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Abstract

Many tissue level models of neural networks are written in the language of nonlinear integro-differential

equations. Analytical solutions have only been obtained for the special case that the nonlinearity is a Heaviside

function. Thus the pursuit of even approximate solutions to such models is of interest to the broad mathemati-

cal neuroscience community. Here we develop one such scheme, for stationary and travelling wave solutions,

that can deal with a certain class of smoothed Heaviside functions. The distribution that smoothes the Heavi-

side is viewed as a fundamental object, and all expressions describing the scheme are constructed in terms of

integrals over this distribution. The comparison of our scheme and results from direct numerical simulations

is used to highlight the very good levels of approximation that can be achieved by iterating the process only a

small number of times.

1 Introduction

Neural field models have been the subject of much mathematical attention since their modern formulation

in the 1970s by Wilson and Cowan [1, 2] and Amari [3, 4]. These models typically take the form of integro-

differential equations and have been used to model the coarse-grained dynamics of large ensembles of neurons.

The continuum assumption seems highly appropriate when one acknowledges the large number of neurons

and synapses that reside in even a small piece of brain cortex. Such spatially extended models treat a density

of neurons at a point with inputs that arise from the weighted contribution of activity at other points in the

tissue. Because these interactions are mediated by long-range axonal fibres the resulting tissue-level model is

inherently non-local, with a one-dimensional prototypical model being

1
α
ut = −u+ψ, ψ(x, t) =

∫ ∞
−∞

dyw(x− y)f(u(y, t)− h). (1)

Here u = u(x, t) with x ∈ R and t ∈ R+ represents synaptic activity. The function f is often taken to be smooth

and monotonically increasing (f ′ > 0) with values between 0 and 1, representing the firing rate of the tissue

with a constant threshold h. The weight kernel w(x), representing anatomical connectivity, will be taken to be

symmetric w(x) = w(|x|) and continuous with
∫∞
−∞ dyw(y) finite. Finally the time-scale α > 0 sets the rate of

synaptic processing. For a review of the dynamics of (1) and other generalised neural field models we refer the

reader to [5]. Much of the progress in understanding existence and stability of spatially localised and travelling
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wave solutions to (1) has been made by working with a very specific choice of nonlinear firing rate function,

namely the Heaviside [4, 6]. Indeed results for smooth firing rates are few and far between [7, 8]. Here we

develop a novel approximation technique for treating sigmoidal firing rate shapes that exploits some of the

original formalism developed by Amari for the case of a Heaviside.

2 The Amari Heaviside formalism

Time-independent solutions of (1) satisfy ψ = u where

u(x) =
∫ ∞
−∞

dyw(x− y)f(u(y)− h). (2)

Amari made the pertinent observation that for a Heaviside function localised solutions of (2) can be explicitly

constructed. In the special case f(u) = Θ(u), with Θ(u) = 1 for u ≥ 0 and zero otherwise then a solution for

which R(u) = {u(x) > h} is a bounded, connected open interval defines a 1–bump. Such bumps have been

linked to mechanisms for short term memory (the temporary storage of information within the brain) in pre-

frontal cortex [9]. Introducing the two threshold crossings xi, i = 1,2, defined by u(xi) = h (and remembering

that w(x) = w(|x|), it is natural to look for symmetric 1–bump solutions with −x1 = ∆ = x2 with ∆ > 0 (with

the origin chosen at the bump center without loss of generality). In this case we define the bump width L as

L = 2∆. The solution can then be written in closed form parametrised by ∆ as

u(x) =
∫ ∆

−∆

dyw(y− x). (3)

The unknown ∆ is then determined in a self-consistent way by demanding that the solution cross threshold

at x1,2, namely u(x1) = h = u(x2) giving an implicit expression for L in the form h =
∫ L

0
dyw(y). Consider for

example the wizard-hat w(x) = (1− |x|)e−|x|, describing a model with short range excitation and long range

inhibition. A simple calculation gives

u(x) =


g(x+ ∆)− g(x−∆) x > ∆

g(∆− x) + g(x+ ∆) −∆ ≤ x ≤∆

g(∆− x)− g(−∆− x) x < −∆

, (4)

where g(x) = xe−x. The conditions u(±∆) = h leads to the equation Le−L = h. Hence, 1–bumps are only

possible if h < 1/e. The full branch of solutions for L = L(h) is shown in Fig. 1, together with the shape of a

typical 1–bump. Using an interface dynamics approach defined by the condition u(xi(t), t) = h, Amari could

show that it is the wider of the two solutions that is stable. The same result can also be recovered using an

Evans function approach [6].

