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ABSTRACT
Artificial immune systems have previously been applied to the prob-
lem of intrusion detection. The aim of this research is to develop an
intrusion detection system based on the function of Dendritic Cells
(DCs). DCs are antigen presenting cells and key to the activation
of the human immune system, behaviour which has been abstracted
to form the Dendritic Cell Algorithm (DCA). In algorithmic terms,
individual DCs perform multi-sensor data fusion, asynchronously
correlating the fused data signals with a secondary data stream. Ag-
gregate output of a population of cells is analysed and forms the
basis of an anomaly detection system. In this paper the DCA is ap-
plied to the detection of outgoing port scans using TCP SYN pack-
ets. Results show that detection can be achieved with the DCA,
yet some false positives can be encountered when simultaneously
scanning and using other network services. Suggestions are made
for using adaptive signals to alleviate this uncovered problem.

Categories and Subject Descriptors: I.2 Computing Methodolo-
gies: Artificial Intelligence

General Terms: Algorithms, Security.

Keywords: Artificial immune systems, Dendritic Cells, port scans,
anomaly detection.

1. INTRODUCTION
The Dendritic Cell Algorithm (DCA) is a recent addition to ar-

tificial immune systems (AIS), a collection of algorithms inspired
by the human immune system. The DCA is based on current think-
ing in immunology, regarding the role of ‘danger signals’[10] as
activators of the immune system. It is shown experimentally that in
the human immune system, Dendritic Cells (DCs) process danger
signals and other indicators of damage and instruct the adaptive im-
mune system to respond appropriately. In this paper we present an
approach to intrusion detection inspired by the observed behaviour
of natural dendritic cells.

In nature, DCs are sensitive to changes in concentration of dif-
ferent signals derived from their tissue environment. DCs com-
bine these signals internally to produce their own output signals in
combination with location markers in the form of antigen[11]. The
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signal combination procedure is facilitated through a mechanism
known as signal transduction. The signals received from the tissue
during antigen collection determines the context in which the an-
tigen is presented to the adaptive arm of the immune system. The
outcome is either tolerance or activation towards entities express-
ing antigen of the same structure as the presented antigen. DCs
form ideal inspiration for an artificial immune system based intru-
sion detection algorithm as they are a key cell in this biological
decision.

The DCA is not the first AIS algorithm applied to intrusion de-
tection. In fact, intrusion detection systems (IDS) were amongst
the first applications of any AIS, based on the premise of combat-
ing computer viruses with a computer immune system. Negative
selection [7] has been used with some success, but is plagued by
problems surrounding scaling and false positives[14]. The premise
of the Danger Project [1] is to alleviate the problems encountered
with negative selection through the incorporation of danger the-
ory based immunology to AIS. The DCA is one of the significant
research outcomes of the Danger Project, alongside the libtissue
framework[16] and developments in DC biology[17].

The aim of this paper is to expand on previous work using the
Dendritic cell algorithm [5], by applying the algorithm to realistic
port scan detection and observing the effects on the system. This
can be used to gain insight into the behaviour of the DCA under
different conditions and the development of a generalised signal
selection schema.

This paper describes the application of the DCA to the detec-
tion of port scans based on the sending of SYN packets. This type
of scan is termed a SYN scan. Section 2 contains background in-
formation regarding the use of AIS in computer security, an over-
view of the immunology used as inspiration, and an overview of
the DCA itself. General rules for signal selection are outlined in
Section 3, with examples of signals used for the purpose of scan
detection. Experiments demonstrating the use of the DCA for SYN
scan detection are outlined in Section 4. Results show the effects
of different scanning scenarios on the detection capabilities of the
algorithm. The final sections include a discussion of these results
and their implications for the future of this algorithm.

2. BACKGROUND
In this section we present information regarding the use of AIS

within Intrusion detection, a summary of Dendritic cell biology and
the fundamentals of the Dendritic Cell Algorithm.

