illustrates an example of a salta-
tory traveling wave solution. Waves in the BR model travel in a saltatory
manner because the discreteness of the spine distribution breaks the trans-
lation symmetry of the underlying cable. Although the wave has a saltatory
nature it travels with a well-defined speed. This speed changes as we vary
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Figure 4: A: An example of saltatory traveling wave in the BR model with
a discrete distribution of spines and spine spacing d = 6. B: The speed of
wave propagation v as a function of the distance between the spines d in the
discrete BR model (dashed curve) and in the partial SDS model (solid curve).
Parameters of the SDS model: D = 0.00012 m2/s, η0 = 100 mV, τS = 2 ms,
r = 4.5 MΩ, Ĉ = 0.0001 µF, ε = 3.35, ε0 = 2.3, h̃ ≡ h/ra = 0.00095. Other
parameters for the BR model are given in Appendix B.

the distance between the spines, and is quantified in Figure 4B. Also in this
figure we show a plot of the wave speed for the partial SDS model (solid
curve), with parameters chosen so as to give a corresponding fit to the more
biophysically detailed BR model.

From now on we consider the SDS model to be the (quasi) analytic
solution of the partial SDS model obtained by solving equations (8) and (9)
with a numerical approximation to the firing time.
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3.2 Saltatory waves and spine distributions

As for the BR model with a discrete distribution of spines, the SDS model
also supports saltatory traveling waves. For sufficiently small values of the
refractory period it is possible to generate periodic traveling waves. In Figure
5A we show a space-time plot of the cable voltage V (in units of η0) with 30
regularly distributed spines that nicely illustrates periodic wave propagation.

In real dendritic tissue the distribution of spines is likely to be irregular.
In the SDS framework we might simply consider that the distribution func-
tion ρ(x) has some disorder. An example of the effect that such disorder
can have is shown in Figure 5B, where we choose spine positions from a
uniform distribution. In comparison to Figure 5A, not only does this cause
irregular wave propagation, but it may lead to back-propagating waves. As
expected, too much spatial disorder in the spine distribution can lead to
propagation failure, when any one pair of adjacent spines becomes too far
separated to cause firing of one by the other. Moreover, in real dendrites
there is heterogeneity not only in the distribution of spines, but in other
system parameters, such as the refractory time scale and the spine stem
resistance. In Figure 6 we show examples of wave propagation with a uni-
form distribution of refractory time scale over the spines (Figure 6A) and
similarly for spine stem resistance (Figure 6B).
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Figure 5: A: An example of a periodic traveling wave in the partial SDS
model initiated from a single active spine and moving out through the cable
with 30 regularly spaced spines when d = 0.6. Other parameters as in Figure
2 except τR = 5. B: An example of irregular wave propagation in the partial
SDS model for the parameter set corresponding to A (except τR = 6) with
33 spine positions chosen from a uniform distribution (with mean 0.6 and
variance 0.12).
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Figure 6: Examples of irregular wave propagation in the partial SDS model
for the parameter set corresponding to Figure 5A with a uniform distribution
of A: the refractory time τR (with mean 5 and variance 0.03) and B: the
spine stem resistance r (with mean 1 and variance 0.08).

4 Filtering properties

The spatio-temporal patterns of activity in neurons and indeed networks
of neurons is intimately linked to the processing of sensory information. A
fundamental issue in understanding the relationship between structure and
function is how neurons transform and represent information using such pat-
terns. In this regard an understanding of how neural systems respond to sen-
sory stimuli is an important issue. Indeed, although the selective behavioral
responses to stimuli in the sensory systems of many organisms is believed
to rely on the presence of filters for the neural representations of the tem-
poral structure of sensory signals, the mechanisms underlying this temporal
selectivity are not completely understood. Undoubtedly these mechanisms
are subserved by the biophysics of neurons, including the passive electri-
cal properties of a neuron, and the types and distribution of channels and
conductances they support. However, only relatively recently has a role for
dendritic spines begun to be seriously entertained. For an increased under-
standing of the role of spines in temporal filtering, intracellular recordings
are necessary. Progress in recording from neurons as small as 10 µm has
been made using ‘patch-type’ pipette techniques [Rose and Fortune1996],
and these have been used to investigate the role of spines in filtering tempo-
ral input patterns to midbrain neurons of the weakly electric fish Eigenman-

