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Abstract

We find approximations to travelling breather solutions of the one-dimensional Fermi-
Pasta-Ulam (FPU) lattice. Both bright breather and dark breather solutions are
found. We find that the existence of localised (bright) solutions depends upon the
coefficients of cubic and quartic terms of the potential energy, generalising an earlier
inequality derived by James [CR Acad Sci Paris 332, 581, (2001)]. We use the method
of multiple scales to reduce the equations of motion for the lattice to a nonlinear
Schrédinger equation at leading order and hence construct an asymptotic form for
the breather. We show that in the absence of a cubic potential energy term, the
lattice supports combined breathing-kink waveforms. The amplitude of breathing-
kinks can be arbitrarily small, as opposed to traditional monotone kinks, which have
a nonzero minimum amplitude in such systems. We also present numerical simula-
tions of the lattice, verifying the shape and velocity of the travelling waveforms, and
confirming the long-lived nature of all such modes.
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1 Introduction

Discrete breathers are time-periodic and spatially localised solutions of cou-
pled chains of nonlinear oscillators. In 1994, Mackay and Aubry |18] established
the existence of stationary breathers in a broad range of lattice models. In their
method, breathers are obtained by continuation from the anti-continuum limit
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at which the network is reduced to an array of uncoupled oscillators. In this
limit, breathers are found trivially, since one may take breathers for which
only one oscillator is excited, and the others remain at rest.

This method is not applicable to Fermi-Pasta-Ulam (FPU) lattices of the type
first investigated by Fermi et al. [8], since these do not possess an uncoupled
limit in which trivial breathers exist. Nevertheless, early analytical and nu-
merical work indicated that FPU lattices could indeed support breathers, see
for instance, Takeno [28] and Bickham et al. |3]. Later, rigorous proofs for
existence in particular FPU models were provided by Flach [9] and Aubry et

al. [1].

James [17] presents a proof of the existence (nonexistence) of breathers in
general FPU lattices provided that the interaction potential satisfies (vio-
lates) a local hardening condition. Small amplitude breathers with frequen-
cies slightly above the phonon band are found when B > 0, where B =
V#®(0)/2 — (V®)(0))?, and their nonexistence is proved for B < 0 (V is the
interaction potential, and is chosen to satisfy V/(0) = 0 and V"(0) = 1). Ac-
companying numerical work by Sanchez-Ray et al. [23] illustrates the range of
validity of James’ centre manifold technique since small amplitude breathers
are computed and found to be in good agreement with leading-order analytical
expressions deduced by James.

Whilst we know of no proofs for the existence of moving breathers in lattices,
their long-lived nature has been noted, and has inspired more detailed study
of their stability and mobility. Sandusky et al. [24] use a combination of the
rotating-wave approximation (RWA) to describe the temporal evolution of
a breather, together with a numerical solution of its shape. Two types of
stationary breather are found; one centred on a lattice site and one centred
between lattice sites. Numerical simulations and heuristic arguments show that
the former is unstable to perturbations which caused motion of the breather.
The latter type is found to be stable. These results thus show that breathers (as
well as kinks) experience a type of Peierls-Nabarro potential barrier; however,
the concept of an energy barrier is not as useful for breathers as kinks, since
its amplitude depends on the internal phase of the breather (as shown in [32]).

In this paper, we use asymptotic methods to find leading-order expressions
for the form of breathers in a one-dimensional Fermi-Pasta-Ulam chain with
anharmonic potential. In Section 2 we apply the semi-discrete multiple-scale
method of Remoissenet [19] to reduce the governing equations to a nonlinear
Schrodinger (NLS) at leading order. The validity of this method has since been
established by Schneider & Wayne [25], and by Giannoulis and Mielke [12, 13]
for a more general form of equation in which there is an on-site potential
as well as the nearest-neighbour interactions. The NLS equation admits two
different types of soliton solution (bright or dark) for the breather envelope,



depending upon the coefficients of the cubic and quartic terms in the potential
energy function. Our asymptotic analysis yields inequalities which illustrate
how the size of these coefficients determine the type of solution. This leads
to conditions for which the FPU lattice supports bright or dark breathers in
the lattice. We find that stationary breathers satisfy James’ inequality B > 0,
while for moving breathers, we find a generalised version of James’ inequality.
Soliton solutions of the NLS equation are used to construct leading-order
analytic forms for bright and dark breathers in the FPU chain. We present
results of numerical simulations of the FPU lattice in Section 3 we find good
agreement with the results predicted by the asymptotic analysis.

In Section 4, we show, by considering small wavenumbers, that there also ex-
ist waveforms which are combinations of a breather and a kink. The order
of magnitude of the wavenumber determines which of the two components
dominates in such a waveform, and hence whether a breather or a kink or a
combined breathing-kink is exhibited ultimately. We present numerical sim-
ulations which show that these combined modes move as travelling waves
over intermediate timescales. We show that traditional, monotone, kinks in
the quartic FPU lattice have a non-zero minimum amplitude, and that the
combined modes allow travelling waves with a kink amplitude below this min-
imum. Whilst Flytzanis et al. [10] found approximations to combined trav-
elling breather-kinks in this system, their solution ansatz explicitly assumes
the existence of both an oscillatory (breather) and a slowly varying (kink)
components with similar amplitudes. Our approach is to work with a different
formulation of the problem, and use a solution ansatz which has only an os-
cillatory component. The existence of a slowly varying component (which has
the form of a kink) then arises naturally and the amplitude of this resultant
mode is determined as part of the problem. A brief summary and some closing
comments are given in Section 5. In particular, we discuss several merits of
the methodology used in this paper over other early analytic methods applied
to similar lattice models, such as the rotating-wave approximation.

2 The Fermi-Pasta-Ulam lattice

2.1 Preliminaries

We restrict our attention to the one-dimensional FPU lattice. In such a lat-
tice, particles interact with their nearest neighbours. The variable ¢, denotes
the displacement of the nth particle from its equilibrium position. The Hamil-



tonian of this system is given by

[e.e]

H= Z (%qi + V(gns1 — Qn)) ) (1)

n=—oo

where V' is the potential due to nearest neighbour interactions, and the index
n runs over the entire one-dimensional lattice. The Hamiltonian (1) yields the
equations of motion

Gn(t) = V/(Qn—i-l — n) — V/(QH — Gn-1)- (2)

At this point, we introduce the variable ¢,,, defined as the difference between
the displacements of the (n + 1)th and nth particles, namely

¢n = Ggn+1 — Qn- (3)

In terms of the new variable ¢,, (2) becomes

On =V (bns1) = 2V (¢n) + V' (dn-1)- (4)

Since we shall be using asymptotic methods to determine the form of small
amplitude solutions, we are only be concerned with the first few terms in the
expansion of V' (¢). Thus we define the potential function V' (¢) by

V'(¢) = $¢% + Lag® + Lbg*, (5)

where a and b are real constants. The equations of motion (4) therefore become

O = (Pns1— 200+ Gu1) +a(Pny — 200 + ¢a_y) + (65 — 200 +¢3_,). (6)

Since we seek localised solutions, we expect the energy to vanish as n — +oo,
hence we impose the boundary conditions ¢, — 0 as n — —o0 and ¢, — ¢
as n — +oo for some constant ¢, € R. Recalling the definition of ¢,, in terms
of g, in (3), we find

4n = nil ¢k7 (7)

k=—o00

hence we express the latter boundary condition as

Qn — (oo = Z ¢n as n — Q. (8)

n=—oo

We shall, in general, consider both ¢, = 0 and ¢., # 0 so that the variable ¢,
describes a modulated pulse (¢ = 0) or a modulated kink (g # 0) of some
form.