2.1 Computer Security and AIS
Intrusion detection in computer security is the detection of unau-

thorised use and abuse of computer systems and networks. The ma-
jority of techniques in IDS rely on signature-based misuse systems,



where patterns of known malicious behaviour are stored in a data-
base and are compared against observed patterns at run-time[13].
This approach can lead to false negative errors as the signature base
must be constantly updated in order to provide adequate protection.
Another approach tried by the IDS community is anomaly detec-
tion. In this paradigm, a profile of good or normal behaviour is
created from training data. Deviations from normal result in the
generation of alerts. Anomaly detection systems can be prone to
false positive errors, detecting normal actions as anomalous, be-
cause normal is difficult to define and can change over time. Early
AIS were developed for the purpose of detecting intruders in the
context of computer security[3]. The method employed to achieve
protection against breaches in computer security was the negative
selection (NS) algorithm [7].

Extensive amounts of work have been performed with this al-
gorithm, spanning over a decade of research within AIS[2]. In
particular, the NS algorithm has been applied to the detection of
anomalous connections between computers[7]. This anomaly de-
tection style system used a supervised learning paradigm. Network
connections are represented as bit-strings, and a profile of normal
strings is created as training data. These positive examples of nor-
mal are shown to a set of detectors, who are assigned randomly
generated strings. Each detector is matched against each training
item for similarity assessment. Should a detector match a sufficient
number of normal strings, it is deleted from the detector set. This
filtering results in a set of detectors tuned to detect strings which
fall outside this normal set. This functions in a similar manner
to mechanisms shown in classical immunology based on the self-
nonself paradigm.

The NS approach has a number of problems, highlighted by vari-
ous researchers within AIS and proved both empirically and the-
oretically. Firstly the algorithm does not scale as well as expec-
ted[8]. This is due to the randomisation process associated with
the generation of the detector set. As the size of the detector space
increases, the number of detectors needed to cover the space in-
creases exponentially. Additionally, a higher rate of false posit-
ives was shown than expected [14], despite attempts to improve
the representation and the addition of features such as user interac-
tion based ‘co-stimulation’ techniques. The false positive problem
arises due to the initial static definition of normal. What is ‘normal’
changes over time, as new previously unseen connections are made
and once trusted connections can become subverted for malicious
purposes.

In 2003, Aickelin et al [1] outlined the Danger Project, describ-
ing the application of the ‘danger theory’ to intrusion detection sys-
tems. The authors suggested a system of detection based around the
presence or absence of danger signals as opposed to the pattern-
matching based approach used in negative selection. Danger sig-
nals released as a result of dying cells indicate damage, and stim-
ulate the immune system. It was proposed that a system which
could differentiate between data collected in a dangerous context
with data collected in a safe context. It was suggested that some
of the problems with false positives could be alleviated through
the incorporation of these two contexts for the purpose of IDS. As
dendritic cells are a key cell in the translation of danger signals,
they have formed a central part in the development of the danger
based IDS, described in this paper.

2.2 Dendritic Cells
In this section a brief overview of the biological principles used

in the Dendritic Cell Algorithm are introduced. For more detailed
discussion of DC biology, please refer to [9] or [4].

In the human body, DCs have a dual role, as garbage collectors

for tissue debris and as commanders of the adaptive immune sys-
tem. DCs belong to the innate immune system, and do not have
the adaptive capability of the lymphocytes of the adaptive immune
system. DCs exist in various states of differentiation, which de-
termines their exact function. Modulations between the different
states are dependent upon the receipt of signals while in the initial
or immature state. The signals in question are derived from numer-
ous sources, including pathogens, from healthy dying cells, from
damaged cells and from inflammation. Each DC has the capability
to combine the relative proportions of input signals to produce its
own set of output signals. Input signals are categorised based on
their origin:

PAMPs: Pathogenic associated molecular patterns are proteins ex-
pressed exclusively by bacteria, which can be detected by
DCs and result in immune activation. The presence of PAMPS
usually indicates an anomalous situation.

Danger signals: Signals produced as a result of unplanned nec-
rotic cell death. On damage to a cell, the chaotic breakdown
of internal components form danger signals which accumu-
late in tissue. DCs are sensitive to changes in danger signal
concentration. The presence of danger signals may or may
not indicate an anomalous situation, however the probablility
of an anomaly is higher than under normal circumstances.