3 Sigmoidal firing rates defined via a threshold distribution

In this section we exploit the fact that a sigmoid can be viewed as a smoothed Heaviside to develop the

Amari Heaviside formalism in a more general setting. From the fundamental theorem of calculus we have

that f(u) =
∫ u dvf ′(v). In this way we may write a sigmoidal function f in the form

f(u) =
∫ ∞
−∞

ρ(ξ)Θ(u− ξ)dξ, (5)
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Figure 1: Bump width L= 2∆ as a function of h, as determined by Le−L = h for a Heaviside firing rate function

and wizard hat kernel w(x) = (1− |x|)e−|x|. The inset shows a stable 1–bump (upper branch) at h = 0.1.

where ρ = f ′. In what follows we shall fix the distribution ρ to have compact support so that ρ(ξ) = 0 for

ξ 3 [0, τ ] for some τ > 0 and to be normalised such that
∫∞
−∞ dξρ(ξ) = 1. Hence, the firing rate takes the form

f(u) =


1 u ≥ τ∫ u
−∞ dξρ(ξ) 0 < u < τ

0 u ≤ 0

. (6)

The form of (6) is very natural in a neural context since many types of neurons do not fire at all below some

cut-off and fire at a maximum rate (set by the refractory period) for very strong stimulus. Moreover, as we

shall now show, functions of the form (6) are amenable to further mathematical analysis. Note that in the limit

τ → 0 (6) approaches a Heaviside function. A smooth C∞(R) firing rate can be generated using the choice

ρ(ξ) =

A exp(r/(ξ(ξ − τ))) 0 < ξ < τ

0 otherwise
, (7)

where r > 0 and A is set by normalisation. A piece-wise linear model is obtained for the choice

ρ(ξ) = Θ(ξ)Θ(τ − ξ)/τ. (8)

Examples of firing rate functions generated from (7) and (8) are shown in Fig. 2.

4 1–bump solutions

To illustrate how to analyse models with firing rate functions (6) we first show how to generalise the analysis

of section 2. The time-independent solution (2) becomes

u(x) =
∫ τ

0

dξρ(ξ)
∫ ∞
−∞

dyw(x− y)Θ(u(y)− h− ξ). (9)

The formula (9) defines a C1 function of x provided the connectivity function w is continuous. For a 1–bump

we introduce two interface functions xi(ξ), i = 1,2, defined by

u(xi(ξ)) = h+ ξ, (10)
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Figure 2: Firing rate functions as determined by equation (6) with τ = 0.1. The solid (red) line is calculated

using (7) with r = 0.01. Note that a Heaviside function Θ(u− τ/2) is recovered in the limit r→∞. The dashed

(green) line is calculated using (8), generating a piece-wise linear function, and is also recovered in the limit

r→ 0 from (7).

and look for symmetric 1–bump solutions with −x1(ξ) = ∆(ξ) = x2(ξ) with ∆(ξ) > 0 (with the origin chosen

at the bump center without loss of generality). In this case we define the bump width L as L = 2∆(0). The

symmetric 1–bump solution is expressed in terms of ∆(ξ) as

u(x) =
∫ τ

0

dξρ(ξ)
∫ ∆(ξ)

−∆(ξ)

dyw(y− x). (11)

The implicit function theorem applied to the equation u(∆(ξ)) = ξ + h shows that ∆ : [0, τ ]→ R is one-to-one

and C1 in an open set about ξ = 0 with u(∆0) = h and u′(∆0) 6= 0. In this case the threshold crossing condition

(10) becomes

h+ ξ =
∫ ∆c

∆0

dz
ρ(∆−1(z))

∆′(∆−1(z))

∫ z

−z
dyw(y−∆(ξ)) ≡ λ(∆(ξ)), (12)

where ∆0 = ∆(0) and ∆c = ∆(τ). Note that by differentiation of (12) we may obtain an integral equation for

∆′ in the form
1

∆′
=
∫ ∆c

∆0

dz
ρ(∆−1(z))

∆′(∆−1(z))
D(z,∆), D(z,∆) = w(z + ∆)−w(z −∆). (13)

