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Abstract

In this paper we present a residual-based a posteriori error estima-
tor for hp-adaptive discontinuous Galerkin (DG) methods for elliptic
eigenvalue problems. In particular we use as a model problem the
Laplace eigenvalue problem on bounded domains in Rd, d = 2, 3, with
homogeneous Dirichlet boundary conditions. Analogous error estima-
tors can be easily obtained for more complicated elliptic eigenvalue
problems. We prove the reliability and efficiency of the residual based
error estimator and use numerical experiments to show that, under
an hp-adaptation strategy driven by the error estimator, exponential
convergence can be achieved, even for non–smooth eigenfunctions.

1 Introduction

Eigenvalue problems appear naturally in many physical situations, for exam-
ple, when studying acoustics and vibration analysis, the Schrödinger equa-
tion, nuclear reactor criticality and the linear stability analysis of steady
solutions to nonlinear differential equations. A popular numerical method
for the solution of the eigenvalue problem is by a finite element method
(FEM), see Boffi [1] for an up to date review. As with any numerical ap-
proach, it is important to be able to quantify the error made by way of an a
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posteriori error estimate, which can then also be used to drive an adaptive
mesh/polynomial enrichment process. Although a posteriori error analysis
is a mature subject for source problems, for eigenvalues it is still very much
in its infancy; for the conforming FEM we refer the reader to [24, 25, 23]
in the case of residual based error estimates and to [21] for a goal oriented
approach; for the discontinuous Galerkin finite element method (DGFEM)
see [20] where the goal oriented approach is applied in the context of lin-
ear stability analysis for the incompressible Navier–Stokes equations. To
the authors’ knowledge, the work here represents a first attempt at residual
based a posteriori error estimation for a DGFEM applied to an eigenvalue
problem.

As ever, before we can tackle more difficult problems we must understand
how to deal with a simple model problem, in our case the Laplace eigenvalue
with homogeneous Dirichlet boundary conditions:

{
−∆u = λu in Ω ⊂ R

d,

u = 0 on Γ,
(1.1)

where d = 2, 3. Here, Ω is a bounded polygonal domain with boundary Γ =
∂Ω.

The standard weak formulation of (1.1) is to find u ∈ H1
0 (Ω) such that

A(u, v) ≡

∫

Ω
∇u · ∇v dx = λ

∫

Ω
u v dx ≡ λ b(u, v) ∀ v ∈ H1

0 (Ω), (1.2)

where the space H1
0 (Ω) is the standard space of functions with gradient in

L2(Ω) and with zero trace on Γ.
Discontinuous Galerkin methods offer advantages in the context of hp–

adaptivity over standard conforming FEMs. For example they provide in-
creased flexibility in mesh design (irregular grids are admissible) and the
freedom to choose the elemental polynomial degrees without the need to
enforce continuity between elements. In this article we develop a residual
based a posteriori error estimator for the hp–symmetric interior penalty dis-
continuous Galerkin method (SIPG) discretisation (see [2]) of the Laplace
eigenvalue problem (1.1). Following the techniques developed in [11, 8] for
source problems (which in turn are based on [10]), our approach enables
us to show reliability and efficiency of our error estimator. In essence, the
proofs require recasting the DGFEM in a non–consistent manner and de-
composing the DG solution into a suitable conforming and a nonconforming
part. The projection operator from DG space to conforming space and the
corresponding hp–stability estimates used are those in [8]. We show that the
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error in both the eigenvalues and the eigenfunctions can be bounded above
and below in terms of a computable residual based term and an uncom-
putable term, however, we show that, at least for eigenfunctions u ∈ H2(Ω)
the uncomputable term is of higher order than the residual term and can
thus be ignored. In order to show the higher order nature of this term we
require hp– a priori error estimates for both the eigenvalue and eigenvector,
in both the energy norm and L2 norm. As such, we first extend the h– a
priori estimates from [7, 22] to the hp–setting. For eigenfunctions with lower
regularity we show by using numerical experiments that the uncomputable
term can also be regarded as higher order.

The paper is structured as follows. In the next section we introduce the
SIPG discretisation for the model problem after first defining some appro-
priate functions spaces and trace operators. We then prove a priori error
estimates in appropriately defined norms in Section 3. The a posteriori er-
ror estimator is stated in Section 4 and its reliability and efficiency shown,
up to higher order terms. In Section 5 we present a number of numerical
experiments to validate our theoretical results. The first experiment is on a
square domain, while the second is on an L–shaped domain with non-smooth
eigenfunctions; in both cases exponential rates of convergence are attained
under the hp–adaptation strategy.

2 Discontinuous Galerkin discretization

In this section, we introduce the hp-version SIPG finite element method for
the discretization of (1.1).

Throughout, we assume that the computational domain Ω can be par-
titioned into a shape-regular mesh T , i.e. there exists a constant Creg such
that for any element K

hK ≤ Creg ρK , (2.3)

where hK is the diameter of the element and ρK is the diameter of the
biggest ball inscribed in K. Also we assume that the elements are affine
quadrilaterals or hexahedra. We store the elemental diameters in the mesh
size vector h = {hK : K ∈ T }. Let us also denote by h the maximum of all
hK in the mesh. In order to be able to deal with irregular meshes we need
to define the faces of a mesh T . We refer to F as an interior mesh face of T
if F = ∂K∩∂K ′ for two neighboring elements K,K ′ ∈ T whose intersection
has a positive surface measure. The set of all interior mesh faces is denoted
by FI(T ). Analogously, if the intersection F = ∂K ∩ Γ of the boundary
of an element K ∈ T and Γ is of positive surface measure, we refer to F

3



as a boundary mesh face of T . The set of all boundary mesh faces of T
is denoted by FB(T ) and we set F(T ) = FI(T ) ∪ FB(T ). The diameter
of a face F is denoted by hF . We allow for 1-irregularly refined meshes T
defined as follows. Let K be an element of T and F an elemental face in
F(K). Then F may contain at most one hanging node located in the center
of F and at most one hanging node in the middle of each elemental edge of
F .

Next, let us define the jumps and averages of piecewise smooth functions
across faces of the mesh T . To that end, let the interior face F ∈ FI(T )
be shared by two neighboring elements K and Ke where the superscript e
stands for “exterior”. For a piecewise smooth function v, we denote by v|F
the trace on F taken from inside K, and by ve|F the one taken from inside
Ke. The average and jump of v across the face F are then defined as

{{v}} =
1

2
(v|F + ve|F ), [[v]] = v|F nK + ve|F nKe .

Here, nK and nKe denote the unit outward normal vectors on the boundary
of elements K and Ke, respectively. Similarly, if q is piecewise smooth vector
field, its average and (normal) jump across F are given by

{{q}} =
1

2

(
q|F + qe|F

)
, [[q]] = q|F · nK + qe|F · nKe .

On a boundary face F ∈ FB(T ), we accordingly set {{q}} = q and [[v]] = vn,
with n denoting the unit outward normal vector on Γ. The other trace
operators will not be used on boundary faces and are thereby left undefined.

