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Cardiac alternans is a beat-to-beat alternation in action potential duration �APD� and intracellular
calcium �Ca2+� cycling seen in cardiac myocytes under rapid pacing that is believed to be a
precursor to fibrillation. The cellular mechanisms of these rhythms and the coupling between
cellular Ca2+ and voltage dynamics have been extensively studied leading to the development of a
class of physiologically detailed models. These have been shown numerically to reproduce many of
the features of myocyte response to pacing, including alternans, and have been analyzed mathemati-
cally using various approximation techniques that allow for the formulation of a low dimensional
map to describe the evolution of APDs. The seminal work by Shiferaw and Karma is of particular
interest in this regard �Shiferaw, Y. and Karma, A., “Turing instability mediated by voltage and
calcium diffusion in paced cardiac cells,” Proc. Natl. Acad. Sci. U.S.A. 103, 5670–5675 �2006��.
Here, we establish that the key dynamical behaviors of the Shiferaw–Karma model are arranged
around a set of switches. These are shown to be the main elements for organizing the nonlinear
behavior of the model. Exploiting this observation, we show that a piecewise linear caricature of the
Shiferaw–Karma model, with a set of appropriate switching manifolds, can be constructed that
preserves the physiological interpretation of the original model while being amenable to a system-
atic mathematical analysis. In illustration of this point, we formulate the dynamics of Ca2+ cycling
�in response to pacing� and compute the properties of periodic orbits in terms of a stroboscopic map
that can be constructed without approximation. Using this, we show that alternans emerge via a
period-doubling instability and track this bifurcation in terms of physiologically important param-
eters. We also show that when coupled to a spatially extended model for Ca2+ transport, the model
supports spatially varying patterns of alternans. We analyze the onset of this instability with a
generalization of the master stability approach to accommodate the nonsmooth nature of our
system. © 2010 American Institute of Physics. �doi:10.1063/1.3518362�

Beat-to-beat patterns of alternating activity seen in whole
heart electrocardiograms are often taken as a sign of an
abnormal rhythm that may lead to sudden cardiac death.
The initiation and maintenance of such pathological car-
diac alternans can be linked to dynamics at the single cell
level. Here, it also manifests itself as a beat-to-beat alter-
nation, although this time in the duration of action poten-
tials. These electrical spikes of activity ultimately control
the contraction of heart muscle fibers. Because of the
known link between cellular alternans and cardiac ar-
rhythmias, understanding the mechanism of their genera-
tion is vital for developing preventative clinical treat-
ments. Experiments have shown that cellular alternans
arise from an interplay of membrane voltage dynamics
and intracellular Ca2+ cycling. However, these studies
have not been able to fully unravel the relative contribu-
tions of these distinct electrical and chemical signaling
pathways to the development of alternans. Thus, model-
ing is ideally suited to determine the roles that voltage
and Ca2+-dependent coupling play in generating regular
and irregular rhythms in the heart. Here, we develop the
analysis of an existing model of this process and show

how increased insight into the alternans phenomenon can
be obtained with a systematic reduction of the nonlineari-
ties to piecewise linear forms. This allows for the explicit
construction of periodic orbits and a determination of
their stability in terms of a set of switching times. Impor-
tantly, the conditions for a period-doubling bifurcation,
leading to alternans, can be identified in terms of physi-
ologically important parameters. Moreover, we show that
tissue level models, constructed by coupling such cells,
show spatiotemporal patterns of alternans that can be
understood with a mathematical generalization of tech-
niques used to study instabilities of synchronized states in
linearly coupled oscillator networks.

I. INTRODUCTION

Understanding the mechanisms of cardiac arrhythmia is
of obvious importance in the prediction and prevention of
sudden cardiac death. Interestingly, many ventricular ar-
rhythmias have been linked to single cell myocyte dynamics
�see Laurita and Rosenbaum �2008� for a recent review�.
Thus, within the physiological modeling community, there is
a great deal of emphasis on developing single cell models for
cardiac rhythmogenesis. In healthy tissues, single cell rhyth-
mic activity underlies whole heart cell muscle contraction—
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the heartbeat. Cardiac excitation-contraction coupling is the
process that links electrical excitation of the heart cells to the
production of contraction. It is caused by the passage of an
action potential over a myocyte �Bers, 2002�. The resultant
change in membrane potential activates voltage-operated cal-
cium �Ca2+� channels �mainly L-type Ca2+ channels� which
triggers a calcium signal. This in turn evokes a more substan-
tial Ca2+ release from closely apposed ryanodine receptor
�RyR� clusters on the sarcoplasmic reticulum �SR� �an intra-
cellular Ca2+ store� via Ca2+-induced Ca2+ release. Such a
localized transient response seen in the cell cytosol, from a
cluster of RyRs, is often called a Ca2+ spark �Cheng et al.,
1993�. For ventricular myocytes, action potential-evoked
Ca2+ signals take the form of homogeneous global increases,
reflecting the spatial and temporal summation of many Ca2+

sparks �Cannell et al., 1995�. It is precisely these global sig-
nals that activate the contractile machinery of the cell �com-
prising actin and myosin myofibrils�. On a beat-to-beat basis,
the strength of contraction is proportional to the amount of
Ca2+ released from the SR, which in turn is critically depen-
dent on the amount of Ca2+ entering through L-type Ca2+

channels. For repetitive behavior to be possible, Ca2+ must
be removed from the cell via a Na–Ca exchanger �NCX� to
balance that entering the cell via L-type Ca2+ channels as
well as pumped back into the SR to be available for release
at the next beat. Thus, pathological behaviors can arise if
these processes are interrupted or if an action potential ar-
rives before sufficient store-refilling occurs. As a result, car-
diac alternans can develop in response to periodic electrical
pacing in which the peak cytosolic Ca2+ concentration alter-
nates from beat-to-beat. Moreover, the detailed form of such
alternans is influenced by the coupling of membrane voltage
and intracellular Ca2+ concentration. Notably, rises in cyto-
solic Ca2+ can affect Ca2+-dependent membrane currents
which control the shape of the action potential.

Models of the heart and heart cells have been actively
developed since the 1960s. These were initially based on the
current balance ideas of Hodgkin and Huxley and were ex-
tended in the 1980s to include Ca2+ dynamics. In recent
years, such cellular models have been incorporated into ana-
tomically detailed tissue and organ models. For a recent dis-
cussion, we refer the reader to Noble �2004�. Using the tech-
niques of computational cell biology, much have been
learned about the normal and pathological behaviors of myo-
cytes and cardiac tissues from the study of models. Most
famous among these are the models of Noble �1962�, Beeler
and Reuter �1977�, and Luo and Rudy �1991�. For a current
comprehensive list of cardiac cell models, we direct the
reader to Fenton and Cherry �2008�. In particular, the analy-
sis of the Shiferaw–Karma model �Shiferaw et al., 2003�,
with a mixture of numerical simulation and mathematical
analysis, has shed much light on the mechanism for altern-
ans. However, the nonlinear nature of this �and indeed all
cardiac cell models� has meant that mathematical analysis
has only been possible with various assumptions, such as the
slaving of one model variable to another, which may not
always hold true. In the absence of a general set of math-
ematical techniques for understanding nonlinear models, it is
often convenient to first develop a simpler piecewise linear

�PWL� caricature that can be explicitly analyzed. For ex-
ample, in neuroscience the model of McKean �1970� of an
excitable cell is one in which the dynamics is broken into
simpler linear pieces �essentially by replacing the cubic
nullcline of the FitzHugh–Nagumo model with a PWL func-
tion�. In this paper, we adopt this philosophy and develop a
mathematically tractable version of the Shiferaw–Karma
model.

