
Optimized Reprocessing of Documents Using Stored
Processor State

James A. Ollis David F. Brailsford Steven R. Bagley
Document Engineering Laboratory

School of Computer Science
University of Nottingham

Nottingham NG8 1BB, UK
{jao,dfb,srb}@cs.nott.ac.uk

ABSTRACT
Variable Data Printing (VDP) allows customised versions of
material such as advertising flyers to be readily produced.
However, VDP is often extremely demanding of computing
resources because, even when much of the material stays invariant
from one document instance to the next, it is often simpler to re-
evaluate the page completely rather than identifying just the
portions that vary.

In this paper we explore, in an XML/XSLT/SVG workflow and in
an editing context, the reduction of the processing burden that can
be realised by selectively reprocessing only the variant parts of the
document. We introduce a method of partial re-evaluation that
relies on re-engineering an existing XSLT parser to handle, at
each XML tree node, both the storage and restoration of state for
the underlying document processing framework. Quantitative
results are presented for the magnitude of the speed-ups that can
be achieved.

We also consider how changes made through an appearance-based
interactive editing scheme for VDP documents can be
automatically reflected in the document view via optimised XSLT
re-evaluation of sub-trees that are affected either by the changed
script or by altered data.

Categories and Subject Descriptors
E.1 [Data]: Data Structures — Trees; I.7.2 [Document and Text
Processing]: Document Preparation — Markup languages; I.7.4
[Document and Text Processing]: Electronic Publishing.

General Terms
Languages, Documentation

Keywords
XSLT, SVG, VDP, variable data documents, document editing,
document authoring, partial re-evaluation.

1. INTRODUCTION
A previous paper [1] has introduced the idea of preparing material
for Variable Data Printing (VDP) using an XML-based workflow
starting with a document expressed in Document Description

Format (DDF) and then transforming it using XSLT. With the
help of an XSLT-based layout engine, a final version of each
printable instance is generated, as SVG output.

In a further paper [2] there is a description of how an interactive
editor interface can be superposed on top of this underlying
XSLT-based model. However, in doing this, the changes signalled
in the interactive editor are fed back into an unchanged, ‘under the
hood’, transformation chain. The whole page is then recomputed,
including all the parts of it that are completely unaffected by the
editing process. At this stage the performance penalties of this
approach begin to be felt.

Clearly, things could be speeded up by recomputing just those
items on a page that are actually affected by a given edit. This in
turn leads to a consideration of the suitability of XML and XSLT
for isolating exactly what needs to be done and ensuring that any
recomputation is optimised, and free from side-effects.

For the purposes of this work, we have concentrated on a
simplified, yet representative, document workflow as shown in
figure 1.1.

Fig 1.1 – Example document processing workflow

2. DOCUMENT AUTHORING TOOLS
The major problem when authoring a variable data document is
that of providing the author with a good representation of a
‘typical’ document instance, in circumstances where, by the very
nature of VDP, a wide range of variants will eventually have to be
produced.

Some tools, such as uDirect [3] and CatBase [4] work on the
premise of providing a placeholder component that can be
included in the design of the document, which is then later
replaced with the variable content when the set of result
documents is generated.

To provide the author with a complete view of the final
documents, without waiting for the full set to be produced, some
of the tools provide functionality for generating a limited set of
preview documents using sample data. Although this is an
improvement over simply displaying a view full of placeholders,
the sample document set still takes time to produce and, without
generating an unfeasibly large number of instances, it cannot
convey the full diversity of what might be produced.

The authoring tool produced by Lumley et al [2], tackles the
problem of placeholder components by working directly on a
result instance. This approach provides the author with a complete

FINAL DRAFT of Short Paper accepted for:
ACM DocEng’10, September 21–24, 2010, Manchester, United Kingdom.
Copyright 2010 Ollis, Brailsford and Bagley.

view of the document, but there is still little to show the effects of
the variable content on the rest of the document and, as already
noted, the document instance needs to be fully regenerated after
every edit made to the document.

We propose an alternative authoring process where the author is
presented with an interactive instance of the document in which
each variable component can be separately modified to show
different representations based upon alternative variable data.
This allows the author to explore the effects of the variable data
on the document, while still providing a complete instance on
which to work.

We now discuss the ways in which an implementation of partial
re-evaluation can speed up this kind of editing model, thereby
reducing the waiting time for the newly edited instance to be
displayed.

3. REPROCESSING THE DOCUMENT
If a document is fully reprocessed after every edit the amount of
processing depends on the total size and complexity of the page.
Our aim is to break this coupling and to make the amount of
reprocessing depend only on the complexity of the edit being
performed.