In order to define the hp-version finite element space on T , we begin
by introducing polynomial spaces on elements and faces. To that end, let
K ∈ T be an element. We set

Qp(K) = { v : K → R : v ◦ TK ∈ Qp(K̂) }, (2.4)

with Qp(K̂) denoting the set of tensor product polynomials on the reference

element K̂ of degree less than or equal to p in each coordinate direction on
K̂. In addition, if F ∈ F(K) is a face of K and F̂ the corresponding face
on the reference element K̂, we define

Qp(F ) = { v : F → R : v ◦ TK |F ∈ Qp(F̂ ) }, (2.5)

where Qp(F̂ ) denotes the set of tensor product polynomials on F̂ of degree

less than or equal to p in each coordinate direction on F̂ . Then, we assign
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a polynomial degree pK ≥ 1 with each element K of the mesh T . We then
introduce the degree vector p = { pK : K ∈ T }. We assume that p is of
bounded local variation, that is, there is a constant ̺ ≥ 1, independent of
the mesh T sequence under consideration, such that

̺−1 ≤ pK/pK ′ ≤ ̺ (2.6)

for any pair of neighboring elements K,K ′ ∈ T . For a mesh face F ∈ F(T ),
we introduce the face polynomial degree pF by

pF =

{
max{pK , pKe}, if F = ∂K ∩ ∂Ke ∈ FI(T ),

pK , if F = ∂K ∩ Γ ∈ FB(T ).
(2.7)

For a partition T of Ω and a polynomial degree vector p on T , we define
the hp-version DG finite element space by

Sp(T ) = { v ∈ L2(Ω) : v|K ∈ QpK
(K), K ∈ T }. (2.8)

Let us also denote by p the minimum of all pK in the mesh.
We need several norms in the analysis. The standard L2 norm is denoted

by ‖ · ‖0,Ω and the standard H1 norm is denoted by ‖ · ‖1,Ω. We shall also
need the following DG norms already used in [16, 17, 18]:

Definition 2.1 (DG norm) For any u ∈ S(h) := Sp(T ) +H1(Ω)

|||u|||2T :=

∫

Ω
(∇u)2 dx+

∑

F∈F(T )

∫

F

hF

γp2
F

{{n·∇u}}2 ds+
∑

F∈F(T )

γp2
F

hF

∫

F
[[u]]2 ds .

Definition 2.2 (Energy norm) For any u ∈ S(h)

‖u ‖2
E,T =

∑

K∈T

‖∇u‖2
0,K +

∑

F∈F(T )

γp2
F

hF
‖[[u]]‖2

0,F . (2.9)

Finally, we denote with ‖ · ‖s,Ω the norm of the Sobolev space Hs(Ω),
with s ≥ 1 and when we need to restrict a norm to a subpart B of the
domain Ω, we will state this explicitly, for example by ‖ · ‖0,B, ‖ · ‖1,B, etc.

All the analysis in this work has been developed for the SIPG method
[2, 3] which is known to be a stable and consistent method for sufficiently
large values of γ, see below. The SIPG discrete version of the eigenvalue
problem (1.2 ) is: find (λhp, uhp) ∈ R × Sp(T ) such that

Ahp(uhp, vhp) = λhp b(uhp, vhp) ∀ vhp ∈ Sp(T ), (2.10)
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and with ‖uhp‖0,Ω = 1. The bilinear form Ahp(u, v) is given by

Ahp(u, v) =
∑

K∈T

∫

K
∇u · ∇v dx−

∑

F∈F(T )

∫

F

(
{{∇u}} · [[v]] + {{∇v}} · [[u]]

)
ds

+
∑

F∈F(T )

γp2
F

hF

∫

F
[[u]] · [[v]] ds,

(2.11)

where the gradient operator ∇ is defined elementwise and the parameter
γ > 0 is the interior penalty parameter.

To be able to carry out the a posteriori analysis, we must perform a
non-consistent reformulation of the DG discretization (2.10). To this end,
we introduce the following lifting operator already used in [13, 2]. For any
v belonging to S(h), we define L(v) ∈ [Sp(T )]d by

∫

Ω
L(v) · qhp dx =

∑

F∈F(T )

∫

F
[[v]] · {{qhp}} ds , ∀qhp ∈ Sp(T )d . (2.12)

Now, the following extended bilinear form Ãhp(u, v) can be introduced:

Ãhp(u, v) =
∑

K∈T

∫

K
∇u · ∇v dx−

∑

K∈T

∫

K
L(u) · ∇v + L(v) · ∇u dx

+
∑

F∈F(T )

γp2
F

hF

∫

F
[[u]] · [[v]] ds,

(2.13)

and the corresponding discrete problem is to find (λhp, uhp) ∈ R × Sp(T )
such that

Ãhp(uhp, vhp) = λhpb(uhp, vhp), ∀vhp ∈ Sp(T ). (2.14)

Remark 2.3 It is clear that Ãhp(·, ·) ≡ Ahp(·, ·) on Sp(T ) × Sp(T ) and

Ãhp(·, ·) ≡ A(·, ·) on H1
0 (Ω) ×H1

0 (Ω).

It is straightforward to see that the energy norm related to problem (1.2)
and the standard norm of H1

0 (Ω) are equivalent, i.e.,

∃ ca, Ca > 0 : ca ‖u‖1,Ω ≤ A(u, u)1/2 ≤ Ca ‖u‖1,Ω , for all u ∈ H1
0 (Ω),

which also implies that the bilinear form A(·, ·) is coercive.
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Remark 2.4 The coercivity of the bilinear form A(·, ·) implies that the spec-
trum is positive, because for any eigenpair (λ, u), with ‖u‖0,Ω = 1, we have:

0 < c2a ‖u‖2
1,Ω ≤ A(u, u) = λ b(u, u) = λ.

Another easy-to-prove property for both the bilinear forms A(·, ·) and
b(·, ·) is continuity, i.e.,

∃Ca > 0 : A(u, v) ≤ Ca ‖u‖1,Ω ‖v‖1,Ω, for all u, v ∈ H1
0 (Ω) ,

∃Cb > 0 : b(u, v) ≤ Cb ‖u‖0,Ω ‖v‖0,Ω, for all u, v ∈ L2(Ω).

It has already been proved in [3, Theorem 3.3, Theorem 3.5] that the
bilinear form Ahp(·, ·) is continuous in H2(T ) := {v ∈ L2(Ω) : |v|K ∈
H2(K),∀K ∈ T } for γ > 0, i.e.,

|Ahp(u, v)| ≤ CA|||u|||T |||v|||T , for all u, v ∈ H2(T ) ,

with a constant CA > 0 independent of h and p, and that it is also coercive
in Sp(T ) for sufficiently large γ, i.e.,

Ahp(u, u) ≥ cA|||u|||
2
T , for all u ∈ Sp(T ) ,

with a constant cA > 0 independent of h and p.
Similarly, it has been proved in [13, Lemma 4.3, Lemma 4.4] that the

bilinear form Ãhp(·, ·) is continuous on S(h), i.e.,

|Ãhp(u, v)| ≤ CÃ‖u ‖E,T ‖ v ‖E,T , (2.15)

with a constant CÃ > 0 independent of h and p, and that it is also coercive
in H1

0 (Ω), i.e.,
Ãhp(u, u) = ‖u ‖2

E,T .

