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Abstract. In this article we consider the a posteriori error estimation and adaptive mesh refine-
ment of discontinuous Galerkin finite element approximations of the bifurcation problem associated
with the steady incompressible Navier–Stokes equations. Particular attention is given to the reliable
error estimation of the critical Reynolds number at which a steady pitchfork or Hopf bifurcation oc-
curs when the underlying physical system possesses reflectional or Z2 symmetry. Here, computable
a posteriori error bounds are derived based on employing the generalization of the standard Dual–
Weighted–Residual approach, originally developed for the estimation of target functionals of the
solution, to bifurcation problems. Numerical experiments highlighting the practical performance of
the proposed a posteriori error indicator on adaptively refined computational meshes are presented.
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1. Introduction. Due to the highly nonlinear governing equations and com-
plex geometries involved, understanding fluid flow remains one of the fundamental
engineering challenges today. Often it is impossible to obtain analytical solutions to
problems and numerical methods must instead be exploited. Broadly speaking, there
are two numerical approaches to understanding the Navier-Stokes equations: the first
involves direct ‘simulation’ of the time dependent problem, while the second, less
commonly used approach focuses on applying nonlinear analysis to compute paths of
steady solutions using numerical continuation methods and to determine their stabil-
ity based on eigenvalue information. In this article we focus on the latter technique,
specifically where we seek to understand how the solution structure changes as one
parameter of interest is varied; in the case of the incompressible Navier-Stokes equa-
tions this parameter is typically the Reynolds number. We are particularly interested
in the location of critical parameters at which a bifurcation first occurs; a review of
techniques for bifurcation detection can be found in Cliffe et al. [16], for example.

Over the past few decades, tremendous progress has been made in the area of
a posteriori error estimation and adaptive finite element approximation of partial
differential equations; for a review of some of the main developments in the subject we
refer to the recent monographs [1, 40, 44], and the articles [22, 10]. Despite a number
of significant advances in the field, much of the research to date has focused on source
problems. In the context of the finite element approximation of second–order self-
adjoint elliptic eigenvalue problems we mention the recent articles [20, 21, 33, 37]; for
related work, based on considering the eigenvalue problem as a parameter–dependent
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nonlinear equation, see Verfürth [43, 44], for example. For earlier references devoted
to the derivation of a posteriori error bounds for the finite element approximation
of symmetric eigenvalue problems, we refer to [7, 8], for example. Extensions to the
finite element approximation of both the eigenvalue problem for the Stokes equations
and linear elasticity may be found in the recent articles [36] and [45], respectively.
In addition, in [24], the convergence of an adaptive finite element method for the
computation of eigenvalues and eigenfunctions of second–order self-adjoint elliptic
PDEs is studied. Finally, we mention our recent paper [14], which is concerned
with estimating the computational error in critical eigenvalues stemming from the
hydrodynamic stability problem. In [14] the dual weighted residual (DWR) error
estimation technique is exploited, cf. [9, 29], for example, which is directed at only
estimating the error in the given eigenvalue of interest; here the errors stemming from
both the approximation of the steady Navier-Stokes equations, as well as those arising
from the approximation of the underlying eigenvalue problem itself are included in
the resulting error indicators. The natural extension of the DWR a posteriori error
estimation technique to accurately compute critical parameter values in bifurcation
problems has been recently undertaken in [15] for the Bratu problem.

In this article, we consider the generalization of the ideas developed in [15] to
bifurcation problems arising in incompressible fluid problems in the case when the
underlying problem possesses reflectional, or more precisely, Z2 symmetry. The de-
tection of bifurcation points in this setting is now well understood, for example, see
Golubitsky and Schaeffer [25]. For the purposes of this article, we assume that a sym-
metric steady state solution to the incompressible Navier-Stokes equations undergoes
either a steady pitchfork or (unsteady) Hopf bifurcation at the critical value of the
Reynolds number Re. Estimation of the critical Re can be undertaken by discretizing
a suitable extended system of partial differential equations; see Brezzi et al. [11] and
Werner and Spence [47] for steady bifurcations and Jepson [31] and Griewank and
Reddien [27] for Hopf bifurcations. For discretization purposes we exploit the interior
penalty discontinuous Galerkin (DG) method [5, 19, 18], primarily due to the benefits
in mesh adaptivity it affords us. The derivation of a computable error estimator for
the critical parameter of interest, namely Re, based on exploiting the DWR a poste-
riori error estimation technique is undertaken and implemented within an adaptive
finite element algorithm. The application of this approach to both steady pitchfork
and Hopf bifurcations clearly highlight the numerical performance of the error esti-
mation techniques developed in this article. To the best of our knowledge, our article
represents the first attempt to derive a posteriori error bounds on critical parameter
values for the hydrodynamic stability problem in the Z2 setting; coupling this with
the use of DG methods makes this work extremely novel.

This article is structured as follows. In the next section we discuss the general
approach adopted for detecting the location at which a bifurcation may occur from
the steady state solution of an abstract time dependent problem; we then show how
we can utilize any symmetry in the underlying geometry of the problem to reduce
the overall computational complexity. Assuming a finite element type discretization
of the underlying bifurcation problem, we then proceed in Section 3 to describe how
the DWR a posteriori error estimation technique can be exploited to approximate
the error between the true critical parameter and the computed one. A detailed dis-
cussion concerning the reduction of the computational complexity of the discretized
bifurcation problem and the associated (discretized) dual problem in the presence of
Z2 symmetry then follows in Section 4. We then turn our attention to the specific
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problem of hydrodynamic stability in geometries with Z2 symmetry; this includes
the formulation of the DG discretization of the incompressible Navier-Stokes equa-
tions and their appropriate linearization. In Section 7 we investigate the practical
performance of the proposed a posteriori error estimator on sequences of adaptively
generated meshed. In particular, the quality of the (approximate) error representation
and (approximate) a posteriori bound are studied through two numerical examples.
Finally, we summarize the work presented in this article and draw some conclusions
in Section 8.

2. Detecting steady and Hopf bifurcation points. Suppose we have a non-
linear, time dependent problem of the form

∂u

∂t
+ F (u, λ) = 0, (2.1)

where F is a map from V ×R → V , for some Banach space V , with norm ‖ · ‖. Here,
λ is some distinguished parameter, e.g., the flow rate or Reynolds number, and u is
a state variable, e.g., the temperature or velocity field. Our goal is to investigate
the linear stability of steady state solutions of (2.1), or more specifically to locate
the critical parameter value at which solutions lose stability and bifurcations occur.
Before we proceed we make the assumption that F is smooth, that is, F is a Cp

mapping with p ≥ 3. We denote the Fréchet derivative of F with respect to u at a
fixed point (w,χ) ∈ V × R by F ′

u(w,χ; ·) and similarly the derivative with respect
to λ by F ′

λ(w,χ). Here and throughout this article, we use the convention that in
semi-linear forms such as F ′

u(·, ·; ·) the form is linear with respect to all arguments to
the right of the semicolon. We will assume that F ′

u(u, λ; ·) : V → V is Fredholm of
index 0 for all (u, λ) ∈ V × R. For convenience, at a given point (u0, λ0), we define

F 0 := F (u0, λ0), F 0
u (·) := F ′(u0, λ0; ·) and F 0

λ := F ′
λ(u

0, λ0).

Higher-order Fréchet derivatives are expressed in much the same way; for example,
the Fréchet derivative of F ′

u(w,χ, ·) with respect to u at a fixed point v is denoted by
F ′′
uu(w,χ; ·, v) and similarly, at a given point (u0, φ0, λ0), we define

F 0
uuφ

0(·) := F ′′
uu(u

0, λ0; ·, φ0) and F 0
uλφ

0 := F ′′
uλ(u

0, λ0;φ0).

We investigate the linear stability of steady state solutions u0 at specific parameter
values λ0, found by solving the steady version of (2.1)

F 0 = 0. (2.2)

Furthermore, to consider the growth of small perturbations away from u0, we assume
that the solution is of the form u = u0 + φe−µt. Thereby, after linearization, from
(2.1) we deduce the following eigenvalue problem:

F 0
u (φ) = µφ. (2.3)

The nature of the eigenvalues of (2.3) determine the stability of the steady state
solution u0. A change in sign of the real part of any of the eigenvalues from positive
to negative indicates a loss of stability; such a set of eigenvalues are referred to as
being the most dangerous ones. If a single real–valued most dangerous eigenvalue
exists, then a steady bifurcation occurs; on the other hand, the presence of a pair of
complex conjugate most dangerous eigenvalues indicates a Hopf bifurcation, in which
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case a time dependent solution will exist. In [14] we considered the application of
the Dual Weighted Residual (DWR) a posteriori estimation technique to estimate the
error in the computed eigenvalue µ for a series of parameter values λ0. In contrast,
in this article we are now concerned with accurately locating the critical parameter
value λ0 at which a bifurcation first occurs. To this end, for a steady bifurcation we
recast equations (2.2)–(2.3) in the following extended system form, where we have
dropped the superscript “0” for notational simplicity: find uS := (u, φ, λ) such that

TS(uS) ≡





F (u, λ)
F ′
u(u, λ;φ)
〈φ, g〉 − 1



 = 0, (2.4)

where 〈·, ·〉 denotes the duality pairing between the spaces V and V ′, V ′ being the
dual space of V , and g ∈ V ′ is some suitable functional satisfying 〈φ, g〉 6= 0. The
equation 〈φ, g〉 − 1 = 0 acts to normalise the nullfunction φ, thus ensuring that, if a
solution to (2.4) exists at some λ, the solution is unique.