3.1. Partial Re-Evaluation
The idea of implementing lazy processing for XML-based
documents, and particularly for laziness in the XSLT processing
itself, has been investigated by Noga et al. [5,6]. In their
workflows it is the case that only part of the output from a
transformation might be required and so processing was triggered
in a demand-driven way whenever a given XML node was
accessed. The work by Villard and Layaïda [7] was similar in
spirit. They analysed a set of changes to be made to a document,
as a result of data values being altered, and tried to calculate the
necessary recomputation of the XSLT script in order to effect
those changes.

In our case we have to go beyond implementing laziness simply
for a ‘one off’ usage, either to generate part of a document or to
implement a single set of changes. For us the edit/re-process
iteration will be activated many times during editing and since the
editor needs a standard document instance to work on it also
follows that it has to be initialised with a fully calculated
document.

Since the XSLT script in our example workflow produces the
resulting SVG document by binding in the content of the variable
data file, each component (images, text etc.) in the SVG is
generated directly from a given node in the XSLT script. This
mapping allows us the possibility of regenerating selected
components in the result SVG document by re-executing specific
instructions in the XSLT script. However, simply knowing which
instructions to re-execute is not sufficient to allow us to regenerate
the required component(s). Each instruction in the stylesheet is
executed with the processor in a particular state, which is
dependent on the execution of previous instructions. It is therefore
essential for this state to be set up correctly at every tree node,
before attempting any partial re-evaluation of the document.

4. STORING PROCESSOR STATE
In order to restore the state of the underlying XSLT processor at a
given point, such that we can repeat the execution of part of the
stylesheet, we must first acquire and store the relevant state during
the initial execution. The state of the processor comprises the
following pieces of information:

• The current mode
• The current context node
• The current position
• The names and values of any variables and parameters

that are in scope

To link this information to the related point in the XSLT
stylesheet we also need to produce a reference to the associated
instruction that was executed.

There are potentially two ways of retaining this state information
during the execution of the stylesheet: either modify the stylesheet
to generate the state information as extra XML
elements/attributes, or modify the XSLT processor so that it
produces the information separately to the output.

4.1. Modifying the Stylesheet
The idea of modifying an XSLT stylesheet to handle the storage
of associated information within the document tree itself has been
investigated in previous work [8]. We researched the possibilities
of storing the extra information either as extra elements, or as
additional attributes added to existing elements.

In summary, the ‘additional attributes’ approach worked
particularly well for the investigations being undertaken at the
time but we could not adopt it in the present researches owing to
its fragility in the unlikely, but perfectly possible, event that
XSLT state became dependent on the precise number of attributes
at some given node.

4.2. Working Within the Processor
Many of the problems of state storage can best be tackled by
adapting the XSLT processor itself. The task of retrieving the
required execution state information is then made easier by having
direct access to the processor’s internal data structures. The values
of variables, parameters etc. can be accessed and copied at any
point during execution, without the need to modify the original
stylesheet.

The problem of separating the stored state information from the
original output of the stylesheet is also solved in this approach,
since we have control over the output streams used by the
processor. The original result stream can be left unaffected, whilst
the state information produced as the processor executes can be
stored internally, or redirected to a separate output stream.

Although existing XSLT processors are clearly not designed with
partial re-evaluation in mind, and therefore there is potentially
significant refactoring required, we believe that adapting an
existing processor is a better solution than developing a new
processor from scratch. The main benefit is that of having a fully
working XSLT processor from the very beginning which allows
us to concentrate fully on the partial re-evaluation functionality.

In selecting an XSLT processor for modification there are many
potential candidates such as Saxon [9], Xalan [10], etc. We opted
to use Saxon in this work due to its support for XSLT 2.0 and its
reputation of being one of the best XSLT processors available.

5. PROCESSOR MODIFICATIONS
The execution process performed by Saxon can be divided into
the following stages:

• XSLT script and input XML document parsing
• Stylesheet compilation
• Stylesheet execution.

Each of these stages requires some augmentation to provide the
functionality necessary to support partial re-evaluation.

5.1. Input Data Representation
The initial parsing of the XSLT script into an internal tree
representation is typical of that performed by many XML-based
tools and is left largely unchanged. However, in order to support
partial re-evaluation easily, as a result of changes to the input
data, a new switchable tree representation of the input XML
document is used.

Because the result document that is created is entirely dependent
upon the variable data instance used, the document author must be
able to change this data in order to view alternative versions of the
document that might be produced. Simply selecting a complete
new input document limits flexibility and also complicates the
process of recording the processor’s execution state. Therefore, a
new document model is utilized in which all variations of nodes
and content are amalgamated into a single structure that can be
morphed into any single instance by selecting a particular
combination of the alternative nodes available. This structure
implements the standard DOM interface, and so can be directly
processed both by Saxon and also by any other parts of the editing
framework that are aware of its underlying nature.