The hard problem is to now solve (12) or (13) for ∆ = ∆(ξ). In the limit τ → 0 where ρ(ξ)→ δ(ξ) this solution

should recover the Amari Heaviside result. Hence, it is natural to develop an analysis where as a first approxi-

mation we try solutions that are valid when ρ(ξ) = δ(ξ). From (13) we see that in this case ∆(ξ) is parametrised

in terms of the pair of unknown half-widths (∆0,∆c) and satisfies:

∆′ =
1

D(∆0,∆)
, ∆(0) = ∆0, ∆(τ) = ∆c. (14)

The next order of approximation is then obtained by substitution of (14) into (12) with τ 6= 0. Indeed successive

approximations for Λ = 1/∆′ can be generated by repeating this process so that Λn =H(Λn−1) where

H(Λ) =
∫ ∆c

∆0

dzρ(∆−1(z))Λ(∆−1(z))D(z,∆), (15)

and (Λ,∆) = (Λ(ξ),∆(ξ)) with Λ0(ξ) =D(∆0,∆(ξ)). Using (12) ∆(ξ) can be reconstructed as ∆(ξ) = λ−1(h+ ξ),

assuming this inverse exists. Note that λ (and hence λ−1) is parametrised in terms of the pair (∆0,∆c) and all

4



0

2

4

6

0 0.1 0.2 0.3 0.4

L

h

Figure 3: Bump width (first order approximation) as a function of threshold for a piecewise linear firing rate

shown with dashed (green) line . (Blue) stars denote the results of numerical simulations of (1). Here τ = 0.1.

The outermost (red) solid curve shows the Amari (Heaviside) result, recovered for τ = 0.

that remains is to determine these self-consistently. One equation for the pair (∆0,∆c) may be obtained from

(12) by choosing ξ = 0 and another by choosing ξ = τ . The simultaneous solution of this pair then completes

the solution. For example at a first order of approximation we would generate the pair of equations

h =
∫ ∆0

∆c

Ψ(z,∆0)F (z,∆0)dz, (16)

h+ τ =
∫ ∆0

∆c

Ψ(z,∆0)F (z,∆c)dz, (17)

where

F (z,x) =
∫ x+z

x−z
dyw(y), (18)

and Ψ(z,x) = ρ(λ(z)− h)[w(x− z)−w(x+ z)].

4.1 Example

As an explicit example for which we may perform the integrals in (16) and (17) by hand consider the choice

(8), defining a piece-wise linear firing rate function, and the wizard-hat function used in section 2. Introducing

the function:

F(x, y) =
1
τ

∫ x

[w(∆0 − z)−w(∆0 + z)]F (z, y)dz, (19)

means that we may write (16) and (17) in the form

h = F(∆0,∆0)−F(∆c,∆0), h+ τ = F(∆0,∆c)−F(∆c,∆c). (20)

A simple calculation gives F (z,x) = (z − x)e−|x−z| + (z + x)e−(x+z) for z,x > 0, from which we may calculate

(19) as listed in Appendix A. The nonlinear algebraic equations (20) may then be solved numerically for the

pair (∆0,∆c). The solution branch for L as a function of the threshold is shown in Fig. 3. Comparison with

direct simulations of the original neural field model (1) show excellent agreement. The numerical scheme used

for this is described in Appendix B. From (11) (at a first order of approximation) we may write

u(x) =
1
τ

∫ ∆c

∆0

[w(∆0 + z)−w(∆0 − z)]q(z,x)dz, (21)
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Figure 4: Bump height as a function of threshold for a piecewise linear firing rate, as for Fig. 3. Squares denote

the results of numerical simulations of (1). The solid (red) line denotes the first order approximation, and the

dashed (green) line shows the third order approximation.

where

q(z,x) =


g(x+ z)− g(x− z) x > z

g(z − x) + g(x+ z) −z ≤ x ≤ z

g(z − x)− g(−z − x) x < −z

, (22)

and g(x) = xe−x. To compare how well this solution approximates the true solution we compare the amplitude

umax = u(0) with that obtained numerically. From (21) we have that umax = G(∆c)−G(∆0), with

G(x) =
2
τ

∫ x

[w(∆0 + z)−w(∆0 − z)]g(z)dz

=
e−∆0

τ

{
(1−∆0)x2 +

2x3

3
+ e−2x

[
1
4
− ∆0

2
− x(∆0 + x)

]}
. (23)

A plot of umax is shown in Fig. 4. Here we see that even at first order the approximation quantitatively captures

the essential properties of the full solution, whilst going to third order there is even better agreement. The

question naturally arises as to how to the performance of the algorithm changes with increasing τ . In Fig. 5 we

show that the first order approximation can be relatively poor with increasing τ . However, at the third order

of approximation the scheme produces excellent agreement with direct numerical simulations for all values of

τ .