For a Hopf bifurcation we must consider a larger extended system due to the
eigenfunction having both a real and complex part; at the critical bifurcation point
we make the decomposition φ = φ + ψi and let µ = µi, in which case we seek
uH := (u, φ, ψ, λ, µ) such that

TH(uH) ≡













F (u, λ)
F ′
u(u, λ;φ) + µψ
F ′
u(u, λ;ψ) − µφ
〈φ, g〉 − 1
〈ψ, g〉













= 0, (2.5)

where g ∈ V ′ is a suitable functional satisfying 〈φ, g〉 6= 0, in which case a ψ satisfying
〈ψ, g〉 = 0 does exist, see [27].

Remark 2.1. We remark that (2.5) will also find a steady bifurcation point, so
we must assume that we are looking for a Hopf bifurcation. Werner and Janovsky
[46] have considered the alternative extended system: find uW := (u, φ, λ, µ) such that

TW (uW ) ≡









F (u, λ)
F ′
u(u, λ;F

′
u(u, λ;φ)) + µφ
〈g, φ〉

〈g, F ′
u(u, λ;φ)〉 − 1









= 0, (2.6)

for suitable g, to locate Hopf bifurcation points. The last equation of (2.6) ensures
the solution cannot be a fold point or steady bifurcation. We choose not to exploit
this approach, since the term F ′

u(u, λ;F
′
u(u, λ;φ)) will lead to a loss of sparsity in

the underlying linear system resulting from the linearization of the discretization of
(2.6).

Before we embark on the discussion concerning the detection of steady and Hopf
bifurcations in the presence of Z2 symmetry, we state the following lemma, which will
prove useful.

Lemma 2.2 (‘ABCD’ Lemma). Let V be a Banach Space and consider the linear
operator M : V × R → V × R of the form

M :=

(

A b
〈·, c〉 d

)

, (2.7)

where A : V → V , b ∈ V \{0}, c ∈ V ′\{0}, d ∈ R. Then
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1. If A is an isomorphism on V , then M is an isomorphism on V × R if and
only if d− 〈A−1b, c〉 6= 0.

2. If dimker(A) = codimRange(A) = 1, then M is an isomorphism if and only
if
(a) 〈b, ψ〉 6= 0 ∀ψ ∈ ker(A′)\{0},
(b) 〈φ, c〉 6= 0 ∀φ ∈ ker(A)\{0}.

3. If dimker(A) ≥ 2, then M is singular.
Proof. See Keller [32].

2.1. Bifurcation in the presence of Z2 symmetry. In this section we discuss
the computation of both steady pitchfork and Hopf bifurcations in the case when the
underlying problem possesses (reflectional) Z2 symmetry. The importance of symme-
try in bifurcation problems is well known and many of the key concepts, including
the connection with group representation theory, may be found in the books by Van-
derbauwhede [42], Golubitsky and Schaeffer [25], and Golubitsky et al. [26]. The
essential idea is that under the action of a group and for an appropriately chosen
basis, the Jacobian of a nonlinear problem ‘block-diagonalizes’, which in turn leads to
significant computational savings. With this in mind, we recall that Z2 = {I, s} is the
simplest Lie-group, where I denotes the group identity operator and s is a reflection,
satisfying s2 = I.

In this section we again consider the steady variant of the nonlinear problem (2.1):
find u such that

F (u, λ) = 0,

where additionally we assume that F is Z2 equivariant; cf. below.
Definition 2.3 (Equivariance). Let ργ be a representation of the action γ ∈ Z2

onto the space V , then the nonlinear operator F (·, ·) : V × R → V is Z2 equivariant
if, for all γ ∈ Z2 and u ∈ V ,

ργF (u, λ) = F (ργu, λ). (2.8)

We define the symmetric subspace V s of V by

V s := {v ∈ V : ρsv = v},

where ρs is the representation of the reflection s ∈ Z2. Analogously, we introduce the
antisymmetric subspace V a of V by

V a := {v ∈ V : ρsv = −v}.

With this notation, we observe that V may be written as a direct sum of the symmetric
and antisymmetric subspaces V s and V a, respectively; i.e., V = V s ⊕ V a.

The equivariance condition (2.8) implies that, if u is a solution of F (u, λ) = 0,
then so is ργu for all γ ∈ Z2. Moreover, taking the Fréchet derivative of (2.8) with
respect to u gives

ργF
′
u(u, λ;φ) = F ′

u(ργu, λ; ργφ) ∀φ ∈ V.

In particular, if u ∈ V s, then ργu = u for all γ ∈ Z2; consequently,

ργF
′
u(u, λ;φ) = F ′

u(u, λ; ργφ) ∀φ ∈ V.
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Thereby, in the case when u ∈ V s, the linearized operator F ′
u(u, λ; ·) is also Z2

equivariant.
The key observation essential for reducing the complexity of the underlying bi-

furcation problem is the following: given a Z2 equivariant linear operator A : V → V ,
we note that Vm, m = s, a, are invariant subspaces of A, i.e.,

A : V m → V m,

m = s, a, respectively; cf. Aston [6]. Thereby, for u ∈ V s, the Jacobian operator
F ′
u(u, λ; ·) has a diagonal block structure; more precisely, the following result holds.

Lemma 2.4. Suppose u ∈ V s, then µ is an eigenvalue of

F ′
u(u, λ;φ) = µφ, φ ∈ V,

if and only if µ is also an eigenvalue of

F ′
u(u, λ;φ) = µφ, φ ∈ V m,

where m = s or m = a.
Hence, we can locate critical parameter values at which symmetric steady state

solutions u ∈ V s lose stability, by solving the following problems for m = s, a. In the
case of a steady bifurcation, find uS = (u, φ, λ) ∈ V s × V m × R such that

TS(uS) ≡





F (u, λ)
F ′
u(u, λ;φ)
〈φ, g〉 − 1



 = 0, (2.9)

where g ∈ (V m)′ is some suitable functional satisfying 〈φ, g〉 6= 0. The case of a
symmetry breaking bifurcation arises when m = a. In addition, we assume that we
have a pitchfork bifurcation, in which case the following condition also holds

〈F ′′
uλ(u, λ;φ) + F ′′

uu(u, λ;w, φ), ̺〉 6= 0, (2.10)

where ̺ ∈ ker((F ′
u(u, λ, ·))

′) and w ∈ V s solves F ′
u(u, λ;w) + F ′

λ(u, λ) = 0.
In the case of a Hopf bifurcation, we seek uH = (u, φ, ψ, λ, µ) ∈ V s×V m×Vm×

R × R such that

TH(uH) ≡













F (u, λ)
F ′
u(u, λ;φ) + µψ
F ′
u(u, λ;ψ) − µφ
〈φ, g〉 − 1
〈ψ, g〉













= 0, (2.11)

for suitable g ∈ (V m)′, where m = s, a. For a Hopf bifurcation to occur, we assume
that the following two conditions are also satisfied:

1. F ′
u(u, λ; ·) has two algebraically simple, purely imaginary eigenvalues ±iω0,
ω0 6= 0, and no eigenvalues of the form ±inω0, n = 2, 3, . . ..

2. The eigenvalues ±iω0 cross the imaginary axis with non-zero speed as λ varies.
When m = s, the Hopf bifurcation gives rise to periodic solutions that are symmetric
with respect to the reflection. When m = a the periodic solutions have a spatio-
temporal symmetry in which a shift by half a period corresponds to a reflection.

In summary, the key observation is that the original problem can be divided up
into a series of smaller problems with computationally reduced complexity. We will
assume from now on the case of a symmetry breaking bifurcation and hence solve
either (2.9) or (2.11) with m = a, cf. Section 7.
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3. A posteriori error estimation. In this section we develop a general theo-
retical framework for the derivation of computable a posteriori bounds for the error
in the computed bifurcation point when the extended systems (2.9) and (2.11) are
numerically approximated by a general Galerkin finite element method. To this end,
we exploit the duality-based a posteriori error estimation technique developed by C.
Johnson and R. Rannacher and their collaborators. For a detailed discussion, we refer
to the series of articles [10, 30, 22, 34].

We begin by first introducing a suitable finite element approximation of the bi-
furcation problems (2.9) and (2.11). To this end, we consider a sequence of symmetric
finite element spaces V sh,p and antisymmetric finite elements spaces V ah,p consisting of
piecewise polynomial functions of degree p on a partition Th of granularity h.

In the case of a steady bifurcation, we find the triple uS,h = (uh, φh, λh) ∈
VS,h,p := V sh,p × V ah,p × R such that

NS(uS,h;vh) := N̂ (uh, λh; vh) + N̂ ′
u(uh, λh;φh, ϕh)

+ χh((g, φh) − 1) = 0 ∀vh ∈ VS,h,p, (3.1)

where vh = (vh, ϕh, χh), (·, ·) denotes the standard L2–inner product, N̂ (·, ·; ·) is
the semi-linear form associated with the discretization of the underlying steady state
partial differential equation (2.2) and N̂ ′

u(·, ·; ·, ·) is the Jacobian of N̂ (·, ·; ·) with
respect to u and thus represents the discretization of F ′

u(·, ·; ·). Further, we shall
assume that (uh, φh, λh) also satisfies the discrete analogue of the conditions of a
pitchfork bifurcation (2.10), that is,

N̂ ′′
uλ(uh, λh;φh, ̺h) + N̂ ′′

uu(uh, λh;wh, φh, ̺h) = 0, (3.2)

where ̺h ∈ ker(N̂ ′
u(uh, λh; vh, ·)) ∀vh and wh ∈ V sh,p is the solution to

N̂ ′
u(uh, λh;wh, ϕh) + N̂ ′

λ(uh, λh;ϕh) = 0, ∀ϕh ∈ V ah,p.