nia [Fortune and Rose1997, Rose and Fortune1999]. In particular, this work
has shown that neurons with a broad dendritic arbor and relatively spiny
dendrites demonstrate low-pass temporal filtering properties in response to
input stimuli. Here, we suggest the use of the SDS model for re-examining
the findings of Rose and Fortune from a theoretical perspective, with a par-
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ticular emphasis on clarifying the effect of both passive and active properties
of the dendrite on filtering. The SDS model incorporates passive membrane
properties within the cable and mimics active properties by the IF process in
the spine-head. Importantly, we have the ability to vary spine distributions
and see the effect on filtering. A limitation of the model is that no explicit
consideration is given to the dynamics in the soma. However, output signal
recordings at the soma in experiments are believed to be primarily influ-
enced by the spread of activity in the dendrites, suggesting that an analysis
of filtering within the SDS model will still be relevant.

We assume that an electrical signal in the form of a periodic pulse train
is applied to the dendritic cable at position x0. This is modeled by adding
the following term to the right-hand side of equation (4)

Istim(x, t) =
∑

p

δ(x − x0)δ(t − pT ), (14)

where T is the period of the stimulus. By solving equation (4) with this
applied current, we obtain an extra term that enters the right hand side of
equation (8) for the membrane potential as follows

P∑

p=0

G(x − x0, t − pT ), (15)

where P = max{p | t − pT ≥ 0}. Therefore, equation (9) for the spines has
to be updated accordingly by adding an extra term

1

rĈ

P∑

p=0

Ĝ(xn − x0, t − pT ), (16)

where Ĝ(x, t) is found as

Ĝ(x, t) =

∫ t

0
G(x, s)eε0(s−t)ds = e−ε0t(Aε−ε0

(x, 0) − Aε−ε0
(x, t)). (17)

In Figure 7 we plot the results of simulations of the SDS model driven by
the applied forcing signal (14). To study filtering properties we stimulated
the system with a different fixed frequency. In all simulations the distribu-
tion of spines is chosen to be regular and the current is applied to the left
end of the cable at a distance of 0.5 (in units of λ) from the first spine.
Simulations show that differing applied stimuli lead to different patterns of
wave propagation. The signal transformation during its propagation is best
established by comparing the applied stimulus and the system response at
the opposite end of the cable. If the period of stimulation is large, the signal
measured at the end of the cable has a single inter-spike interval (ISI) con-
sistent with the period of stimulus. If we decrease the period of stimulation
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making it closer to the refractory time τR the output response at the end of
the cable shows the presence of two ISIs. An example is shown in Figure 7.
The plot on the right in this figure shows the membrane voltage at the loca-
tion of the 55th spine along the cable. When the period of applied current
is chosen to be small, the refractoriness of the system prevents the output
from reaching the frequency of the stimulus. Instead, the system initiates
repetitive waves consistent with the refractory time, with a single ISI.
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Figure 7: An example of wave propagation in the SDS model driven by
periodic stimulation. The current stimulus is applied to the left end of the
cable embedded with 60 regularly spaced spines. The system parameters
as in Figure 2 with d = 0.4, except τR = 7, and the period of stimulation
T = 6. Plot on the right is an example of voltage profile at the location of
the 55th spine along the cable.

The observed correlation between the periods of the applied signal and
the ISIs of the system responses is quantified in Figure 8. The x-axis of
the plots in this figure contains the frequencies of the applied stimulus used
in the simulations. Along the y-axis we plot the frequencies at the end of
the cable measured as the number of spikes emitted per unit time. Figure
8A shows the data from simulations for a spine spacing with d = 0.4. The
vertical dashed line in this figure indicates the frequency of the applied
signal of Figure 7. The two values for the spike frequencies that are defined
for the particular range of input frequencies illustrate the presence of two
distinct ISIs. The response of the system coincides with the input signal
for low frequencies of stimulation, whereas for high frequencies it is limited
by the system refractoriness. These dynamics indicate that the SDS model
exhibits low-pass temporal filtering properties. The doubly periodic ISIs
occur at stimulus periods close to the refractory time-scale. The smaller the
distance between the spines, the smaller the range of input frequencies that
lead to doubly periodic ISIs. However, if the spines are further apart, the
regime of stimulus frequencies where the system responds irregularly with
doubly periodic ISIs is increased. An example is shown in Figure 8B, where
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the spine spacing d equals 0.8. Thus, the low-pass filtering properties are
reduced with decreasing spine density.
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Figure 8: Frequency of the applied stimulation vs frequency of spikes in the
output response at the end of the cable. The system parameters as in Figure
7 with d = 0.4 in A and d = 0.8 in B. Vertical dashed line in A indicates
the frequency of stimulation that was chosen for simulations in Figure 7.