In Sec. II, we review the Shiferaw–Karma model and
introduce its PWL caricature. Numerical simulations are
used to highlight the excellent correspondence of the two
models in response to periodic pacing. Next, in Sec. III, we
construct the periodic orbits of the PWL model, and show
how they can be analyzed in terms of a set of switching
times. Importantly, we show how to determine stability, and
use this approach to identify physiological parameter re-
gimes that can support a period-doubling bifurcation. The
onset of alternans as predicted by this instability is shown to
be in excellent agreement with numerical simulations. This
approach is extended to the network level in Sec. IV for cells
coupled by their bulk cytosolic Ca2+ concentration differ-
ences. We develop a generalization of the Pecora and Carroll
�1998� master stability calculation, to handle switching
times, to determine the instability point of the synchronized
state. Once again, the predicted onset of spatiotemporal al-
ternans is shown to be in excellent agreement with numerical
simulations. Finally, in Sec. V, we discuss the results of our
analysis as well as the natural extensions of the work in this
paper.

II. THE MODEL

Experiments to date are inconclusive about the relative
contributions of membrane voltage and intracellular Ca2+

handling to the development of alternans �Qu and Weiss,
2007; Jordan and Christini, 2007�. Thus, modeling is ideally
suited to determine the roles that voltage and Ca2+-dependent
coupling play in generating regular and irregular rhythms in
cardiac myocytes, thereby providing further insights into the
mechanism of alternans. Here, we will focus on the class of
models where the shape of the membrane potential V is
fixed, i.e., V is a function of time only and acts as a drive to
the intracellular Ca2+ dynamics. We base our analysis on the
Shiferaw–Karma model developed by Shiferaw et al. �2003�,
which describes the Ca2+ dynamics in four intracellular com-
partments and the release current Ir from the SR into the
cytosol. We now give a brief description of this model.

A. Shiferaw–Karma model

The cytoplasm is divided into the subsarcolemmal space
and the bulk, while in the SR the total Ca2+ concentration
and the Ca2+ concentration in the unrecruited junctional SR
�JSR� are tracked. The unidirectional coupling from the
membrane potential to the Ca2+ cycling occurs through the
L-type Ca2+ channel and the NCX. Upon depolarization of
the plasma membrane, L-type Ca2+ channels open and trans-
locate Ca2+ from the extracellular space into the dyadic cleft.
The ensuing rise of the subsarcolemmal Ca2+ concentration
triggers the release of Ca2+ from the SR, which in turn in-
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creases the Ca2+ concentration in the dyadic cleft. This posi-
tive feedback of the L-type current on the Ca2+ liberation
from the SR is modulated by the Ca2+ load of the unrecruited
JSR in a strongly nonlinear fashion. Experiments have re-
vealed a cubic dependence of the Ca2+ released from the SR
on the SR Ca2+ load �Trafford et al., 2001�. While the mem-
brane potential is the key for opening L-type Ca2+ channels,
the deactivation occurs through a combination of voltage
gates that respond to membrane repolarization and Ca2+ sen-
sors that are activated at large subsarcolemmal Ca2+ concen-
trations �Matthes and Herzig, 2010�. The main role of the
NCX is to extrude Ca2+ from the cytosol to the extracellular
space to achieve low resting levels of the diastolic Ca2+ con-
centration. The strength of the NCX current depends on both
the subsarcolemmal Ca2+ concentration and the membrane
potential. The above biological features are captured with the
following set of five ordinary differential equations:

dcs

dt
= ��cs�� vi

vs
�Ir −

cs − ci

�s
− ICaL� + INaCa	 ,

dci

dt
= ��ci�� cs − ci

�s
− Iup	 ,

dcj

dt
= − Ir + Iup, �1�

dcj�

dt
=

cj − cj�

�a
,

dIr

dt
= − gICaLQ�cj�� −

Ir

�r
.

Here, �cs ,ci ,cj ,cj� , Ir� denote the subsarcolemmal Ca2+ con-
centration, the cytosolic Ca2+ concentration, the total Ca2+

concentration in the SR, the Ca2+ concentration in the unre-
cruited JSR, and the release current from the SR into the
cytosol. The volumes of the intracellular space and the
bulk cytosol are denoted by vs and vi, respectively. The
Ca2+ current through the L-type Ca2+ channel is given
by ICaL= ICaL�cs ,V�, that through the NCX is given by
INaCa= INaCa�cs ,V�, and that through the Ca2+ pumps �from
the cytosol to the SR� is given by Iup= Iup�ci�. The diffusive
currents between the subsarcolemmal space and the bulk cy-
tosol as well as between the two SR Ca2+ concentrations are
controlled by the time constants �s and �a, respectively. The
time constant �r corresponds to the lifetime of a Ca2+ spark
and g is the release current strength. The function Q de-
scribes the load-release function. Note that this is a PWL
function of cj� and switches at prescribed threshold values of
cj�. Details of all currents and coefficients are listed in
Appendix A. The model �1� is stimulated by clamping the
voltage variable V to some chosen functions of time. We take
this to be a Tp-periodic waveform that mimics the shape of
realistic cardiac action potentials with values between Vmin

and Vmax.
Given that the Ca2+ concentration in the four compart-

ments of the Shiferaw–Karma model decays toward resting
values in the absence of an action potential �V clamped at

Vmin�, the combined positive and negative feedback of the
membrane potential on the Ca2+ cycling significantly shapes
the Ca2+ response. Figures 1 and 2 show the typical traces of
all dynamic components in the Shiferaw–Karma model for
pacing periods Tp=1 s and Tp=0.27 s, respectively. While
there are regular period 1 oscillations at the smaller pacing
frequency, the dynamics undergoes a period-doubling bifur-
cation as the frequency is increased. The regular alternation
of large and small peaks in the Ca2+ concentrations is known
as Ca2+ alternans. The absolute values of the local maxima as
well as the difference between successive peak values de-
pend on the pacing frequency. Note that these alternans
occur although the action potential duration �APD� remains
constant.

To gain a deeper understanding of the emergence of al-
ternans, we now introduce a PWL approximation of the
Shiferaw–Karma model that is amenable to a full mathemati-
cal analysis.

