
1

2 Original article

3 Use of posterior predictive assessments to evaluate model
4 fit in multilevel logistic regression

5 Martin J. GREEN
1,2*, Graham F. MEDLEY

3, William J. BROWNE
4

6
7 1 School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington Campus,
8 Sutton Bonington, LE12 5RD, United Kingdom
9 2 School of Mathematical Sciences, University of Nottingham, Nottingham, NG7 2RD, United Kingdom

10 3 Department of Biological Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
11 4 Department of Clinical Veterinary Science, University of Bristol, Langford House, Langford, Bristol,
12 BS40 5DT, United Kingdom

13 (Received 5 November 2008; accepted 24 March 2009)

14 Abstract – Assessing the fit of a model is an important final step in any statistical analysis, but this is
15 not straightforward when complex discrete response models are used. Cross validation and posterior
16 predictions have been suggested as methods to aid model criticism. In this paper a comparison is
17 made between four methods of model predictive assessment in the context of a three level logistic
18 regression model for clinical mastitis in dairy cattle; cross validation, a prediction using the full
19 posterior predictive distribution and two ‘mixed’ predictive methods that incorporate higher level
20 random effects simulated from the underlying model distribution. Cross validation is considered a
21 gold standard method but is computationally intensive and thus a comparison is made between
22 posterior predictive assessments and cross validation. The analyses revealed that mixed prediction
23 methods produced results close to cross validation whilst the full posterior predictive assessment gave
24 predictions that were over-optimistic (closer to the observed disease rates) compared with cross
25 validation. A mixed prediction method that simulated random effects from both higher levels was
26 best at identifying the outlying level two (farm-year) units of interest. It is concluded that this mixed
27 prediction method, simulating random effects from both higher levels, is straightforward and may be
28 of value in model criticism of multilevel logistic regression, a technique commonly used for animal
29 health data with a hierarchical structure.

30 model fit / posterior predictive assessment / mixed predictive assessment / cross validation / Bayesian
31 multilevel model

32

33 1. INTRODUCTION

34 Random effect statistical models are being
35 increasingly used in veterinary sciences within
36 both frequentist and Bayesian frameworks.
37 Models are commonly specified with a binary
38 outcome to represent, for example, ‘diseased’

39or ‘non-diseased’ states and therefore take the
40form of multilevel logistic regression [5]. An
41important element of constructing and finalising
42a statistical model is to critically assess the fit
43and performance of the model [8]. However,
44model checking with discrete data regressions
45is problematic because usual methods, such as
46residual plots, have complicated reference dis-
47tributions that depend on the parameters in the
48model [7, 4]. Thus, these traditional methods
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1 are considered to be of limited value in discrete
2 outcome, random effects models [2]. It may be
3 because of this that, in the applied literature,
4 particularly when complex discrete response
5 models are specified, attention to model fit is
6 often cursory.
7 In this research, a recently reported method
8 of mixed predictive model assessment [10] is
9 examined and illustrated in the context of an
10 example from veterinary epidemiology. The
11 concept is extended from the two level Poisson
12 regression originally reported, to a three logistic
13 regression setting with the focus of interest on
14 prediction of bovine clinical mastitis on dairy
15 farms in a specific year [6].
16 Posterior prediction is a general term used
17 when data are generated under a proposed
18 model, often so that comparisons can be made
19 between specific features of the observed and
20 generated data [3]. The approach provides a
21 useful means for model assessment and cross
22 validatory posterior predictive distributions are
23 generally considered a ‘gold standard’ [10,
24 13]. Using cross validation, the data are parti-
25 tioned ‘k’ times into subsets and an analysis is
26 initially performed on the ‘training’ subset.
27 The other ‘testing’ subset(s) are retained to val-
28 idate the initial analysis by making predictions
29 from the data. Data predictions are compared
30 with the observed data. The procedure is
31 repeated k times and k may equal the total num-
32 ber of data points in the dataset or may repre-
33 sent groups of data within the full set. An
34 important element of cross validation is that
35 predictions made on each subset of testing data
36 are independent of the observed outcome for
37 that subset. The comparisons are used to iden-
38 tify discrepancies between model and data.
39 There is an important difference between
40 conventional residual analysis and cross valida-
41 tion as a means of assessing outlying data
42 regions in the context of model assessment. In
43 conventional residual analysis, all data points
44 are included in the model fit and thus will have
45 a direct effect on model parameters and fitted
46 values, and hence the difference between
47 observed and fitted values. This is not the case
48 with cross validation when the data points or
49 groups have no influence at all on their cross
50 validatory predicted values, because they are

