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In this article we develop tha priori error analysis of so—called two-grigh—version discontinuous Galerkin finite element
methods for the numerical approximation of strongly monetesecond—-order quasilinear partial differential equstidn this
setting, the fully nonlinear problem is first approximatedaocoarse finite element spaké€7x, P). The resulting ‘coarse’
numerical solution is then exploited to provide the necgsdata needed to linearize the underlying discretizatiothe finer
spaceV (7, p); thereby, only a linear system of equations is solved onittter spacd/ (75, p). Numerical experiments
confirming the theoretical results are presented.
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This article is devoted to the priori error analysis ofip—version symmetric interior penalty (SIP) discontinuowe®kin
finite element methods (DGFEMSs) for the numerical approxiomaof strongly monotone second—order quasilinear partia
differential equations. In particular, we shall consider &nalysis of the so—called two-grid version of the undieglgcheme.
We point out that two-grid methods were originally introéddoy Xu [1-3]; see, also, [4-11] for related work. The con-
struction of a two-grid method to compute the numerical agjpnation of a nonlinear partial differential equation magy
summarised as follows. LeX andY be two Hilbert spaces. Further, we wridé(-;-,-) : X x X x Y — R to denote a
semilinear form, with the convention thaf(-; -, -) is linear with respect to the arguments to the right of theismton. We
suppose that is the unique solution to the variational problem: finch X such that

N(u;u,v) =0  Yvey. (1)

Problem (1) can be thought of as the weak formulation of aineat partial differential equation aki whose unique solution
isu € X. In practice (1) cannot be solved in closed form but needsetafgproximated numerically. For the purposes
of this paper, we shall consider genehal-version finite element approximations to (1). In order tastauct a Galerkin
approximation to this problem, we consider a sequence défidimensional spac€sY,, ,,}, parameterized by the positive
discretization parametehsandp. Simultaneously, consider a sequence of finite—dimenkspaaed Y}, ,, }. For the purposes
of this paperX;, , andY}, ,, can be thought of as finite element spaces consisting ofiseg@olynomial functions of degree
p on a partition7},, of granularityh, of the computational domain. The (standard) Galerkin exiprationu, ,, of u is then
sought inX}, ;, as the solution of the finite—dimensional problem

N (Un,p; Whps Vhp) = 0 Vonp € Yhp, 2)

whereN}, (v, ¢) © Xnp X Xpp x Yy, — R. The computation ofy, , defined in (2) involves the numerical solution of a
potentially very large number of coupled nonlinear equetjavhich can be extremely computationally expensive. Téye k
idea of the two-grid approach is as follows: given ‘coarsimite element space¥y p C X, , andYy p C Y}, first solve
the nonlinear problem: findy » € Xy p such that

Nu,p(um,piump,vap) =0 Yog.p € Y, p. 3)

Finally, usinguy, p as appropriate data, compute the two grid approximatioripby solving thelinear problem: find
use € Xp,p such that

Nip(ww,pyuag, vhp) =0 Yonp € Y p. (4)

In this article we consider the two-grid SIP DGFEM numerigaproximation of the following quasi-linear elliptic badn
ary-value problem:

=V (u(@, [Vu)Vu) = f inQ, (5)
vu=0 onl, (6)

where(? is a bounded polygonal domainT?, with boundant andf € Ly ().
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Assumption 1 We assume that the nonlinearjiysatisfies the following monotonicity conditions:
1. € COQ x [0,00)) and
2. there exist constants< m,, < M,, such that
my(t—s) < plx,t)t — p(x,s)s < M, (t—s), t>s>0, xec. (7)

For ease of notation we shall suppress the dependencemf and writeu(t) instead ofu(x, t).

The outline of this article is as follows. Section 1 introdathe two-grid SIP DGFEM for the numerical approximation of
(5)—(6). In Section 2 we state anpriori error bound for the proposed numerical scheme, cf. [11]alfinin Section 3 we
present some numerical experiments to validate the theaketsults.

1 Two-Grid hp—Version DGFEM

In this section we discuss the numerical approximation efatoblem (5)—(6) based on employing both the-version of the
(standard) SIP DGFEM, together with its so-called two-gadant. To this end, we first introduce the necessary rmtati
We consider shape-regular mesfigghat partitionQ2 c R? into open disjoint triangles and/or parallelogramsuch that
Q = U,e7, - By h,. we denote the element diametero€ 7, h = max.e7, hx, andn, signifies the unit outward normal
vector tox. We allow the meshes, to bel-irregular, i.e., each edge of any one element 7, contains at most one hanging
node (which, for simplicity, we assume to be the midpointeftorresponding edge). Here, we supposeZha of bounded
local variation i.e., there exists a constgnt > 1, independent of the element sizes, such m‘étg hi/he < p1, for any
pair of elements:, v’ € 7;, which share a common edge= 9x N Ox’.
To eachx € 7, we assign a polynomial degreg > 1 (local approximation order) and define the degree vester{p,, :
k € T, }. We suppose that is also of bounded local variation, i.e., there exists a t@mg, > 1, independent of the element
sizes ang, such that, for any pair of neighbouring elements’ € 7;, p; * < p,./p. < po. With this notation, we introduce
the finite element space