B. PWL model

The PWL model possesses the same structure as the
original Shiferaw–Karma model, i.e., we consider the same
five dynamical variables, and the coupling between them oc-
curs through the same currents. The main changes concern
the specific form of the currents, most notably of those
through the L-type Ca2+ channel and the NCX. For the
former, we make use of the fact that the L-type Ca2+ channel
activates to a voltage-dependent maximum almost instanta-
neously upon strong depolarization and then remains open
for a short period of time �see Figs. 1 and 2�. Hence, we
eliminate all gating variables and model the current through
the L-type channel with a simple voltage-dependent switch.
We set the conductance to a constant that is proportional to
the maximal value of the action potential. The channel opens
at the onset of the action potential, and to retain the voltage-
dependent inactivation, the L-type Ca2+ channel is only ac-
tive as long as V�VL, where the threshold voltage
VL=Vmax−1 is chosen so as to result in a reasonable time of
conductance �on the order of 5 ms�. Note that a constant
L-type current allows us to use the continuous load-release
function Q of the original Shiferaw–Karma model given by
Eq. �A2�. Since the current through the NCX is a combined
function of the membrane potential and the subsarcolemmal
Ca2+ concentration, we split it into a voltage-dependent and a
Ca2+ dependent part and write it in the form INaCa�V ,cs�
=��V�−��V�cs. The function ��V� is quadratic in V, while
��V� is a piecewise constant function of V that switches at
the voltage level VNaCa, both of which are defined in Appen-
dix B. The values of the PWL function as well as that of
VNaCa are chosen such as to faithfully reproduce the NCX
current of the original Shiferaw–Karma model �see bottom
right panel in Fig. 2�. The Shiferaw–Karma voltage clamp is
derived from experimental protocols and describes the active
part of the action potential with a functional dependence on
time that goes as 
1− t2. For our purposes, it is more conve-
nient to expand the square root into a superposition of cosine
functions �see Eqs. �B6�–�B8��. We only need three terms in
this series to achieve a good agreement between the expan-
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sion and the choice of the voltage clamp in the Shiferaw–
Karma model �see bottom right panel of Fig. 1�. However, it
is worth noting that the analysis we present below holds for
an arbitrary number of terms in the cosine series so that we
can approximate the original voltage clamp to any degree of
accuracy. Finally, we substitute the nonlinear pump current
Iup by a linear relationship based on earlier results �Coombes,
2001�, and we replace the terms ��cs� and ��ci� with con-
stants that lie in the range of � given by Eq. �A1�. We refer
the reader to Appendix B for further details of the model.

Figures 3 and 4 show the results for the PWL model at
cycle lengths of Tp=1 s and Tp=0.35 s, respectively. We
again find a period-doubling bifurcation as we increase the
pacing frequency. The range of Ca2+ concentrations in all
four compartments agrees well between the two models on
either side of the period-doubling bifurcation. The PWL
model retains the property that the total Ca2+ concentrations
in the SR �cj� and in the unrecruited JSR �cj�� are similar,
while there is an order of magnitude difference between the
cytosolic bulk and the subsarcolemmal space. Moreover, we
recover the same separation of time scales in the cytosol
since the Ca2+ concentration in the dyadic cleft decays much
faster than the bulk Ca2+ concentration. In addition, the two
luminal Ca2+ concentrations exhibit similar recovery time
courses. The PWL approximation of the NCX current re-
sponds to an action potential with the same characteristics as
the full model, such as the strong down swing at the onset of
the action potential, the shoulder like structure shortly after-
ward, and the following dip. The bottom right panel of Fig. 2

shows a plot of INaCa for the Shiferaw–Karma model and
PWL model, highlighting the good agreement between the
two.

An important property of cardiac Ca2+ models is the ex-
istence of graded release, where the amount of Ca2+ that
enters the cell through L-type Ca2+ channels and released
from the SR changes with the amplitude of applied voltage
pulses. Figure 5 depicts the maximum of ICaL and Ir normal-
ized to the overall maximum for test potentials of various
heights. In both models, the overall maximum is achieved for
test pulses up to 10 mV. An increase in the potential step
leads to a decrease of the currents where ICaL decays faster
than Ir. For the PWL model, we only plot the current re-
sponses to test potentials larger than 10 mV because there is
no inactivation mechanism for negative membrane poten-
tials. We also found that our model reliably exhibits gain,
where the amount of Ca2+ liberated from the SR is much
larger than the amount that enters the cell through L-type
Ca2+ channels �data not shown�.

The PWL model successfully captures a wide range of
properties of the original Shiferaw–Karma model. Hence, it
is ideally suited to investigate cardiac Ca2+ dynamics in more
details. We illustrate in the next section how to analytically
construct periodic orbits that correspond to regular Ca2+

oscillations. Moreover, we determine the linear stability of
these oscillations and provide analytical expressions that
signal the onset of Ca2+ alternans via a period-doubling
bifurcation.
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FIG. 1. Time courses of the Ca2+ concentration in the subsarcolemmal space �cs�, the cytosolic bulk �ci�, the total Ca2+ in the SR �cj�, the Ca2+ concentration
in the unrecruited JSR �cj��, the voltage-dependent �f� and Ca2+ dependent �fCa� inactivation gate of the L-type Ca2+ channel, the release current Ir, the L-type
Ca2+ current ICaL, the NCX current INaCa, the uptake current Iup, and the clamped action potential V in the Shiferaw–Karma model at a pacing period of
Tp=1 s. The bottom right panel shows an overlay of the action potential in the Shiferaw–Karma model �dashed black line� and the PWL model �solid gray
line� for Tp=1 s. All other parameter values as in Tables I–V.
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III. PERIOD 1 ORBITS

A test case for any cardiac Ca2+ model is whether it
produces regular Ca2+ oscillations �period 1 orbits� when
driven at low pacing frequency. To establish this property for
the PWL model, we start by rewriting the governing equa-
tions as ẋ=Mx+ f�t�, where the dot indicates the derivative
with respect to time and x= �cs ,ci ,cj ,cj� , Ir��R5. The entries