2.2 Asymptotic analysis

We restrict our attention to a specific class of breather solutions, namely
those of small amplitude (in ¢), and whose envelope varies slowly compared
to that of the carrier oscillations. For such solutions, we apply the method of
asymptotic expansions with multiple space and time scales (see Remoissenet
[19, 20]) to determine approximations to breather solutions. Hence, in addition
to the variables n and ¢, we introduce new slow variables X, 7 and T defined
by

X=en, 7=¢et and T =¢ 9)
We consider the displacement ¢, (t) to be a function of the independent vari-
ables n, t, X, 7 and T so that ¢,,(t) = ¢(n,t, X, 7,T). Applying the chain rule
for partial differentiation, the derivative operator d/dt is replaced by

d 0 0 0

- = N 2_
o CortSar (10)

We assume a small-amplitude asymptotic expansion for modulated solutions
of (6) of the form

Gu(t) = e (X 7. T) + 2Go(X, 7,T)
+ 2 G (X, 7, T) + 292Gy (X, 7, T)
+ e Ho(X,7,T) + """ 0y (X, 7,T)
4 gt 2n i) (X 7, T) + P3P o (X, 7, T) + -+ - +cc., (11)

where c.c. denotes the complex conjugate, and w and p are the frequency and
wavenumber of the linear carrier wave respectively. We substitute the ansatz
(11) into the equations of motion (6) and equate coefficients of each harmonic
in ¢ at each order of €. This yields the following equations:

O(geiwt—i-ipn):

—w?F = ePF + e PF — 2F, (12)
O(e2eittion).
wF, = sin(p)Fx, (13)
O (e2e2wt+2ipn).
W Gy = sin?(p)(Gy + aF?), (14)

O (€3eiwt+ipn) .

2wFr + F. 4 2iwGy, = cos(p) Fxx + 2isin(p)Gi1x
—8a Sin2 (g) [FGO + Fao + FGQ]

—12bsin® (g) |F|2F, (15)



O(e*e?):
GOTT - GOXX +a <‘F|2)XX .
The equation from O(g%e?) is trivial so is discarded. We proceed to solve

the above set of equations. Equation (12) yields the dispersion relation w? =
4sin?(p/2), from which we conclude that

(16)

w = 2sin <g) . (17)

Considering (13), after substituting for w from (17), this becomes

F,. = cos (g) Fx, (18)
from which we infer that /' is a travelling wave of the form
F(X,7,T)=F(Z,1T), (19)

where Z = X — v7 and the velocity v = — cos (p/2). Thus, for p = 7 we have
a stationary wave, and for other values of p a wave which moves with speed
below unity.

Equation (14) is an algebraic equation, which is solved easily to give Gs in
terms of F
Gy = acot? <g) F. (20)

Note that for stationary waves (which occur when p = 7), there is no gener-
ation of a second harmonic. Note also that when a # 0 the expression for G,
becomes singular as p — 0. In particular, from (20), we see that if p = O(¢/?)
or smaller, then the F' term in (11) is not dominant, but of similar size to the
G4 term.

Turning our attention to (15), we anticipate that this should reduce to a
nonlinear Schrédinger (NLS) equation in the variable F, as is the case for
other lattice models (see for example, Remoissenet |19|, Bang & Peyrard |[2],
and Wattis [33]). However, at present, it is clear that (15) also includes terms
involving G; and Gy. These must be found in terms of F' before reduction to
the NLS equation can occur.

The quantities G; and G are higher-order correction terms to the leading or-
der quantity F'. If we assume that GG; and G represent perturbations travelling
at the same velocity as F, we have that

Gl(X, T, T) = Gl(Z, T) and Go(X, T, T) = GO(Zu T)7 (21)

where as before, Z = X —vt and v = — cos (p/2). It follows from the left-hand
equality in (21) that the terms involving G on either side of (15) disappear.



Also, using the right-hand equality in (21), we find that Gy,, = v2Gyzz, and
so equation (16) becomes

(U2 —1)Gozz = a(|F|2)ZZ- (22)

Integrating this equation twice with respect to Z gives

a
v2 —1

Gy = |F|* = —a cosec® <g) |F|?. (23)
Note that in (23), we have taken the constants of integration to be zero. This
follows from the comments regarding boundary conditions made immediately
after (6). Also, again, we see that the expression for G (23) becomes singular
as p — 0.

We now return to (15). Substituting for Gy and G, using (20) and (23) re-
spectively, we arrive the NLS equation for F' as anticipated

iFr + PFyz + Q|F|’F =0, (24)
In (24), the coefficients P and Q of F;; and |F|*F respectively are given by

Pt (L) ana -2t (£) —dc e b’ (3)
2 sin (g)

In other words, the multiple-scale ansatz (11) reduces the FPU equations (6)
defined upon a discrete chain to a continuum partial differential equation (the
NLS equation, (24)) for the breather envelope F'. The next task is to determine
soliton solutions of (24) which give an analytic formula for the envelope F'.

2.8 Bright soliton solutions

It is known that the nonlinear Schrédinger equation (24) admits bright soliton
solutions (also known as envelope solitons) if the coefficients P and () are of
the same sign, and dark solitons (also known as hole solitons) if P and @ are
of opposite sign (see Remoissenet [20] and Scott [26], for example). Clearly P
is positive for all p in the interval [0, 27] (except at p = 0 and p = 27). Hence
for bright soliton solutions, the above condition reduces to ) > 0, which upon

rearranging becomes
3b .o (D

Inequality (26) is critical for determining the existence and nonexistence of
stationary discrete breathers and long-lived moving breather modes in the
one-dimensional FPU chain. In analysing this inequality, it is instructive to



consider the (a,b)-parameter-space. For a fixed wavenumber p, we see that in
order for the inequality to be satisfied, b must be greater than some simple
quadratic function of a, namely

2
b > 3 {cosec2 (g) + 1} a’. (27)

This inequality is illustrated in Figure 1, which shows the inequality (27) for
four distinct wavenumbers p = jm/4 with j = 1,2,3,4. For any given value
of a, the lowest possible value of b satisfying (27) occurs when p = 7 (that
is, when cosec?(p/2) takes its minimum value of 1). For this wavenumber, for
which breathers are stationary, we have b > %az. This is exactly the inequality
proven by James [17] for the existence of stationary breathers that we discussed
in Section 1. From (5), we find that V®(0) = 2a and V®(0) = 6b. Hence
James’ condition for breather existence in the FPU chain gives B = 3b—4a? >
0, which is the same inequality that we arrive at above.