Similarly, for the Hopf bifurcation we seek to find uH,h = (uh, φh, ψh, λh, µh) ∈
VH,h,p := V sh,p × V ah,p × V ah,p × R × R such that

NH(uH,h,vh) := N̂ (uh, λh; vh) + N̂ ′
u(uh, λh;φh, ϕh) + µh(ψh, ϕh)

+ N̂ ′
u(uh, λh;ψh, ϑh) − µh(φh, ϑh)

+ χh((g, φh) − 1) + ςh(g, ψh) = 0 ∀vh ∈ VH,h,p, (3.3)

where vh = (vh, ϕh, ϑh, χh, ςh).

For the proceeding error analysis we make the assumption that both (3.1) and
(3.3) are consistent, that is, for the true solutions uS and uH of (2.9) and (2.11),
respectively,

NS(uS ,vh) = 0 ∀vh ∈ VS,h,p (3.4)

and

NH(uH ,vh) = 0 ∀v ∈ VH,h,p. (3.5)
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3.1. DWR approach for functionals. For a linear target functional of prac-
tical interest J(·), we briefly outline the key steps involved in estimating the approx-
imation error J(u) − J(uh) employing the DWR technique. We write M∗(·, ·; ·, ·) to
denote the mean value linearization of N∗(·; ·), where ∗ = S,H , respectively, defined
by

M∗(u∗,u∗,h;u∗ − u∗,h,w) = N∗(u∗;w) −N∗(u∗,h;w)

=

∫ 1

0

N ′
∗,u(θu∗ + (1 − θ)u∗,h;u∗ − u∗,h,w) dθ, (3.6)

for some w ∈ V̂. Here, V̂ is some suitably chosen space such that V∗,h,p ⊂ V̂,

∗ = S,H . We now introduce the following (formal) dual problem: find z∗ ∈ V̂ such
that

M∗(u∗,u∗,h;w, z∗) = J(w) ∀w ∈ V̂. (3.7)

We assume that (3.7) possesses a unique solution. This assumption is, of course,
dependent on both the definition of M∗(u∗,u∗,h; ·, ·) and the target functional under
consideration. For the proceeding error analysis, we must therefore assume that (3.7)
is well–posed. By exploiting the linearity of J(·), combining (3.6) and (3.7), and using
the consistency condition (3.4) or (3.5) we arrive at the following error representation
formula

J(u∗) − J(u∗,h) = J(u∗ − u∗,h) = M∗(u∗,u∗,h;u∗ − u∗,h, z∗)

= M∗(u∗,u∗,h;u∗ − u∗,h, z∗ − z∗,h)

= −N∗(u∗,h, z∗ − z∗,h) ∀z∗,h ∈ V∗,h,p, (3.8)

∗ = S,H . As it stands, the error representation formula (3.8) is still noncomputable
since z∗, ∗ = S,H , is unknown analytically. Instead, we must seek a finite dimensional
approximation ẑ∗,h to z∗. Clearly, it is not possible to seek ẑ∗,h ∈ V∗,h,p, otherwise
the resulting error representation would be identically zero due to (3.1) and (3.3). A
number of possible alternatives exist. The first involves keeping the degree p of the
approximating polynomial the same as that for u∗,h, but computing ẑ∗,h on a sequence

of dual finite element meshes T̂
ĥ

which, in general, differ from the “primal meshes”
Th. Alternatively ẑ∗,h ∈ V∗,h,p̂ may be computed using polynomials of degree p̂ > p
on the same finite element mesh Th employed for the primal problem. A variant of
this second approach is to compute the approximate dual solution using the same
polynomial degree p as used for the primal problem and to extrapolate the resulting
approximate dual solution ẑ∗,h. Although this latter approach is the cheapest of the
three methods, and is still capable of producing adaptively refined meshes specifically
tailored to the selected target functional, the quality of the resulting approximate error
representation formula may be poor. On the basis of numerical experimentation, we
favour the second approach due to its computational simplicity of implementation.

For the purposes of this article, we are concerned in controlling the error in the
computed critical bifurcation parameter and hence the target functional of interest
is simply J(u∗) = λ. As the dual problem involves the analytical solution u∗ we
must commit a linearization error and use the approximation u∗,h instead. Thus for
a steady bifurcation, the (approximate) dual problem for estimating the error in the
approximate critical parameter is defined as follows: find ẑS,h = (zu, zφ, zλ) ∈ VS,h,p̂
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such that

N̂ ′
u(uh, λh; vh, zu) + N̂ ′

λ(uh, λ;zu)χh

+ N̂ ′′
uu(uh, λh;ϕh, φh, zφ) + N̂ ′

u(uh, λh;ϕh, zφ) (3.9)

+ N̂ ′′
uλ(uh, λh;φh, zφ)χh + zλ(g, ϕh) = 1 ∀vh ∈ VS,h,p̂,

where vh = (vh, ϕh, χh). For a Hopf bifurcation the (approximate) dual problem is:
find ẑH,h = (zu, zφ, zψ, zλ, zµ) ∈ VH,h,p̂ such that

N̂ ′
u(uh, λh; vh, zu) + N̂ ′

λ(uh, λh; zu)χh

+ N̂ ′′
uu(uh, λh;ϕh, φh, zφ) + N̂ ′

u(uh, λh;ϕh, zφ)

+µh(θh, zφ) + ςh(ψh, zφ) + N̂ ′′
uλ(uh, λh;φh, zφ)χh (3.10)

+ N̂ ′′
uu(uh, λh; θh, ψh, zψ) + N̂ ′

u(uh, λh; θh, zψ)

− µh(ϕh, zψ) − ςh(φh, zψ) + N̂ ′′
uλ(uh, λh;ψh, zψ)χh

+zλ(g, ϕh) + zµ(g, θh) = 1 ∀vh ∈ VH,h,p̂,

where vh = (vh, ϕh, θh, χh, ςh).

4. Solution procedure. In this section we outline how the primal and dual
problems may be solved in an efficient manner by reducing the extended systems to
a succession of smaller matrix problems.

4.1. Steady bifurcation. To determine the numerical solution uS,h to the non-
linear system of equations (3.1), we employ a damped Newton method. This nonlinear
iteration generates a sequence of approximations unS,h, n = 1, 2, . . . , to the actual nu-
merical solution uS,h using the following algorithm. Given an iterate unS,h, the update
dnh := (dunh, dφ

n
h , dλ

n
h , ) to unS,h to get to the next iterate

un+1
S,h = unS,h + ωndnh

is defined by: find dnh such that for all vh = (vh, ϕh, χh) ∈ VS,h,p

N̂ ′
u(u

n
h, λ

n
h; du

n
h, vh) + N̂ ′

λ(u
n
h, λ

n
h; vh)dλ

n
h = rn1 (vh),

N̂ ′′
uu(u

n
h, λ

n
h ; dunh, φ

n
h, ϕh)

+ N̂ ′
u(u

n
h, λ

n
h; dφ

n
h , ϕh) + N̂ ′′

uλ(u
n
h, λ

n
h ;φnh, ϕh)dλ

n
h = rn2 (ϕh), (4.1)

χh(dφ
n
h , c) = rn3 (χh).

Here, rn1 (·), rn2 (·) and rn3 (·) are residuals given, respectively, by

rn1 (vh) = −N̂ (unh, λ
n
h; vh), r

n
2 (ϕh) = −N̂ ′

u(u
n
h, λ

n
h ;φnh, ϕh),

rn3 (χh) = −χh((φ
n
h , g) − 1).

If the spaces V sh,p and V ah,p are both of dimension N (which need not be the case),
then the problem (4.1) is of size 2N + 1, which will be extremely large for the fluid
flow problems considered in the forthcoming sections. Instead, we carry out an LU -
decomposition of the matrices arising in the Newton iteration in order to reduce
the problem to a succession of smaller matrix problems. Assuming a Galerkin type
approximation of uS,h is exploited, in which case unh =

∑N
i=1 U

n
i ϕi, φ

n
h =

∑N
i=1 Φni ζi,

9



where {ϕi}Ni=1 is a basis for V sh,p and {ζi}Ni=1 is a basis for V ah,p. Similarly, we let

dunh =
∑N

i=1 dU
n
i ϕi and dφnh =

∑N
i=1 dΦ

n
i ζi. For ease of exposition we define φnh =

{Φni }
N
i=1, du

n
h = {dUni }

N
i=1 and dφnh = {dΦni }

N
i=1 and with an abuse of notation, we

may rewrite (4.1) in the following form





Fs,nu 0 F
s,n
λ

Fa,nuu Fa,nu F
a,n
uλ

0⊤ l⊤ 0









dunh
dφnh
dλnh



 =





rn1
rn2
rn3



 . (4.2)

Here, the matrices Fs,nu , Fa,nu and Fa.nuu are given, respectively, by

{Fs,nu }Ni,j=1 = {N̂ ′
u(u

n
h, λ

n
h ;ϕi, ϕj)}

N
i,j=1,

{Fa,nu }Ni,j=1 = {N̂ ′
u(u

n
h, λ

n
h; ζi, ζj)}

N
i,j=1,

{Fa.nuu }
N
i,j=1 = {N̂ ′′

uu(u
n
h, λ

n
h;ϕi, φ

n
h, ζj)}

N
i,j=1,

and the vectors F s,nλ , F a,nuλ and l are defined, respectively, by

{F s,nλ }Ni=1 = {N̂ ′
λ(u

n
h, λ

n
h;ϕi)}

N
i=1,

{F a,nuλ }Ni=1 = {N̂ ′′
uλ(u

n
h, λ

n
h;φ

n
h , ζi)}

N
i=1,

{l}Ni=1 = {(c, ζi)}
N
i=1.