of the matrix M �R5�5 and the vector f �R5 follow readily
from Eq. �1� and those in Appendix B. Note that M is a
piecewise constant matrix in time, whose entries only change
when the dynamics passes through either a voltage or a time-
dependent switch as explained in more details below. The
only nonzero entries in f are at the first and the last positions,
because the first entry results from the voltage dependence of
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FIG. 2. Time courses of the Ca2+ concentration in the subsarcolemmal space �cs�, the cytosolic bulk �ci�, the total Ca2+ in the SR �cj�, the Ca2+ concentration
in the unrecruited JSR �cj��, the voltage-dependent �f� and Ca2+ dependent �fCa� inactivation gate of the L-type Ca2+ channel, the release current Ir, the L-type
Ca2+ current ICaL, the NCX current INaCa, and the uptake current Iup in the Shiferaw–Karma model at a pacing period of Tp=0.27 s. The bottom right panel
shows an overlay of the NCX current in the Shiferaw–Karma model �solid gray line� and the PWL model �dashed black line� for Tp=0.27 s. All other
parameter values as in Tables I–V.
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FIG. 3. Time courses of the Ca2+ concentration in the subsarcolemmal space �cs�, the cytosolic bulk �ci�, the total Ca2+ in the SR �cj�, the Ca2+ concentration
in the unrecruited JSR �cj��, the release current Ir, the L-type Ca2+ current ICaL, the NCX current INaCa, and the uptake current Iup in the PWL model at a pacing
period of Tp=1 s. All other parameter values as in Tables I–IV and VI.
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INaCa, namely, ��V�, and the last entry is controlled by the
constant terms of Q as given by Eq. �A2�. Since we prescribe
the shape of the action potential, the voltage dependence of
INaCa translates into a time dependence. When we derived the
PWL model in Sec. II B, we introduced switches with re-
spect to the membrane potential at V=VL and V=VNaCa.
Bearing in mind that the action potential is clamped, the
presence of voltage thresholds means that the governing
equation for a trajectory changes at times when the voltage
crosses one of these switches. For a given voltage clamp,
these times are fixed by the condition V�T�=Vth, where
Vth� �VL ,VNaCa�. In addition to these voltage switches, the
PWL load-release function Q introduces additional switching
times that are determined by the time course of the Ca2+

concentration in the unrecruited JSR. Since cj� dynamically
evolves in time, these switching times are not known
a priori, but have to be computed as part of the solution. Let
�Ti�i=1,. . .,m be the set of all switching times. Given the Ca2+

concentrations and the release current xi=x�Ti� at the ith
switching time, their values at Ti+1 follow from

xi+1 = eMi�Ti+1−Ti�xi + 

Ti

Ti+1

eMi�Ti+1−s�f�s�ds , �2�

where Mi, i=0, . . . ,m, is a constant matrix and we have set
T0=0 and Tm+1=Tp for consistency. A convenient way to
evaluate the integral is to diagonalize Mi, i.e., to write
MiPi= Pi�i, where the columns of Pi hold the eigenvectors
of Mi and the entries of the diagonal matrix �i are the cor-
responding eigenvalues. The integral then reduces to one-
dimensional convolutions of f with an exponential function.
The functional forms that we have adopted for INaCa and the
voltage clamp mean that the integrals in Eq. �2� can be com-
puted explicitly, leading to an analytical form for xi+1. This
leads us to the introduction of a family of closed-form propa-
gators Zi such that xi+1=Zixi. Any trajectory of x is classified
by the sequence of switching events, either time-dependent

�voltage switches� or state-dependent �threshold crossings of
cj��. Hence, to compute a closed orbit, we need to specify the
order and type of switches beforehand. Let �di�i=1,. . .,n denote
the sequence of threshold crossings in the unrecruited JSR
with yet to be determined switching times �T i

s�, and let �T j
t�

be the known voltage switches in time. Here, the di are the
values of cj� where the dynamics switch, and di� �50,115�
due to the definition of Q �see Eq. �A2��. When we order the
switching times according to the specific sequence of
switching events and denote this set by 	, e.g., 	
= �T 1

s ,T 1
t ,T 2

s , . . .�= �T1 ,T2 ,T3 , . . . ,Tm�, then a period 1 orbit
satisfies the conditions

x�0� = x�Tp� = Zm+1 ¯ Z1x�0�, cj��T i
s� = di. �3�

The first expression in Eq. �3� ensures periodicity with a
period of Tp and cj��T i

s� is the fourth component of

xi = Zi� ¯ Z1x0, �4�

where i� corresponds to the position of T i
s in the ordered set

	. Note that there are 5+n unknowns—the five components
of the initial value vector x0 and the n cj� dependent switch-
ing times—and that there are exactly 5+n conditions. Figure
6 depicts period 1 orbits for different pacing frequencies con-
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FIG. 5. �Color online� Maximal L-type current ICaL �dashed� and SR current
Ir �solid� for test potential steps from 
80 mV to the indicated voltage in the
Shiferaw–Karma model �left� and the PWL model �right�. All currents are
normalized to the overall maximum. All other parameter values as in
Tables I–VI.
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period of Tp=0.35 s. All other parameter values as in Tables I–IV and VI.
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structed by solving Eq. �3�. The solution given by Eqs. �2�
and �3� is in excellent agreement with numerical simulations.
The difference between the two panels lies in the number of
switching times. Upon decreasing the basic cycle length, the
minimum of cj� increases, until it exceeds the threshold value
of 50 �mol / l cytosol in the unrecruited JSR, which results
in the loss of two switching events.

Now that we have explicitly constructed period 1 orbits,
we continue by probing their linear stability. We here assume
that small perturbations around the periodic orbit x�t� result

in shifted switching times T̃i=Ti+�Ti, but that the order and
type of the switching events remain unchanged. The last as-
sumption is equivalent to stating that the matrices Mi still

govern the dynamics between T̃i and T̃i+1. Denoting the per-

turbed orbit at a perturbed switching time as x̃i= x̃�T̃i�, we
find from Eq. �2� for i=0, . . . ,m that

x̃i+1 = eMi�T̃i+1−T̃i�x̃i + 

T̃i

T̃i+1
eMi�T̃i+1−s�f�s�ds . �5�

When we make the ansatz x̃�T̃i�=xi+�xi, then linearizing Eq.
�5� yields

�xi+1 = eMi�Ti+1−Ti��xi + �Ti+1�Mixi+1 + f�Ti+1
− ��

− �Tie
Mi�Ti+1−Ti��Mixi + f�Ti

+��

= eMi�Ti+1−Ti���xi − ẋ�Ti
+��Ti� + ẋ�Ti+1

− ��Ti+1, �6�

where we used the definition of ẋ as introduced at the begin-
ning of the section. The derivatives of x have to be taken
either from above �ẋ�T i

+�� or below �ẋ�T i
−�� due to the dis-

continuity of f . Equation �6� possesses a direct geometrical

interpretation since it states that the perturbation at T̃i+1 re-

sults from propagating the perturbation at T̃i until Ti+1, and
then adding the contribution from the perturbation �Ti+1. At
first sight, Eq. �6� appears implicit as it relates the perturba-
tion �xi+1 to the unknown shift in the switching time �Ti+1.
However, we need to solve Eq. �6� subject to the threshold
conditions and the fact that the basic cycle length remains
unchanged. The latter condition entails that �T0=�Tm+1=0.
For the former, we have to distinguish between voltage-
dependent and cj� dependent switches. Since the action po-

tential remains unchanged, we find T̃ j
t =T j

t, so that �Tj�=0,
where j� corresponds to the position of Tj

t in the ordered set

	. If Ti� indicates a threshold crossing of cj�, then c̃j��T̃i��

=di=cj��Ti��, so that the fourth component of �xi� vanishes.
To illustrate the above procedure, we consider the evaluation

of �x1 for a cj� dependent switch at T̃1. Since T0=�T0=0, we
find from Eq. �6�

�x1 = eM0T1�x0 + ẋ�T 1
−��T1, �7�

and hence for the fourth component of �x1,

0 = �
i=1

5

�eM0T1�4i��x0�i + �ẋ�T 1
−��4�T1, �8�

which leads to

�T1 = �
i=1

5

�g0�i��x0�i. �9�

Here, we introduce the vector g0�R5 with �g0�i

=−�eM0T1�4i / �ẋ�T 1
−��4, so that

�x1 = �eM0T1 + ẋ�T 1
−�g0��x0. �10�

Equation �10� uniquely relates the perturbations at the first
perturbed switching time to the perturbation at the beginning
of the action potential since all the components in the square
brackets are known as they stem from the unperturbed peri-
odic orbit. Extending the preceding analysis to all switching
events, we finally arrive at a matrix Sm such that �xm+1