3 A priori analysis

In this section we present standard a priori results for the SIPG method
applied to eigenvalue problems. Throughout the section we assume that Ω
is convex so all eigenfunctions of (1.1) are in Hs(Ω), with s ≥ 2.

We start with a very simple result that shows every computed eigenvalue
λhp is positive. It follows naturally that for any eigenfunction ‖uhp‖0,Ω = 1
we have

0 < cA|||uhp|||
2
T ≤ Ahp(uhp, uhp) = λhp b(uhp, uhp) = λhp ,
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since the only v ∈ Sp(T ) such that |||v|||T = 0 is v ≡ 0. Together with Re-
mark 2.4 we can conclude that all eigenvalues of (1.2) and all N = dimSp(T )
eigenvalues of (2.10) are positive and so we can order them as 0 < λ1 ≤ λ2 . . .
and 0 < λ1,hp ≤ λ2,hp . . . ≤ λN,hp, where they have been counted with their
multiplicity. In view of Remark 2.3 we have that the discrete eigenvalues
from both (2.10) and (2.14) coincide.

3.1 Non-pollution and completeness results

The results of non-pollution and completeness of the spectrum for the hp–
case are simple extensions of the analogous results for the h-case only, which
are already present in the literature (see [7]). For brevity, we shall not
present the complete proofs, but just discuss how the results can be extended
to the hp–case.

Theorem 3.1 (Non-pollution of the spectrum) Let B ⊂ C be an open
set containing the spectrum of problem (1.2). Then, for sufficiently large
N = dimSp(T ), B contains the spectrum of (2.10).

The result of non-pollution of the spectrum can be proved following the
same arguments as in the proof of [7, Theorem 4.1], with the only difference
that in the hp-case we have from [3, Theorem 4.1] the following estimate to
be used in [7, Lemma 4.3]: for all f ∈ L2(Ω)

‖ (T − Th)f ‖E,T ≤ C
hmin{p+1,s}−1

ps−3/2
‖f‖0,Ω , (3.16)

where T and Th are respectively the continuous and the discrete solution
operators.

The next two results can be shown in the hp-case by simply extending
[7, Property 2] using [3, Theorem 4.1], i.e., for any f ∈ L2(Ω), let us denote
with w ∈ H2(Ω) the solution of −∆w = f on Ω, and with whp its DG
approximated solution, then

‖w − whp ‖E,T ≤ C
hmin{p+1,s}−1

ps−3/2
‖w‖2,Ω ,

and also

lim
N→∞

inf
whp∈Sp(TN )

‖w − whp ‖E,TN
= 0 ∀w ∈ H2(Ω) .
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Theorem 3.2 (Completeness of the spectrum) For any eigenvalue λ
of (1.2), there is an eigenvalue λhp of (2.10) such that

lim
N→∞

λ− λhp = 0 .

Theorem 3.3 (Non-pollution and completeness of the eigenspaces)
When N → ∞, the eigenspaces of (2.10) converge to the eigenspaces of
(1.2).

The distance of an approximate eigenfunction from the true eigenspace
is a crucial quantity in the convergence analysis for eigenvalue problems
especially in the case of non-simple eigenvalues.

Definition 3.4 Given a function v ∈ L2(Ω) and a finite dimensional sub-
space P ⊂ L2(Ω), we define:

dist(v,P)0,Ω := min
w∈P

‖v − w‖0,Ω . (3.17)

Similarly, given a function v ∈ Sp(T ) and a finite dimensional subspace

P ⊂ H1
0 (Ω), we define:

dist(v,P)E,T := min
w∈P

‖ v − w ‖E,T . (3.18)

Now let λj be any eigenvalue of problem (1.1) and let M(λj) denote
the span of all corresponding eigenfunctions according to (1.1), moreover let
M1(λj) = {u ∈ M(λj) : ‖u ‖E,T = 1}. Also let us denote for an eigenvalue
λj of multiplicity R the space Mhp(λj) spanned by all computed eigenfunc-
tions uj+i,hp, i = 0, . . . , R − 1 such that λj+i,hp is an approximation of λj

for all i.
In order to make further progress we need an assumption on the regu-

larity of solutions of elliptic problems defined by the bilinar form Ahp(·, ·).

Assumption 3.5 We assume that there exists a constant Cell > 0 with
the following property. For f ∈ L2(Ω), if v ∈ H1

0 (Ω) solves the problem
Ahp(v,w) = b(f,w) for all w ∈ H1

0 (Ω), then

‖v‖2,Ω ≤ Cell‖f‖0,Ω , (3.19)

where v ∈ H2(Ω).

Similar assumptions can be found in [6, 7, 2].
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3.2 Identity results

The focus of this subsection is Lemma 3.8 which links together the two
quantities of interest in our convergence analysis, namely the error in the
eigenvalues and the error in the eigenfunctions.

Definition 3.6 (Residual of a linear problem) Let define the residual
for a linear problem −∆u = f , with f ∈ L2(Ω), as

R(u, v) := Ãhp(u, v) − b(f, v) , (3.20)

where u ∈ Hs(Ω), with s ≥ 2, is the solution of the linear problem and
v ∈ S(h).

We extend Definition 3.6 to the eigenvalue case allowing f = λjuj, so
for any eigenpair (λj , uj) of problem (1.1):

R(uj , v) := Ãhp(uj , v) − λjb(uj , v) , (3.21)

where v ∈ S(h).
Let us also recall a useful result for linear problems, which is analogous

to the result in [14, 15]; we omit the details of the proof for brevity.

Lemma 3.7 Let u ∈ Hs(Ω), with s ≥ 2, be the continuous solution of
Ãhp(u, v) = b(f, v), with f ∈ L2(Ω), then for all v ∈ S(h) there exists a
constant C > 0 independent of h and p such that

R(u, v) ≤ C
hmin{p+1,s−1}

ps−1
‖u‖s,Ω‖ v ‖E,T .

Lemma 3.8 (Identity result for the extended form) Let (λl, ul) be a
true eigenpair of problem (1.2) with ‖ul‖0,Ω = 1 and let (λj,hp, uj,hp) be a
computed eigenpair of problem (2.14) with ‖uj,hp‖0,Ω = 1. Then we have:

Ãhp(ul−uj,hp, ul−uj,hp) = λl‖ul−uj,hp‖
2
0,Ω + λj,hp−λl+2R(ul, uj−uj,hp).

Proof. Using the linearity of the bilinear form Ãhp(·, ·) and using (1.2) ,
(2.14), we have

Ãhp(ul−uj,hp, ul−uj,hp) = λl + λj,hp − 2Ãhp(ul, uj,hp)+2λlb(ul, uj,hp)−2λlb(ul, uj,hp) .
(3.22)

Furthermore, by analogous arguments we obtain

‖ul − uj,hp‖
2
0,Ω = 2 − 2b(ul, uj,hp). (3.23)
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Substituting (3.23) into (3.22) we obtain

Ãhp(ul−uj,hp, ul−uj,hp) = λl‖ul−uj,hp‖
2
0,Ω + λj,hp−λl−2Ãhp(ul, uj,hp)+2λlb(ul, uj,hp) .