V(Th,p) ={v€La(Q) : v|x € Sp. (k) Ve €T},

whereS,,. (k) = Pp, (k) if kis a triangle andS,, (k) = Q,. (k) if x is a parallelogram. Here, given> 0, P,(x) denotes
the space of all polynomials of degree at mpsh x, while Q,(x) is the space of all polynomials of degree at most each
variable ork.

We shall now define some suitable edge operators that ar@eddar the definition of the proceeding DGFEM. To this
end, associated with the megh, we denote by the set of all interior edges of the partiti@p of 2, and by&? the set of
all boundary edges d, . In addition,&, = £F U £F denotes the set of all edges in the m&sh

Letwv andq be scalar- and vector-valued functions, respectivelyctvhre sufficiently smooth inside each elememt 7;,.
Given two adjacent elements;, x~ € 7;, which share a common edges £7, i.e.,e = Ox™ N Ox~, we writev* andg™
to denote the traces of the functiongndgq, respectively, on the edgg taken from the interior oki, respectively. With
this notation, the averages ofandq atz € ¢ are given by{v}} = 1/2(v" +v~) and{q} = 1/2(¢* + g ), respectively.
Similarly, the jumps of andq atx € e are given by[v] = v™n,+ +v__n,- and[q] = q* - n.+ + ¢~ - n,-, respectively,
wheren,:+ denotes the unit outward normal vector @n*, respectlvely. On a boundary edges £F, we set{v} = v,
{a}} = q, [v] = vn and[q] = q - n, with n denoting the unit outward normal vector on the boundary

For an edge: € &, we defineh. to be the length of the edge; moreover, the edge polynomgrede. is defined by
Pe = max(py, pur ), if e = Ok N Ok’ € EF, andp, = p,, if e =0xNT € EF.

1.1 Standard interior penalty DGFEM discretization

In this section we first introduce the so-calgdndardSIP DGFEM for the numerical approximation of the problem(5).
To this end, given a (fine) mesh partiti@p of €2, together with a corresponding polynomial degree vegtadne standard SIP
DGFEM is defined as follows: find;, , € V (75, p) such that

Anp(Un,p; Uh,ps Vnp) = Fpp(vh,p) (8)
forall vy, , € V(73,p), where

Ap (s u,v) Z / (IVr|)Viau - Vo de + Z /ahp[[u]] [v] d

KETH ec&,

-y / LV )V} - o] + L Vae) Vol - [u]) d

ec&,

Fpp(v Z/fvd:c

KETH
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Here,op,, = vp?/he, Wherey > 0 is a sufficiently large constant (independent of the locairgnt sizes and polynomial
degrees), is thimterior penalty parametercf. [12, 13], for example.

Remark 1.1 The SIP DGFEM scheme defined in (8) is identical to the methiodied in [12], and represents a slight
alternative to the parameterized DGFEMs considered in [13]

1.2 Two-grid interior penalty discretization

In this section, we now proceed to introduce the so—calleddvid SIP DGFEM approximation to (5)—(6). To this end, we
consider two partitiong;, and7y of the computational domain, of granularityh and H, respectively. Here, we refer @,
and7y as the fine and coarse mesh partition$2pfespectively. In particular, we assume tlatand7 are nested in the
sense that, for any;, € 7, there exists an elemenrty € 7y such thatk, C ky. Moreover, to each mesh, and7y, we
associate a corresponding polynomial degree distribgiien {p,, : & € 7,} andP = {P,, : k € Ty}, respectively, with
the property that, giver;, € 7; and the associatedy € 7y, such that;, C ky, the corresponding polynomial degrees
satisfy the following conditionp,,, > P,.,. Given7,, p and7y, P, we may construct the corresponding fine and coarse
finite element spacds(7;, p) andV (7, P), respectively, which satisfy the following conditioW (7, P) C V (7, p).