=Sm�x0. The stability of the periodic orbit x then readily
follows from the eigenvalues 
i of Sm. If �
i��1 for all i
=1, . . . ,5, then the orbit is linearly stable. A period-doubling
bifurcation occurs if there is one eigenvalue with 
 j =−1,
while �
i��1 for i� j. The explicit construction of the ma-
trix Sm allows us to directly compute the critical value of Tp

for the period-doubling bifurcation by solving det�Sm+ I5�
=0, where I5 is the 5�5 identity matrix. Figure 7 shows the
continuation of the period-doubling bifurcation when we
vary the strength of Ca2+ resequestration to the SR. Upon
energizing the Ca2+ pumps, the critical value of Tp decreases,
so that the cell can be paced faster before alternans set in.
The results presented in Figs. 3 and 4 are consistent with the
linear stability analysis derived above as the basic cycle
lengths lie on either side of the critical line in Fig. 7.
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FIG. 6. �Color online� The shape of the periodic solution obtained numeri-
cally �dashed lines� and the corresponding analytical solution given by Eqs.
�2� and �3� �solid lines� for Tp=1 s �left� and Tp=0.62 s �right�. The circles
indicate the concentration values at switching times. All other parameter
values as in Tables I–IV and VI.
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FIG. 7. Continuation of the period-doubling bifurcation as a function of the
pump strength vup. All other parameter values as in Tables I–IV and VI.
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IV. NETWORK DYNAMICS

In Sec. III, we explicitly constructed period 1 orbits for a
single cell and probed linear stability. Here, we will investi-
gate the dynamics of a coupled cell network, where each cell
is labeled by an index � with �=1, . . . ,Nc. We will focus on
the nearest-neighbor linear coupling of the form ���nn�ci

�

−ci
�� /�c added to the dynamics of the bulk cytosolic Ca2+

concentration of the �th cell. Figure 8 depicts the behavior
of 20 cells in such a network. The dynamics is depicted as
space time plots, where time runs vertically and space �i.e.,
the cell index� runs horizontally. We choose a color coding
such that warm colors present high Ca2+ concentrations,
while cooler colors indicate lower Ca2+ concentrations. For
the sake of a clearer presentation, Ca2+ concentrations close
to the resting level are shown in white. Hence, each colored
line in Fig. 8 corresponds to the subsarcolemmal Ca2+ con-
centration across the network responding to an action poten-
tial. For weak coupling as depicted in the right panel, all the
cells synchronize �as can be seen from the solid line at each
action potential onset�, while increasing the coupling
strength leads to spatial alternans where neighboring cells
oscillate out of phase �note the alternating coloring upon
stimulation�. Figure 9 provides more details by displaying
the time courses of individual cells. For the stronger cou-
pling, the dynamics of neighboring cells is indeed shifted by
one pacing period, which results in next nearest neighbors to
follow exactly the same time traces. The right panel illus-
trates that the synchronous network state is identical to the
orbit of a single cell at the same pacing frequency. Note that
isolated cells do not exhibit alternans at the chosen basic
cycle length, so that the emergence of spatial alternans re-
sults solely from the coupling.

To understand this behavior, we perform a linear stabil-
ity analysis of the coupled network. Then, the dynamics of
an individual cell between the ith and �i+1�th switching
events is given by

ẋi
� = �Mixi

� + f i���t − Ti
����Ti+1

� − t�

+
1

�c
�
m,�

G��Hxm
���t − Tm

����Tm+1
� − t� , �11�

where � is the Heaviside step function with ��x�=1 for
x�0 and zero otherwise. The matrix G�RNc�Nc reflects the
topology and the kind of coupling in the network, while
H�R5�5 specifies the components of xi through which the
coupling occurs. Since we here focus on diffusive coupling
in a linear array of cells, G is the usual tridiagonal matrix
�discretized Laplacian� modified to satisfy either no-flux or
periodic boundary conditions. The only nonzero element in
H is H22 since the bulk Ca2+ concentration in one cell
couples to the bulk Ca2+ concentration in the neighboring
cells. The sum over m stems from the fact that although Eq.
�11� describes the dynamics of the �th cell between Ti

� and
Ti+1

� , other cells can follow different switching patterns and
hence have different switching times. A synchronous state is
one for which all cells follow a common trajectory with the
same phase, x��t�=x�t� ∀�. Using the same notations and
assumptions as in Sec. III, we find for the linearized dynam-
ics around the synchronous network state s�t� �with x�t� the
periodic orbit of the uncoupled cell described in Sec. III�,

d

dt
�xi

� = Mi�xi
���t − Ti���Ti+1 − t�

+ ṡi��Ti+1
� ��t − Ti+1� − �Ti

���t − Ti��

+
1

�c
�
j,�

G��H��xj
���t − Tj���Tj+1 − t�

+ sj��Tj+1
� ��t − Tj+1� − �Tj

���t − Tj��� . �12�

Here, si�t� refers to the value of s�t� for Ti� t�Ti+1. Note
that the switching times that appear in the Heaviside and
delta functions do not carry a cell index anymore, since these
times belong to the synchronous network state where all cells
switch dynamics at the same time. To solve Eq. �12�, we
employ ideas originally developed by Pecora and Carroll
�1998�. Let Q denote the matrix whose columns correspond
to the eigenvectors of the connectivity matrix G, and let � be

FIG. 8. �Color online� Subsarcolemmal Ca2+ concentration in a network of
20 cells paced at Tp=1 s with a coupling strength of �c=2 ms �left� and
�c=3 ms �right�. All other parameter values as in Tables I–IV and VI.
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FIG. 9. �Color online� Bulk Ca2+ concentration for two neighboring cells �left, right� and two second neighbor cells �middle� for �c=1 ms �left, middle� and
�c=3 ms �right� in a network of 20 cells paced at Tp=1 s. The additional trace in the right panel results from the simulation of an isolated cell at the same
parameter values. All other parameter values as in Tables I–IV and VI.
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a diagonal matrix that holds all the eigenvalues �� of G.
When we introduce the new variable �yi