This inequality tells us that no bright breathers exist below the curve which
corresponds to p = 7 (see Figure 1), and so this is effectively a necessary
condition for breather existence in the 1D FPU chain.

Fig. 1. Illustration of the inequality (27) (see text for explanation).

Returning to the remaining curves in Figure 1 for a moment, we comment that
above the solid curve, stationary breathers with p = 7 exist. Similarly, above
the dashed curve (——), we expect to find bright breathers with p > 37 /4.



These are slowly moving modes, since |v| < cos(37/8) ~ 0.38 units per second.
Above the dash-dotted curve (—-), breathers with p > 7/2 exist; these move
with speed |v| < 1/4/2 = 0.707 units per second. Above the dotted curve (- - ),
breathers with p > 7/4 exist. These travel with speed |v| < cos(7/8) ~ 0.92
units per second. For each wavenumber p a similar parabola is generated. If
we choose to consider arbitrarily small wavenumbers, then it is clear from (27)
that small amplitude breathers exist only in a neighbourhood of the b-axis,
that is, when b > a.

Given (a, b) satisfying the condition for a moving breather with wavenumber
p, namely (27), then we also expect to find breathers with larger p-values,
and in particular p = 7 and hence a stationary breather mode to exist. A
rearrangement of (26) shows there is a threshold wavenumber, p,;,, above
which the inequality (26) is satisfied. Explicitly, for bright soliton solutions,
the wavenumber p must satisfy pui, < p < 7™ where

2
1 2a

3b — 2a2’ (28)

Pmin = 28N~

In Section 3, we investigate the properties of breathers which correspond to
wavenumber p, where p — pt. . For now, we note that if we consider the
special case of a lattice with symmetric quartic potential (a = 0), then from
(25), we see that the condition > 0 reduces to b > 0. In other words,
provided b > 0, the NLS equation (24) yields bright soliton solutions for all
p € (0,27), and we find no threshold for the wavenumber p (that is, ppi, = 0).
This case is considered in more detail in Section 4.

Using equations (24), (11) and (7) we determine an expression for the breather
in the original displacement variable ¢,. In the region above the curve corre-
sponding to a particular wavenumber p in Figure 1, we expect to find bright
soliton solutions to (25) of the form

F = Asech (A %Z) exp (i%/ﬁT), (29)

where the soliton amplitude A is a free parameter. Substituting (29) into the
ansatz (11) gives the breather solution of (6) in terms of our ¢,(t) variables
to second-order as



On(t) =2¢A sech

eA\/ (n—i—cos ) }cos Qt + pn)

+ 2ae2 A? csc2 sech2 % n + cos t)]
X (C082 (Z) cos (20t + 2pn) — 1) +O(e (30)
where P and @) are defined in (25) above,
Q = 2sin (p/2) + QA%*e?/2, (31)

here, the combination €A is a single free parameter.

We use the leading-order solution for ¢, (¢) in (30) to obtain an expression at
leading-order for ¢,, the original displacement variable. We assume that ¢, is
of the form

qn(t) = 2 A[A cos(Q2t + pn) + psin(Qt + pn)]

5A\/g (n — vt)

where v = — cos(p/2) is the envelope velocity given in (19), and \ and p are
constants to be determined in terms of p, which is taken to be O(1).

+ 0O(e?), (32)

x sech

We substitute (32) into the defining equation for ¢, (3), giving a second

expression for ¢,(t) at leading order. Equating coefficients of corresponding

terms in this and the leading-order expression for ¢,, (30) yields the following
simultaneous equations for A and p,

Acosp+ psinp — A =1, (33)

—Asinp + pcosp — pu =0, (34)

from which we find that A = —1/2 and p = (1/2) cot(p/2). Hence overall we
obtain an expression for the bright breather to leading-order

Gn(t)=—cA {cos(ﬂt + pn) — cot (g) sin(Q2t + pn)]

5A\/6P (n — t)

which is valid when ¢ < 1 and p = O(1). Note that equations (33) and (34)
are ill-posed in the limit p — 0.

+ O(e?), (35)

xsech

Lastly in this section, we make a few remarks comparing the phase (or crest)
velocity verest and the group (or envelope) velocity Uenvelope Of the carrier wave

10



of the breather solution (35). Clearly, Venvelope = — c0s(p/2) is always less than
unity. The crest velocity is given by —/p and so from (31) this is also less than
unity. For general p the two will differ, since sinf > @ cosé (for 0 < 0 < ).
In the limit of small p, the envelope and crest velocities — cos(p/2) and —§2/p
respectively are close, but vges = —§2/p is always larger in magnitude when
the O(e?) correction term is included. Thus there is no value of p for which

Ucrest = Uenvelope-

Also, it is possible to use the existence criterion (26) (in particular, its re-
arrangement (28)) to find an upper bound for the envelope velocity Venyelope-
Since the wavenumber p is restricted to the range p.i, < p < 7, the breather
velocity Venyelope = — 0s(p/2) is restricted to the range

3b — 4a?
envelope < . 36
envetopel <\ 5752 (36)

Thus for nonzero values of a, breather modes have a velocity which is bounded
away from the speed of sound in the lattice.

We use the solution (35) to find a leading-order estimate for the total energy
of the system, H, defined by (1). To leading order, H is given by

4e Asin(p/2)  prsin’(p)eosech ((pm/eA)\/2P/Q) |

- \/(6b — 4a2) sin®(p/2) — 4a? (6b — 4a?) sin®(p/2) — 4a?

(37)

If we take all parameters to be O(1) except for ¢ < 1, then the second term
on the right-hand side of (37) is exponentially small in . Hence overall, the
energy H is an O(e) quantity. In calculating the estimate for the energy H
(37), we have used the expression for g, given in (35). Since (35) is valid when
p = O(1), it follows that the estimate for H (37) is also valid for this parameter
regime.

2.4 The Toda lattice

We illustrate the results of our above analysis by referring to the Toda lattice,
[20]. This lattice corresponds to V(¢) = ale™?® + 3¢ — 1]/ in (4), in which
case V'(¢) = a(1—e 7?). Performing a Taylor expansion of V' (¢) about ¢ = 0,
we find that V'(¢) ~ aB[¢ — 3¢*/2 + %4> /6]. Comparing this expansion with
(5), we see that for the Toda lattice a = —a/3%/2 and b = o3 /6. It follows that
3b = 2a?, and therefore the inequality (27) fails to hold for any p. We conclude
that bright breathers can never exist in the Toda lattice. This nonexistence
result is entirely consistent with the literature on Toda lattice (see [29]).