5.2. Stylesheet Compilation
The next stage in the internal processing pipeline is that of
compiling the parsed XSLT stylesheet into a series of instructions
that will later be executed. This process is augmented by
maintaining relationships between the compiled instructions (Java
objects) and their corresponding tree nodes. These relations are
necessary when selecting and re-executing the specific
instructions that relate to parts of the stylesheet that we wish to
partially re-evaluate.

A second major modification supports changes to the stylesheet as
a result of an editing operation. Any changes made to the parsed
XSLT stylesheet tree must be reflected in its compiled form if
they are to take effect when the document is re-executed.
Therefore, functionality must be added to support the removal of
instructions from the compiled executable when the
corresponding node has been removed from the stylesheet tree. In
most cases, this “un-compilation” is simply a case of removing
the relevant instruction object from its parent, but in others a
series of changes made to related objects must also be reversed.

5.3. Stylesheet Execution
The final execution stage sees the most changes. Each of the
instructions in the compiled form of the stylesheet must record the
state of the processor when it is executed. To achieve this, the
execution routines built into the various instruction classes have
been modified to save the required information to a global ‘state
tree’ held within the processor. To minimise the amount of
memory required, the state tree is structured so that each entry
stores only new or updated values — any unchanged or previously
defined variables etc. are referenced from preceding states.

As well as storing the state during execution of the compiled
instructions, support must also be added to allow for this
information to be used during partial re-evaluation of the
stylesheet. Therefore, the output generated by our revised version
of Saxon extends the standard DOM interface by exposing the
relations between the output elements and the instructions that
generated them. Using these relations, along with a reference to
the correct entry in the state tree, we can call upon the processor

to re-execute the stylesheet starting at a given instruction.
Functionality has been added to support the restoration of the
processor state from the supplied values stored within the state
tree.

Before performing the re-execution of the selected instruction(s),
we change the output stream used by Saxon through which any
result nodes are sent. By creating a new stream and diverting the
newly produced output through it, we can capture the generated
result tree fragment. This can then be used to replace the existing
subtree in the original result document.

6. AUTOMATIC RE-EVALUATION
In a typical editing environment, it is essential that the currently
displayed view is an accurate representation of the document.
Therefore, when an edit is made to the document the view must be
redrawn, with the additional possibility of some parts of the result
document requiring reprocessing. Consequently, it makes sense
for the reprocessing to be performed if, and only if, the current
document view requires it. This moves the decision of what parts
of the result document are in need of re-evaluation to the result
document itself and eliminates redundant re-processing of
components that are not displayed. The problem remains however,
that each node in the result tree has no knowledge of the edit that
has been performed.

To solve this problem, references to nodes in the input data tree
are stored as part of the processor state every time a node is
accessed during processing. A similar process of recording the
specific instruction objects used in the stylesheet is also
performed. Therefore, when the result document tree is accessed
as part of the necessary re-drawing, each node has access to
references to all the input data nodes and instruction objects that
were used during its creation and can check to see whether these
nodes/instructions have been changed or replaced.

7. RESULTS
The analysis now presented uses three contrasting configurations
to highlight the relative performance of the proposed techniques.
The first of these configurations uses the original version of Saxon
without any modifications. The two remaining setups both use the
augmented version of Saxon that has been developed with support
for the techniques discussed in this paper. The first of these
performs a complete re-evaluation of the document, whereas the
other performs only a partial re-evaluation in accordance with the
techniques discussed earlier in the paper. For simplicity, the three
systems will be referred to as A, B and C respectively.

Table 7.1 shows the performance of the test systems when re-
processing a document that contains only a number of simple lines
of text. An increase in the size/complexity of the document is
modelled by adding greater numbers of text components to the
page. A localised edit is simulated by reprocessing just one of the
lines of text present in the result document.

As expected, the time taken to generate the updated version of the
result document by the plain Saxon system (A) increases in direct
proportion to the number of components. This outcome is also
observed in system B where the entire document in also re-
evaluated. The partially evaluating system, C, maintains a near
constant re-computational cost irrespective of the overall size of
the document.

Components A (ms) B (ms) C (ms)

10 1.137 1.281 0.200

20 1.901 2.125 0.202

40 3.271 3.670 0.202

100 7.692 8.705 0.202

1000 77.326 86.361 0.206

Table 7.1 – Performance results of test systems

Although the values for system B are larger than those for A, the
frequency with which this worse case is encountered in our
partially re-evaluating processor is relatively low. This contrasts
with the workings of system A, where every reprocessing
operation results in just such a worst case. Independence between
document components, and the system of automatic re-evaluation
previously discussed, means that circumstances requiring a full re-
processing of the document, such as those modelled in system B,
are unlikely to occur in practice. Furthermore, since documents
authored from scratch are built one component at a time, the
overheads that are the cause of the larger values for system B are
absorbed in an incremental fashion, thus maintaining low
individual re-processing costs.