�=��Q��
−1�xi

�, we
find, e.g., for the first sum in Eq. �12�

�
�,j,�

Q��
−1G��H�xj

���t − Tj���Tj+1 − t�

= ���
j

H�yj
���t − Tj���Tj+1 − t� �13�

due to Q−1G=�Q−1. Rewriting Eq. �12� in terms of �yi
� then

results in

d

dt
�yi

� = Mi�yi
���t − Ti���Ti+1 − t�

+ ṡi��Ui+1
� ��t − Ti+1� − �Ui

���t − Ti��

+
��

�c
�

j

H��yj
���t − Tj���Tj+1 − t�

+ sj��Uj+1
� ��t − Tj+1� − �Uj

���t − Tj��� , �14�

where we introduce �Ui
�=��Q��

−1�Ti
�. Equation �14� depends

only on one cell index �. All the information on the
network topology and on the kind of coupling is encoded
in the eigenvalues ��, which are, e.g., given by ��

=−4 sin2����−1� /Nc� in the case of periodic boundary con-
ditions. For �=1, �1=0, and so the network stability is de-
termined in part by the stability of the uncoupled single cell
periodic orbit. For ��1, all other eigenvectors correspond to
transverse directions �and eigenfunctions are discrete sin and
cos functions of the cell indices�. Bearing in mind that we

need to integrate Eq. �14� between Ti+�Ui
� and Ti+1+�Ui+1

� ,
we find to first order that

�yi+1
� = eRi

��Ti+1−Ti���yi
� − pi

��Ui
�� + qi+1

� �Ui+1
� , �15�

with Ri
�=Mi+��H /�c, pi

�= ṡ�T i
+�+��Hsi /�c, and qi

�= ṡ�T i
−�

+��Hsi /�c. Equation �15� possesses the same structure as Eq.
�6� for the uncoupled cell—the two equations coincide for
��=0—so the technique of stability analysis that we devel-
oped in Sec. III carries over to the network. We therefore
introduce matrices Sm

� that are defined by �yi+1
� =Sm

� �yi
� and

that have eigenvalues 
 j
�. Since �xi

� and �yi
� are linearly

related, any instability of �yi
� corresponds to an instability of

the original network dynamics. If �
 j
���1 for all � and j,

then the synchronous network state is linearly stable. If, on
the other hand, there is one eigenvalue in �
 j

�� with the value
of 
1, while all other eigenvalues lie within the unit circle
around the origin of the complex plane, then the network
undergoes a period-doubling bifurcation. In Fig. 10, we plot
the eigenvalues for the network dynamics shown in Fig. 8.
For the stable synchronous state, all eigenvalues have moduli
smaller than 1, while the presence of the spatial alternans is
accompanied by some eigenvalues with 
 j

��−1. Note that
all eigenvalues are smaller than 1, so the instability indeed
occurs through a period-doubling bifurcation. The onset of
the instability depends on the number of cells in the network
since the eigenvalues �� depend on Nc. In addition, larger
networks can display spatially irregular alternans where most
cells oscillate out of phase with respect to their neighbors,
while some adjacent cells are perfectly synchronized. An ex-
ample for this kind of dynamics is depicted in Fig. 11. Here,
there are 11 pairs of neighboring cells that oscillate in phase.
Figure 12 reveals that synchronized neighboring cells pos-
sess different maxima than adjacent cells that oscillate out of
phase with respect to each other.

V. DISCUSSION

Understanding the genesis of cellular alternans is a key
factor in controlling and treating arrhythmia in the heart
given the strong evidence that links these two phenomena
�Myles et al., 2008; Laurita and Rosenbaum, 2008�. At the
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FIG. 10. Eigenvalues of the linearized dynamics for a network of 20 cells
paced at Tp=1 s with a coupling strength of �c=2 ms �left� and �c=3 ms
�right�. Note that there are 5Ncell eigenvalues. All other parameter values as
in Tables I–IV and VI.

FIG. 11. �Color online� Subsarcolemmal Ca2+ concentration in a network of
100 cells paced at Tp=1 s with a coupling strength of �c=1 ms. All other
parameter values as in Tables I–IV and VI.
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FIG. 12. �Color online� Subsarcolemmal Ca2+ concentration in a network of
100 cells for two neighboring cells that are synchronized �solid gray and
dashed black lines� and that oscillate out of phase �solid red and dashed blue
lines�. The profiles of the two pairs of cells are plotted with a shift of half a
period with respect to each other for better illustration. Parameter values as
in Fig. 11.
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level of single cells, two kinds of alternans exist, which
manifest themselves as beat-to-beat variations in the mem-
brane potential and in the Ca2+ concentration, respectively.
Due to the bidirectional coupling between the voltage and
the Ca2+ dynamics, these two forms of alternans often occur
simultaneously. However, studies in vitro �Chudin et al.,
1999� and in vivo �Aistrup et al., 2006� have shown that Ca2+

alternans occur in the absence of variations in the action
potential. This has led to the notion that the Ca2+ subsystem
undergoes an instability before the membrane potential
passes through a bifurcation, and hence might be the driving
force behind arrhythmia. Consequently, experimental and
theoretical studies have extensively probed the response of
the intracellular Ca2+ dynamics to a clamped action potential.
In the present work, we followed up on this idea and devel-
oped a novel mathematically tractable model of the intracel-
lular Ca2+ subsystem that is driven by a predefined action
potential.

Our starting point is the Shiferaw–Karma model
�Shiferaw et al., 2003�, where Ca2+ cycles through two cy-
tosolic and two luminal compartments. The coupling of the
membrane potential to the Ca2+ dynamics occurs through the
L-type Ca2+ channel and the NCX, where both currents, ICaL

and INCX, are nonlinear functions of the Ca2+ concentration
and the membrane potential. In the first step, we replaced all
nonlinearities by state-dependent switches, so that the dy-
namics becomes PWL with a time-dependent drive. Impor-
tantly, our model reproduces the behavior of the original
Shiferaw–Karma model in that it shows, e.g., a period-
doubling bifurcation upon increasing the pacing frequency
and the crucial characteristics of graded release and gain. We
also recover the multiphase time course of the NCX current.
The identification of appropriate switching times that signal
the change from one set of linear evolution equations to an-
other one suggests that the fundamental dynamics do not rely
so much on the biophysical details, but more on the overall
characteristics. This notion is also supported by the fact that
we could replace functions �originally arising from a fast
buffer approximation� in the bulk and in the subsarcolemmal
space by two constants, with negligible effects on the dy-
namics. One drawback of our current model is that it does
not allow for Ca2+-induced inactivation of the L-type Ca2+

channel, and hence excludes the L-type Ca2+ channel as a
mechanism to induce alternans. However, this is a subject of
ongoing research and will be discussed elsewhere.