11



2.5 Dark solitons

In the region below the curves in Figure 1, corresponding to wavenumbers p
where (27) fails, we expect to find dark soliton solutions of the NLS equation.
These solutions have the form F(Z,T) = D(Z,T)e"%T) where (see Chapter
4.5 of Remoissenet [20])

D(Z,T) = B|1— m?sech? (mB %Z) 2, (38)
w(Z,7T) :Vg V1-m2BZ + tan_l{ — tanh (mB ;—gZ)} —BZQ (3—m?)T.
(39)

Here, B is a free parameter (distinct from James’ B-parameter discussed in
Section 1) and m (0 < m < 1) is a parameter that controls the depth of the
modulation of amplitude [20]. In this case, the overall solution of (6) in terms
of the original variables to first order is ¢,(t) = 2D, (t) cos(¢,(t)) + O(g?),

where
1 — m?sech? {mBa\/g <n + cos (g) t) H %, (40)

D.(t) =B

0= (2] B () o

+ ;—g tan ! [7% tanh {mB\/g (n+cos (g) t)}] : (41)

These solutions have been observed previously, for example, by Flytzanis et
al. [10].

3 Numerical results

In this section we numerically solve the equations for the FPU lattice (2).
This infinite system of nonlinear coupled second-order ordinary differential
equations is equivalent to the first-order system

dn = Pn,
Pn = V,(Qn-i-l - QH) - V,(qn - qﬂ—l)’ (42)

12



where p, = ¢,. We carry out the numerical simulation of the system using a
fourth-order Runge-Kutta scheme coded in Fortran90. Our program solves the
equations of motion for N particles where N is any natural number greater
than or at least equal to three, but typically around 100. We note that the
conservation of mechanical energy H (1) of the system can be used to check
the validity of the numerical routines. The total energy H of the lattice is
computed easily since it is a simple combination of the variables ¢, and p,
returned by the numerical scheme. Also, we shall compare the numerically
computed total energy with the asymptotic estimate given by (37).

Setting ¢ = 0, we use our formula for ¢, (¢) given in (30) to generate initial
data for q,,

4ult) = qu(t) + z oilt) = z oi(t), (43)

where, for a breather initially located centrally in the lattice, we take ¢; = 0
following the comments on our choice of boundary conditions in (8). A similar
equation holds for p,. We note also that the constant g, = qn(0).

We impose periodic boundary conditions by introducing fictitious particles at
either end of the lattice, satisfying

gn+1(t) =qi(t) + ¢, and  qo(t) = qn(t) — Goos
pn1(t) =pi(t), and po(t) = pn (1) (44)

This has the consequence that breathers moving to the right- (left-) hand edge
of the chain eventually reemerge from the left- (right-) hand edge.

We aim to verify the analytical results of Section 2, that is, whether the anal-
ysis correctly predicts the shape and velocity of stationary and moving wave-
forms in the chain. In particular, we will observe whether long-lived breather
modes exist in the parameter regions where expected, that is, when a, b and p
satisfy the inequality (26). Since the breather’s exact position is hard to deter-
mine from plots of the breather profile, measuring the velocity of the breather
accurately is difficult. We find that this is better achieved using a plot of the
cell energy e,(t), where

en = 305 + V(tns1 — qn), (45)

and H = YN e, from (1). As we are dealing with a solitary waveform (that
is, a localised disturbance whose amplitude decays to zero as n — +00), the
energy associated with the wave is also localised. Hence in order to track the
position of the breather (and thus determine its velocity), we may equally use
the location of the maximum value of e,, at each value of ¢.

Firstly, we present a simulation of a stationary breather (p = 7). We choose

13
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(a) Profile at t = 0. (b) Plot of e,,, H = 0.1189.
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(c) Profile at 32.34T = 100. (d) Plot of e,, H = 0.1190.

Fig. 2. Stationary breather, wavenumber p = 7.

the remaining parameter values to be a = 0.1, b = 2.0, N = 101, A = 1.0
and € = 0.1 which satisfy the existence criterion (26). The temporal frequency
of the carrier wave is 2 = 2.2098, and hence it follows that the period of
oscillation is 7' = 27/ = 3.0955. The breather is initially located at the centre
of the chain (as is the case for all of our simulations), and is shown in Figure
2 (a). The profile of the breather is also shown at a later time, ¢t = 32.317 = 100
in Figure 2 (c). At both times, a plot of the cell energy is also given. From the
energy plots, it is clear that after 100 seconds, the breather has not spread
or distorted significantly. We have also included the numerically computed
values of the total energy H. After 100 seconds, we see that the change in H
is negligible, with AH/H = 0.00084. The asymptotic estimate of H given by
(37) is 0.1159, which is a little lower than the numerically obtained values.
This is to be expected, since in deriving (37), we ignored O(¢?) terms, which
make a small contribution. In Figure 3, we have shown a montage of snapshots
of the breather at times ¢t = 0, 5T, 107", 15T, 207 and 257. From this, we
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see that the breather does not spread or diminish in amplitude over this time
interval.

0.05

-0.05

80

Fig. 3. Snapshots of the stationary breather at times t = 0, 57, 107", 15T, 20T and
25T, T = 3.0955.

We now present a simulation of a moving breather. For this, we set wavenum-
ber p = /2, for which v = — cos(p/2) = —1/+/2 units per second. The remain-
ing parameters are chosen as follows: a = 0.1, b = 2.0, N = 101, A = 1.0 and
e = 0.1, which satisfy the existence inequality (26). In this case, the breather
frequency is 2 = 1.4353, and so the oscillation period is T = 4.3779. We do
not show the initial profile of the breather this time, though we have shown
the profile at times ¢t = 50 and ¢ = 91.76 in Figures 4 (a) and 4 (c) respectively.
In the first of these, we see that the breather has moved to the left and has
almost reached the left-hand edge of the chain. A little while later, it disap-
pears from this side and reappears from the right-hand edge (see Figure 4 (c)).
This is due to the periodic boundary conditions. By calculating e, (45) and
plotting it against n, we find, from Figure 4 (d), that the average velocity of
the breather is —0.703 units per second. Hence the percentage difference be-
tween the analytical and numerical velocities is —0.58%. In Figure 4, we have
included the numerically computed values of the energy H. Again, we see that
there is only a tiny change in the computed value over the entire duration,
with AH/H = —0.00083. There is also a close match with the asymptotic es-
timate for H, which turns out to be 0.1161. In Figure 5, we show the breather
at various stages of its motion as it travels leftwards through the chain. The
last snapshot at ¢ = 142.86 shows the breather as it has just completed one
whole circuit and returned to its initial position. In this example we observe
a small amount of energy escape from the front of the breather.