Finally, the residual vectors rn1 and rn2 are given, respectively, by

{rn1 }
N
i=1 = {rn1 (ϕi)}

N
i=1 and {rn2 }

N
i=1 = {rn2 (ζi)}

N
i=1;

recall that rn3 (χh) = −χh((φnh , g) − 1). The matrix appearing in (4.2) can then be
written in block LU format as:





Fs,nu 0 F
s,n
λ

Fa,nuu Fa,nu F
a,n
uλ

0⊤ l⊤ 0



 = LU, (4.3)

where

L =





Fs,nu 0 0

Fa,nuu I 0

0⊤ 0⊤ 1



 and U =





I 0 −ws,n

0 Fa,nu Fa,nuu w
s,n + F a,nuλ

0⊤ l⊤ 0



 ,

and ws,n satisfies

Fs,nu ws,n = −F s,nλ . (4.4)

The foregoing assumptions guarantee that, at the bifurcation point, both Fsu and the
matrix

[

Fa,nu Fa,nuu w
s,n + F a,nuλ

l⊤ 0

]

, (4.5)

10



evaluated at (uh, λh), are nonsingular. This follows immediately upon application of
Lemma 2.2 along with (3.2). Thus, a continuity argument ensures that for (unh, φ

n
h, λ

n
h)

sufficiently close to (uh, φh, λh) equation (4.2) is soluble. In particular, at each Newton
iteration, the solution to the (2N + 1) × (2N + 1) matrix problem (4.2) may be
computed based on solving two N × N matrix problems involving Fs,nu , and one
(N + 1)× (N + 1) matrix problem involving (4.5), together with appropriate forward
and backward substitutions. We point out that the first linear solve involving the
matrix Fs,nu is necessary to first compute the vector ws,n, cf. (4.4) above, while the
second solve is undertaken in the forward substitution employing the matrix L. In
order that the Newton iteration converges, we must have a good initial guess for both
the steady state solution and the nullfunction. This is achieved based on employing the
following continuation procedure: the steady solution and most dangerous eigenvalue
are first computed for a small value of the critical parameter. The critical parameter
is then gradually increased until there is a change in sign of the real part of the left
most eigenvalue; when this occurs the computed base solution/eigenfunction pair is
then taken as the initial guess for the Newton iteration.

To solve the approximate dual problem for the steady bifurcation, we first write

zu =
∑N̂

i=1 Zu,iϕ̂i, zφ =
∑N̂
i=1 Zφ,iζ̂i, zu = {Zu,i}N̂i=1, and zφ = {Zφ,i}N̂i=1, where

{ϕ̂i}N̂i=1 and {ζ̂i}N̂i=1 denote a suitable set of linearly independent finite element basis
functions which span V sh,p̂ and V ah,p̂, respectively. Thus, we can rewrite the dual
problem (3.9) as: find the triple (zu, zφ, zλ) satisfying





(F̂su)
⊤ (F̂auu)

⊤ 0

0 (F̂au)
⊤ l̂

(F̂ sλ)⊤ (F̂ auλ)
⊤ 0









zu
zφ
zλ



 =





0

0

1



 . (4.6)

Here, F̂su is understood to be the Jacobian on the space V sh,p̂ evaluated at uh, and so
on. Hence, the matrix involved in the computation of the dual solution is no more
than the transpose of that used in the Newton solves, albeit defined on a larger finite
dimensional space. Thus, we can use the same LU decomposition proposed above
to reduce the computational complexity involved in evaluating the solution of this
problem.

4.2. Hopf bifurcation. In a process very similar to that for the steady bifur-
cation, for a Hopf bifurcation we find a sequence of approximations unH,h, n = 1, 2, . . .
to the solution of (3.3) using a damped Newton method. Thus, given an iterate unH,h,
the update dnh = (dunh, dφ

n
h , dψ

n
h , dλ

n
h , dµ

n
h) is found by solving

N̂ ′
u(u

n
h, λ

n
h; du

n
h, vh) + N̂ ′

λ(u
n
h, λ

n
h; vh)dλ

n
h = rn1 (vh),

N̂ ′′
uu(u

n
h, λ

n
h ; dunh, φ

n
h, ϕh)

+ N̂ ′
u(u

n
h, λ

n
h; dφ

n
h , ϕh) + N̂ ′′

uλ(u
n
h, λ

n
h ;φnh, ϕh)dλ

n
h

+µnh(dψ
n
h , ϕh) + dµnh(ψnh , ϕh) = rn2 (ϕh), (4.7)

N̂ ′′
uu(u

n
h, λ

n
h; du

n
h, ψ

n
h , θh)

+ N̂ ′
u(u

n
h, λ

n
h ; dψnh , θh) + N̂ ′′

uλ(u
n
h, λ

n
h;ψ

n
h , θh)dλ

n
h

−µnh(dφ
n
h , θh) − dµnh(φ

n
h , θh) = rn3 (θh),

χh(dφ
n
h , g) = rn4 (χh),

ςh(dψ
n
h , g) = rn5 (ςh).
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Here, rn1 (·), . . . , rn5 (·) are residuals given, respectively, by

rn1 (vh) = −N̂ (unh, λ
n
h; vh), r

n
2 (ϕh) = −N̂ ′

u(u
n
h, λ

n
h ;φnh, ϕh) − µnh(ψnh , ϕh),

rn3 (θh) = −N̂ ′
u(u

n
h, λ

n
h ;ψnh , ϕh) + µnh(φ

n
h , θh),

rn4 (χh) = −χh((φ
n
h , g) − 1), rn5 = −ςh(ψ

n
h , g).

Once again, assuming a Galerkin type approximation of uH,h is exploited, we may

write unh =
∑N

i=1 U
n
i ϕi, φ

n
h =

∑N
i=1 Φni ζi, and ψnh =

∑N
i=1 Ψn

i ζi, where {ϕi}Ni=1 is a

basis for V sh,p and {ζi}Ni=1 is a basis for V ah,p. Similarly, we let dunh =
∑N

i=1 dU
n
i ϕi ,

dφnh =
∑N

i=1 dΦ
n
i ζi and dψnh =

∑N
i=1 dΨ

n
i ζi. Again, for ease of exposition we define

φnh = {Φi}Ni=1, ψ
n
h = {Ψi}Ni=1, du

n
h = {dUni }

N
i=1, dφ

n
h = {dΦni }

N
i=1 and dψnh =

{dΨn
i }
N
i=1. As in the case of the steady bifurcation, with a slight abuse of notation,

(4.7) can be rewritten in the form













Fs,nu 0 0 F
s,n
λ 0

Fφ,nuu Fa,nu µnhM F
φ,n
uλ Mψnh

Fψ,nuu −µnhM Fa,nu F
ψ,n
uλ −Mφnh

0⊤ l⊤ 0⊤ 0 0
0⊤ 0⊤ l⊤ 0 0

























dunh
dφnh
dψnh
dλnh
dµnh













=













rn1
rn2
rn3
rn4
rn5













. (4.8)

Here, the matrices Fs,nu and Fa,nu and the vectors F s,nλ , l and r1 are defined analogously
as for the steady bifurcation problem. Moreover, Fφ,nuu and Fψ,nuu are given, respectively,
by

{Fφ,nuu }Ni,j=1 = {N̂ ′′
uu(u

n
h, λ

n
h;ϕi, φ

n
h, ζj)}

N
i,j=1,

{Fψ,nuu }Ni,j=1 = {N̂ ′′
uu(u

n
h, λ

n
h;ϕi, ψ

n
h , ζj)}

N
i,j=1,

and the vectors F φ,nuλ and Fψ,nuλ are defined, respectively, by

{F φ,nuλ }Ni=1 = {N̂ ′′
uλ(u

n
h, λ

n
h;φ

n
h , ζi)

N
i=1,

{Fψ,nuλ }Ni=1 = {N̂ ′′
uλ(u

n
h, λ

n
h;ψ

n
h , ζi)

N
i=1.

Finally, M is the mass matrix given by

{M}Ni,j=1 = {(ζi, ζj)}
N
i,j=1,

and r2 and r3 are the residual vectors defined, respectively, by

{r2}
N
i=1 = {r2(ζi)}

N
i=1 and {r3}

N
i=1 = {r3(ζi)}

N
i=1.

A block LU decomposition of the matrix arising in (4.8) yields













Fs,nu 0 0 F
s,n
λ 0

Fφ,nuu Fa,nu µnhM F
φ,n
uλ Mψnh

Fψ,nuu −µnhM Fa,nu F
ψ,n
uλ −Mφnh

0⊤ l⊤ 0⊤ 0 0
0⊤ 0⊤ l⊤ 0 0













= LU, (4.9)
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where

L =













Fs,nu 0 0 0 0

Fφ,nuu I 0 0 0

Fψ,nuu 0 I 0 0

0⊤ 0⊤ 0⊤ 1 0
0⊤ 0⊤ 0⊤ 0 1













and

U =













I 0 0 −ws,n 0

0 Fa,nu µnhM Fφ,nuu w
s,n + F φ,nuλ Mψnh

0 −µnhM Fa,nu Fψ,nuu w
s,n + Fψ,nuλ −Mφnh

0⊤ l⊤ 0⊤ 0 0
0⊤ 0⊤ l⊤ 0 0













;

again ws,n satisfies Fs,nu ws,n = −F s,nλ . Under the assumption that both V sh,p and
V ah,p are of dimension N , the overall size of the underlying matrix stemming from
the discretization of the Hopf bifurcation problem is 3N + 2. By exploiting the LU -
decomposition in (4.9) the solution to (4.8) can be computed based on solving two
N ×N matrix problems involving Fs,nu , and one (2N +2)× (2N +2) matrix problem,
together with appropriate forward and backward substitutions.