Safe signals: Signals produced via the process of normal cell death,
namely apoptosis. Cells must apoptose for regulatory reas-
ons, and the tightly controlled process results in the release
of various signals into the tissue. These ‘safe signals’ result
in immune suppression. The presence of safe signals almost
certainly indicate that no anomalies are present.

Inflammation: Various immune-stimulating molecules can be re-
leased as a result of injury. Inflammatory signals and the pro-
cess of inflammation is not enough to stimulate DCs alone,
but can amplify the effects of the other three categories of
signal. It is not possible to say whether an anomaly is more
or less likely if inflammatory signals are present. However,
their presence amplifies the above three signals.

Dendritic cells act as natural data fusion agents, producing vari-
ous output signals in response to the receipt of differing combin-
ations of input signal. The relative concentration of output signal
is used to determine the exact state of differentiation, expressed
by the production of two molecules, namely IL-12 and IL-10. In
their immature state, dendritic cells collect antigen within the tis-
sue compartment. During this phase they are exposed to varying
concentrations of the input signals. Exposure to PAMPs, danger
signals and safe signals causes the increased production of costim-
ulatory molecules, and a resulting removal from the tissue and mi-
gration to a local lymph node.

DCs translate the signal information received in the tissue into
a context for antigen presentation, i.e. is the antigen presented in
an overal ‘normal’ or ‘anomalous’ context. The antigen collected
while in the immature phase is expressed on the surface of the DC.
Whilst in the lymph node, DCs seek out T-lymphocytes (T-cell) and
attempt to bind expressed antigen with the T-cells variable region
receptor. T-cells with a high enough affinity for the presented an-
tigen are influenced by the output signals of the DC. DCs exposed
to predominantly PAMPs and danger signals are termed ‘mature
DCs’; they produce mature DC output signals, IL-12, which activ-
ate the bound T-cells. This links the activation of T-cells to the po-
tential suspect antigen present in tissue when intruders and damage
are evident. Once activation has been achieved the T-cell travels



back to the tissue to seek out any entity displaying a matching an-
tigen. Conversely, if the DC is exposed to predominantly safe sig-
nals, antigens are presented in a safe context, as little damage is
evident when the antigen is collected. This induced state of dif-
ferentiation is termed semi-mature. In this state the DC produces
IL-10 which has the ability to de-activate T-cells. . If the match-
ing T-cell encounters an entity expressing this antigen, no response
is mounted. The balance between the signals is translated via the
signal processing and correlation ability of these cells. The over-
all immune system response is based on the systemic maturation
state average of the whole DC population. An abstract view of this
process is presented in Figure 1.
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Figure 1: An abstract view of DC maturation and signals re-
quired for differentiation. CKs denote cytokines, molecular
messengers between immune system cells.

2.3 The Dendritic Cell Algorithm
The Dendritic Cell Algorithm (DCA) was first introduced by

Greensmith et al [4] in 2005. It has since been applied to two-class
classification of a static machine learning dataset[4], the detection
of small-scale port scans, under both off-line conditions[5] and in
real-time experiments [6]. It represents a shift in focus within the
field of AIS, from algorithms based solely on the adaptive immune
system function to those incorporating metaphors derived from the
innate immune system. This has paralleled similar trends in im-
munology, where for decades it was believed that the immune sys-
tem used a pattern based system to identify pathogens. Opposition
to this theory in the light of volumes of opposing evidence stim-
ulated research of the innate driven mechanism demonstrated via
DC behaviour and how this integrates with the concepts of clas-
sical immunology. In a similar manner, the DCA abandons the use
of pattern matching to classify antigen, as previously used in the
Negative Selection algorithm [7]. As a result it does not suffer the
scaling problems outlined for negative selection. A brief descrip-
tion of the algorithm follows below, with a detailed description and
its implementation given in Greensmith et al [5].

The DCA is a population based system, with each agent in the
system represented as a cell. Each cell has the capacity to collect
data items, termed antigen, and the processing of values of input
signal. The combination of the input signals forms cumulative out-
put signals of the DCs. The population of cells is used to correl-
ate co-occurring and disparate data sources, effectively combining
the ‘suspect’ data (antigen) with ‘evidence’ in the form of signals.