We also use our numerical scheme to further test the existence inequality (26).
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(a) Profile at ¢ = 50. (b) Plot of e,, H = 0.1199.
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(c) Profile at ¢ = 91.76. (d) Plot of e,, H = 0.1198.

Fig. 4. Moving breather, wavenumber p = /2.

In Section 2.3, we showed that a necessary condition for breather existence in
the FPU chain is that 3b > 4a?. In addition to this, for a # 0, the wavenumber
p must be greater than the minimum wavenumber p.;, given by (28). It is
natural to question what happens as wavenumber p — pt. | that is, when the
existence condition (26) is only just satisfied. We now show that the breather
becomes wider as p approaches this threshold.

In order to quantify this, we introduce the notion of a breather’s width. If we
consider the envelope of the breather given by (35), the envelope half-width
Ly, is measured at half the maximum amplitude of the breather, which is € A.

In other words, Ly, satisfies 2 Asech(¢ ALpy\/Q/2P) = cA
1 /2P 1
Liny = — | —sech ™! (-) : 4
h eAV Q See 2 (46)

The full width of the breather Ly, is simply twice the half-width, that is,
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Fig. 5. Snapshots of the moving breather at times ¢t = 0, 50, 91.76 and 142.86.

Lty = 2Lyy. Rewriting the term Q/2P as 6b — 4a® — 4a’cosec? (p/2), we see
that \/(Q/2P) decreases to zero as p decreases to puin, hence the width of the
breather Ly, increases without bound as p — p/,.. If we choose a = 1 and
b = 2, then from (28) it follows that py;, = 7/2. In Figure 6, we show the initial
profiles of two breathers which correspond to two different wavenumbers. For
both, we have set a = 1.0, b = 2.0, N = 101, A = 1.0 and ¢ = 0.1. In
Figure 6 (a), we set p = 7, and in Figure 6 (b) we set p = 1.7, which is much
closer to the threshold value of /2 &~ 1.57. As expected, the breather is much
wider for p = 1.7 than for p = 7. Using the definition (46), for p = 7 we find
that L, = 13.17, while for p = 1.7 we find L, = 27.57, which is more than
twice as wide.

10 20 30 40 50 60 70 80 90 100 10 20 30 40 50 60 70 80 90 100
n n

() p=m. (b) p=1.1.

Fig. 6. Widening of breather profile as p — p. = /2.

17



4 The limit of small wavenumber: p — 0
4.1 Preliminary results

In this section we show that the FPU lattice can support waveforms more
complex than bright or dark breathers or travelling kinks. These more complex
waveforms arise when we consider small wavenumbers p (we quantify what we
mean by “small” more precisely in Section 4.3). Since we consider arbitrarily
small wavenumbers p, most of this section is concerned with the case of the
quartic lattice, that is, b > 0, a = 0 (this follows from the comments after
equation (28)). However, in Section 4.2, we note the behaviour of kinks in the
lattice with cubic nonlinearity in the potential energy, (that is, a > 0, b = 0).
This is to demonstrate that behaviour in the lattice with quartic potential is
quite distinct and unusual when compared with that observed in the lattice
with a cubic potential.

Firstly, we show that for the quartic lattice (a = 0, b > 0), the solution
(30) reduces to a kink in the limit p — 0. Considering only the leading-order
expansion for ¢, (t), we note that as p — 0, cos(p/2) — 1, and also from (31),
2 — 0 and hence cos(2t + pn) — 1. Overall, when p < ¢ < 1, we have

Q
A\/;(an + et)

Since ¢,, is slowly varying in n, (7) can be replaced by ¢, = [ ¢x dk, and so

(47) gives
gn(t) = 4\/%tan_l [exp(sA\/g(n +i)1,

which describes a kink travelling leftwards through the chain whose speed, to
leading order, is unity. Using (48) and (8), we find that the amplitude of the
kink is given by

On(t) = 2eAsech +O(e%). (47)

(48)

2P
Q\/_

So in the limit p — 0, the bright breather solution given in (30) reduces to g,
as given in (48) which describes a travelling kink.

(49)

We use our numerical simulation to test whether kinks are observed in the
lattice for very small wavenumbers p. We run our simulation for the parameter
values p = 0.01, a = 0.0, b = 2.0, N =101, A= 1.0 and € = 0.1. In Figure 7,
we show the kink at intervals of 10 seconds as it moves leftwards through the
chain. For instance, by the time ¢ = 30, we see that the kink is close to the
left-hand edge of the chain. From (19), for very small wavenumbers we expect
the speed of the kink to be very close to unity. Using the method described in
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100

Fig. 7. Kink for wavenumber p — 0: ¢ =0, b = 2 and p = 0.01.

Section 3, we measure the velocity of the kink and find it to be —1.03 units per
second. Hence there is a 3% difference between the theoretical and observed
values of —1 and —1.03 units per second respectively. We also measure the
height of the kink to be 1.8, which is in close agreement (a difference of —0.6%)
with the calculated value of 1.81 given by (49).

The calculation presented in (49) gives the amplitude of the kink for the small
wavenumber limit p — 0. Later in Section 4.3 we will present details of the
calculation of ¢, for the more general case p = O(¢). Firstly, we summarise
some known properties of kinks in the FPU lattice.

4.2 Travelling kinks in the classical continuum limait

In this section, we consider the FPU lattice with either a cubic or a quartic
potential. We saw in the previous section that for very small wavenumbers
(p < € < 1), the breather solution of the quartic FPU lattice reduces to a
travelling wave which has the form of a kink. However, travelling kink solu-
tions can be determined directly from the equations of motion (6) provided
the parameters a and b are chosen appropriately. Since the discrete lattice
equations are not solvable exactly, we approximate them using continuum ap-
proximations (in which the discrete index n in (6) is replaced by a continuous
variable). We use results from Collins [6], Collins & Rice [7], Rosenau [21, 22]
and Wattis [31]. We analyse kink solutions in the two special cases of lattices
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with a symmetric quartic potential (a = 0,b # 0) and an asymmetric cubic
potential (a # 0,b = 0).

4.2.1 The lattice with a cubic potential (a #0, b=0)

In the simplest approximation (that is, the standard continuum approxima-
tion) the lattice dynamics (6) are approximated by the partial differential
equation

¢tt = ¢mr + 1_12¢mrr:n + a(¢2)xx7 (50)
which has a travelling wave solution in the form of a pulse for ¢

bas(2) = %a_l)sechQ (z,/g(c2 - 1)) , (51)

where z = z — ct, and c is the velocity of the travelling wave. This gives rise
to a travelling kink in the variable ¢ which has amplitude and energy given by

) = y3E D Hy, — V3(¢? = 1)%2(9¢* + 1)
o0 ) S 2 .
a 10a

(52)

Equation (50) is not a good approximation to the kinetics of the lattice equa-
tion (6) due to it being ill-posed; the dispersion relation for (57) is

w? =p® — &p*, (53)

which is a poor approximation to (17). For larger wavenumbers (p > 2+/3)
equation (53) gives rise to imaginary values for w which correspond to unphys-
ical, exponentially-growing, waves, whereas (17) gives w € R for all wavenum-
bers p.