Finally, noticing that Ãhp(ul, uj) = λlb(ul, uj) and using (3.21) we obtain
the result.

3.3 Convergence results

The proof of the next lemma is analogous to the proof of Theorem 3.3 in
[14], so it is omitted for brevity.

Lemma 3.9 For all f ∈ L2(Ω), such that Tf ∈ Hs(Ω), with s ≥ 2, we have
that

‖(T − Th)f‖0,Ω ≤ C
hmin(p+1,s)

ps−1/2
‖Tf‖s,Ω .

Theorem 3.10 Suppose that Ω is a convex domain and suppose 1 ≤ j ≤
dimSp(T ). Let λj be an eigenvalue of (1.1) with corresponding eigenspace
M(λj) of dimension R ≥ 1 and let (λj,hp, uj,hp) be an eigenpair of (2.10).
Then, for a sufficiently rich DG finite element space

(i)

|λj − λj,hp| ≤ C2
1

h2(min{p+1,s}−1)

p2s−3
. (3.24)

(ii)

dist(uj,hp,M1(λj))E,T ≤ C1
hmin{p+1,s}−1

ps−3/2
. (3.25)

(iii)

dist(uj,hp,M1(λj))0,Ω ≤ C2
hmin{p+1,s}

ps−1/2
. (3.26)

The constants C1, C2 depend on the spectral information {(λℓ, uℓ) : ℓ =
1, . . . , j}, the separation constant ρ, the constants Cell, Creg in Assump-
tion 3.5 and in (2.3), respectively.

Proof.
In order to prove (i) we recall equation (3.18) from [6], i.e.,

|λj − λj,hp| ≤ sup
0≤i≤R

|λj − λj+i,hp| ≤ C(δh(M(λj), Sp(T )))2 ,
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where
δh(M(λj), Sp(T )) := sup

u∈M(λj)

‖u ‖E,T =1

inf
vhp∈Sp(T )

‖u− vhp ‖E,T .

Then the result comes from [3, Theorem 4.1].
In order to prove (ii) we use the arguments in [7]. In particular we have

that if λj is an eigenvalue of (1.1), then it is straightforward to see that
µj = λ−1

j is an eigenvalue of T . Let Γ be a circle in the complex plane
centered at µj which does not enclose any other point of σ(T ). As in [7,
Sections 5-6], using the spectral projections

E =
1

2πi

∫

Γ
(z − T )−1 dz , Eh =

1

2πi

∫

Γ
(z − Th)−1 dz ,

we have

dist(uj,hp,M1(λj))E,T ≤ sup
uhp∈Mhp(λj)

‖uhp ‖E,T =1

inf
v∈M(λj )

‖ v − uhp ‖E,T

= sup
uhp∈Sp(T )

‖uhp ‖E,T =1

inf
v∈L2(Ω)

‖Ev − Ehuhp ‖E,T .

Then taking v = uhp we have

dist(uj,hp,M1(λj))E,T ≤ sup
uhp∈Sp(T )

‖uhp ‖E,T =1

‖Euhp − Ehuhp ‖E,T

≤ ‖E − Eh‖L(Sp(T ),Sp(T )) ≤ ‖E − Eh‖L(L2(Ω),Sp(T )) ,

where the norm of an operator is defined as:

‖P‖L(A,B) := sup
v∈A

‖v‖A=1

‖Pv‖B .

Using an argument similar to [6, Theorem 3.11], we have that

‖E − Eh‖L(L2(Ω),Sp(T )) ≤ C‖T − Thp‖L(L2(Ω),Sp(T )) .

To conclude the proof we use (3.16).
In order to prove (iii), we use an argument similar to Lemma 3.5 in [30]:

dist(uj,hp,M1(λj))0,Ω ≤ ‖u− uj,hp‖0,Ω = ‖u− Ehu‖0,Ω ,
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where u ∈ M(λj) is the eigenvector such that uj,hp = Ehu. We know
that such a u exists because for a sufficiently rich finite element space Eh :
M(λj) →Mhp(λj) is one-to-one, see [4, 5].

‖u−Ehu‖0,Ω = ‖[E −Eh]u‖0,Ω =
1

2π

∥∥∥
∫

Γj

(z − Th)−1(T − Th)
u

z − µ
dz

∥∥∥
0,Ω

≤ C sup
z∈Γj

‖(z − Th)−1‖L(L2,L2)‖(T − Th)u‖0,Ω

where ‖(z − Th)−1‖L(L2,L2) is bounded because from standard DG analysis
‖T − Th‖L(L2,L2) tends to zero. Then the result follows from Lemma 3.9.

4 Energy norm a posteriori error estimates

The main results in this section are reliability for eigenfunctions and eigen-
values (Theorem 4.5 and Theorem 4.6) and efficiency (Theorem 4.13) for
the residual error estimator introduced below. The reliability ensures that,
up to a constant and to asymptotic high order terms, the error estimator ηj

gives rise to an a posteriori upper bound for errors in both eigenvalues and
eigenfunctions, on the other hand, the efficiency ensures that, up to a con-
stant and to asymptotic high order terms, the true error bounds the error
estimator ηj from above. Together these two results ensures that the com-
putable quantity ηj is linearly proportional to the true error, up to higher
order terms. So it is safe to assume that the true error decays on a sequence
of meshes where the a posteriori error ηj decays, too. The main results in
this section holds also for non convex domains Ω.

As in [11, 8], we shall make use of an auxiliary 1-irregular mesh T̃ of
affine quadrilaterals. We construct the auxiliary mesh T̃ refining the mesh
T such that no-hanging nodes in T are hanging nodes in T̃ as well.

We then introduce the following auxiliary DG finite element space on
the mesh T̃ :

Sep(T̃ ) = { v ∈ L2(Ω) : v| eK
◦ T eK

∈ Qp eK
(K̂), K̃ ∈ T̃ },

where the auxiliary polynomial degree vector p̃ is defined by p eK
= pK for

all children K̃ ∈ T̃ of an element K ∈ T .
The next theorem, which comes from [11, 8], defines an averaging oper-

ator for the auxiliary mesh T̃ .
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Theorem 4.1 There exists an averaging operator Ihp : Sp(T ) → Sc
ep(T̃ ),

where
Sc

ep(T̃ ) = Sep(T̃ ) ∩H1
0 (Ω) , (4.27)

that satisfies

∑

eK∈eT

‖∇(v − Ihpv)‖
2
L2( eK)

.
∑

F∈F(T )

p2
Fh

−1
F ‖[[v]]‖2

L2(F ), (4.28)

∑

eK∈eT

‖v − Ihpv‖
2
L2( eK)

.
∑

F∈F(T )

p−2
F hF ‖[[v]]‖

2
L2(F ). (4.29)

In the sequel, we shall use the symbols . and & to denote bounds that
are valid up to positive constants independent of h and p.