The algorithm uses the notion of tissue, which supports the initial
processing of data, as implicated in Twycross and Aickelin [16].
Two ‘compartments’ are necessary, one for data collection and pro-
cessing termed tissue, and one for the analysis of antigen termed a
‘Lymph node’. A diagram of the DCA is presented in Figure 2.
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Figure 2: Illustration of the DCA showing data input, continu-
ous sampling, the maturation process and antigen analysis.

In the tissue compartment, input data is stored for collection by
the DC population. Antigens are stored in an antigen vector, with
signals stored in a signal matrix. The population of DCs is stored
as an array of objects. Multiple signals of different categories can
be used as input and stored in the matrix. The signal matrix facil-
itates the representation of signals within the system, providing the
interface between raw values of input data and signal values for the
use of the DC population. Signals and antigen are streamed to the
tissue, with both storage data structures updated upon the arrival
of new data. Cells in the sampling population are updated once
per second. During this update, each cell selects 10 indices within
the antigen vector, and transfers any antigen contained within the
vector to the cell’s own antigen store. Once the antigen vector has
been sampled, values from the signal matrix are copied to the cells
internal signal store. Cumulative output signal values are updated
each time the signal matrix is visited. A schematic representation
of the signal processing equation is shown in Figure 3.

The output signal value representing the costimulatory molecules
(CSMs) is used as a marker of maturation, enforcing a limit on the
time a cell spends sampling before migrating to the lymph node.
The value for CSM is incremented in proportion to the quantity
of input signals received. The input signals are combined to form
CSMs using a simple weighted sum. Weights for this equation are
shown in previous work [5]. They have been derived from immun-
ological observations [17] and were refined based on a sensitivity
analysis performed in previous work [6]. Once the value of CSM
is greater than the cells migration threshold, the cell is removed
from the sampling population and is transferred to the Lymph node
compartment.
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Figure 3: A schematic diagram of the signal processing equa-
tion used by every DC to fuse input signals and derive output
signals.

Assessment of the output signals of DCs (either IL-10 or IL-
12) in the lymph node is used to form the context of the collected
antigen. The two remaining output cytokines are assessed. A high
value of collected PAMPs and danger signals with a low value of
safe signal is likely to result in an increase in mature output signal.
Conversely a high value of safe signal will result in a high value of
semi mature output signal. The values for semi mature and mature
output signals are compared. The context of the DC is given by
the output signal with the greatest value, with the assignment of
context of 0 for semi-mature and 1 for mature. In the event of a tie,
the cell is given a context of 0.

Antigens collected by the DC are printed to a log file, in combin-
ation with the context of the cell. An average context can be calcu-
lated for antigens of identical value or structure (type of antigen).
The total fraction of mature antigen, per type of antigen, is derived
forming the mature context antigen value or MCAV coefficient. The
nearer a MCAV is to 1, the more likely the antigen is anomalous, as
it was frequently collected in a context with high values of danger
signals and PAMPs repeatedly. A confidence metric for the MCAV
is derived using the total number of antigen presented per type of
antigen. The higher the confidence value, the greater the probabil-
ity of the MCAV being an accurate representation of the processed
data. The uses of the antigen confidence indicator are shown in
Section 5.

3. SYN PORT SCAN DETECTION
Previous use of the DCA involved the detection of a short and

simple ping scan, based on the ICMP ‘ping’ protocol. To challenge
the capability of the DCA, in this paper the algorithm is applied
to the detection of the more complicated port scan, the TCP SYN
scan. This is a commonly used type of scan, which leaves no trace
in the normal system logs. Port scans form an ideal model of an in-
trusion, and techniques applied to scan detection can also be used
to detect scanning worms. Early detection of scanning can prevent
more serious attacks, as it is a tool crucial to the information dis-
covery stage of intrusions. In this paper, we aim to detect a SYN
scan launched from a victim machine, where the DCA is used to
monitor the behaviour of the victim. This forms a scenario repres-
enting a scan performed by an insider, namely a legitimate user of
the system who uses the system in an unauthorised manner.