Writing zu =
∑N̂

i=1 Zu,iϕ̂i, zφ =
∑N̂
i=1 Zφ,iζ̂i, zψ =

∑N̂
i=1 Zψ,iζ̂i zu = {Zu,i}N̂i=1,

zφ = {Zφ,i}N̂i=1 and zψ = {Zψ,i}N̂i=1, where again {ϕ̂i}N̂i=1 and {ζ̂i}N̂i=1 denote a suit-
able set of linearly independent finite element basis functions which span V sh,p̂ and
V ah,p̂, respectively, the associated dual problem for the error estimation of the critical
parameter when a Hopf bifurcation occurs can be written in the following form













(F̂su)
⊤ (F̂φuu)

⊤ (F̂ψuu)
⊤ 0 0

0 (F̂au)
⊤ −µhM⊤ l̂ 0

0 µhM
⊤ (F̂au)

⊤ 0 l̂

(F̂ sλ)⊤ (F̂ φuλ)
⊤ (F̂ψuλ)

⊤ 0 0
0 (Mψh)

⊤ −(Mφh)
⊤ 0 0

























zu
zφ
zψ
zλ
zµ













=













0

0

0

1
0













, (4.10)

where again F̂su is understood to be the Jacobian evaluated on the space V sh,p̂, and so
on. As before, the same LU decomposition proposed in (4.9) can be used to reduce
the complexity involved in evaluating the solution of this problem.

5. Problem specification and discontinuous Galerkin discretization. In
this section we outline the application of the above theory to the problem of in-
compressible fluid flow in an open system whose geometry has reflectional symmetry
about one and only one axis. In particular, for the discretization of the underlying
bifurcation problem, we exploit the symmetric version of the interior penalty DG
method.

5.1. Incompressible Navier-Stokes equations. Consider the flow of an in-
compressible fluid confined in a generic two-dimensional channel Ω ∈ R2 of width
D, with boundary Γ = ΓD ∪ ΓN. Additionally, we write ΓM to denote an axis of
reflectional symmetry, lying on the x-axis. A simple example of such a geometry is
depicted in Figure 5.1, though we point out that the proceeding discussion holds for
more general computational domains. On ΓD we impose a Dirichlet boundary con-
dition, while on ΓN a natural Neumann condition is enforced. By introducing the

13
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Fig. 5.1. Generic channel domain Ω = Ω1 ∪Ω2.

Reynolds number Re, defined as Re = Rumax/ν, where R = D/2 is the half width
of the channel, umax is the peak inlet velocity and ν is the kinematic viscosity, the
flow can be modelled by the following non-dimensionalized unsteady Navier-Stokes
equations: find u = [ux, uy]

⊤ and p such that

∂u

∂t
−

1

Re
∇2u + (u · ∇)u + ∇p = 0, in Ω, (5.1)

∇ · u = 0, in Ω, (5.2)

with boundary conditions

u = gD on ΓD, (5.3)

and

1

Re

∂u

∂n
− pn = 0 on ΓN, (5.4)

subject to some appropriate initial condition. Here, u and p denote the velocity and
pressure of the fluid, respectively, and n = (nx, ny)

⊤ denotes the unit outward normal
vector to the boundary Γ of Ω. In the sequel we consider the numerical approximation
of the corresponding steady state problem and investigate its linear stability. With
this in mind, employing the continuity equation (5.2), we rewrite the steady Navier–
Stokes equations in the following divergence form (to facilitate the DG discretization):
find u0 and p0 such that

−
1

Re
∇2u0 + ∇ · (u0 ⊗ u0) + ∇p0 = 0, in Ω, (5.5)

∇ · u0 = 0, in Ω, (5.6)

subject to the boundary conditions outlined in (5.3)–(5.4) above, with u and p re-
placed by u0 and p0, respectively. Here, for vectors v ∈ Rm and w ∈ Rn, m, n ≥ 1,
the matrix v⊗w ∈ Rm×n is the standard outer product defined by (v⊗w)kl = vkwl.
For ease of exposition we define the flux F0(·) as

F0(u0) := u0 ⊗ u0.

14



Equations (5.5)–(5.6) may be combined to define a mapping F : V × R → V ,
where V = H1(Ω)2 × L2(Ω). Moreover, the bounded linear operator

ρs





ux(x, y)
uy(x, y)
p(x, y)



 =





ux(x,−y)
−uy(x,−y)
p(x,−y)





is a representation of the symmetry group Z2 on the Hilbert space V . It is straight-
forward to show that the operator F is equivariant with respect to ρs. Applying
the theory developed in Section 2.1, the solution space V admits the decomposition
V = V s ⊕ V a. Hence, a solution (u0, p0) ∈ V s can be found by reducing the domain
to either Ωi, i = 1, 2, and solving: find u0 and p0 such that

L0(u0, Re; p0) ≡ −
1

Re
∇2u0 + ∇ · (u0 ⊗ u0) + ∇p0 = 0, in Ωi, (5.7)

∇ · u0 = 0, in Ωi, (5.8)

with boundary conditions

u0 = gD on ΓD, (5.9)

1

Re

∂u0

∂n
− p0n = 0 on ΓN, (5.10)

1

Re

∂u0
x

∂n
− p0nx = 0 and u0

y = 0 on ΓM. (5.11)

Without loss of generality, we assume from now on that we solve on the domain Ω1.
Upon linearization of the unsteady Navier–Stokes equations (5.1)–(5.2), we obtain the
following eigenvalue problem for the pair {λm, (um, pm)}:

Lm(u0, Re;um, pm) ≡ −
1

Re
∇2um + ∇ · (um ⊗ u0)

+ ∇ · (u0 ⊗ um) + ∇pm = λmum, in Ω,(5.12)

−∇ · um = 0, in Ω, (5.13)

subject to the homogeneous Dirichlet and Neumann conditions

um = 0 on ΓD, (5.14)

1

Re

∂um

∂n
− pmn = 0 on ΓN. (5.15)

Assuming that (u0, p0) ∈ V s, exploiting Corollary 2.4 in the case of only seeking
anti-symmetric eigenfunctions, we can reduce (5.12)–(5.15) to finding {λa, (ua, pa)} ∈
C × V a such that

La(u0, Re;ua, pa) ≡ −
1

Re
∇2ua + ∇ · (ua ⊗ u0)

+ ∇ · (u0 ⊗ ua) + ∇pa = λaua, in Ω1, (5.16)

−∇ · ua = 0, in Ω1, (5.17)
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subject to the homogeneous Dirichlet and Neumann conditions

ua = 0 on ΓD, (5.18)

1

Re

∂ua

∂n
− pan = 0 on ΓN, (5.19)

uax = 0 and
1

Re

∂uay
∂n

− pany = 0 on ΓM. (5.20)

Thus, to determine the Reynolds number at which a steady symmetry breaking bi-
furcation occurs we solve the following extended system: find uS = {(u0, p0), (ua, pa), Re0} ∈
V s × V a × R such that













L0(u0, Re0; p0)
∇ · u0

La(u0, Re0;ua, pa)
∇ · ua

(ua, g) − 1













= 0, (5.21)

subject to the boundary conditions (5.9)–(5.11) and (5.18)–(5.20).
Similarly, for a symmetry breaking Hopf bifurcation we seek to computed uH =

{(u0, p0), (ua, pa), (ũa, p̃a), Re0, µa} ∈ V s × V a × V a × R × R such that

























L0(u0, Re0; p0)
∇ · u0

La(u0, Re0;ua, pa) + µaũa

∇ · ua

La(u0, Re0; ũa, p̃a) − µaua

∇ · ũa

(ua, g) − 1
(ũa, g)

























= 0, (5.22)

subject to the boundary conditions (5.9)–(5.11), (5.18)–(5.20) and

ũa = 0 on ΓD, (5.23)

1

Re

∂ũa

∂n
− p̃an = 0 on ΓN, (5.24)

ũax = 0 and
1

Re

∂ũay
∂n

− p̃any = 0 on ΓM. (5.25)

5.2. Meshes and traces. In this section we introduce the notation needed to
define the interior penalty DG discretization of the primal problems (5.21), (5.9)–
(5.11), (5.18)–(5.20) and (5.22), (5.9)–(5.11), (5.18)–(5.20), (5.23)–(5.25).

To this end, we assume that Ω1 can be subdivided into a shape-regular mesh
Th = {κ} consisting of quadrilateral elements κ. For each κ ∈ Th, we denote by nκ
the unit outward normal vector to the boundary ∂κ, and by hκ the elemental diameter.
An interior edge of Th is the (non-empty) one-dimensional interior of ∂κ+∩∂κ−, where
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κ+ and κ− are two adjacent elements of Th. Similarly, a boundary edge of Th is the
(non-empty) one-dimensional interior of ∂κ ∩ Γ1, Γ1 = ∂Ω1, which consists of entire
edges of ∂κ. We denote by Γint the union of all interior edges of Th.

Next, we define average and jump operators. To this end, let κ+ and κ− be
two adjacent elements of Th, and x be an arbitrary point on the interior edge e =
∂κ+∩∂κ− ⊂ Γint. Furthermore, let q, v, and τ be scalar–, vector–, and matrix–valued
functions, respectively, that are smooth inside each element κ±. By (q±,v±, τ±) we
denote the traces of (q,v, τ ) on e taken from within the interior of κ±, respectively.
Then, we introduce the following averages at x ∈ e:

{{q}} = (q+ + q−)/2, {{v}} = (v+ + v−)/2, {{τ}} = (τ+ + τ−)/2.

Similarly, the jumps at x ∈ e are given by

[[q]] = q+nκ+ + q−nκ− , [[v]] = v+ · nκ+ + v− · nκ− ,

[[v]] = v+ ⊗ nκ+ + v− ⊗ nκ− , [[τ ]] = τ+nκ+ + τ−nκ− .