4.1 Residual-based error estimator

Let (λj,hp, uj,hp) be a computed eigenpair of (2.10). For each element K ∈ T ,
we introduce the following local error indicator ηj,K which is given by the
sum of the three terms:

η2
j,K = η2

j,RK
+ η2

j,FK
+ η2

j,JK
, (4.30)

where the first term ηj,RK
is the residual in the interior of the element K:

η2
j,RK

= p−2
K h2

K‖λj,hpuj,hp + ∆uj,hp‖
2
0,K ,

the second term ηj,FK
is the residual on the faces of K in the interior of the

domain Ω:

η2
j,FK

=
1

2

∑

F∈FI(K)

p−1
F hF ‖[[∇uj,hp]]‖

2
0,F ,

and finally the residual ηj,JK
measures the jumps on the faces of K of the

approximate solution uj,hp:

η2
j,JK

=
1

2

∑

F∈FI(K)

γ2p3
F

hF
‖[[uj,hp]]‖

2
0,F +

∑

F∈FB(K)

γ2p3
F

hF
‖[[uj,hp]]‖

2
0,F .

Summing (4.30) on all elements we obtain the global error estimator ηj :

η2
j =

∑

K∈T

η2
j,K . (4.31)
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Remark 4.2 As already remarked in [9, 11] for the two-dimensional case
and in [8] for the three-dimensional case, the weight in the jump residual
ηj,JK

is of the different order p3
Fh

−1
F , which is suboptimal with respect to the

powers of pF when compared to the jump terms in the interior penalty form
Ahp(u, v), which is of order p2

Fh
−1
F on each face. This suboptimality is due

to the possible presence of hanging nodes in the underlying mesh T . On
meshes without irregular nodes, Theorem 4.5 holds true with the following
jump residual:

η̂2
j,JK

=
1

2

∑

F∈FI(K)

γ2p2
F

hF
‖[[uj,hp]]‖

2
0,F +

∑

F∈FB(K)

γ2p2
F

hF
‖[[uj,hp]]‖

2
0,F ,

with associated estimator η̂:

η̂2
j =

∑

K∈T

η̂2
j,K with η̂2

j,K = η2
j,RK

+ η2
j,FK

+ η̂2
j,JK

. (4.32)

In Section 5 we show that both ηj and η̂j lead to exponential convergence to
the true solution on the sequence of adaptively refined meshes.

4.2 Reliability

In order to prove the reliability, we decompose a computed eigenfunction
uj,hp into a conforming part and a remainder:

uj,hp = uc
j,hp + ur

j,hp,

where uc
j,hp = Ihpuj,hp ∈ Sc

ep(T̃ ) ⊂ H1
0 (Ω) is defined using the averaging

operator Ihp in Theorem 4.1 and the remainder ur
j,hp is given by ur

j,hp =

uj,hp − uc
j,hp ∈ Sep(T̃ ). It is straightforward to show that ‖uj − uj,hp ‖E,T ≤

‖uj − uj,hp ‖E, eT
, therefore, since uj − uc

j,hp ∈ H1
0 (Ω),

‖uj − uj,hp ‖E,T ≤ ‖uj − uj,hp ‖E, eT
≤ ‖uj − uc

j,hp‖E, eT
+ ‖ur

j,hp‖E, eT

= ‖uj − uc
j,hp‖E,T + ‖ur

j,hp‖E, eT (4.33)

Then to prove reliability for eigenfunctions it is just necessary to bound both
terms in the right hand side of (4.33) using ηj . The proof that

‖ur
hp‖E, eT

. ηj, (4.34)
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is equivalent to [8, Lemma 4.1] and we omit it for brevity.
On the other hand, to bound ‖uj − uc

j,hp ‖E,T in (4.33), we split Ahp(·, ·) =
Dhp(·, ·) +Khp(·, ·) where

Dhp(u, v) =
∑

K∈T

∫

K
∇u · ∇v dx+

∑

F∈F(T )

γp2
F

hF

∫

F
[[u]] · [[v]] ds,

Khp(u, v) = −
∑

F∈F(T )

∫

F
{{∇u}} · [[v]] ds −

∑

F∈F(T )

∫

F
{{∇v}} · [[u]] ds.

The form Dhp(u, v) is well-defined for u, v ∈ S(h), whereas Khp(u, v) is only
well-defined for discrete functions u, v ∈ Sp(T ). Furthermore, we have

A(u, v) = Dhp(u, v) ∀u, v ∈ H1
0 (Ω), (4.35)

as well as

Ahp(u, v) = Dhp(u, v) +Khp(u, v) ∀u, v ∈ Sp(T ). (4.36)

We also recall the standard hp-approximation results from [9, Lemma 3.7]:
for any v ∈ H1

0 (Ω), there exists a function vhp ∈ Sp(T ) such that

p2
Kh

−2
K ‖v − vhp‖

2
0,K . ‖∇v‖2

0,K ,

‖∇(v − vhp)‖
2
0,K . ‖∇v‖2

0,K ,

pKh
−1
K ‖v − vhp‖

2
0,∂K . ‖∇v‖2

0,K ,

(4.37)

for any element K ∈ T .

Lemma 4.3 For any v ∈ H1
0 (Ω), for all (λj, uj) solving (1.2) and for all

(λj,hp, uj,hp) solving (2.10), we have

∫

Ω
λjuj(v−vhp) dx−Dhp(uj,hp, v−vhp)+Khp(uj,hp, vhp) .

(
ηj+

h

p
‖λjuj−λj,hpuj,hp‖0

)
‖ v ‖E,T ,

where, vhp ∈ Sp(T ) is the hp-approximation of v satisfying (4.37).

Proof. For brevity, let us set

T =

∫

Ω
λjuj(v − vhp) dx−Dhp(uj,hp, v − vhp) +Khp(uj,hp, vhp).
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Integrating the volume terms by parts we obtain

T =
∑

K∈T

∫

K
(λjuj + ∆uj,hp)(v − vhp) dx−

∑

F∈F(T )

γp2
F

hF

∫

F
[[uj,hp]] · [[v − vhp]] ds

−
∑

F∈FI(T )

∫

F
[[∇uj,hp]]{{v − vhp}} ds −

∑

F∈F(T )

∫

F
{{∇vhp}} · [[uj,hp]] ds

≡ T1 + T2 + T3 + T4.

Using the Cauchy-Schwarz inequality and the approximation properties (4.37)
we have that

T1 =
∑

K∈T

∫

K
(λj,hpuj,hp + ∆uj,hp)(v − vhp) dx+

∑

K∈T

∫

K
(λjuj − λj,hpuj,hp)(v − vhp) dx

.
( ∑

K∈T

η2
j,RK

) 1
2
‖ v ‖E,T +

h

p
‖λu− λhpuj,hp‖0‖ v ‖E,T .

For term T2, we again exploit the Cauchy-Schwarz inequality to conclude
that

T2 ≤
( ∑

F∈F(T )

γ2p3
Fh

−1
F ‖[[uj,hp]]‖

2
0,F

) 1
2
( ∑

F∈F(T )

pFh
−1
F ‖[[v − vhp]]‖

2
0,F

) 1
2
.

Thus, from (2.3), (2.6) and (4.37), we obtain the bound

T2 .
( ∑

K∈T

η2
j,JK

) 1
2
‖ v ‖E,T .