In Figure 9 we show the relative amplitude of voltage responses to the
frequency of input current. This figure is included to make a link to the
experimental observations that spiny neurons demonstrate a decline in the
amplitude of voltage responses with increasing stimulation frequency. The
relative amplitude measured in dB is evaluated as the difference between
the maximum amplitude and the mean of the signal response. Figure 9A is
plotted for two different spine spacings d. A decrease in the spine density
(achieved by increasing d) reduces the decline in the voltage amplitude.
The presence of doubly periodic ISIs in the voltage response causes the
irregularities seen in both curves at periods around the refractory time-
scale. In Figure 9B we show that a change in the refractory time in the
system results in a shift of the original curve but does not affect the overall
trend.

To summarize, the filtering properties of the SDS model are entirely con-
sistent with the experimental observations of Rose and Fortune [Fortune and Rose1997,
Rose and Fortune1999], namely that spiny dendrites with active membrane
properties demonstrate low-pass temporal filtering properties.

5 Noise induced phenomenon

The spontaneous behavior of neurons in vivo is believed to be driven by volt-
age fluctuations arising from system noise. Such noise can be characterized
as either intrinsic or extrinsic. A major source of intrinsic noise arises from
the stochastic gating of ion channels in the cell membrane. Importantly, if
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Figure 9: Frequency of applied stimulation vs relative amplitude of the
voltage potential (in dB) with the system parameters as in Figure 7. A:
d = 0.4 (squares), d = 0.8 (triangles), τR = 7. B: τR = 7 (squares), τR = 9
(triangles), d = 0.4.

the membrane potential is close to threshold, channel noise can be critical
for the generation of action potentials. In the SDS model the description of
noise due to stochastic channels is best introduced in the excitable spine-
heads. However, since the kinetics of ion channels are not explicitly included
in the model, the noise is simply considered to lead to the stochastic genera-
tion of action potentials. Extrinsic noise sources in the neuron typically arise
from synaptic inputs. Interestingly, there is an observed difference between
the spontaneous activity of neurons in vivo and the activity during intra-
cellular stimulation in vitro. Introducing a voltage fluctuation in the cable
membrane as well as in the spines is a natural way to mimic the presence of
input noise in the SDS model of an isolated neuron.

To study the effects of both types of noise on the properties of wave
propagation in the SDS framework we assume that the system is driven
by additive white noise in time that is either smooth (correlated) or white
(uncorrelated) in space. The SDS model that includes noise both in the
cable and the spine-head is given by

dV =

[
D

∂2V

∂x2
− V

τ
+ Draρ(x)

V̂ − V

r

]
dt + µV dWV (t, x), (18)

dUn =

[
Vn

Ĉr
− ε0Un − h

∑

m

δ(t − Tm
n )

]
dt + µUdWU (t, x). (19)

This is in fact a system of integral equations where we interpret noise in the
Itô sense. We assume that the Wiener processes WV,U are of the form

W (t, x) =
∑

n∈Z

bnφn(x)βn(t) ,
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where the βn are a mutually independent ordinary set of Brownian motions.
To simulate the Wiener process we took φn to be the eigenfunctions of ∂xx

with periodic boundary conditions. To avoid boundary effects this is done on
a domain of twice the length of our computational domain. The coefficients
bn determine the spatial correlation. For spatially correlated noise we take

∑

n∈Z

e2α|n||bn|2 < ∞ ,

and here, the parameter α determines the correlation length scale and
the spatial smoothness. The Brownian increment was implemented in a
standard manner as discussed for example in [Kloeden and Platen1992].
We formed W (t, x) with a fixed value of α, truncated the series with 512
terms and then took an interior portion of the same length as the com-
putational domain. Examples of such noise are considered for example in
[Da Prato and Zabczyk1992, Shardlow2005, Garćıa-Ojalvo and Sancho1999,
Lord and Rougemont2004]. The parameters µV and µU describe the strength
of the noise in the cable and in the spine-head respectively.