51omitted during estimation, and in this respect,
52classical residual plots are likely to be over-
53optimistic in the assessment of model fit (i.e.
54they may not identify all of the true outlying
55regions) compared with cross validation. Outly-
56ing units from cross validation are those for
57which the other units do not provide sufficient
58information for the model to fit; outliers from
59residual analysis are those for which their
60own influence is insufficient to provide a fit.
61Therefore, regions of poor fit identified by cross
62validation will not necessarily be identified by
63residual analysis indicating the importance of
64the former method.
65A significant disadvantage of cross valida-
66tion is that it is computationally intensive and
67thus time consuming. A model has to be re-
68estimated for each of k subsets and this may
69include hundreds or thousands of data points
70or regions. If Markov chain Monte Carlo
71(MCMC) procedures are being used (as has
72been recommended for random effects logistic
73regression models [1]), and particularly with
74large data sets, the timescale required means
75that cross-validation may often become imprac-
76tical (depending on the choice of k).
77Alternative methods to cross-validatory pre-
78dictions have been suggested that have the
79advantage of being more straightforward to
80compute and less computationally intensive.
81Gelman et al. [3] proposed use of the full model
82predictive distribution to make predictions on
83any required aspect of the data. This method
84may be over-optimistic in the context of model
85checking (i.e. it may fail to identify true outly-
86ing regions) compared to cross-validation
87because, as for residual analysis, the prediction
88of any data region tends to be strongly influ-
89enced by the equivalent observed data for the
90region. Marshall and Spiegelhalter [10] pro-
91posed a method termed the ‘mixed’ predictive
92check which they have illustrated in the context
93of disease mapping, and which appeared to per-
94form in a similar manner to cross validation.
95The mixed predictive check incorporates simu-
96lated random effects, generated from their
97underlying distribution which is characterised
98from fitting the initial model, rather than the
99random effects estimated directly from the data.
100Use of the mixed predictive distribution has
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1 also been reported in the context of differential
2 gene expression [9]. In that study, mixed pre-
3 dictive Markov chain P values were used to
4 evaluate hierarchical models [3, 10] but com-
5 parisons were not made between different meth-
6 ods of posterior predictions as a means to assess
7 model fit. In this context, Markov chain P val-
8 ues are an indicator of the probability that a pre-
9 dicted data region is numerically higher
10 (or lower) than the observed equivalent. If the
11 probability is high (typically greater than 95%
12 or 97.5%) or low (typically less than 5% or
13 2.5%) then it suggests that the model is per-
14 forming poorly in the data region.
15 The purpose of this paper is to illustrate and
16 compare four methods of model predictive
17 assessment in the context of a multilevel logis-
18 tic regression model, in which the specific clin-
19 ical interest was the prediction of disease in a
20 higher level unit (in this example a farm-year).
21 The methods are cross validation, a full poster-
22 ior predictive assessment and two mixed predic-
23 tive methods based on the approach proposed
24 by Marshall and Spiegelhalter [10]. An exten-
25 sion to the concept of the mixed prediction is
26 described that is generalisable to three level
27 hierarchical models.

28 2. MATERIALS AND METHODS

29 2.1. The data and initial model

30 The data for this analysis comprises clinical mas-
31 titis and farm management information from fifty two
32 commercial dairy herds, located throughout England
33 and Wales, with a mean herd size of approximately
34 150 cows and has been described in detail previously
35 [6]. Data were collected over a two year period. The
36 aim of the original research was to investigate the
37 influence of cow characteristics, farm facilities and
38 herd management strategies during the dry period,
39 on the rate of clinical mastitis after calving. Interest
40 was focussed on identifying determinants for clinical
41 mastitis occurrence and to assess the extent to which
42 these determinants could be used to predict the occur-
43 rence of clinical mastitis in each year on each farm.
44 The response variable was at the cow level; a cow
45 either got a case of clinical mastitis (= 1) or not
46 (= 0) within 30 days of calving and a cow could be
47 at risk in both years of the study. Predictor variables

48were included at the cow, year and farm levels. The
49model hierarchical structure was cows within farm-
50years within farms, and can be summarised as:

CMijk � Bernouilli ðpijkÞ

Logit ðpijkÞ ¼ b0 þ b1X
ð1Þ
ijk þ b2X

ð2Þ
jk

þb3X
ð3Þ
k þ ujk þ v0k þ v1kP ijk

ujk � Nð0; r2
uÞ; vk ¼

v0k

v1k

 !
� MVNð0;XvÞ

ð1Þ 5252

53where the subscripts i, j and k denote the three
54model levels, pijk the fitted probability of clinical
55mastitis (CM) for cow i in year j on farm k, b0

56the regression intercept, X ð1Þijk the vector of covari-
57ates at cow level, b1 the coefficients for covariates
58X ð1Þijk , X

ð2Þ
jk the vector of farm-year level covariates,

59b2 the coefficients for covariates X
ð2Þ
jk , X ð3Þk the vec-

60tor of farm level covariates, b3 the coefficients for
61covariates X ð3Þk , Pijk is a covariate (within X ð1Þijk ) that
62identifies cows of parity one (after first calf), ujk is a
63random effect to reflect residual variation between
64years within farms, and v0k and v1k are random
65effects to reflect residual variation between farms,
66and for the difference in rates for parity 1 cows
67between farms respectively.
68Model selection was made from a rich dataset of
69more than 350 covariates. Model building has been
70described in detail previously [6] but briefly pro-
71ceeded as follows. Each of the covariates was exam-
72ined individually, within the specified model
73framework, to investigate individual associations with
74clinical mastitis whilst accounting for the data struc-
75ture. Initial covariate assessment was carried out using
76penalised quasi-likelihood for parameter estimation
77(MLwiN, [11]) and final models were selected using
78MCMC for parameter estimation in WinBUGS [12].
79A burn-in of at least 2 000 iterations was used for
80all MCMC runs during which time model conver-
81gence had occurred. Parameter estimates were based
82on a further 8 000 iterations. The final model included
83the following predictor variables; cow parity, cow his-
84toric infection status, whether the farm maintained a
85cow standing time of 30 min after administration of
86treatments at drying off (the end of the previous lacta-
87tion), whether farms reduced the milk yield of high
88yielding cows before drying off, whether cow bedding
89was disinfected during the early dry period, type of
90cow bedding during the late dry period, the time per-
91iod between sequential cleaning out of the calving
92pens, and the time between calving and the cows
93being first milked after calving.
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1 2.2. Predictive assessments

2 Of particular clinical interest in the researchwas the
3 prediction of the incidence rate of clinical mastitis
4 (number of cases per cow at risk) for each of the j =
5 1. . .103 farm-years and thus the predictions of these
6 rateswereused to investigatemethodsofmodel assess-
7 ment. Four methods of predictive assessment were
8 compared; cross validation, a full posterior predictive
9 check and two ‘mixed’ predictive assessments similar
10 to that suggested by Marshall and Spiegelhalter [10].
11 After final model selection, each method of prediction
12 was incorporated into theMCMCprocess.Ateach iter-
13 ation after model convergence, a prediction was made
14 for the occurrence of mastitis for each individual cow
15 (yijk) by drawing from the appropriate conditional
16 probability distribution (see below). Similarly, at each
17 iteration, the number of predicted cases of clinicalmas-
18 titis were summed over all cows in each farm-year and
19 divided by the total cows at risk in each farm-year, to
20 provide anMCMCestimate of the farm-year incidence
21 rate of clinical mastitis. Predictions were made from 8
22 000 MCMC iterations after model convergence.
23 To describe the four methods of predictive assess-
24 ment, we condense the model terms, such that the
25 disease status for each cow (yijk) is conditional on a
26 set of model fixed effect parameters b, covariates
27 (at various levels) Xijk, and random effects vk, and ujk:

yijk � p yijk jb;X ijk ; V k ;U jk

� �
2929

3031 The random effects have parameters represented
32 by r2

u and Xv.