Similarly, term T3 can be bounded by

T3 ≤
( ∑

F∈FI (T )

p−1
F hF ‖[[∇uj,hp]]‖

2
0,F

) 1
2
( ∑

F∈FI (T )

pFh
−1
F ‖{{v − vhp}}‖

2
0,F

) 1
2

.
( ∑

K∈T

η2
j,FK

) 1
2
‖ v ‖E,T .

In a similar way we use Cauchy-Schwarz inequality, (2.3) and (2.6) for term
T4:

T4 . γ−1
( ∑

F∈F(T )

γ2p2
Fh

−1
F ‖[[uj,hp]]‖

2
0,F

) 1
2
( ∑

K∈T

p−2
K hK‖∇vhp‖

2
0,∂K

) 1
2
.
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From the standard hp-version inverse trace inequality, see [29], we conclude
that

T4 . γ−1
( ∑

K∈T

η2
j,JK

) 1
2
( ∑

K∈T

‖∇vhp‖
2
0,K

) 1
2
,

furthermore, using the approximation properties in (4.37),

∑

K∈T

‖∇vhp‖
2
0,K .

∑

K∈T

‖∇(v − vhp)‖
2
0,K +

∑

K∈T

‖∇v‖2
0,K . ‖ v ‖2

E,T .

Hence

T4 . γ−1
( ∑

K∈T

η2
j,JK

) 1
2
‖ v ‖E,T .

The bounds for T1, T2, T3, and T4 imply the assertion.
We are now ready to bound ‖uj − uc

j,hp ‖E,T in (4.33).

Lemma 4.4 Let (λj,hp, uj,hp) be a computed eigenpair of (2.10) and let
(λj , uj) be an eigenpair of (1.2). Then we have for uc

j,hp = Ihp uj,hp that:

‖uj − uc
j,hp ‖E,T . ηj +

(
1 +

h

p

)
‖λjuj − λj,hpuj,hp‖0.

Proof. Since uj − uc
j,hp ∈ H1

0 (Ω), we have that

‖uj − uc
j,hp ‖

2
E,T = A(uj − uc

j,hp, v), (4.38)

where v = uj − uc
j,hp. To bound the right-hand side of (4.38), we note that,

by (4.35),

A(uj − uc
j,hp, v) =

∫

Ω
λjujv dx−A(uc

j,hp, v) =

∫

Ω
λjujv dx−Dhp(u

c
j,hp, v).

It is straightforward to see that Dhp(u
c
j,hp, v) = Dhp(uj,hp, v) +R, with

R = −
∑

eK∈eT

∫

eK
∇ur

j,hp · ∇v dx .

Furthermore, from (2.10) and (4.36), we have

∫

Ω
λj,hpuj,hpvhp dx = Dhp(uj,hp, vhp) +Khp(uj,hp, vhp),
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where vhp ∈ Sp(T ) is the hp-approximation of v. Combining these results,
we thus arrive at

A(uj − uc
j,hp, v) =

∫

Ω
(λjuj − λj,hpuj,hp)vhp dx+

∫

Ω
λjuj(v − vhp) dx

−Dhp(uj,hp, v − vhp) +Khp(uj,hp, vhp) −R .
(4.39)

Using Poincaré’s inequality and (4.37) we have

‖vhp‖0,Ω .
h

p
‖∇v‖0,Ω + ‖v‖0,Ω ≤

(h
p

+ Cp

)
‖∇v‖0,Ω,

then from (4.39) we obtain:

A(uj − uc
j,hp, v) ≤

(h
p

+ Cp

)
‖λjuj − λj,hpuj,hp‖0,Ω‖ v ‖E,T +

∫

Ω
λjuj(v − vhp) dx

−Dhp(uj,hp, v − vhp) +Khp(uj,hp, vhp) −R.

The estimate in Lemma 4.3 now yields

A(uj −u
c
j,hp, v) .

(
ηj +

(
Cp +

h

p

)
‖λjuj −λj,hpuj,hp‖0

)
‖ v ‖E,T + |R|. (4.40)

It remains to bound |R|; from the Cauchy-Schwarz inequality and (4.34),
we readily obtain

|R| . ‖ur
j,hp ‖E, eT

‖ v ‖E,T . ηj‖ v ‖E,T . (4.41)

The desired result now follows from (4.40) and (4.41).
The proof of Theorem 4.5 readily follows from (4.33), (4.34) and Lemma 4.4.

Theorem 4.5 (Reliability for eigenfunctions) Let (λj,hp, uj,hp) be a com-
puted eigenpair of (2.10) converging to the true eigenvalue λj of multiplicity
R ≥ 1. Then we have that:

dist(uj,hp, E1(λj))E,T . ηj +
(
1 +

h

p

)
‖λjuj − λj,hpuj,hp‖0 ,

where uj is the minimizer of (3.17).

Proof. From (4.33), (4.34) and Lemma 4.4 we have that:

dist(uj,hp, E1(λj))E,T ≤ ‖uj − uc
j,hp‖E,T + ‖ur

j,hp‖E, eT

. ηj +
(
1 +

h

p

)
‖λjuj − λj,hpuj,hp‖0 .
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Theorem 4.6 (Reliability for eigenvalues) Let (λj,hp, uj,hp) be a com-
puted eigenpair of (2.10) and converging to λj of multiplicity R ≥ 1. Then
we have that:

|λj − λhp| . η2
j +G ,

where

G =
(
1+

h

p

)2
‖λjuj−λj,hpuj,hp‖

2
0+2ηj

(
1+

h

p

)
‖λjuj−λj,hpuj,hp‖0+2|R(ûj , ûj−uj,hp)|,

where uj is the minimizer of (3.17) and ûj is the minimizer of (3.18).

Proof. Applying (2.15) to Lemma 3.8 and also noticing that λj‖ûj−uj,hp‖
2
0,Ω >

0 we have

|λj − λj,hp| . dist(uj,hp, E1(λj))
2
E,T + 2|R(ûj , ûj − uj,hp)| .

Applying Theorem 4.5

|λj − λj,hp| .
(
ηj +

(
1 +

h

p

)
‖λjuj − λj,hpuj,hp‖0

)2
+ 2|R(ûj , ûj − uj,hp)|.

The next two corollaries identify the higher order terms in the results of
Theorem 4.5 and Theorem 4.6.

Corollary 4.7 Under the same assumptions as in Theorem 4.5 and with
the extra condition that E1(λj) ⊂ Hs(Ω), with s ≥ 2, we have that the term(
1 + h

p

)
‖λjuj −λhpuj,hp‖0 is asymptotically higher in order compared to ηj.

Proof. By the triangle inequality we have

‖λjuj−λj,hpuj,hp‖0 ≤ ‖λjuj−λjuj,hp‖0+‖λjuj,hp−λj,hpuj,hp‖0 = λj‖uj−uj,hp‖0+|λj−λj,hp| .

In view of Theorem 3.10 we have that

dist(uj,hp, E1(λj))E,T = O
(hmin{p+1,s}−1

ps−3/2

)
, ‖λjuj−λj,hpuj,hp‖0 = O

(hmin{p+1,s}

ps−1/2

)
,

leaving the only possibility that ηj is the leading term.