The SYN scan itself is used to determine which ports are open
and which services are running on specified hosts. Unlike the de-
fault TCP Connect scan, the SYN scan leaves no trace in normal
system logs, as the TCP ‘3-way handshake’ is left incomplete. SYN
scans involve sending TCP packets to IP addresses specified at the
command line of the scan program. The scanning machine sends
a SYN packet to each address, and uses the information retrieved
from the scanned remote machines to characterise the network. If
a SYN packet is sent to a closed port, the remote machine responds
by sending a TCP reset (RST) packet back to the scanning machine.
Conversely, if the port is open, the remote machine responds with
a TCP SYN-ACK packet. The scanning machine then terminates
the potential TCP connection by sending a RST packet to the re-
mote machine. As the 3 way handshake is not completed, no actual
connection is made to the remote machine.

3.1 Signals
In vivo, DCs combine input signals in the form of concentra-

tion of molecules, translated through a network of receptors, signal
transduction mechanisms and gene regulatory processes. Natural
DCs are sensitive to changes in their environment, described as
the chemical content of tissue which the DCs can sense through
their expressed receptors. In a similar manner, the DCs used in
the DCA are sensitive to changes of value within the signal matrix.
This system relies on correct mapping of signals through examining
the nature of the input data, and the assignment of correct weight-
ings. To assist the signal selection process, a set of general rules
for correct mapping are defined. Previous experiments have shown
that modifications to the mappings of the different signals can lead
to the generation of false positive errors [5], though robustness is
shown if PAMPs and danger signals are incorrectly mapped. Input
signals are abstracted from the general biological principles out-
lined in the previous section:

• PAMPs: A signature of abnormal behaviour, e.g. errors per
second. An increase in this signal is associated with a high
confidence of abnormality.

• Danger Signal: A measure of an attribute which increases
in value to indicate an abnormality e.g. number of network
packets per second. Low values of this signal may not be
anomalous, giving a high value a moderate confidence of in-
dicating abnormality.

• Safe Signal: A measure which increases value in conjunction
with observed normal behaviour e.g. a low rate of change
of packet sending. This is a confident indicator of normal,
predictable or steady-state system behaviour. This signal is
used to counteract the effects of PAMPs and danger signals.

• Inflammation: A general signal of system distress, which is
insufficient to cause any maturation in the absence of other
signals e.g. many users logged into a system remotely. Used
to amplify the effects of the other signals.

For the detection of SYN scans, seven signals are derived from
behavioural attributes of the monitored machine: two PAMPs, two
danger signals, two safe signals and one inflammatory signal. Hav-
ing two signals in each category should make the DCA more ro-
bust against random network fluctuations. As the inflammatory
signals is observed locally, one signal should be sufficient. The
PAMP signals are both taken from data sources which indicate a
scan specifically. Danger signals are derived from attributes which
represent changes in behaviour. Safe signals are also derived from
changes in behaviour, but high safe signal values are shown when



the changes are small in magnitude. The inflammatory signal is
simplified as a binary signal i.e. inflammation present or not. All
PAMPs, dangers and safe signals are normalised within a range of
0 and 100 to facilitate further processing.

PAMP-1 is the number of ICMP ‘destination unreachable’ er-
ror messages received per second. Scanning IP addresses which
are not attached to a running machine or machines which are fire-
walled against ICMP packets generate these error messages. This
signal was proved useful in detecting ping scans, and may also be
useful in the detection of SYN scans, as an initial ping scan is
performed to find running hosts. In this experiment, the number
of ICMP messages generated was significantly less than observed
with a ping scan. To account for this, normalisation of this signal
includes multiplying the raw signal value by 5, capped at a value of
100.

PAMP-2 is the number of TCP reset packets sent and received
per second. Due to the nature of the scan, a volume of RST packets
are created in both port status cases; they are generated from the
scanning machine if ports are open, and are generated by the remote
machines if ports are closed. RST packets are not usually present
in any considerable volume, so their increased frequency is a likely
sign of scanning activity. This signal is normalised linearly, with a
maximum cap set at 100 RSTs per second.