The integration of equation (18) for the membrane potential leads to
a solution for V (x, t) that may be split into two terms. The first term,
representing the deterministic component, may be computed using the exact
solution given by equation (8), whereas the second term incorporating the
noise has to be evaluated numerically. The integration of equation (19) for
Un(t), similarly to the cable, generates two terms. In general, the first term
has to be evaluated numerically and we use an explicit Euler-Maruyama
method. The second term, that defines the noise in the spine-head, was
generated in the same manner as for the cable and then sampled at the
spine position. However, when µV = 0, the model reduces to the case where
only the spines are forced by noise and, thus, the solution for V (x, t) is
explicitly defined. In this limit, the numerical evaluation of the first term
in the solution of equation (19) can be avoided. Instead, this term is found
using the explicit equation (9).

Here we demonstrate the effect noise can have on the properties of wave
propagation in the SDS model. We begin by exploring the SDS model with
noise only in the spine-head and take µV = 0. In all of the figures that
follow the noise-path is the same and µU is the only parameter that varies.
In all simulations the spines are regularly distributed along the cable. When
d = 0.6 (left of LP in Figure 2) the system supports wave propagation in
the absence of noise. Further numerical simulations show that, in general,
by increasing the level of noise in the system the patterns of cell response
change from isolated or repetitive wave propagation to the case of almost
simultaneous firing of all spines (i.e., a coherent behavior). However, at
low noise levels the repetitive propagation of waves can be suppressed by
a small noise increase. For high noise the majority of spines can generate
an action potential immediately and this leads to the activation of residual
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spines (i.e., those that did not fire) shortly thereafter. When d = 1 (right of
LP in Figure 2) the system does not support traveling waves in the absence
of noise. However, the examples in Figure 10 illustrate that noise can sustain
spatio-temporal structures that could not otherwise occur. In particular, for
a low level of noise we observe purely noise induced waves such as shown
in Figure 10A. Propagation failure occurs if the level of noise is below some
critical value. With high noise levels it is again possible to see coherent
oscillations in the system (Figure 10B) where almost all spines simultane-
ously generate action potentials. Choosing uncorrelated white noise in the
spine-head instead of correlated noise does not yield a qualitative change in
system behavior.
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Figure 10: Traveling waves in the SDS model in the presence of correlated
noise in the spine-heads for the parameters α = 1, d = 1, µV = 0 and A:
µU = 0.17, B: µU = 0.4. Other parameters as in Figure 5A except τR = 6.

The noise term in equation (19) for the spine-heads dynamics leads to
a stochastic process for spike generation. Another way to incorporate this
stochasticity into the firing events is to introduce a source of noise at the
threshold level. This can be modeled under the replacement h → h+ξ where
ξ is an additive noise with distribution ρ(ξ). This approach can be simply
implemented by generating a random vector ξ of length n from a distribution
of mean h and standard deviation β at each small time step. Then the firing
events are defined by checking the threshold conditions Un > ξn where ξn is
the nth element of vector ξ and Un is given by equation (9). The level of noise
in the system is controlled by the parameter β. The numerical simulations
of the SDS model in the presence of threshold noise demonstrate consistency
with the results of the model driven by the stochastic forcing at the spine-
heads. It is also possible to model the effect of threshold noise using a
probabilistic rule for spike generation. To see this we consider drawing the
threshold noise from a distribution σ, so that the probability of a firing event
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can be written