With this notation, we now introduce thfeo—version of the two-grid algorithm [10, Algorithm 1] for tr&lP DGFEM
discretization of (5)-(6):

1. Compute the coarse grid approximatiom p € V(7x, P) such that

Ag p(unpiunp,vap) = Fap(vap)  Youp € V(Ty,P). 9
2. Determine the fine grid solutiane € V (75, p) such that

App(um piuag, Vhp) = Frp(vhp)  Yonp € V(Zh, p). (10)

Existence and uniqueness of the solution p» for this formulation is demonstrated in [12]. The formutati(10) is a
symmetric interior penalty discretization of a linear @iiic PDE, where the coefficient(|V,ug, p|) is a known function;
thereby, provided that the constanis chosen sufficiently large, the existence and uniquenie®eaolutionusg to this
problem follows immediately, cf., for example, [14].

2 Error Analysis

In this section, we develop treepriori error analysis of the two-grid SIP DGFEM defined by (9)—(I®).this end, we equip
the finite element spadé(7;, p) with the followingenergy norm

112, = IVaol2, 0 + 3 | onsllolds.

ec&, €
We first recall the followinga priori error bound for the standard SIP DGFEM approximation (8)hef quasi-linear
problem (5)—(6).
Lemma 2.1 Assuming that: € C*(Q) andu|, € H*~(k), k., > 2, for k € T}, then the solution;, , € V (75, p) of (8)
satisfies the error bound

h25,;72
2 3 2
lu—=unpln, < Cr Y == [l o) (11)

RET, 'K
with1 < s < min{p, + 1, k. }, p > 1, for s € 7;,, andC is a positive constant independentof. andp.
Proof. See [12] or [13]; we note, however, that the latteckEremploys a slightly different DGFEM formulation. O

Employing Lemma 2.1, we now deduce the following error bofardhe two-grid approximation defined in (10).

Theorem 2.2 Assuming that: € C'(Q), u|,, € H*=(k), k, > 2, for x € T, andul,, € HE=(k), K, > 2, for k € Tp,
then the solutionia € V (75, p) of (10) satisfies the error bounds

HQS,.;,—Q

2 2
l[unp — UQGH}M, < G Z % ||'UJHHKK(H) ) (12)
k€T ~ K
h2s,€72 H2S,€72
2 2 : 2
lu—usclly, < Ci ) =5 |l zen ) + C2 > % el zr e g » (13)
RE€T, P'F w€Ty =

with1 < s, < min{p, + 1, ks }, px > 1, forx € 7p,, 1 < Sy, < min{P,, + 1, K.}, P, > 1,forkx € Ty, andC;y andC}, are
positive constants independentgfh, H, p and P.
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Fig.1 (a) Plot of||un,, — u2c/l,, , againstH, for a fixed fine mesh; (b) Plot dfu — u2c||, , against: as both the fine and coarse meshes
are uniformly refined, withf = h/2.

Proof. See [11] for details. O

Remark 2.3 We note that due to the dependence of the nonlinear coefficien |Vu|, the error bound derived in The-
orem 2.2 indicates that the mesh and polynomial distrilbutibboth the fine and coarse finite element spdc¢€g,, p) and
V(7Tu, P), respectively, should grow at roughly the same rate. This ontrast to théi—versiona priori error analysis
undertaken in [10] in the case when= u(u). Indeed, in this setting, it is shown that for convergenlke,doarse and fine

mesh sized! andh, respectively, should satistif = O(+/h), when the polynomial degree is (uniformly) set equal to one.

3 Numerical Experiment

In this section we present numerical experiments which oortfie theoretical results outlined in Theorem 2.2. To thid,e
we letQ = (0,1)% c R? be the unit square, and define the nonlinear coefficiep{ f8u|) = 2 + ﬁ. Furthermore, we

select the right-hand forcing functighso that the analytical solution to (5)—(6) is givendyz, y) = (1 — 2)y(1 — y)(1 —
2y)e*20(2“1)2. Firstly, we consider the case when the fine m&sfks fixed 256 x 256 uniform square mesh) and the coarse
grid is uniformly refined. In Figure 1(a) we pl@ty, , — UQGHM againstH in the case when the coarse and fine polynomial
degreesP andp, respectively, are both uniform and equal, i®,,= p for all K € 7y andp,, = p for all K € 7;; here, we
consider the case when= 1,2, 3. We clearly observe that the errpuy, , — us ||, , convergesto zero at the rat¥ /17), as

H tends to zero, for each fixed polynomial degree, which is inaigreement with (12). Secondly, we now consider the case
when the fine and coarse meshes are both simultaneouslydr&dopether. To this end, we again consider the case ihand

p are both uniform and equal, and consider a sequence of orlifeefined meshes, such thét = h/2. From Figure 1(b),

we observe thatu — uQGHM convergences to zero at the r&¥éh?), ash tends to zero, for each fixed polynomial degree;

this confirms (13).
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