The PWL nature of our model allows us to explicitly
construct the periodic orbits of the intracellular Ca2+ concen-
trations with no need to resort to numerical simulations. In
turn, this opens up the avenue for efficiently scanning the
response of the Ca2+ dynamics to changes in physiologically
relevant parameters such as the pacing frequency, the pump
strength, or the load-release function. The analytic solutions
for the Ca2+ dynamics immediately lead to an expression for
the linear stability of periodic 1 orbits. This removes any
need to reduce the dimensions of the original dynamical sys-
tem by assuming, e.g., equality of the Ca2+ concentration in
the two cytosolic and luminal compartments at the beginning
of an action potential, respectively, as has been done in pre-
vious analyses of the Shiferaw–Karma model �Shiferaw

et al., 2003; Restrepo and Karma, 2009�, or quasistationarity
of some of the Ca2+ concentrations �Huertas et al., 2010�.
The specific form of the matrix Sm that contains all the in-
formation about the linear stability depends on the kind of
switches, i.e., time- or state-dependent, and their relative or-
der. We explicitly demonstrated how to analyze a time-
dependent switch followed by a state-dependent switch. The
generalization of this procedure is straightforward, so that
the linear stability analysis presented here holds for any
driven PWL system with an arbitrary number and sequence
of switching events. The expression for the linear stability
allows us to continue the period-doubling bifurcation that
signals the onset of Ca2+ alternans. We find that upon ener-
gizing Ca2+ pumps, the critical frequency for the onset of
Ca2+ alternans increases. Given that the main mechanism to
induce Ca2+ alternans in the current model is a depletion of
the SR �Sipido, 2004�, these results are consistent with the
physiological role of Ca2+ pumps since stronger pumps allow
a faster replenishment of the SR, so that cells can be driven
harder before depletion occurs. Similar findings were re-
ported earlier in experimental and theoretical studies based
on more elaborate models �Shiferaw et al., 2003; Xie et al.,
2008�.

After constructing and probing the linear stability of
regular Ca2+ orbits in a single cell, we investigated the be-
havior of a coupled cell network. A linear array of cells that
are coupled diffusively through the bulk cytosolic Ca2+ con-
centration exhibits alternans at a pacing frequency when a
single cell still oscillates with a period equal to the pacing
period. These spatial alternans hence derive from the cou-
pling, since decreasing the coupling strength promotes a lin-
early stable synchronous state where all cells follow the
same trajectories. We base our linear stability analysis of the
network state on work by Pecora and Carroll �1998�. All the
information about the topology and the kind of coupling en-
ters through altered coefficients in the single cell equation, so
that the whole linear stability analysis generalizes from iso-
lated cells to networks. We find a period-doubling bifurcation
of the network state that explains why the network shows
beat-to-beat variations in the intracellular Ca2+ concentra-
tion, while a single cell still oscillates regularly. The critical
value of the basic cycle length below which alternans exist
depends on the size of the network, so do the patterns that
emerge when the pacing frequency is increased. For a net-
work of 100 cells, we observe, e.g., almost regular spatial
alternans interspersed with groups of two cells that are syn-
chronized.

So far, we have referred to the Shiferaw–Karma and
PWL models as single cell descriptions. This is justified in
ventricular myocytes where the Ca2+ dynamics is known to
oscillate homogeneously in space so that a whole cell de-
scription in terms of ordinary differential equations holds
true. Hence, coupling these equations corresponds to inves-
tigating the dynamics of ventricular cardiac muscle tissue.
On the other hand, the Shiferaw–Karma and PWL models
can be interpreted as the dynamics at a single dyadic cleft.
Since the t-tubule system in ventricular myocytes guarantees
that L-type Ca2+ channels always juxtapose Ca2+ release
channels on the SR, coupling Eq. �1� then mimics the dy-
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namics of a single cell. Intracellular spatial alternans have
been observed experimentally �Cordeiro et al., 2007; Gaeta
et al., 2009� and investigated theoretically using networks of
Shiferaw–Karma models �with nearest-neighbor coupling in
cs and cj and the inclusion of a voltage dynamics using a
current balance equation� �Echebarria and Karma, 2002;
Shiferaw and Karma, 2006; Zhao, 2008; Dai and Schaeffer,
2010�. For atrial myocytes that lack t-tubules, a multiple
node view as adapted above fails due to the spatial hetero-
geneity of intracellular Ca2+ concentration profiles. Since
nonjunctional release sites in atrial myocytes are not exposed
to L-type Ca2+ currents, Eq. �1� only corresponds to the dy-
namics at junctional release sites, so that the coupled model
does not capture the morphology of an isolated atrial myo-
cyte either. Nevertheless, intracellular Ca2+ alternans have
been observed in atrial myocytes �Kockskämper and Blatter,
2002; Blatter et al., 2003�, and so the development of an
appropriate model is an open challenge. Adapting our present
framework to understand the emergence of beat-to-beat
variations in atrial myocytes is a natural next step.

The insight that whole heart arrhythmia strongly corre-
lates with cellular alternans has sparked the idea to build
cardiac models that incorporate all the dynamics from the
subcellular to the tissue level, especially in the light of pos-
sible therapies. This presents one of the greatest challenges
in the cardiac modeling community, and to date, most results
have been obtained for a specific dynamical level. For ex-
ample, a significant amount of work is dedicated to under-
stand a detailed single cell behavior, while at the tissue level,
these details are generally integrated out in favor of under-
standing larger scale phenomena. The reason for such a di-
vision lies in the fact that cardiac dynamics spans multiple
scales both in space and time, ranging from nanometer to
centimeter and from milliseconds to days. Possible candi-
dates to bridge this gap are homogenization techniques
�Higgins et al., 2007�, ideas from hierarchical dynamical sys-
tems �Thul and Falcke, 2007; Leonhardt et al., 2008�, or high
performance numerical simulations �Clayton et al., 2010�.

Advances in imaging techniques have revealed intracel-
lular heterogeneities. To study the impact of space dependent
changes in, e.g., Ca2+ pumps or L-type Ca2+ channels re-
quires a generalization of the framework presented here, es-
pecially with respect to the linear stability analysis. Further-
more, there is now strong evidence for the impact of
molecular fluctuations on cellular patterns. Some of the work
on cardiac alternans already explicitly represents the stochas-
tic behavior of Ca2+ release channels through Markov chain
models �Restrepo and Karma, 2009; Huertas et al., 2010�.
However, these studies rely heavily on numerical simula-
tions. To develop models that offer the same depths of math-
ematical analysis as in the present work, while accounting
for cellular fluctuations, would provide us with a framework
to study PWL random dynamical systems, while at the same
time shed more light on the emergence of Ca2+ alternans, and
hence contribute to the treatment of cardiac arrhythmia. We
are currently developing such ideas based around the use of
stochastic fire-diffuse-fire models �Coombes and Timofeeva,
2003�.
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APPENDIX A: SHIFERAW–KARMA MODEL