U jk � p U jk jr2
u

� �
V k � p V k jXVð Þ3434

3536 The four methods of predictive assessment
37 employed were:

38 A. Cross validation (‘‘xval’’). Each of the 103
39 farm-years was removed from the analysis
40 in turn and the model fitted to a reduced
41 data set excluding the jkth farm-year
42 (denoted (�jk)), from which new model
43 parameters were estimated ðb �jkð Þ; v �jkð Þ ;
44 u �jkð Þ; r2

u
�jkð Þ

; Xv
�jkð ÞÞ: A replicate obser-

45 vation for the omitted data, yijk
xval was simu-

46 lated from the conditional distribution;

yijk
xval � p yijk

xval
� ��bð�jkÞ;X ijk ;

ujk
xval; vk

xvalÞ
ujk

xval � p ujk
xval

� ��r2
u
�jkð ÞÞ

vk
xval � p vk

xvalð jXv
�jkð ÞÞ

ð2Þ

4848

49B. Posterior predictive assessment from the full
50data (‘‘full’’). The predictive distribution was
51conditional on all fixed effect and random
52effect parameters estimated in the final
53model and a replicate observation yijk

full gen-
54erated from the conditional distribution;

yijk
full � p yijk

full
� ��b;X ijk ; vk ; ujkÞ ð3Þ 5656

57C. Mixed prediction 1 (‘‘mix1’’). This predic-
58tive distribution was conditional on the fixed
59effect parameters and the random effect dis-
60tributions from which new random effects,
61ujkmix1 and vkmix1, were simulated to make
62the prediction. Thus a replicate observation
63yijk

mix1 was generated from the conditional
64distribution;

yjk
mix1 � p yjk

mix1
� ��b;X ijk; ujk

mix1

; vk
mix1Þ

uj
mix1 � p ujk

mix1
� ��r2

uÞ
vk

mix1 � p vk
mix1ð jXvÞ

ð4Þ

6666

67D. Mixed prediction 2 (‘‘mix2’’). This predic-
68tive distribution was conditional on the fixed
69effect parameters, the random effects distri-
70bution at level 2, (from which new random
71effects, ujkmix2 were simulated), and the level
723 random effects from the model, vk. Thus a
73replicate observation yijk

mix2 was simulated
74from the conditional distribution;

yijk
mix2 � p yijk

mix2
� ��b; X ijk ; ujk

mix2; vkÞ
ujk

mix2 � p ujk
mix2

� ��r2
uÞ

ð5Þ
7676

77
782.3. Comparisons between methods
79of predictive assessments

80In each case, predictions of farm-year incidence
81rates of clinical mastitis were compared with
82observed rates. Predictions from cross validation
83(taken as a gold standard) were also compared to
84the other methods of prediction to assess which best
85mimicked this procedure. To assess the degree of dis-
86crepancy between observed and predicted farm-year
87incidence rate of mastitis, the predicted distributions,
88yjk

pred were compared to the observed values using
89Monte Carlo predictive P values. At each iteration
90of the MCMC procedure, an indicator variable was
91set to 1 when yjk

pred > yjk , to 0.5 if yjk
pred ¼ yjk

92and to 0 if yjk
pred < yjk ; the Monte Carlo P value

93was estimated as the mean of this indicator variable.
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1 Therefore predictive P values > 0.975 or < 0.025
2 indicated that the probability of the observed inci-
3 dence rate of clinical mastitis being within the pre-
4 dicted distribution was less than 5% and
5 represented a relatively extreme result.

6 3. RESULTS

7 Figure 1 (A–D) illustrates the mean pre-
8 dicted incidence rate of clinical mastitis for each
9 method of posterior prediction, plotted against
10 the observed incidence of clinical mastitis.
11 The graphs illustrate that the full posterior pre-
12 dictive method most closely resembled the

13observed data and cross validation and the
14‘‘mix1’’ method displayed considerably more
15variability. The ‘‘mix2’’ method provided an
16intermediate result. Figure 2 illustrates the com-
17parison between mixed and full predictive
18methods and cross validation. Both mixed pre-
19dictive methods yielded better estimates of the
20cross validatory prediction than the full poster-
21ior predictive method, and the ‘‘mix2’’ method
22produced estimates most similar to cross
23validation.
24The median error for each predictive method
25was calculated as themedian of the unsigned dif-
26ferences between predicted and cross validatory
27farm-year incidence rates of clinical mastitis, as
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D. Mixed prediction method 2  
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Figure 1. Plots of observed against predicted farm-year incidence rates of clinical mastitis (cases per cow at
risk per year).
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1 a percentage of the cross validatory farm-year
2 incidence rate of clinical mastitis. The median
3 errors were 13.7%, 11.5% and 9.4% for the full
4 posterior prediction, the mixed prediction 1,
5 and for mixed prediction 2 respectively.