5 A study of periodically modulated spatial kernels

In some brain regions, and in particular the prefrontal cortex, labelling studies have uncovered a periodic

modulation of anatomical connection strengths [10]. Thus it is worthwhile to focus some attention on models

which incorporate such behaviour. Following a recent study by Elvin et al. [11] we work with the explicit

choice

w(x) = e−b|x|(b sin |x|+ cosx), (24)

consistent with the conditions imposed in section 1. As well as the bump solutions described in sections 2 and

3 the model (1) can also support travelling wave solutions. Introducing a travelling wave coordinate η = x− ct
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Figure 5: Bump width as a function of τ for a piecewise linear firing rate, as for Fig. 3 with h= 0.05. (Blue) stars

denote the results of numerical simulations of (1). The solid (red) line denotes the first order approximation,

and the dashed (green) line shows the third order approximation.

these are defined by bounded solutions of the integro-differential ordinary differential equation

− c
α
uη = −u+ψ, ψ(η) =

∫ ∞
−∞

dyw(y)f(u(η− y)− h). (25)

As a simple example consider a Heaviside firing rate and a travelling front with u ≥ h for η ≤ 0 and u < h for

η > 0. In this case we may integrate (25) to obtain

u(η) = eαη/c
[
h− α

c

∫ η

0

dη′ψ(η′)e−αη
′/c

]
, ψ(η) =

∫ ∞
η

dyw(y). (26)

For the solution to be bounded we require the quantity in square brackets to vanish as η → ∞, giving an

implicit expression for the wave-speed in the form

h =
α

c

∫ ∞
0

dη′ψ(η′)e−αη
′/c = w̃(0)− w̃(α/c), (27)

where w̃ is the Laplace transform of w:

w̃(λ) =
∫ ∞

0

dyw(y)e−λy =
2b+ λ

(b+ λ)2 + 1
. (28)

For a sigmoidal function defined by (6) the above argument may be extended along the lines of section 4 to

give the more general result

ψ(η) =
∫ ∆c

0

dz
ρ(∆−1(z))

∆′(∆−1(z))

∫ ∞
η

dyw(y− z), (29)

with

h+ ξ = eα∆(ξ)/c

[
h− α

c

∫ ∆(ξ)

0

dη′ψ(η′)e−αη
′/c

]
≡ φ(∆(ξ)). (30)

Here without loss of generality we have fixed ∆0 = 0 (exploiting translation invariance). Note by differentia-

tion of (30) we also have that
1

∆′
=
α

c
[φ(∆)−ψ(∆)]. (31)

The solution for ∆(ξ) is parametrised in terms of the pair (c,∆c), which we may solve for using the analogous

approximation scheme to that described in section 4. In this case successive approximations for Λ = 1/∆′ are
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Figure 6: Wave front speed as a function of b with h = 0.93 for the modulated model with a piece-wise linear

firing rate function and τ = 0.1 (first order approximation). Note that stationary fronts occur at around b= 0.82

and b = 1.22.

generated by Λn =H(Λn−1) where

H(Λ) =
α

c

[
φ(∆)−

∫ ∆c

0

dzρ(∆−1(z))Λ(∆−1(z))D(z,∆)

]
, (32)

and

D(z,∆) =
∫ ∞

∆

dyw(y− z), Λ0(ξ) =
α

c
[h+ ξ −D(0,∆(ξ))] . (33)

The pair of equations that define (c,∆c) are obtained from (26) with ψ given by (29) by demanding bounded-

ness of solutions and setting ξ = τ in (30):

h =
∫ ∆c

0

dz
ρ(∆−1(z))

∆′(∆−1(z))
{w̃(z; 0)− w̃(z;α/c)} , (34)

h+ τ =
∫ ∆c

0

dz
ρ(∆−1(z))

∆′(∆−1(z))
{w̃(z −∆c; 0)− w̃(z −∆c;α/c)} , (35)

where w̃(z;λ) =
∫∞

0
dyw(y − z)e−λy . Note that for τ = 0 this pair of equations recovers the result (27) as

expected.