On boundary edges e ⊂ Γ1, we set {{q}} = q, {{v}} = v, {{τ}} = τ , [[q]] = qn, [[v]] = v ·n,
[[v]] = v ⊗ n, and [[τ ]] = τn. Here, n is the unit outward normal vector to the

boundary Γ1. For matrices σ, τ ∈ Rm×n, m,n ≥ 1, we use the standard notation
σ : τ =

∑m
k=1

∑n
l=1 σklτkl.

5.3. Discontinuous Galerkin discretization. We now introduce the DG dis-
cretization employed for the numerical approximation of both extended systems (5.21)
and (5.22). To this end, for a given a mesh Th and polynomial degree p ≥ 1, we in-
troduce the following finite element spaces

Vh,p = {v ∈ [L2(Ω1)]
2 : v|κ ∈ [Qp(κ)]2, κ ∈ Th},

Qh,p = {q ∈ L2(Ω1) : q|κ ∈ Qp−1(κ), κ ∈ Th}.

Here, Qp(κ) denotes the space of tensor product polynomials on κ of degree at most
p in each coordinate direction. Finally, we let

VS,h,p := (Vh,p ×Qh,p) × (Vh,p ×Qh,p) × R

and

VH,h,p := (Vh,p ×Qh,p) × (Vh,p ×Qh,p) × (Vh,p ×Qh,p) × R × R.

We now introduce the following symmetric version of the interior penalty method, to-
gether with a Lax–Friedrichs numerical flux approximation of the nonlinear convective
terms. In the case of a steady bifurcation we have: find uS,h = ((u0

h, p
0
h), (u

a
h, p

a
h), Re

0
h) ∈

VS,h,p such that























Ah(u
0
h, Re

0
h;v

0
h) + Ch(u

0
h;v

0
h) +Bh(v

0
h, p

0
h) = ℓ1(Re

0
h;v

0
h),

Bh(u
0
h, q

0
h) = ℓ2(q

0
h),

Âh(u
0
h, Re

0
h;v

a
h) + Ĉh(u

0
h;u

a
h,v

a
h) + B̂h(v

a
h, p

a
h) = 0,

B̂h(u
a
h, q

a
h) = 0,

χh(u
a
h, g) = 1

(5.26)
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for all vh = ((v0
h, q

0
h), (v

a
h, q

a
h), χh) ∈ VS,h,p. While, for a Hopf bifurcation, we have:

find uH,h = ((u0
h, p

0
h), (u

a
h, p

a
h), (ũ

a
h, p̃

a
h), Re

0
h, µ

a
h) ∈ VH,h,p such that















































Ah(u
0
h, Re

0
h;v

0
h) + Ch(u

0
h;v

0
h) +Bh(v

0
h, p

0
h) = ℓ1(Re

0
h;v

0
h),

Bh(u
0
h, q

0
h) = ℓ2(q

0
h),

Âh(u
a
h, Re

0
h;v

a
h) + Ĉh(u

0
h;u

a
h,v

a
h) + B̂h(v

a
h, p

a
h) + µah(ũ

c
a,v

a
h) = 0,

B̂h(u
a
h, q

a
h) = 0,

Âh(ũ
s
h, Re

0
h; ṽ

a
h) + Ĉh(u

0
h; ũ

a
h, ṽ

a
h) + B̂h(ṽ

a
h, p̃

a
h) + µah(u

a
h, ṽ

a
h) = 0,

B̂h(ũ
a
h, q̃

a
h) = 0,

χh(u
a
h, g) = 1,

ςh(ũ
a
h, g) = 0

(5.27)

for all vh = ((v0
h, q

0
h), (v

a
h, q

a
h), (ṽ

a
h, q̃

a
h), χh, ςh) ∈ VH,h,p. In both (5.26) and (5.27)

the bilinear forms Ah, Âh, Bh and B̂h are defined, respectively, by

Ah(u, Re;v) =
1

Re

(∫

Ω1

∇hu : ∇hv dx

−

∫

Γint∪ΓD

({{∇hv}} : [[u]] + {{∇hu}} : [[v]]) ds

−

∫

ΓM

({{∇vy}} · [[uy]] + {{∇uy}} · [[vy ]]) ds

+

∫

Γint∪ΓD

σ[[u]] : [[v]] ds+

∫

ΓM

σ[[uy ]] · [[vy]] ds

)

,

Âh(u, Re;v) =
1

Re

(∫

Ω1

∇hu : ∇hv dx

−

∫

Γint∪ΓD

({{∇hv}} : [[u]] + {{∇hu}} : [[v]]) ds

−

∫

ΓM

({{∇vx}} · [[ux]] + {{∇ux}} · [[vx]]) ds

+

∫

Γint∪ΓD

σ[[u]] : [[v]] ds+

∫

ΓM

σ[[ux]] · [[vx]] ds

)

,

Bh(v, q) = −

∫

Ω1

q∇h · v dx +

∫

Γint∪ΓD

{{q}}[[v]] ds+

∫

ΓM

{{q}}vyny ds,

B̂h(v, q) = −

∫

Ω1

q∇h · v dx +

∫

Γint∪ΓD

{{q}}[[v]] ds+

∫

ΓM

{{q}}vxnx ds,

where the operator ∇h is used to denote the broken gradient operator ∇, defined
elementwise. The function σ ∈ L∞(Γint∪Γ1) is the so–called interior penalty function,
which is chosen as follows: writing h ∈ L∞(Γint ∪ Γ1) to denote the mesh function
defined by

h(x) =

{

min{hκ, hκ′}, x ∈ e = ∂κ ∩ ∂κ′ ⊂ Γint,
hκ, x ∈ e = ∂κ ∩ Γ1,

we set

σ = Cσ
p2

h
.

18



Here, Cσ is a positive constant which is independent of the mesh size and the poly-
nomial degree p. To guarantee stability of the bilinear form Ah, Cσ must be chosen
sufficiently large; see [5], for example, and the references cited therein.

The semilinear form Ch represents the approximation of the nonlinear convection
terms and is defined by

Ch(u;v) = −

∫

Ω1

F0(u) : ∇hv dx −

∫

Ω1

(∇ · u)u · v dx

+

∫

Γint

H(u+,u−,n)[[v]] ds +

∫

Γ1

H(u+,uΓ,n)[[v]] ds, (5.28)

where H(·, ·, ·) denotes the Lax-Friedrichs flux given by

H(v,w,n) :=
1

2

(

F0(v) · n + F0(w) · n− α(w − v)
)

.

Here, α := max(µ+, µ−), where µ+ and µ− are the largest eigenvalues (in absolute
magnitude) of the Jacobi matrices (∂/∂u)(F0(·)·n) evaluated at v and w, respectively.
Thereby, in this setting, we have α = 2 max(|v · n|, |w · n|).

The boundary function uΓ is given according to the type of boundary condition
imposed. To this end, we set

uΓ(u) = gD on ΓD,

uΓ(u) = u+ on ΓN, uΓ(u) = [u+
x , 0]⊤ on ΓM.

In a similar fashion, Ĉh represents the approximation of the (linear) convection
terms arising in the PDE problem for the nullfunction. Employing the Lax–Friedrichs
flux (or simply the upwind flux function) gives

Ĉh(u
0;ua,v) = −

∫

Ω1

(

Fa(u0,ua) : ∇hv
)

dx −
1

2

∫

Ω1

(

∇ · u0)ua + (∇ · ua)u0
)

· v dx

+
∑

κ∈Th

(

∫

∂κ\Γ1

Ĥ({{u0}};ua,+,ua,−,n) · v+ ds

+

∫

∂κ∩Γ1

Ĥ((u0,+ + uΓ(u0))/2;ua,+, ûΓ(ua),n) · v+ ds

)

,

where

Ĥ(v;u,w,n) :=
1

2
(Fa(v;u) · n + Fa(v;w) · n + α̂(u − w)) .

In this case α̂ = |2v · n|, uΓ is as before and the new boundary function ûΓ is given
by

ûΓ(u) = 0 on ΓD,

ûΓ(u) = u+ on ΓN, and ûΓ(u) = [0, u+
y ]⊤ on ΓM.
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Finally, ℓ1(·; ·) and ℓ2(·) are given, respectively, by

ℓ1(Re;v) = −
1

Re

∫

ΓD

((gD ⊗ n) : ∇v − σgD · v) ds,

ℓ2(q) =

∫

ΓD

qgD · n ds. (5.29)

As the chosen numerical fluxes are consistent, it then follows that the underlying
DG schemes are also consistent; i.e., assuming sufficient regularity of the analytical
solutions {(u0, p0), (ua, pa), Re0} and {(u0, p0), (ua, pa), (ũa, p̃a)Re0, µa} of (5.21) and
(5.22), respectively, we have























Ah(u
0, Re0;v0

h) + Ch(u
0;v0

h) +Bh(v
0
h, p

0) = ℓ1(Re
0
h;v

0
h),

Bh(u
0, q0h) = ℓ2(q

0
h),

Âh(u
a, Re0;va) + Ĉh(u

0;ua,va) + B̂h(v
a, pa) = 0,

B̂h(u
a, qa) = 0,

χh(u
a, g) = 1

(5.30)

for all vh = {(v0
h, q

0
h), (v

a
h, q

a
h), χh} ∈ VS,h,p in the case of a steady bifurcation, while

for a Hopf bifurcation, the following holds















































A(u0, Re0;v0
h) + Ch(u

0;v0
h) +Bh(v

0
h, p

0) = ℓ1(Re
0
h;v

0
h),

Bh(u
0, q0h) = ℓ2(q

0
h, )

Âh(u
a, Re0,va) + Ĉh(u

0;ua,vah) + B̂h(v
a
h, p

a
h) + µah(ũ

a,vah) = 0,

B̂h(u
a, qah) = 0,

Âh(ũ
a, Re0; ṽah) + Ĉh(u

0; ũa, ṽah) + B̂h(ṽ
a
h, p̃

a) + µah(u
a, ṽah) = 0,

B̂h(ũ
a, q̃ah) = 0,

χh(u
a, g) = 1,

ςh(ũ
a, g) = 0

(5.31)

for all vh = {(v0
h, q

0
h), (v

a
h, q

a
h), (ṽ

a
h, q̃

a
h), χh, ςh} ∈ VH,h,p.