6Figure 3 illustrates the MCMC P values
7obtained from the different predictive methods
8to compare with the most extreme P values
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B – Mixed prediction method 1 -r2 = 78.6% 
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C – Mixed prediction method 2  -r2 = 84.3% 
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Figure 2. Plots of cross validatory predictions of
farm-year clinical mastitis incidence against full
and mixed predictive methods of farm-year clinical
mastitis incidence (cases per cow at risk per year).
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B – Mixed prediction method 1  
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C – Mixed prediction method 2. 
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Figure 3. Comparison of MCMC P values from
cross validation (for values > 0.80 and < 0.20) and
from different methods of predictive assessment for
farm-year incidence of clinical mastitis.
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1 identified with cross validation, these being the
2 most divergent regions eligible for identification
3 and further investigation. At large and small P
4 values (P < 0.20 or > 0.80) the mixed predic-
5 tive methods performed more similarly to cross
6 validation than the full posterior prediction with
7 the ‘‘mix1’’ method most closely representing
8 cross validatory MCMC P values. This is con-
9 firmed in Table I that provide the sensitivity and
10 specificity for each predictive method, taking
11 cross validation MCMC P values as the ‘‘gold
12 standard’’, and different P value thresholds.

13The ‘‘mix1’’ method had the highest sensitivity
14indicating that this method identified the largest
15proportion of ‘‘true’’ extreme values as deter-
16mined by cross validation. The ‘‘mix1’’ method
17identified 82.4% (14 out of 17) of extreme val-
18ues when a threshold of < 0.10 or > 0.90 was
19used and 60% (3 out of 5) of extreme values
20with a threshold set at < 0.025 or > 0.975.
21The computing times to complete 10 000
22iterations (using an Intel Centrino 2.0 GHz Pro-
23cessor, 1.5GB RAM) for 103 cross validatory
24predictions and the ‘‘mix1’’ method were 334

Table I. Sensitivity and specificity of MCMC P values for each prediction method (full = full posterior
predictive method, mix 1 and mix 2 = mixed predictive methods 1 and 2 respectively) compared to MCMC
P values for cross validation, at different P value thresholds (as specified).

Cross validation Total Sens (%) Spec (%)

0 1

P value > 0.90 or < 0.10
full 0 86 14 100 17.6 100.0

1 0 3 3
Total 86 17 103

mix 1 0 84 3 87 82.4 97.7
1 2 14 16
Total 86 17 103

mix 2 0 86 10 96 41.2 100.0
1 0 7 7
Total 86 17 103

P value > 0.95 or < 0.05
full 0 93 8 101 20.0 100.0

1 0 2 2
Total 93 10 103

mix 1 0 90 5 95 50.0 96.8
1 3 5 8
Total 93 10 103

mix 2 0 93 7 100 30.0 100.0
1 0 3 3
Total 93 10 103

P value > 0.975 or < 0. 025
full 0 98 5 103 0.0 100.0

1 0 0 0
Total 98 5 103

mix 1 0 98 2 100 60.0 100.0
1 0 3 3
Total 98 5 100

mix 2 0 98 4 102 20.0 100.0
1 0 1 1
Total 98 5 103

Assessment of statistical models Vet. Res. (2009) 40:30
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1 h and 3.6 h respectively. This did not include the
2 time required to format the data and set up each
3 model and this took approximately the same
4 time per model. Thus it took approximately
5 103 times longer for the cross validatory predic-
6 tions than the ‘‘mix1’’ method.

7 4. DISCUSSION

8 Identifying divergent data regions in statisti-
9 cal modelling is important for two reasons.
10 Firstly, numerous divergent regions could indi-
11 cate that underlying statistical assumptions are
12 incorrect, for example the model does not cap-
13 ture the true data structure. Secondly, individual
14 divergent units could represent those that are
15 fundamentally different from other units in the
16 dataset after accounting for predictor variables,
17 and the possible absence of unknown but
18 important explanatory covariates. In either case,
19 further investigations would be warranted.
20 Cross validation provides a useful method of
21 accurately identifying divergent units in com-
22 plex statistical models, but faster methods
23 would be of practical value in model assess-
24 ment and it was for this reason that the alterna-
25 tive strategies were investigated in this research.
26 The predictions of clinical mastitis incidence
27 rates obtained from the different methods show
28 clear differences in results obtained, as shown
29 in Figure 1. The full predictive method pro-
30 vided predicted incidence rates of clinical mas-
31 titis that most closely resembled the observed
32 incidence rates, but these appeared to be over-
33 optimistic in terms of model performance in
34 comparison to cross validatory predictions. This
35 is not surprising since the random effects from
36 the initial model are directly incorporated into
37 the prediction steps but it does highlight the dif-
38 ference between this method and cross
39 validation.
40 For the three level logistic regression models
41 in this example, the mixed predictive methods
42 provided a better approximation to cross-
43 validation than the full posterior predictive
44 assessment. This is concordant with the first
45 study that used a mixed prediction for approxi-
46 mating cross validation in a two level Poisson
47 model for disease mapping [10]. In the current