The first danger signal (DS-1) is derived from the number of
network packets sent per second. Previous experiments with this
signal [5] indicate it is useful for the detection of outbound scans.
A different approach is taken for the normalisation of this signal. A
sigmoid function is used to emphasise the differences in observed
rate, making the range of 100 to 700 packets per second more sens-
itive. This function makes the system less sensitive to fluctuations
under 100 packets per second, whilst keeping the sensitivity of the
higher values. A cap is set at 1000 packets per second. The result-
ing signal range is between 0 and 100.

DS-2 is derived from the ratio of TCP packets to all other packets
processed by the network card of the scanning machine. This signal
is used as during SYN scans there is a burst of traffic comprised of
almost entirely TCP type packets. The ratio is noramlised through
multiplication by 100, to give this signal the same range as DS-1.

Safe signals are implemented to counteract the effects of the
other signals, hopefully reducing the number of false positive an-
tigens. The first safe signal (SS-1) is applied as described in [5]
and encapsulates the rate of change of sending of network packets.
High values of this signal are achieved if the rate of change is small
and vice versa. This implies that a large volume of packets can be
legitimate, as long as the rate at which the packets are sent remains
constant.

The second safe signal (SS-2) is based on the observation that
during SYN scans the average network packet size drops to a size of
40 bytes. Observations under normal conditions show that the av-
erage packet size is within a range of 70 and 90 bytes. A step func-
tion is implemented to derive this signal, with raw values between
40 and 45 bytes given a SS-2 value of 0, 46-50 bytes a value of 10,
51-60 bytes a value of 50, and over 61 bytes a value of 100. Pre-
liminary experiments showed that a moving average is needed to
increase the sensitivity of this signal. This average is created over
a 60 second period.

The inflammatory signal is binary and is based on remote root
log-ins. If a remote root log-in is detected this signal equals one,
acting as a multiplier for the other signals.

3.2 Antigen
The signals have been selected for the detection of SYN scans,

based on observed changes in machine behaviour during a scan.

Hence, the signals chosen in this paper differ from those in our
previous research. However, the antigen used for ping scan de-
tection is also suitable for the detection of SYN scans. Process
identification numbers (PIDs) generated each time a system call is
made form the antigen. All remote sessions facilitated by ssh are
monitored for this experiment. Using multiple system calls with
identical PIDs allows for the aggregate antigen sampling method,
described in Section 2. This allows for the detection of exactly
which process was active when changes in signal values are ob-
served. This technique is a form of process anomaly detection,
but the actual structure of the PID is not important in terms of its
classification, i.e. no pattern matching is performed, PIDs simply
represent labels to identify processes.

4. EXPERIMENTS
The aim of this experiment is to apply the DCA to the detection

of a SYN scan, launched from the machine which the algorithm is
monitoring. Two datasets are used for this purpose: passive normal
and active normal. The passive normal dataset emulates a ‘night
time’ scan, while the machine is not being actively used. It should
be relatively easy to detect anomalous behaviour in this data set.
The active normal dataset includes simultaneous web-traffic and
scanning processes.

The active normal dataset is 7000 seconds in duration, with ‘nor-
mal’ antigen generated by running Firefox over a remote SSH ses-
sion. During browsing, multiple downloads, chat sessions and the
receipt of e-mail occurred representing different patterns of net-
work behaviour. The passive normal dataset comprises of a nmap
scan and its pts-ssh demon parent. Both datasets contain processes
which were invoked as a result of running a remote SSH session
to run the scan, logged in using a root password. Both datasets
contain a SYN scan of all ports using 254 IP addresses. Approx-
imately 70 hosts were available at any time during the scan. As the
scanned machines are part of a university network and the availab-
ility of the machines is beyond our control. The scan performed in
both datasets is a stealth SYN scan, with a fast probe sending rate
( <0.1 sec per probe), facilitated through the use of the popular
scanning tool, nmap[12]. The command used is “nmap -sS -v
xxx.xxx.xxx.1-254. Once these initial datasets are created, a
‘replay client’ is used to process the same data repeatedly for dif-
ferent experiments, even though the system is designed to and does
work in real-time.