If we use an improved continuum approximation, then we obtain a different
PDE approximation of (6), namely

¢tt = ¢:c:c + %st:ctt + a’(¢2)II' (54)

This partial differential equation is well-posed, having the dispersion relation
w? = p?/(1 + %pQ), which gives real values of w for all wavenumbers, p.
Equation (54) supports a travelling pulse for ¢ of the form

hoi(2) = MsechQ (M) ) (55)

2a c

From this, we find slightly more accurate estimates for the kink-amplitude
and energy,

oey/3(c2—-1) AV3(2 —1)3/2
¢ = -, Hy = ( 2 ) . (56)

20



0 0.5

(a) Kink height goo. (b) Kink energy H.

Fig. 8. Height and energy of kinks in a chain with cubic potential,
(a =2, b=0) (see equations (52) and (56)).

We note that these have the same behaviour as ¢ — 1 as those generated
from the standard continuum approximation. In particular for both, we ob-
serve that as ¢ — 17, ¢oo — 07 and H — 0T. Also both approximations yield
similar behaviour for large values of c. That is, as ¢ — oo we have ¢, — 00
and H — oo. The properties for both the standard and improved continuum
approximations are illustrated in Figure 8, which shows plots of the kink-
amplitude ¢, in Figure 8 (a) and the energy H in Figure 8 (b), against the
velocity c. In both plots, the upper curve corresponds to the improved con-
tinuum approximation. This behaviour is as expected and contrasts with the
lattice with a quartic term and no cubic term in the interaction potential as
we shall now see.

4.2.2  The lattice with a quartic potential (a =0,b>0)

In this case, the standard continuum approximation of (6) is

which is again an ill-posed partial differential equation. However, a travelling-
wave solution can still be found from it, which, in the ¢ variables, gives rise
to the pulse solution

¢3s(2) = @sech (22’\/3(02 — 1)) ) (58)
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Following the transformation back to the ¢ variables we again have a travelling
kink with kink-amplitude and energy

2 2
(8s) _ T e — (ber+1) [2—1 -
S \/@a 3s 3h 3 . ( )

Note that Hs, has the expected behaviour of H — oo as ¢ — oo and H — 07
as ¢ — 1T7. However, qg’)s) does not share these properties as it is indepen-
dent of the speed c. Partly this is due to the expression (58) being a poor
approximation to the waveform of the travelling pulse solution.

In place of (57) an improved approximation to (6) is the well-posed partial
differential equation

¢tt = ¢zz + %¢zztt + b(¢3)x:c> (60)

which supports a pulse solution of form

sun() = 2 =Dy (2_¢3<—1>) | (61)

b c

The solutions (58) and (61) show that travelling kinks are expected to be
supersonic (¢ > 1) as the kink illustrated in Figure 7 (end of Section 4.1) was
found to be. Integrating (58) or (61) with respect to z shows the kink ¢(z) to
have the same form as noted in (48), namely A tan~!e** for some A, \. From
(61), we find more accurate expressions for the kink-amplitude and energy
than those in (59), namely

— T HZZ—
/NS \/@ 3 b 3

In (62), we note that Hy; shares similar properties with Hs,. However, ¢ now
satisfies the condition ¢{* — oo as ¢ — oo, but as ¢ — 1+, ¢*) — 7/v/6b # 0.
The amplitude ¢, and energy H of the kink solutions for the quartic potential
is plotted in Figure 9. Again, the upper curve corresponds to the improved
continuum approximation.

(62)

For quartic systems which are initiated with boundary data of the form

n— (oo a8 N — 00
q q (63)

Gn — 0 as n — —oQ,

with g, > 7/v/6b we might expect the large-time evolution of the system to
be governed by a kink of amplitude ¢.., which travels at a speed approximately
equal to g, V6b/m. However, for a system which is initiated with boundary

22



o H

(a) Kink height goo. (b) Kink energy H.

Fig. 9. Height and energy of kinks in a chain with quartic potential,
(a =0, b=2) (see equations (59) and (62)).

data of the form (63) with ¢, < 7/v/6b, there is no travelling kink of this
amplitude which can be an attractor for the large-time dynamics. This leaves
the open problem of what (if any) coherent structures would be observed
at large times in a system with such initial data. For convenience, we will

hereupon define ¢ := 7/1/6b.

4.3 Combinations of breathers and kinks in the FPU chain

We return to the moving breather modes for which asymptotic approximations
were calculated in Section 2.3. In this section, we are concerned with small
wavenumbers, (p < 1). In order for our method to generate a moving breather
mode with arbitrarily small wavenumber p, we confine attention to the quartic
FPU lattice (a = 0, b > 0) throughout this section.

We show that, in the ¢,(t) variables, the moving breather mode combines
both kink and breather elements, and we analyse the relative importance of
each component. From (30), the amplitude of the breather component is O(e).
The size of the kink component ¢, is given by the sum in (8). We are unable
to find an exact expression for ¢, for general small p, but we can find ¢, to
leading order. We will see that ¢., depends upon the relative sizes of p and ¢.

Note from (25) that /Q/2P = +/6b independent of p, since a = 0.
From the definition of ¢, (8), and the solution for ¢, (30), we have

> 2eAcos(pn + Qt — s)

oo = Z ¢n’\' Z

e o cosh[sA\/@(n —ng — vt)] 7
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where ng and s represent arbitrary shifts in the waveform of the envelope and
the phase of the carrier wave. Replacing the sum by an integral (since the
summand is slowly varying in n due to ¢ < 1 and p < 1) we obtain

2

oo ™" /6D 9: A/Gb

using formula 3.981.3 of Gradshteyn & Ryzhik [14]. The estimate (65) for g
appears to time-dependent, though it evolves over an extremely long time-
scale, since for small p and small £, we have

) cos ((pno—s) + (pv+Q)t). (65)

pv+Q~ Sp (p2 + 9b52A2) . (66)

by (31) and v = — cos(p/2). Thus if, for example, p = O(e) then g, evolves
over a timescale of t = O(c73). If we are concerned with the evolution over
timescales up to O(¢72), then (65) can be treated as time-independent.

Clearly from (65), the size of ¢, depends upon the relative magnitudes of p
and e. For instance, if p > ¢ then the amplitude of the kink is small. Indeed
as p approaches O(1), the amplitude of the kink becomes exponentially small
in £, and hence in this regime, the amplitude of the breather dominates that
of the kink. However, if p < € or p ~ ¢, then the amplitude of the kink is
O(1) and this dominates the breather (which has amplitude O(e) for all p).