Corollary 4.8 Under the same assumptions as in Theorem 4.6 and with
the extra condition that E1(λj) ⊂ Hs(Ω), with s ≥ 2, we have that the term
G is asymptotically higher in order compared to η2

j .
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Proof. From the Corollary 4.7 and from Theorem 3.10(ii) we already know

that both η2 and |λ−λhp| are of order O
(

h2(min{p+1,s}−1)

p2s−3

)
. So what remains

to be proved is that all the terms in G are higher in order. From simple
applications of Theorem 3.10 and Corollary 4.7

‖λjuj−λj,hpuj,hp‖
2
0 = O

(h2(min{p+1,s})

p2s−1

)
, ηj‖λu−λhpuj,hp‖0 = O

(h2 min{p+1,s}−1

p2s−2

)
.

Then, applying Lemma 3.7 we have

|R(ûj , ûj − uj,hp)| .
hmin{p+1,s−1}

ps−1
‖u‖s,Ω‖ ûj − uj,hp ‖E,T .

Using [3, Theorem 4.1]) we obtain

|R(ûj , ûj − uj,hp)| .
hmin{p+1,s−1}+min{p+1,s}−1

p2s−5/2
.

It is possible that for some values of p and s, min{p+ 1, s − 1} = min{p+
1, s} − 1, making the term |R(ûj , ûj − uj,hp)| of the same order in h as η2

j .
However in general we have that

min{p+ 1, s} − 1 = min{p, s− 1} ≤ min{p+ 1, s − 1} ,

making |R(ûj , ûj − uj,hp)| of order equal or higher. Moreover in p the term
|R(ûj , ûj − uj,hp)| is definitely higher order compared to η2

j .

4.3 Efficiency

In this section we prove the efficiency of the error estimator ηj . Unfortu-
nately a proof of efficiency robust in both h and p is not available, so we
present a proof robust only in h as in many other works [8, 11, 12].

In the proof we exploit bubble functions, which are in general smooth
and positive real valued functions with compact supports and bounded by
1 in the L∞ norm. Also, these functions have local support, so it is possible
to define a bubble function on each element and on each edge in the mesh.
Furthermore, it is possible to prove inverse estimates for bubble functions of
standard results involving norms, thanks to their regularity. These estimates
are collected in the next proposition. We define for any element K a real-
valued bubble function ψK with support in K which vanishes on the edge
of K and for any edge F in the interior of the domain we need a real-
valued bubble function ψF that vanishes outside the closure of K+

F ∪ K−
F .

In [12, Lemma 3.3], such bubble functions ψτ , ψf are constructed using
polynomials. Moreover, it is proven that ψτ , ψf satisfy the following lemma:
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Lemma 4.9 We have

‖v‖0,K . ‖ψ
1/2
K v‖0,K , (4.42)

‖ψKv ‖E,K . h−1
K ‖v‖0,K , (4.43)

and on an interior edge F

‖w‖0,F . ‖ψ
1/2
F w‖0,F , (4.44)

‖ψf w‖0,K+
F
∪K−

F
. h

1/2
F ‖w‖0,F , (4.45)

‖ψf w ‖E,K+
F
∪K−

F
. h

−1/2
F ‖w‖0,F , (4.46)

hold for all τ ∈ Th, all F ∈ FI(T ), for all polynomials v and w and where
K+

F and K−
F are the two elements sharing F .

In the following we bound each single term forming ηj with the energy
norm of the error plus, where necessary, high order terms.

Lemma 4.10 Let (λj,hp, uj,hp) be a computed eigenpair of (2.10) converging
to λj of multiplicity R ≥ 1. Then we have that:

( ∑

K∈TK

η2
j,JK

)1/2
. dist(uj,hp, E1(λj))E,T .

Proof. Let uj be the minimizer of (3.18). Since [[uj ]] = 0 then for any K

η2
j,JK

=
1

2

∑

F∈FI(K)

γ2p3
F

hF
‖[[uj,hp − uj]]‖

2
0,F +

∑

F∈FB(K)

γ2p3
F

hF
‖[[uj,hp − uj ]]‖

2
0,F

.
∑

F∈F(K)

γp2
F

hF
‖[[uj,hp − uj]]‖

2
0,F ≤ ‖uj − uj,hp ‖

2
E,ωK

,

where the set ωK contains K and its neighbours. The result follows by
summing the contribution from all elements.

Lemma 4.11 Let (λj,hp, uj,hp) be a computed eigenpair of (2.10) converging
to eigenvalue λj of multiplicity R ≥ 1. Then we have that:

( ∑

K∈TK

η2
j,RK

)1/2
. dist(uj,hp, E1(λj))E,T +

h

p
‖λj,hpuj,hp − λjuj‖0,T ,

where uj be the minimizer of (3.18).

22



Proof. For each element K let W |K = h2
Kp

−2
K (λj,hpuj,hp + ∆uj,hp)ψK , then

using (4.42)

η2
j,RK

=
h2

K

p2
K

‖λj,hpuj,hp + ∆uj,hp‖
2
0,K .

∫

K
(λj,hpuj,hp + ∆uj,hp)W dx .

Since λju+ ∆uj = 0 is satisfied at least weakly, we then have:

η2
j,RK

.

∫

K
(λj,hpuj,hp − λjuj + ∆(uj,hp − u))W dx .

Then using the fact that W |∂K = 0, we have by integration by parts and
using (4.43):

η2
j,RK

.

∫

K
(λj,hpuj,hp − λjuj)W −∇(uj,hp − u) · ∇W dx

≤ ‖u− uj,hp ‖E,K‖W ‖E,K + ‖λj,hpuj,hp − λjuj‖0,K‖W‖0,K

.
(
h−1

K ‖uj − uj,hp ‖E,K + ‖λj,hpuj,hp − λjuj‖0,K

)h2
K

p2
K

‖λj,hpuj,hp + ∆uj,hp‖0,K .

Dividing both sides by hKp
−1
K ‖λj,hpuj,hp + ∆uj,hp‖0,K we end up with

ηj,RK
. p−1

k ‖uj − uj,hp ‖E,K +
hK

pK
‖λj,hpuj,hp − λjuj‖0,K ,

which leads to the result by summing the contributions from all elements
and noticing that p−1

k ≤ 1.

Lemma 4.12 Let (λj,hp, uj,hp) be a computed eigenpair of (2.10) converging
to λj of multiplicity R ≥ 1. Then we have that:

( ∑

K∈TK

η2
j,FK

)1/2
. dist(uj,hp, E1(λj))E,T +

h1/2

p1/2
‖λjuj − λj,hpuj,hp‖0,

where uj is the minimizer of (3.18).

Proof. For each element K let W =
∑

F∈FI(T ) hF p
−1
F [[∇uj,hp]]ψF , then
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using (4.44), [[∇uj ]] = 0 on interior edges and integration by parts

∑

K∈Th

η2
j,FK

.
∑

F∈FI(T )

∫

F
[[∇uj,hp]]W ds =

∑

F∈FI(T )

∫

F
[[∇uj,hp −∇uj ]]W ds

=
∑

F∈FI(T )

∫

K+
F
∪K−

F

(∆uj,hp − ∆uj)W + (∇uj,hp −∇uj) · ∇W dx

=
∑

F∈FI(T )

∫

K+
F
∪K−

F

(∆uj,hp + λj,hpuj,hp)W + (∇uj,hp −∇uj) · ∇W dx

+
∑

F∈FI(T )

∫

K+
F
∪K−

F

(λjuj − λj,hpuj,hp)W dx .