Remark 5.1. We point out that the mixed approximations defined in (5.26) and
(5.27) are based on so-called mixed-order elements (or (Qp)2−Qp−1 elements), where
the approximation degree for the pressure is of one order lower than for the velocity.
In view of the approximation properties, this pair is optimally matched. Moreover, in
the context of the steady Stokes equations, it has been shown that this mixed method
satisfies a discrete inf-sup condition, and is thereby well–posed; for details, see Hansbo
and Larson [28], Toselli [41], Schötzau, Schwab and Toselli [38] and the references
cited therein. However, by introducing suitable pressure stabilization terms, it is also
possible to employ equal-order elements (or (Qp)2 −Qp elements) with the same ap-
proximation degree for the velocity and the pressure; see the LDG approaches by Cock-
burn, Kanschat, Schötzau and Schwab [19] and Cockburn, Kanschat and Schötzau [18]
for details. Finally, for the treatment of the nonlinear convection terms, we refer to
the article [39] where the discretization of the time–dependent incompressible Navier–
Stokes equations has been undertaken.

6. A posteriori error estimation for incompressible fluid flow. We are
now in a position to apply the DWR a posteriori error estimation technique outlined
in Section 3 to the DG methods proposed above.

Proposition 6.1 (Error Representation Formula). For the steady pitchfork bi-
furcation, let uS and uS,h = ((u0

h, p
0
h), (u

a
h, p

a
h), Re

0
h) ∈ VS,h,p denote the solutions of
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(5.21) and (5.26), respectively, and suppose that the corresponding dual problem (3.7)
is well posed, with solution zS = ((z0

S , τ
0
S), (zaS , τ

a
S), zS,Re). Then, we have

Re0 −Re0h = εS(uS ,uS,h; zS − zS,h) ≡
∑

κ∈Th

ηS,κ (6.1)

for all zS,h = ((z0
S,h, τ

0
S,h), (z

a
S,h, τ

a
S,h), zS,Re,h) ∈ VS,h,p, where

ηS,κ = η0
κ(Re

0
h, (u

0
h, p

0
h), (w

0
S , ω

0
S)) + ηaκ(Re

0
h, (u

0
h, p

0
h), (u

a
h, p

a
h),0, 0, (w

a
S , ω

a
S)).

Similarly, let uH and uH,h = ((u0
h, p

0
h), (u

a
h, p

a
h), (ũ

a
h, p̃

a
h), Re

0
h, µ

a
h) ∈ VH,h,p de-

note the solutions of (5.22) and (5.27), respectively, with corresponding dual solution
denoted by zH = ((z0

H , τ
0
H), (zaH , τ

a
H), (z̃aH , τ̃

a
H), zH,Re, zH,µ), then

Re0 −Re0h = εH(uH ,uH,h; zH − zH,h) ≡
∑

κ∈Th

ηH,κ (6.2)

for all zH,h = ((z0
H,h, τ

0
H,h), (z

a
H,h, τ

a
H,h), (z̃

a
H,h, τ̃

a
H,h), zH,Re,h, zH,µ,h) ∈ VH,h,p, where

ηH,κ = η0
κ(Re

0
h, (u

0
h, p

0
h), (w

0
H , ω

0
H)) + ηaκ(Re

0
h, (u

0
h, p

0
h), (u

a
h, p

a
h), ũ

a
h, µ

a
h,w

a
H , ω

a
H)

+ηaκ(Re
0
h, (u

0
h, p

0
h), (ũ

a
h, p̃

a
h),u

a
h,−µ

a
h, w̃

a
H , ω̃

a
H).

Here, for ∗ = S,H, we have

w0
∗ = z0

∗ − z0
∗,h, ω0

∗ = τ0
∗ − τ0

∗,h, wa
∗ = za∗ − za∗,h, ωa∗ = τa∗ − τa∗,h

and

w̃a
H = z̃aH − z̃aH,h, ω̃aH = τ̃aH − τ̃aH,h.

Moreover,

η0
κ(Re

0
h, (u

0
h, p

0
h), (w

0, ω0)) =

∫

κ

R0(u0
h, Re

0
h; p

0
h) ·w

0 dx−
1

2

∫

∂κ\Γ1

[[p0
h]] · w

0 ds

+

∫

∂κ∩ΓN

R0
N (Re0h;u

0
h, p

0
h) ·w

0,+ ds

+

∫

∂κ∩ΓM

R0
M,x(Re

0
h;u

0
h, p

0
h)w

0,+
x ds−

1

Re0h

∫

∂κ∩ΓD

(R0
D(u0

h) ⊗ nκ) : ∇hw
0,+ ds

+
1

Re0h

∫

∂κ∩ΓD

σR0
D(u0

h) · w
0,+ ds+

1

Re0h

∫

∂κ∩ΓM

σR0
M,y(Re

0
h;u

0
h, p

0
h)w

0,+
y ds

−
1

Re0h

∫

∂κ∩ΓM

R0
M,y(u

0
h, p

0
h, Re

0
h)nκ · ∇hw

0,+
y ds

−
1

2Re0h

∫

∂κ\Γ1

{

[[u0
h]] : ∇w

0,+
h − [[∇u0

h]] ·w
0,+
}

ds

+
1

Re0h

∫

∂κ\Γ1

σ[[u0
h]] : (w0,+ ⊗ nκ+) +

1

2

∫

∂κ\Γ1

ω0,+[[u0
h]] ds

+

∫

∂κ∩ΓD

ω0,+R0
D(u0

h) · n ds+

∫

∂κ∩ΓM

ω0,+R0
M,y(Re

0
h;u

0
h, p

0
h)ny ds

−

∫

∂κ\Γ1

(

F0(u0
h) · nκ −H(u0,+

h ,u0,−
h ,nκ)

)

· w0,+ ds

−

∫

∂κ∩Γ1

(

F0(u0
h) · nκ −H(u0,+

h ,uΓ(u0,+
h ),nκ)

)

·w0,+ ds, (6.3)
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where, R0(u0
h, Re

0
h; p

0
h)|κ =

[

L0(u0
h, Re

0
h; p

0
h),∇ · u0

h

]⊤
|κ denotes the elementwise resid-

ual and R0
D(u0

h), R0
N(Re0h;u

0
h, p

0
h) and R0

M(Re0h;u
0
h, p

0
h) are the Dirichlet, Neumann

and mixed boundary residuals, respectively, given by

R0
D(u0

h)|∂κ∩ΓD
= (u+

h − gD)|∂κ∩ΓD
,

R0
N(Re0h;u

0
h, p

0
h)|∂κ∩ΓN

=
1

Re0h

∂u0,+
h

∂n
− p0,+

h n|∂κ∩ΓN
,

R0
M(Re0h;u

0
h, p

0
h)|∂κ∩ΓM

=

[

1

Re0h

∂u0,+
h,x

∂n
− p0,+

h nx,u
0,+
h,y

]⊤ ∣
∣

∣

∣

∣

∂κ∩ΓM

.

Similarly, ηaκ is given by

ηaκ(Re
0
h, (u

0
h, p

0
h), (u

a
h, p

a
h),φh, µh, (w

a, ωa)) =

∫

κ

Ra(u0
h, Re

0
h;u

a
h, p

a
h, µh,φh) ·w

a dx

−
1

2

∫

∂κ\Γ1

[[pah]] · w
a ds+

∫

∂κ∩ΓN

Ra
N (Re0h;u

a
h, p

a
h) ·w

a,+ ds

+

∫

∂κ∩ΓM

Ra
M,y(Re

0
h;u

a
h, p

a
h)w

a,+
y ds−

1

Re0h

∫

∂κ∩ΓD

(Ra
D(uah) ⊗ nκ) : ∇hw

a,+ ds

+
1

Re0h

∫

∂κ∩ΓD

σRa
D(uah) ·w

a,+ ds+
1

Re

∫

∂κ∩ΓM

σRa
M,x(Re

0
h;u

a
h, p

a
h)w

0,+
x ds

−
1

Re0h

∫

∂κ∩ΓM

R0
M,x(Re

0
h;u

a
h, p

a
h)nκ · ∇hw

a,+
x ds

−
1

2Re0h

∫

∂κ\Γ1

{

[[uah]] : ∇wa,+ − [[∇uah]] ·w
a,+
}

ds

+
1

Re

∫

∂κ\Γ1

σ[[uah]] : (wa,+ ⊗ nκ) ds+
1

2

∫

∂κ\Γ1

ωa,+[[uah]] ds

+

∫

∂κ∩ΓD

ωa,+Ra
D(uah) · n ds+

∫

∂κ∩ΓM

ωa,+Ra
M,x(Re

0
h;u

a
h, p

a
h)nx ds

−

∫

∂κ\Γ1

(

Fa(u0
h;u

a
h) · nκ − Ĥ({{u0

h}};u
a,+,ua,−,n)

)

·wa,+ ds

−

∫

∂κ∩Γ1

(

Fa(u0
h;u

a
h) · nκ − Ĥ((u0,+ + uΓ(u0))/2;ua,+, ûΓ(ua),n)

)

·wa,+ ds.