Previous experience using the DCA has shown that there is little
deviation in the output of the algorithm run on the same dataset,
rendering repeats of identical experiments unnecessary. This is due
to the sheer volume of input antigen sampled and the stochastic
nature of the sampling process. System parameters for these exper-
iments are as follows : number of signal categories = 4; number of
signals per category = 2; tissue antigen storage = 500; number of
cells = 100; number of antigen taken by DC in 1 update = 10; num-
ber of antigen stored by a DC = 50; and the number of DC output
signals = 3. The MCAV coefficient is calculated for every 10000
antigen presented, a number derived during preliminary investiga-
tions. In terms of assessment, the PIDs with the highest volume of
antigen output are used as the processes of interest. For the passive
normal dataset these processes are the nmap scan process and the
ssh demon. The processes of interest for the active normal dataset
include the nmap scan, pts process and the Firefox browser and its
children. Graphs are generated showing the MCAV for each pro-
cess of interest per 10000 antigens presented, for the duration of
the experiments. We expect higher values of MCAV for the nmap
process and its parent process, the ssh demon, than for the Firefox
browser or the bash shell.



All experiments are performed on an AMD Athlon 1GHz Debian
linux machine (kernel 2.4.10). The algorithm is implemented within
the libtissue framework[15], implemented in C (gcc 4.0.2)
with interprocess communication facilitated by the SCTP protocol.
All signals are derived using signal collection scripts, with values
taken from the ‘proc’ filesystem (PAMP-1, DS-1, SS-1, I), the tcp-
stat linux utility (D2, SS-2) and a custom developed packet sniffer
(PAMP-2).

4.1 Results
Figures 4 and 5 show the input signals for the active normal

(AN) and passive normal (PN) datasets respectively. In reality,
both sets of signals are extremely noisy, and the figures depicted
are smoothed representations of the actual signal values used in the
experiments. Inflammation is a binary signal an is not represen-
ted on these figures. The AN signals are more variable than the
PN signals, as many more processes run during the AN session.
In the AN session, the duration of the nmap scan is approximately
6000 seconds, with the scan initiating at 651s. Signals PAMP-1,
PAMP-2 and DS-2 clearly change for the duration of the scan. The
remaining signals are less clear, though some evidence of changes
throughout the scan duration is shown. The changes are transient
and localised in particular to the beginning of the scan, when the
majority of probes are sent to other hosts.

The signals of the PN dataset are less noisy. Analysis of in-
put antigen confirms nearly 99% of these antigens belong to the
anomalous pts and nmap processes. PAMP-1 and PAMP-2 are re-
sponsive to the scan, as shown by their rapid decline towards the
end of the scanning period, at 5500s. Changes in DS1 are more
pronounced in the PN dataset, yet the magnitude of this signal is
smaller than expected. DS-2 appears to be highly correlated with
the scan, yielding values of over 20 throughout the scan duration.
SS-1 performs poorly, and only decreases in response to the scan
in a few select places. SS-2 falls sharply in the middle of the scan,
as predicted, but otherwise remains at a constant level of 60 even
after the scan has finished.
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Figure 4: Simplified sketch of the input signals comprising the
active normal dataset. Inflammation is not represented.

The antigen log file for the output of the DCA in both experi-
ments (AN and PN) is partitioned and MCAVs recalculated after
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Figure 5: Simplified sketch of the input signals comprising the
passive normal dataset. Inflammation is not represented.

every 10000 antigens. In Figures 6 and 7 each point represents the
MCAV over 10000 antigens per process, for each process of in-
terest. Figure 6 shows the MCAV output for PN. High values of
over 0.5 are shown consistently for both nmap and pts in this ex-
periment. This is evident for the first 40000 antigens. The MCAV
values for the remainder of the scan are low, as at this point the scan
slows to such extent that the behaviour of the machine remains con-
stant, causing little change in signals and resulting in low MCAV
values.
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Figure 6: MCAV per 1000 antigens for the passive normal data-
set. Nmap and Pts processes detected and represented.