P (Un > h) =

∫
σ(ξ)Θ(Un − h − ξ)dξ = f(Un − h), (20)

where f(ξ) =
∫ ξ σ(x)dx. Considering a bell-shaped noise distribution for σ,

then the function f will have a sigmoidal shape. Here we use the following
form for the function f

f(U) = (1 + e−γh)/(1 + e−γU ) − e−γh, (21)

so that the probability of a firing event is zero and one respectively for
U = 0 and U → ∞. The parameter γ in (21) controls the level of noise
in the system by determining the width of the bell-shaped distribution σ
(such that decreasing γ corresponds to increasing noise). Simulation results
of the SDS model with this probabilistic update rule are shown in Figure
11. Plots on the left are for the system with spine spacing d = 0.6, whereas
plots on the right are obtained when d = 1. For low noise the system is able
to support repetitive wave propagation as illustrated in Figures 11A and
D. When the noise level is below some critical value, propagation failure
occurs. This is similar to the behavior observed in our earlier examples of
the stochastic SDS model. Here, however, an increase in noise causes more
irregularity in the patterns of wave propagation (see Figures 11B and E).
Moreover, high noise limits the spread of activity in the system by inhibiting
wave propagation (see Figures 11C and F) or can even lead to propagation
failure. The probabilistic rule used for the determination of the spikes in
these last examples ensures that the firing probability of an individual spine
is low if the membrane voltage in the cable at the location of this spine is low.
This explains why wave propagation can terminate for high noise levels. In
previous examples, where the noise in the spines is modeled by the stochastic
differential equation (19), the high noise in the system, contrary to this last
example, stimulates activity along the whole cable.

Now consider the stochastic SDS model driven by noise in the cable and
thus, take µU = 0. In the parameter region where waves propagate in the
absence of noise (d = 0.6), an increase in noise level can lead to repetitive
wave initiation. An example is shown in Figure 12 where we plot results of
simulations for the system in the presence of correlated noise. The plot on
the right shows the profile of an action potential in the membrane at the
location of the 20th spine along the cable. In the presence of uncorrelated
white rather than correlated noise, the system demonstrates a similar kind of
behavior. If the distance between the spines is chosen to be large, the noise
in the cable, correlated or white, is not able to initiate any wave propagation
in the system. However, in the case of high white noise some limited activity
was observed.

In summary, from our numerical simulations we conclude that noise in
the spine-heads has a strong effect on the properties of wave propagation. In
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Figure 11: Traveling waves in the SDS model in the presence of threshold
noise incorporated by the probabilistic rule for the spine spacing d = 0.6 (A,
B and C) and d = 1 (D, E and F). The noise levels are γ = 60 (low noise)
(A and D), γ = 5 (medium noise) (B and E), γ = 0.8 (C) and γ = 1 (high
noise) (F). Other parameters as in Figure 5A except τR = 6.
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Figure 12: Traveling waves in the SDS model in the presence of correlated
noise in the cable for the parameters α = 1, d = 0.6, µU = 0 and µV = 0.8.
Other parameters as in Figure 5A except τR = 6. Plot on the right shows
the profile of membrane voltage at the locations of 20th spine along the
cable.

the parameter regime where the deterministic model fails to support waves,
noise in the spines may aid in the initiation and propagation of waves. More-
over, for high noise in the spines one observes coherent oscillations. At the
same time, the stochastic SDS model shows robustness of wave propagation
to low noise in the spine-heads. On the other hand, noise in the cable does
not have a strong effect on patterns of activity.

We now consider the presence of noise both in the cable and in the spine-
heads (see Figure 13). Noise in the cable was chosen as for the model in
Figure 12. Noise in the spine-heads is such that there is no repetitive firing
without the added contribution from the cable. It is this combination that
leads to more complex propagation patterns. Again we see in Figure 13B
wave propagation in a regime where, with no noise, there is propagation
failure.

Finally, we investigated the robustness of the filtering properties ob-
served in the deterministic SDS model to noise sources. The SDS model in
the presence of a small amount of correlated noise both in the cable and the
spine-heads was driven by injected current in the form of a periodic pulse
train as in section 4. Simulation results demonstrate that the presence of
noise in the system yields qualitatively the same ISIs as in the deterministic
model. Thus, in general the low-pass temporal filtering properties observed
in the deterministic model are robust to noise.