Here, we write

Ra(u0
h, Re

0
h;u

a
h, p

a
h, µh,φh)|κ =

[

La(u0
h, Re

0
h;u

a
h, p

a
h) + µhφh,∇ · uah

]⊤
|κ

to denote the elementwise residual and Ra
D(uah), Ra

N(Re0h;u
a
h, p

a
h) and Ra

M(Re0h;u
a
h, p

a
h)

are the Dirichlet, Neumann and mixed boundary residuals of the nullfunctions, re-
spectively, given by

Ra
D(uah)|∂κ∩ΓD

= u+
h |∂κ∩ΓD

,

Ra
N(Re0h;u

a
h, p

a
h)|∂κ∩ΓN

=
1

Re0h

∂um,+h

∂n
− pm,+h n|∂κ∩ΓN

,
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Fig. 7.1. Example 1: Half Channel with a Sudden Expansion
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7. Numerical experiments. In this section we present a series of numerical
examples to demonstrate the practical performance of the proposed a posteriori er-
ror estimator derived in Proposition 6.1 within an automatic adaptive refinement
procedure which is based on employing 1-irregular quadrilateral elements. Here, the
elements are marked for refinement/derefinement on the basis of the size of the el-
emental error indicators, |ηS,κ| in the case of a steady bifurcation and |ηH,κ| for a
Hopf bifurcation, using the fixed fraction refinement algorithm with refinement and
derefinement fractions set to 25% and 10%, respectively. In each of the examples
shown in this section, we set Cσ = 10, p = 2, and p̂ = 3.

Throughout this section, the underlying linear systems are solved using the MU-
tifrontal Massively Parallel Solver, see [2, 3, 4] for details. In order to obtain the initial
guesses for the damped Newton method, once a base solution has been obtained for
a specific Reynolds number, we employ the Arnoldi Package (ARPACK) of Lehoucq,
Sorensen and Yang [35] to calculate the most dangerous eigenvalue and correspond-
ing eigenfunctions. ARPACK is most adept at finding highly separated eigenvalues
with large magnitude and not necessarily those with small real part that determine
linear stability. To overcome this difficulty we employ the modified Cayley transform
outlined in Cliffe et al. [12], for example.

7.1. Example 1. In this first example we consider the flow of an incompressible
fluid in a channel with a sudden expansion; the ratio of the half-width of expanded
section of the channel, r, to that of the inlet section channel, R, being set to 3 :1 and
the outlet being sufficiently long to allow Poiseuille flow to have fully developed at
the exit, see Figure 7.1. On entry, ΓIn, the flow is also assumed to be Poiseuille; no
slip Dirichlet conditions are imposed on ΓWall, a Neumann condition is enforced on
ΓOut and the mixed boundary condition is imposed on ΓCenter.

In this setting it is well known, see [23], that at around Re = 40 there is a steady
symmetry breaking bifurcation, where a real eigenvalue crosses the imaginary axis.
In fact, computations on very fine grids reveal that the critical Reynolds number
has the value Re0 ≈ 40.55787701084642. We begin with a uniform starting grid,
comprising 640 elements and perform 8 adaptive refinement steps based on employing
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No. Elements Base DOF Null DOF Re0h |Re0 −Re0h| τ
640 14080 14080 40.4923 6.557E-02 1.83
1129 24838 24838 40.5410 1.689E-02 2.34
2029 44638 44638 40.5480 9.832E-03 1.99
3601 79222 79222 40.5516 6.225E-03 1.63
6130 134860 134860 40.5542 3.696E-03 1.40
10501 231022 231022 40.5558 2.055E-03 1.27
17980 395560 395560 40.5568 1.103E-03 1.17
30796 677512 677512 40.5573 5.785E-04 1.09
52654 1158388 1158388 40.5576 3.064E-04 1.00

Table 7.1
Example 1: Adaptive algorithm

Fig. 7.2. Example 1: Full mesh after 5 refinement steps

the fixed fraction refinement strategy. Table 7.1 shows the number of elements, the
number of degrees of freedom in computing the primal base solution and the primal
null function, the error in the critical Reynolds number and the error effectivities
τ = |

∑

κ∈Th
ηS,κ|/|Re0 − Re0h|. We notice immediately that, as the mesh is refined,

the error effectivities tend to unity, indicating that our error indicator is performing
extremely well.

Figures 7.2 and 7.3(a) show the mesh after 5 refinement steps; the latter shows
the detail of the mesh in the vicinity of the reentrant corner. Although refinement has
been performed throughout the computational domain, we observe from Figure 7.3(a)
that the majority of the refinement has been performed in the vicinity of the reentrant
corner, as we would expect. For brevity we do not show plots of all the components
of the primal base and dual solution and primal and dual eigenfunctions; instead, we
show a contour plot of the y–component of the dual base solution in Figure 7.3(b), in
order to indicate how the refinement has been directed towards the structure of the
dual solution.

Finally, in Figure 7.4 we show a comparison of the adaptive refinement strategy
with a uniform mesh refinement algorithm; here the error in the computed critical
Reynolds number is plotted against the number of degrees of freedom (in the primal
base problem) for both strategies. We notice immediately that the adaptive refinement
strategy is superior to uniform refinement, in the sense that, for a given number
of degrees of freedom, the error in the critical Reynolds number computed on the
adaptively refined meshes is always less than the corresponding quantity computed
using simply uniform refinement of the mesh. Indeed, on the final grid we notice over
an order of magnitude reduction in the error when the former strategy is employed in
comparison to the case when uniform mesh refinement is exploited.

7.2. Example 2. In this second example we consider flow in a channel with a
cylinder centered on the midline of the channel partially blocking the flow; the radius
of the cylinder is r and the half-width of the channel is R, see Figure 7.5. We consider
a blockage ratio r :R = 1:2, with Poiseuille flow on entry, no slip conditions on ΓWall
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Fig. 7.3. Example 1: Detail near expansion (a) Mesh after 5 refinement steps (b) Contour plot
of z0

y

10
4

10
5

10
6

10
−4

10
−3

10
−2

10
−1

 

 
Uniform Refinement
Adaptive Refinement

Degrees of Freedom

|R
e0

−
R
e0 h
|

Fig. 7.4. Example 1: Convergence of the error in the approximation of the critical Re.

and ΓB, a Neumann condition on ΓOut and a mixed condition on ΓCenter. For this
configuration a symmetry breaking Hopf bifurcation occurs at around Re = 120, see
[17]. In fact, computations on a fine grid reveal that Re0 ≈ 123.6378680537182.

An initial starting grid with 924 elements, which is fitted around the blockage,
is employed. The performance of the proposed adaptive algorithm is presented in
Table 7.2. As before, we show in tabular form the number of elements, the number of
degrees of freedom for both the primal base and primal null solutions, the error in the
critical Reynolds number and the error effectivities τ = |

∑

κ∈Th
ηH,κ|/|Re0 − Re0h|.

In this case we see an improvement of the effectivities in comparison to the previous
example; in this case the effectivities tend to unity in much fewer refinement steps,
this possibly being due to greater regularity of the dual base and null solutions.

Figures 7.6(a) and 7.7(a) show the adaptively refined mesh after 5 refinement
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Fig. 7.5. Example 2: Half Channel with a Cylindrical Blockage

No. Elements Base DOF Null DOF Re0h |Re0 −Re0h| τ
924 20328 20328 139.951 16.314 1.02
1632 35904 35904 124.234 5.963E-01 1.12
2898 63756 63756 123.659 2.110E-02 0.98
5235 115170 115170 123.636 1.708E-03 1.10
9420 207240 207240 123.638 2.450E-04 1.18
16647 366234 366234 123.638 1.972E-04 1.00

Table 7.2
Example 2: Adaptive algorithm.

steps, the former showing the full extent of the mesh, while the latter shows the
mesh detail near to the blockage. We notice that the majority of refinement has
been performed downstream of the blockage, with substantially less being undertaken
upstream. Figures 7.6(b) and 7.7(b) show contour plots of the x–component of the
dual null solution za over the same portion of the domain as depicted in Figures 7.6(a)
and 7.7(a), respectively. It can be seen that some of the mesh refinement in the right
portion of the domain has been carried out in response to the fine structures present
in the dual null solution.

Finally, we again compare the error in the computed critical Reynolds number,
using both the proposed adaptive refinement strategy and an algorithm exploiting
uniform mesh refinement; see Figure 7.8. As in the previous example, we observe that
the adaptive refinement strategy is superior to uniform refinement, in the sense that,
for a given number of degrees of freedom, the error in the critical Reynolds number
computed on the adaptively refined meshes is always less than the corresponding
quantity computed using simply uniform refinement of the mesh. Indeed, on the
final grid we notice over two orders of magnitude reduction in the error when the
former strategy is employed in comparison to the case when uniform mesh refinement
is exploited.

8. Conclusions. In this article we have considered the reliable computation of
a given critical parameter at which a nonlinear problem undergoes a steady or Hopf
bifurcation. Particular attention has been devoted to the a posteriori error estimation
and adaptive mesh refinement of DG finite element approximations of the bifurcation
problem associated with the steady incompressible Navier–Stokes equations. On the
basis of exploiting a duality argument, reliable error estimates of the critical Reynolds
number at which a steady pitchfork or Hopf bifurcation occurs when the underlying
physical system possesses reflectional or Z2 symmetry have been developed. The
application of these bounds within an automatic adaptive refinement strategy clearly
highlights the flexibility of the proposed a posteriori error indicator for accurately
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(a)

(b)

Fig. 7.6. Example 2: (a) Full mesh after 5 refinement steps and (b) Contour plot of za
x

(a) (b)

Fig. 7.7. Example 2: Detail near blockage (a) Mesh after 5 refinement steps (b) Contour plot
of za

x

locating both steady pitchfork and Hopf bifurcations. The extension of the ideas
developed in this article to bifurcation problems involving incompressible fluid flow
in systems with O(2)-symmetry will be developed in the companion article [13].
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