8. CONCLUSIONS AND FUTURE WORK
In this paper we have shown how a processing framework can be
optimized for repeated editing of a document using a partially re-
evaluating processor that records, and restores, its execution state.
We are greatly encouraged by the observation, in practice, that the
speed increase, of case C compared to case A, truly does result in
a much more responsive editing experience. It is envisaged that
optimizations, and other improvements, currently being tested
with the reworked DOM implementation and its associated data
structures, can further reduce the initial processing cost and
subsequent overheads.

Given that VDP documents often have a markedly “component
based” nature, the possibility of generating the final SVG output
in the form of SVG COGs [11] has the potential for limiting, or
removing, the dependencies between document components,
thereby leading to a greater localization of affected node sets
within the input document. Furthermore, the possibility of
developing fully componentized source documents offers the
potential to increase their inherent locality, hence making the
performance gains shown in this paper more readily achieved.

A final area of interest is that of extending the work beyond the
realm of editing VDP documents into the phase where they are
actually printed. Rather than generating a series of documents by
fully evaluating with new instance data, it might be possible to
treat each customised data instance as a series of edits to the
previous instance. For sets of documents with a sufficient degree
of commonality, this might well provide a method of efficiently
generating instance documents without the need to perform ahead-
of-time optimizations such as those described in [12, 13].

9. ACKNOWLEDGMENTS
Thanks are due to Hewlett Packard (UK) and EPSRC for
supporting James Ollis’s PhD studentship.

10. REFERENCES
[1] John Lumley, Owen Rees and Roger Gimson, “A Framework

for Structure, Layout & Function in Documents” in
Proceedings of the ACM Symposium on Document
Engineering (DocEng’05), pp. 86–89, ACM Press, 2–4
Novemeber 2005.

[2] John Lumley, Roger Gimson and Owen Rees, “Configurable
Editing of XML-based Variable-data Documents” in
Proceedings of the ACM Symposium on Document
Engineering (DocEng’08), pp. 76–85, ACM Press, 16–19
September 2008.

[3] CatBase Software Ltd., CatBase.
http://www.catbase.com

[4] XMPie, uDirect, http://www.xmpie.com/

[5] Markus Noga, Steffen Schott and Welf Löwe, “Lazy XML
Processing” in Proceedings of the ACM Symposium on
Document Engineering (DocEng’02), pp. 9–18, ACM Press,
20–22 November 2002.

[6] Steffen Schott and Markus Noga, “Lazy XSL
Transformation” in Proceedings of the ACM Symposium on
Document Engineering (DocEng’03), pp. 88-94, ACM Press,
8–9 November 2003.

[7] Lionel Villard and Nabil Layaïda, “An Incremental XSLT
Transformation Processor for XML Document
Manipulation” in Proceedings of the 11th International
Conference on the World Wide Web, pp. 474–485, ACM
Press, 7–11 May 2002.

[8] James Ollis, David Brailsford and Steven Bagley, “Tracking
Sub-Page Components in Document Workflows” in
Proceedings of the ACM Symposium on Document
Engineering (DocEng’08), pp. 86–89, ACM Press, 16–19
September 2008.

[9] Kay, Michael. Saxon XSLT Processor.
http://saxon.sourceforge.net

[10] Apache Software Foundation, The Apache Xalan Project,
http://xalan.apache.org/

[11] Alexander J. Macdonald, David F. Brailsford and Steven R.
Bagley, “Encapsulating and manipulating component object
graphics (COGs) using SVG” in Proceedings of the ACM
Symposium on Document Engineering (DocEng’05),
pp. 61–63, ACM Press, 02–04 November 2005, Bristol, UK.

[12] Alex Macdonald, David Brailsford and John Lumley,
“Evaluating Invariances in Document Layout Functions” in
Proceedings of the ACM Symposium on Document
Engineering (DocEng’06), pp. 25–27, ACM Press, 10–13
October.

[13] Alex Macdonald, David Brailsford, Steven Bagley and John
Lumley, “Speculative Document Evaluation” in Proceedings
of the ACM Symposium on Document Engineering
(DocEng’07), pp. 56–58, ACM Press, 28–31 August 2007.

	Abstract
	1. INTRODUCTION
	2. document authoring tools
	3. Reprocessing the document
	3.1. Partial Re-Evaluation

	4. Storing processor state
	4.1. Modifying the Stylesheet
	4.2. Working Within the Processor

	5. Processor modifications
	5.1. Input Data Representation
	5.2. Stylesheet Compilation
	5.3. Stylesheet Execution

	6. Automatic Re-evaluation
	7. Results
	8. CONCLUSIONS AND Future Work
	9. ACKNOWLEDGMENTS
	10. REFERENCEs