Using Lemma 4.11 and (4.45) we have

∑

F∈FI(T )

∫

K+
F
∪K−

F

(∆uj,hp + λj,hpuj,hp)W dx

.
(
‖uj − uj,hp ‖E,T +

h

p
‖λj,hpuj,hp − λjuj‖0,T

)( ∑

F∈FI(T )

h−2
F ‖W‖2

0,K+
F
∪K−

F

)1/2

.
(
‖uj − uj,hp ‖E,T +

h

p
‖λj,hpuj,hp − λjuj‖0,T

)( ∑

K∈Th

η2
j,FK

)1/2
.

Then, using the continuity and (4.46),

∑

F∈FI(T )

∫

K+
F
∪K−

F

(∇uj,hp −∇uj) · ∇W dx . ‖uj − uj,hp ‖E,T

( ∑

F∈FI (T )

‖W ‖2
E,K+

F
∪K−

F

)1/2

. ‖uj − uj,hp ‖E,T

( ∑

K∈Th

η2
j,FK

)1/2
.

Finally,

∑

F∈FI(T )

∫

K+
F
∪K−

F

(λjuj − λj,hpuj,hp)W dx . ‖λjuj − λj,hpuj,hp‖0,Ω

( ∑

F∈FI(T )

‖W‖2
0,K+

F
∪K−

F

)1/2

.
h1/2

p1/2
‖λjuj − λj,hpuj,hp‖0,Ω

( ∑

K∈Th

η2
j,FK

)1/2
.
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The proof of the efficiency result Theorem 4.13 follows in a straightfor-
ward manner from Lemmas 4.10-4.12.

Theorem 4.13 Let (λj,hp, uj,hp) be a computed eigenpair of (2.10) converg-
ing to the true eigenvalue λj of multiplicity R ≥ 1. Let also ηj be the error
estimator for (λj,hp, uj,hp), then we have the bound

ηj . dist(uj,hp, E1(λj))E,T +
h1/2

p1/2
‖λj,hpuj,hp − λjuj‖0,Ω .

5 Numerical results

In this section we have collected numerical results regarding our a posteriori
error estimator with the clear aim to show the reliability of the error esti-
mator and the exponential converge of the error on the sequence of adapted
meshes.

All the numerics in this section have been carried out using the AptoFEM
package (www.aptofem.com) on a single processor desktop machine. In par-
ticular we used ARPACK [26] to compute the eigenvalues and MUMPS [27]
to solve the linear systems.

The adaptive algorithm that we use is very simple: initially we choose
the index j of the eigenvalue that we want to follow, then starting from a
conforming coarse mesh we compute the eigenpair (λj,hp, uj,hp) and the error
estimator ηj . After this we mark elements for refinement using a simple
fixed-fraction strategy based on values ηj,K; the choice between refining
the marked elements in h or p is made by testing the local analyticity of
the computed eigenfunction on the marked elements using the technique
developed in [28]. Finally, a refined mesh is generated and the process
restarted from the computation of (λj,hp, uj,hp) on this refined mesh. The
process is halted only when the value of ηj is smaller than a prescribed
tolerance or when a maximum number of iterations have been carried out.

5.1 Unit square

The first example that we present, is problem (1.1) on the unit square [0, 1]2.
The initial mesh is a conforming structured mesh of 16 elements and the
initial order of polynomials is 2. In Figure 1 we plot the true error for
the first four eigenvalues against the number of degrees of freedom (DOFs).
The solid lines represent the simulations using the error estimator ηj and the
dotted lines represent the same simulations, but using the error estimator η̂j .
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Figure 1: Convergence for the first eigenvalues on the unit square.
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Figure 2: Values of the constant Cη for the first four eigenvalues.
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As can be seen, both error estimators give very similar results and in both
cases the plots are (roughly) straight on a linear-log scale, which indicates
that exponential convergence is attained for this smooth problem.

Moreover, in Figure 2 we plot the computed values of the hidden constant
Cη in Theorem 4.6, i.e., Cη = |λj − λhp|/η

2
j . The solid lines represent the

values of Cη for ηj and the dotted lines represent the values of Cη for η̂j .
The fact that all the values of Cη are in a very small range, support the
fact that both the error estimators ηj and η̂j are reliable and efficient and
that all the extra terms in the bound in Theorem 4.6 really are higher order
terms. Also, the range of values for Cη seems independent of both the error
estimator used and the index of the eigenvalue that has been considered.
Just for comparison we plot in Figure 3 the convergence lines for the first
eigenvalue using ηj either with h-adaptivity or hp-adaptivity. In Figure 4
we show the mesh generated by the hp-adaptivity using the error estimator
ηj for the first eigenvalue and after 11 iterations of mesh refinements.
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Figure 3: Comparison between h and hp adaptivity for the first eigenvalue
on the unit square.
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Figure 4: hp-adapted mesh obtained for the first eigenvalue on the unit
square.

5.2 L-shaped domain

The second example is problem (1.1) on the L-shaped domain Ω = [0, 1]2/([0.5, 1]×
[0, 0.5]). This problem is of particular interest because it is not smooth due
to the reentrant corner. The initial mesh is a conforming structured mesh
of 12 elements and the initial order of polynomials is 2. In Figure 5 we plot
the true error for the first four eigenvalues against the number of degrees
of freedom. As before, the solid lines represent the simulations using the
error estimator ηj and the dotted lines represent the same simulations, but
using the error estimator η̂j . As can be seen, both error estimators give
very similar results and in both cases the plots are (roughly) straight on a
linear-log scale, which indicates that exponential convergence is attained for
this non–smooth problem.

Moreover, in Figure 6 we plot the computed values of the hidden con-
stant Cη in Theorem 4.6, in the same way as in the previous example. From
the plots it is clear that we can also draw the same conclusions as previously.
Just for comparison we plot in Figure 7 the convergence lines for the first

28



50 100 150

10
−5

10
0

DOFs1/2

|λ
j−

λ j,h
p|

 

 

eig 1
eig 2
eig 3
eig 4

Figure 5: Convergence for the first eigenvalues on the L-shaped domain.
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Figure 6: Values of the constant Cη for the first four eigenvalues.
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eigenvalue using ηj either with h-adaptivity or hp-adaptivity. In Figure 8
we show the mesh generated by the hp-adaptivity using the error estimator
ηj for the first eigenvalue and after 21 iterations of mesh refinements. Un-
surprisingly the elements are very small around the reentrant corner, where
the singularity sits and the orders of polynomials increase moving away from
the singularity.
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Figure 7: Comparison between h and hp adaptivity for the first eigenvalue
on the L-shaped domain.
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Figure 8: hp-adapted mesh obtained for the first eigenvalue on the L-shaped
domain.
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