48study using a three level logistic regression
49model, the ‘‘mix2’’ method provided the closest
50overall approximation to cross validatory pre-
51dictions of farm-year incidence of clinical
52mastitis. However, the ‘‘mix1’’ method per-
53formed best for the more extreme outlying val-
54ues identified by cross validation and thus this
55method was more useful for identifying the
56most divergent higher level units in these data.
57The mixed predictive methods look promising
58as a means of practical model assessment for
59the relatively common statistical approach of
60multilevel logistic regression and as such, war-
61rant further investigations.
62Importantly, the mixed predictive methods
63take considerably less time to implement
64(in this example approximately one hundredth
65of the time of cross validation) and therefore pro-
66vide a clear advantage in terms of practical use.
67The ‘‘mix2’’ method is essentially a compromise
68between the ‘‘mix1’’ method and a full posterior
69prediction. The method simulates a new random
70effect at level 2 but uses the estimated random
71effects from the model at level 3. In the current
72example there were only two level 2 units for
73each level 3 unit and it may be that if more level
74two units existed for each level 3 units, mixed
75prediction method 2 would tend to become sim-
76ilar to mixedmethod 1 (the higher level unit hav-
77ing less influence on the predicted data).
78Similarly, the relative performance of the two
79mixed predictive methods may depend on the
80relative sizes of the higher level variances and
81more research into the importance of the relative
82size of higher level variances when using mixed
83predictive methods would be beneficial. In this
84example the variance at level two (farm-year)
85was 0.06 and at level three (farm) was 0.10
86(for cows greater than parity one) and 0.64 (for
87cows of parity one). If the level three variances
88had been very small in comparison to the level
892 variance, it is possible that both mixed predic-
90tive methods used in this study would have
91yielded similar results. Further investigations
92of mixed predictive methods using different
93types of models, numbers of levels, units per
94level and relative sizes of higher unit variances
95would be worthwhile.
96From our results, it would appear that, out of
97the methods examined, the ‘‘mix1’’ method is
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1 likely to provide the closest representation of
2 cross validation for potentially divergent data
3 regions in multilevel logistic regression. How-
4 ever, it is important to note that these results
5 apply only to one dataset and whilst in agree-
6 ment with a previous study [10], need to be
7 viewed with this perspective. It may be possible
8 to generalise this approach to logistic regression
9 and other multilevel models, but more research
10 in this area is required.
11 Our results indicate that whilst mixed predic-
12 tions provide a reasonable approximation to
13 cross validation, they do not provide precise
14 replication of the results. Therefore, a pragmatic
15 approach for implementation of mixed predic-
16 tive assessments may be for an initial highlight-
17 ing of possible divergent data regions on which
18 to undertake further model checking using cross
19 validation. Thus, instead of undertaking cross
20 validation on all possible regions an intermedi-
21 ate step could be to first use a mixed prediction
22 approach and then to use cross validation for
23 data regions that are potentially divergent based
24 on the mixed prediction. A reduced mixed pre-
25 diction MCMC P value threshold could be used
26 to improve the likelihood that all ‘true’ outliers
27 are identified, possibly the central 80 percentile
28 region and cross validation then carried out on
29 regions that fall outside this interval. This
30 would increase the sensitivity of identifying
31 ‘‘true’’ divergent regions using the mixed meth-
32 ods but would reduce the computing time
33 required compared to using cross validation
34 for all regions.
35 Assessment of model performance is impor-
36 tant and problematic particularly when large
37 datasets and complex model structures are used.
38 Posterior predictions are recognised as a useful
39 method to investigate model fit and more
40 research on mixed posterior predictions may
41 be useful to facilitate straightforward, fast
42 assessments for these types of model.
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