Here, we give some details of the original Shiferaw–
Karma model collected from Shiferaw et al. �2003�, �2005�
and Shiferaw and Karma �2006�. The function �=��c� arises
from the fast buffer approximation and takes the form

��c� =
1

1 +
BSRKSR

�c + KSR�2 +
BCdKCd

�c + KCd�2 +
BTKT

�c + KT�2

. �A1�

The load-release function Q=Q�cj�� is given by the PWL
function

Q�cj�� = 10−3�0, 0 � cj� � 50

cj� − 50, 50 � cj� � 115

ucj� + s , cj� � 115,
� �A2�

where u measures the steep nonlinear dependence of Ca2+

release on the SR Ca2+ concentration, and s is a constant that
is chosen such that Q is continuous. The current through the
NCX is

INaCa = ĪNaCa
�Nai

3Cao − �e−�Nao
3c̃s

�KmNa
3 + Nao

3��KmCa + Cao�
, �A3�

with

� =
e��

1 + ksate
��−1�� , �A4�

where �=FV /RT and c̃s=cs�10−3. The internal Na concen-
tration is set to

Nai�Tp� =
aN

1 + bN

Tp

, aN = 28, bN = 10. �A5�

For the current through the L-type Ca2+ channel, we here
only mention the single channel current, which is given by

iCaL = 4�īCaFPCa
cs exp�2�� − �oCao

exp�2�� − 1
. �A6�

Note that ICaL is negative and is built from iCaL using the
prescription in Shiferaw et al. �2003�. The Ca2+ uptake cur-
rent Iup= Iup�ci� is given by the Hill function

TABLE I. Physical constants and external concentrations in the Shiferaw–
Karma model.

Definition Value

T Temperature 308 K
F Faraday’s constant 96.4867 C/mmol
R Gas constant 8.314 J/K mol
Nao External sodium concentration 140 mM
Cao External calcium concentration 1.8 mM
vs /vi Subsarcolemmal/cell volume 0.1
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Iup =
vupci

2

cup
2 + ci

2 . �A7�

The clamped action potential follows the temporal shape

V�t� = �V+�t� , mTp � t � �m + x�Tp

Vmin, �m + x�Tp � t � �m + 1�Tp,
� �A8�

where

V+�t� = Vmin + �V
1 − � t − mTp

xTp
�2

, �A9�

and �V= �Vmax−Vmin�. Here, Vmin and Vmax denote the mini-
mal and maximal values of the action potential, respectively,
and the APD is given by

x�Tp� =
ax

ax + Tp
, ax = 2/3. �A10�

In Tables I–V, we list all the parameter values of the
Shiferaw–Karma model, even those that we have not dis-
cussed above, but which are essential for simulating the
model such as for the gating dynamics of the L-type Ca2+

channel.

APPENDIX B: PWL MODEL

Here, we give the details of the PWL model. Using the
same notation as in Appendix A, this is defined by the sys-
tem of Eq. �1� with ��cs� replaced by �s, ��ci� replaced by

�i, and Iup=vupci. We model the L-type Ca2+ current as
ICaL=��V−VL�iCaL with the threshold voltage VL=Vmax−1
and a constant conductance

iCaL = − īCaPCa
aCaLF�oCao

exp�2aCaL� − 1
, �B1�

where aCaL=VmaxF /RT. The current through the NCX is
given by INaCa=��V�−��V�cs, where

� = ĪNaCa
�qNai

3Cao

�KmNa
3 + Nao

3��KmCa + Cao�
, �B2�

� = ĪNaCa
�NaCaNao

3 � 10−3

�KmNa
3 + Nao

3��KmCa + Cao�
. �B3�

Here, we introduce the piecewise constant function

�NaCa = �0.45, V � VNaCa

4, V � VNaCa,
� �B4�

which switches at a threshold voltage of VNaCa=−50 mV.
The function �q is a quadratic fit to the function � in Eq.
�A4� and reads as

�q = 0.0501�2 + 0.3816� + 0.9182, �B5�

with � as in Appendix A. For the action potential, we expand
the square root dependence in Eq. �A9� for 0� t�xTp as

VK�t� =
1 − � t

xTp
�2

= �
m=0

�

am cos� m�

2xTp
t� . �B6�

Since the right-hand side is 4Tp periodic, the coefficients am

are determined by

TABLE II. Parameter values for the NaCa exchanger and the SR uptake in
the Shiferaw–Karma model with other values from Luo and Rudy �1994�.

Definition Value

cup Uptake threshold 0.5 �M
vup Uptake strength 270 �M /s

ĪNaCa Strength of the NaCa exchanger 105 �M /s
ksat Constant from the 1994 Luo–Rudy model 0.1
� Constant from the 1994 Luo–Rudy model 0.35
KmNa Constant from the 1994 Luo–Rudy model 87.5 mM
KmCa Constant from the 1994 Luo–Rudy model 1.38 mM
�s Constant from the 1994 Luo–Rudy model 1
�o Constant from the 1994 Luo–Rudy model 0.341

TABLE III. Parameter values for the L-type Ca2+ channel in the Shiferaw–
Karma model.

Definition Value

PCa Constant from the 1994 Luo–Rudy model 5.4�10−4 cm /s

īCa Flux constant 11 000 �mol /C cm

�f

Time constant for voltage-dependent
inactivation 30 ms

�fCa

Time constant for calcium dependent
inactivation 20 ms

c̃c Calcium inactivation threshold 0.5 �M

�L

Sensitivity parameter for calcium dependent
inactivation 1

TABLE IV. Parameter values for the SR release in the Shiferaw–Karma
model.

Definition Value

g Release current strength 3�104 sparks /�M
u Release slope 11.3 s−1

�r Average spark life time 20 ms
�a Relaxation time of cj� to cj 50 ms
�s Submembrane diffusion time constant 10 ms

TABLE V. Parameter values for buffering in the Shiferaw–Karma model.

Definition Value

BT Total concentration of troponin C 70 �mol / l cytosol

BSR

Total concentration of SR
binding sites 47 �mol / l cytosol

BCd

Total concentration of calmodulin
binding sites 24 �mol / l cytosol

KSR

Dissociation constant for SR
binding sites 0.6 �M

KCd

Dissociation constant for calmodulin
binding sites 7 �M

KT

Dissociation constant for troponin C
binding sites 0.6 �M
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am =
1

2xTp



−2Tp

2Tp

Vs�t�cos� m�

2xTp
t�dt , �B7�

where Vs is the symmetric extension of VK on �−2xTp ,
2xTp�, i.e.,

Vs = �VK�− 2xTp − t� , − 2xTp � t � − xTp � t

VK�t� , − xTp � t � xTp � t

VK�2xTp − t� , xTp � t � 2xTp � t .
� �B8�

Unless stated otherwise, we use the same parameter values as
for the Shiferaw–Karma model, while Table VI lists the new
and altered parameter values.
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�s Buffering constant for cs 0.5
�i Buffering constant for ci 0.01
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