In Fig. 6 we plot the speed of a front obtained with the scheme above at a first order of approximation.

Once again we find excellent agreement with results obtained from direct numerical simulations of the full

model (not shown). It is also possible to revisit the study of bumps described in section 4 for the spatial kernel

defined by (24). Without listing the necessary integrations to fully describe these calculations we simply show

results of a third order approximation in Fig. 7. As originally observed in [11] (for a model with a smooth

firing rate and results obtained with a mixture of analysis and numerics) we also see the presence of a gap

where (stable) 1–bump solutions do not exist. Interestingly this gap is defined by values of b which coincide

with stationary front solutions (see Fig. 6). Hence homoclinic solutions to the fixed point at the origin (1–

bumps) can be destroyed in favour of heteroclinic connections (stationary fronts connecting u = 0 and u = 1)

in a co-dimension two bifurcation.

8



1

1.6

2.2

0 0.3 0.6 0.9 1.2b

u
max

Figure 7: Solution curves (first order approximation) of 1–bump orbits as a function of b with parameters as in

Fig. 6. For these parameter values there is a clear gap, with borders at b ∼ 0.82 and b ∼ 1.22, where no stable

1–bump solutions exist.

6 Discussion

In this paper we have shown how to approximate stationary and travelling wave solutions of nonlocal (integro-

differential) neural field models that have a firing rate which is a smoothed version of a Heaviside. In particular

we have focused on the case that this function is zero below one cut-off and equal to one above another. The

connection between these two states can have arbitrary shape. Although we have not been able to deal with

more general firing rate functions we have made a significant step away from the oft studied case of a pure

Heaviside. The comparison with direct numerical simulations of the full model has been used to highlight the

effectiveness of our scheme and that relatively few iterations (see Fig. 5) are needed to achieve good agree-

ment. However, we have neither presented error estimates for our scheme nor proved its convergence, though

we expect that the latter can be established using an appropriate (Banach or Schauder) fixed point theorem.

Since the stability of stationary and travelling solutions can be determined for a Heaviside firing rate using

an Evans function [6], it is natural to believe that this can be generalised to cover the firing rates considered

here. However, in this case it would be a major challenge to first prove the existence of an Evans function

before showing that one could construct a sequence of functions that would converge to it. These remain as

interesting open problems for the mathematical neuroscience community. One important application of this

work would be in the construction of so-called snaking diagrams for multi-bump solutions, as seen in [12]

for a model with a sigmoidal firing rate function and wizard-hat connectivity. In this case we might hope to

parallel the insights about pattern forming mechanisms obtained by Chapman and Kozyreff [13], who used

exponential asymptotics to construct snakes-and-ladders bifurcation curves for the Swift-Hohenberg equation.
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Appendix A

Calculation of (19) in section 4.1 gives

F(x, y) =



1
τ

e−(∆0+y)

2

[
4x
(
x2

3 − y(∆0 − 1)
)

+ e2x

[
∆0−y

2

+(x− y)(x−∆0)
]

−e−2x

[
∆0−y

2 + (x+ y)(x+ ∆0)
]]

x ≤ y

1
τ

e−(∆0+y)

2

[
x2
(

2x
3 − (∆0 − 1)

) (
1 + e2y

)
+xy

(
x− 2 (∆0 − 1)

)(
1− e2y

)
− e−2x

[
∆0−y

2

(
1 + e2y

)
+(

x
(
1 + e2y

)
+ y

(
1− e2y

))
(x+ ∆0)

]]
x > y.

(36)

Appendix B

For the case of the wizard-hat connectivity function given by w(x) = (1 − |x|)e−|x| the integro-differential

model (1) can be transformed to a partial differential equation [5, 14] given by

(1− ∂xx)2 (
α−1ut + u

)
= −4 [f(u)]xx . (37)

This form is convenient for solution with a wide variety of numerical techniques. We adopt a simple finite

difference approach to approximate the Laplacian ∂xx (and apply the inverse matrix approximation of (1−
∂xx)2 to both sides of (37)) and work on a finite domain of length 60 with 4000 mesh points. The resulting set

of ordinary differential equations is then solved in Matlab using ode45.
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