We also note from (65) that: (i) the amplitude ¢., is maximised when s = pny,
that is, when the maximum of the envelope n = ng coincides with a maximum
of the carrier wave cos(pn + Qt — s); (ii) there is a one-parameter family of
breathers with accompanying zero kink-amplitude, that is, for s = png + 7/2
the amplitude of the kink component vanishes, leaving a pure breather.

We mention in passing that in the limit p — 0, (65) agrees with the prelimi-
nary result (49), both giving a kink height of 27/v/6b. We show a plot of gu,
given by (65) against wavenumber p for two different values of € in Figure 10.
The upper curve corresponds to ¢ = 0.025, and the lower to € = 0.01. The
remaining parameters in (65) are set as ng =0, s =0, A =1and b = 2 in
both plots. Note that the two curves have the same value in the limit p — 0,
that is, 27/v/6b ~ 1.81.

There is an intermediate regime in which p < 1 and € < 1 in which kink and
breather have comparable amplitudes. As we reduce p, it is at this magnitude
that coupled breather-kinks (which we term breathing-kinks for convenience)
become most apparent. To determine the magnitude of this wavenumber, we
first note that the amplitude of the breather is € for all p. To find the value
of p for which the amplitudes of the kink (given by (65)) and breather are
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Fig. 10. Plot of g given by (65) against wavenumber p. The upper and lower curves
correspond to € = 0.025 and € = 0.01 respectively.

similar, we solve

AT ( P ) - (67)
Too ™ Job P\ 2eavien) O

from which we deduce that

(68)

~

2 AN/ 6b ( AT )
log .
™ eV 6b

Hence for p = O(elog(1/¢)), the breather and kink components have compa-
rable amplitudes, and we have ¢ < p < 1.

The most natural range to study further is p = O(¢) which differs only slightly
from (68). We calculate the energy H to leading order. Since p ~ &, we write
p = ke, where k = O(1). The total energy, H, is given by (1). To simplify the
ensuing calculations, we use ¢ and 1 to denote pn + Qt and €A/Q/2P(n +
cos(p/2)t) respectively. After differentiating ¢,(¢) (35) with respect to t, and
substituting for ¢, and ¢, in (1), we have

[e.e]

2
H~ Y 1e2A%sech?) {4 cos? 0 + Q2 {sin@ + cot (g) COS 9} } : (69)

n=—oo

Since p = ke, it follows that cot(p/2) ~ 2/ex and that Q ~ 2sin(p/2) ~ k.
Also, we have that ¢ = cAV6b(n +t) and 0 = ek (n + t) = k1) /A/6b. Thus,
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Fig. 11. Breathing-kink with go, < qé? displayed every 800 time units from ¢ = 0 to
t = 2400.

retaining terms to leading order only, we find that (69) becomes

ded = e (Y 2
H N | cos (AJ@) sech®t) dp, (70)

where the sum in (69) has been replaced by an integral. Applying formula
3.982.1 of Gradshteyn & Ryzhik [14], we then have an estimate for the total
energy when the wavenumber p = O(e) of

I 4514+ 2kem
V6b  3bsinh (/i/A\/@)

= 0(e). (71)

4.4  Numerical results

We have run numerical simulations of the system with small wavenumbers
to investigate the behaviour of breathing kinks. To illustrate their stability
we present the results of a lattice of size N = 400, simulated for a time of
T = 2400 time units. The nonlinear interaction potential has a = 0, b = 2 and
we set ¢ = 0.01, p = 0.075 and A = 1. The results are displayed in Figure 11.

A snapshot is shown every other time that the wave passes the centre of
the lattice (since the lattice has size N = 400, and the velocity of the wave
is close to unity, this occurs approximately every 800 seconds). The wave
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moves to the left, so that every circuit, the lattice site displacements g, (¢)
register a raise of ¢, &~ 0.12 (recall that we are using periodic boundary
conditions). Whilst each individual snapshot of the wave in Figure 11 clearly
shows both oscillatory (breather) and kink characteristics of the waveform,
from the montage of results, the wave actually appears to have the form of
a travelling wave. This is because for small p, the phase velocity (w/p =
1 — p?/24 + O(p*)) and the envelope velocity (v = 1 — p?/8 + O(p?)) are
almost identical. Any internal breathing in the wave occurs on a timescale of
O(1/p?*) which is too long to observe in the simulations we have carried out.
To observe a difference in velocities, it would be necessary to observe a shift
of, say, five lattice spacings, which takes a time of ~ 5/Av = 60/p? ~ 10*
with the parameter values as in Figure 11. The simulation illustrated above,
however, confirms that the mode is extremely long-lived and satisfies boundary
conditions which are inaccessible to traditional kink travelling wave solutions
of FPU lattices with quartic interaction potentials (see the closing comments of
Section 4.2). The leading-order estimate for .. given by (65) for the parameter
values used in this simulation gives a value of 0.1208, which is very close to
the measured value 0.12. This value is considerably smaller than the minimum
amplitude of classical monotone kinks which is ¢¢) = 7/v/6b ~ 0.907.

Whilst the above example shows that breathing-kinks exist with ¢, < ¢'9,
that is, in the range of amplitudes where traditional travelling kinks are
forbidden (see Section 4.2), we now examine breathing-kinks in the range
9 < g < 2¢'9). In this latter parameter range, both breathing-kinks and
traditional (monotone) kinks exist. We therefore investigate numerically the
stability of breathing-kinks, since for example, it is possible that the mode
could decompose into a supersonic (¢ > 1) classical (monotone) kink and a
subsonic (¢ < 1) classical breather. Figure 12 shows the results of such a sim-
ulation. For this, we have set a =0, b =2, ¢ =0.01, A =1 and p = 0.025. Of
course, since this corresponds to an even smaller wavenumber than the pre-
vious example, the expected time for breathing to be observed is once again
beyond a straightforward numerical simulation (requiring an integration in
excess of ¢ = 10°). The wave moves to the left, and is depicted in Figure 12
at times ¢ = 0 (central curve), 550 (right curve) and 1250 (left curve) sec-
onds. During these intervals, it makes a complete circuit (or thereabouts) of
the lattice. The vertical displacement is adjusted modulo ¢, to allow easy
comparison of the waveform. We see that the mode is a travelling wave of per-
manent form over this timescale. The observed value of ¢., is approximately

1.05, which is in excellent agreement with the theoretical value of 1.058 given
by (65).

In this section we have demonstrated that in the quartic FPU lattice, tradi-
tional kink travelling wave solutions have an amplitude of ¢, > ¢\9 := 7/v/6b

(see the right-hand side of Figure 13), and travel at supersonic speeds, (¢ > 1).
We have then shown that for small wavenumbers p, our breather modes give
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Fig. 12. Breathing-kink with qé? < oo < 2qg2) displayed approximately every 600
seconds.

rise to waves which share features of both travelling kinks and breathers and,
in particular, exhibit kink amplitudes in the range 0 < goo < 2¢\9 (see the left-
hand side of Figure 13). These combined breathing-kinks travel subsonically
(that is, ¢ < 1).