6 Discussion

It is now just over one hundred years since the discovery of spines, yet there
are still mysteries about the contribution they make to single neuron dynam-

21



A B

0

50

0 30

0.6

0.3

Distance

T
im

e

0

50

0 30

0.6

0.3

Distance

T
im

e

Figure 13: Traveling waves in the SDS model in the presence of correlated
noise in the spines-heads and in the cable for the parameters A: d = 0.6,
α = 1, µV = 0.8, µU = 0.07 and B: d = 1, α = 1, µV = 0.8, µU = 0.2. Other
parameters as in Figure 5A except τR = 6.

ics. Building on the insight into dendritic function gained since the pioneer-
ing theoretical work of Rall in the 1950’s (surveyed in [Segev et al.1995]),
we propose that the SDS model is ideally suited to probing how active
spines shape and modulate a spatially structured input. In this paper
we have focused on a rather simple (spatially localized) input, though we
emphasize here that more spatially structured input can also be treated.
Moreover, there is no barrier to working with a truly branched dendritic
tree model as the analytical (“sum-over-paths”) techniques necessary to do
this have already been developed by Bressloff et al. (Bressloff96). Note
that our study has concentrated on a typical value of spine stem resis-
tance of 230 MΩ. However, spines which are both long and large can have
higher resistances in the range 500-2000 MΩ [Benavides-Piccione et al.2002,
Tsay and Yuste2004]. Hence, spine stem resistance is a bifurcation param-
eter worthy of future study, which we will consider elsewhere. In future
work we propose to use the SDS model to understand whether inputs to
a neuron sum linearly, or depend on spatial relationships in the input,
such as clustering. The currently available experimental evidence is con-
flicting [Cash and Yuste1998, Polsky et al.2004]. Interestingly, recent ad-
vances in imaging technology (using fluorescent dyes in combination with
confocal or two-photon laser scanning microscopy) have permitted time-
lapse observation of spine morphology in living neurons [Fischer et al.1998,
Dunaevsky et al.1999, Bonhoeffer and Yuste2002, Lippman and Dunaevsky2005,
McKinney2005], showing that spines are also constantly moving. In fact over
time-scales of seconds, spines continuously undergo small changes in shape,
thought to be powered by dynamic actin filaments. On timescales of min-
utes to hours spines can change their shape dramatically or even appear or
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disappear. Moreover, new spines can be generated in response to synaptic
stimulation that also results in strengthening of synapses. These morpholog-
ical changes could underlie some of the changes in synaptic strength induced
by neural activity. Working within the SDS framework we would also be in
a position to examine how successive synaptic input might influence spine
motility and electro-chemical properties. Some work in this direction has
already been done by Verzi et al. (Verzi05), for the continuum Baer and
Rinzel model using phenomenological models of spine density dynamics.
Within the SDS framework we envisage complementary work, building on
existing modeling studies (of spines as calcium compartments) such as that
of Holcman and Schuss (Holcman05), exploring how calcium accumulates in
discrete spines, and how this makes its way to the cell nucleus and triggers
genetic mechanisms that ultimately lead to the mechanical reconfiguration
of the synapse. Both the above issues are topics of current investigation and
will be reported upon elsewhere.
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Appendix A: Aε(x, t)
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Appendix B: Equations of the BR model

I(V̂ , m, n, h) = gKn4(V̂ − vK) + gNahm3(V̂ − VNa) + gL(V̂ − VL),

τX(V̂ )
dX

dt
= X∞(V̂ ) − X,

for X ∈ {m, n, h} where VL, VK and gNa represent the constant membrane
reversal potentials associated with the leakage, potassium and sodium chan-
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nels respectively.

τX(V̂ ) =
1

αX(V̂ ) + βX(V̂ )
,

X∞(V̂ ) = αX(V̂ )τX(V̂ ),

where

αm(V̂ ) =
0.1(V̂ + 40)

1 − exp[−0.1(V̂ + 40)]
,

αh(V̂ ) = 0.07exp[−0.05(V̂ + 65)],

αn(V̂ ) =
0.01(V̂ + 55)

1 − exp[−0.1(V̂ + 55)]
,

βm(V̂ ) = 4.0exp[−0.0556(V̂ + 65)],

βh(V̂ ) =
1

1 + exp[−0.1(V̂ + 35)]
,

βn(V̂ ) = 0.125exp[−0.0125(V̂ + 65)].

The following parameter values were used: Ra = 100 Ω·cm, Rm = 3333
Ω·cm2, Cm = 1 µF/cm2, a = 0.5 µm, r = 5 MΩ, Ĉ = 0.0001 µF, gL = 0.0003
mS, gK = 0.036 mS, gNa = 0.12 mS, VL = −54.402 mV, VK = −77 mV and
VNa = 50 mV.
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