Figure 7 presents the results of the active normal datasets. High
MCAVs for the nmap and pts processes are evident throughout the
scan duration, indicating successful detection. However, a number
of firefox antigens also have high values of MCAV, reaching the
maximum value of 1 as the scan is performed. Similarly, the nmap
and firefox mean MCAV across the entire session is 0.16 for both



processes, with identical standard deviations of 0.31. It appears that
it is not possible to separate the two active processes if normal and
attack processes run concurrently.
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Figure 7: MCAV per 1000 antigens for the active normal data-
set. Nmap, Pts and parent Firefox browser processes detected
and represented.

5. ANALYSIS
The results presented in Figure 6 show that the DCA can be used

to detect large scale port-scans over an extended duration. It is im-
portant to note that the input data is both noisy and voluminous.
The number of input antigen for both datasets is in excess of 1.3
million in total with the the actual input signal data also very noisy,
with events such as network availability highly variable. Under
‘night time’ conditions, which are ideal, the algorithm performs re-
markably well, compressing 1.3 million data items to a resultant
130,000 antigens (for PN), over the 7000s duration. The perform-
ance in terms of detection is also exemplary, indicating that the
DCA is successful when applied to a ‘real-world’ scenario.

A number of false positives are shown through high MCAVs for
the firefox process in the AN session, as shown in Figure 7. This in-
dicates that the DCA has difficulty in separating concurrent normal
and anomalous processes, when the analysis is based on the value
of the MCAVs alone. However, the MCAV can be combined with
the antigen confidence indicator. For example, in the AN experi-
ment a total of 130,000 antigens are presented for analysis. Some
67000 of those antigens belong to the nmap process over the entire
session, and can account for nearly 90% of the antigens produced
when the nmap scan is highly active. In contrast, during periods
of high nmap activity, the relative proportion of antigen presented
belonging to the firefox process is under 10%. A combination of
MCAV and antigen confidence indicatior can show not only how
anomalous a process is deemed to be, but the level of confidence in
the assessment. The greater the antigen input, the more times the
antigen is sampled and the more accurate the MCAV. Charts repres-
enting the relative proportions of antigen input and antigen output
are shown in Figures 8 and 9 respectively. Combining the relative
proportion of antigen output per process with the MCAVs may lead
to fewer false positives and effective anomaly detection.

Additionally, reduction of false positives may be achieved through
exploring the facets of the number of antigens used to derive the
MCAVs per process. In these experiments 10000 antigens were
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Nmap
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Figure 8: Proportionate chart of antigen per processes as input
data for the active normal dataset

used for the calculation, but could be based on time or some other
metric of system activity. As explored previously [4] the sampling
DCs are sensitive to the length of time spent receiving signals in the
tissue compartment. Longer sampling windows during low activity
and shorter windows during high activity may make the detection
more fine grained. Moving averages applied to the MCAV values
over time may also alleviate this problem.

6. CONCLUSIONS AND FURTHER WORK
The DCA is a new development in AIS, and as yet has not been

extensively tested. This paper presents work towards understand-
ing the behaviour of the algorithm when applied to larger realistic
problems. Its unique methods of combining multiple signals and
correlating the combined values with a separate antigen data-stream
works well for the detection of SYN scans over a long duration.
However, some impairments in performance were shown when at-
tempting to classify a scanning process when run concurrently with
other active user-driven processes. Due to the nature of the input
data and the methods of correlation employed, it is difficult to com-
pare the algorithm with other standard methods, though in future
network packet analysis may be performed for the sake of com-
parison. Additionally, individual signals alone are insufficient to
produce successful classification based on both the volume of data
and the amount of noise present in the input signals.

In addendum to the investigations proposed in Section 5, a num-
ber of future directions exist for the DCA. The first and most obvi-
ous future direction is a definitive benchmark test, to compare the
performance of the DCA to other AIS and anomaly detection ap-
proaches. The introduction of adaptive signals or variable weights,
for example using different weights at different times of the day, is
another avenue to explore with the DCA. The algorithm may also
be applied to other scan detection problems and to other problems
in computer security. In addition applications outside of the scope
of computer security can be considered such as the analysis of ra-
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Figure 9: Proportionate chart of antigen per processes as out-
put data for the active normal dataset

dio data from space, or to mobile robotics. The results presented
in this paper have shown that the DCA is capable of performing
scan detection under difficult conditions through a unique form of
immune inspired data fusion.
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