R f . .
ange © For lattices with boundary

conditions ¢y, > qg?u

kink amplitudes AN

monotone kinks of the form
(61) exist here
2¢9)

<~ ponng 7N

boundary conditions v

(c) 0o

0 < oo < 2¢od ,

For lattices with

breathing-kinks occur here

Fig. 13. Types of waveform which may occur in the quartic FPU chain,
depending upon the size of ¢... Note that qg? := 7//60.

Thus for lattices with boundary conditions (63) in the range 0 < g, < ¢\¥
we have a waveform which may be observed in the large time limit. Also for
lattices with boundary conditions in the range ¢\9 < ¢. < 2¢\9 there is now
the possibility of two types of kink solution — namely the traditional monotone
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travelling wave, and the breathing-kink. This corresponds to the shaded band
in Figure 13. Equation (65) gives an asymptotic estimate for the relationship
between ¢, and wavenumber p (p < 1) and phase shifts no and s which any
breathing-kink must satisfy; this relationship is illustrated in Figure 10.

5 Discussion

In this paper, using asymptotic analysis, we have reduced the equations of
motion for an FPU lattice with a polynomial potential V' to a nonlinear
Schrodinger (NLS) equation. Requiring the NLS equation to have localised
soliton solutions leads to the identification of a region of parameter space in
which the FPU lattice can support breathers. This is a region in which the co-
efficient of the quartic nonlinearity must exceed some multiple of the square of
the cubic coefficient. There is then a range of wavenumbers for which breather
modes exist (see inequality (26)). We have also given a full description of the
parts of (a,b,p) parameter space where localised modes involved in energy
transport exist, and provided a physical justification for the inequality proven
by James [17] for stationary breathers.

Our systematic derivation of equations down to O(e*) yields the first cor-
rection term as well as the leading order behaviour. The calculation of the
breather shape given by (30) is technically cumbersome since equations from
O(e) up to O(e?) must be solved just to obtain the leading order O(g) solu-
tion for the breather. Numerical simulations in Section 3 verified the inequal-
ity (26), as we observed bright breather solutions for appropriate parameter
values. We have also noted that when there are both cubic and quartic an-
harmonicities present in the interaction potential, the bright breather solution
ceases to exist as the wavenumber is reduced to some finite positive value. This
is due to the width of the envelope function diverging at some critical wave
number given by (28). This gives rise to a maximum velocity for breathers,
that is, rather than existing at all speeds from zero up to the speed of sound,
there is an upper limit on the speed, given by equation (36).

In Section 4, by considering small wavenumbers, we found waveforms sup-
ported by the lattice that are more complex than breathers. We have termed
these “breathing-kinks” because although they appear to have the form of trav-
elling waves, a snapshot has the appearance of a combination of a breather
and a kink. We have shown that the symmetric FPU lattice (where the poten-
tial has only a quartic nonlinearity, and no cubic component) supports tradi-
tional monotone travelling kinks only above a critical amplitude, ¢, whereas
breathing-kinks have kink amplitudes in the range 0 < g, < 2¢'9. The type
of waveform exhibited ultimately is determined by the order of magnitude of
(0, Which depends in turn upon the relative magnitudes of the wavenumber
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p and breather amplitude ¢ as well as temporal and spatial phase-shifts s and
ng. We found that in the limit p — 0, the kink dominates and the breather
component has vanishingly small amplitude. For O(1) wavenumbers, the am-
plitude of the breather dominates that of the kink. The two components have
similar amplitudes when p = O(clog(1/¢)) (see equation (68)). Numerical
simulations presented in Section 4 confirmed that breathing-kinks propagate
as travelling waves for long periods of time with speed just below unity, and
elementary analysis with wavenumbers p of the same order as the amplitude
of the breather (¢) suggests that this should not fail before ¢ = O(¢72). The
same timescale of validity is found, more rigorously, by Schneider & Wayne
[25], and by Giannoulis & Mielke [13] for a related problem.

Combined breathing-kink modes have been observed in numerical simulations
before, for instance, by Huang et al. [16], Wang [30], Gaididei et al. [I 1] and
Bickham et al. |3]. However, a systematic theory giving their size, shape and
speed has, until now, been lacking. We mention the work of Flytzanis et al. [10],
who also find approximations to travelling breathers in this system, and the
shape of breathing-kinks. We believe the treatment given here is simpler than
that given by Flytzanis et al. [10] since we analyse the ¢-equation (4) rather
than the g-equation (2). Additionally, their solution ansatz assumes the exis-
tence of both an oscillatory and a slowly varying components with similar am-
plitudes. Explicitly, the ansatz of Flytzanis et al. [10] postulates the existence
of both kink and breather components (g, ~ eFg+ee“ P [ + O(e2) +c.c.),
implicitly assuming that their amplitudes have the same order of magni-
tude. Our approach also makes no assumption about the existence of moving
breathing-kinks; we use a solution ansatz (11) which has only an oscillatory
component, with the form ¢ ~ ge“™P"F + O(g?) + c.c.. The existence of a
slowly varying component, (which has the form of a kink) then arises naturally
from our analysis. Furthermore, the amplitude of this resultant mode is de-
termined as part of the problem and, whilst its amplitude may be comparable
to that of the breather, in general, the amplitude takes values from O(1) to
exponentially small in €.

In closing, we discuss several advantages of the semi-discrete multiple-scale
method of Remoissenet [20] over other early analytic methods. We believe the
method of multiple scales in the semi-discrete limit to be a more rigorous,
logical and systematic way of constructing approximate solutions than, for
instance, the rotating-wave approximation (RWA) used widely in early ana-
lytic works (see Takeno et al. [28], or Bickham et al. [3]). Whilst the RWA
yields similar results, it is an ad hoc method which typically only determines
the leading-order approximation, and the accuracy of approximations made in
the procedure are left unquantified. Problems with the RWA were originally
highlighted by Hori & Takeno [15, 27] who noted that following the ansatz
Uy (t) = ¢n(t) cos(kn — wt) approximations such as ¢2 . + ¢2_; + dpi1¢p-1 ~
302, and (Ppy1+Pn_1)dn & 2¢2 whose accuracy is undetermined, are required.

30



In contrast, the method of asymptotic expansions retains information on the
size of error terms and, by using an expansion, these error terms are corrected
for in the calculation of terms of higher-order. A sequence of equations is solved
to find a sequence of higher-order approximations. The validity of this method
has recently been established rigorously by Giannoulis & Mielke |12, 13] for a
related problem which includes an additional on-site potential, and by Schnei-
der & Wayne [25]. It has also been applied successfully to higher-dimensional
lattices, see, for example, Butt & Wattis |4, 5.
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