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In this article we develop thea priori error analysis of so–called two-gridhp–version discontinuous Galerkin finite element
methods for the numerical approximation of strongly monotone second–order quasilinear partial differential equations. In this
setting, the fully nonlinear problem is first approximated on a coarse finite element spaceV (TH , P ). The resulting ‘coarse’
numerical solution is then exploited to provide the necessary data needed to linearize the underlying discretization on the finer
spaceV (Th, p); thereby, only a linear system of equations is solved on the richer spaceV (Th, p). Numerical experiments
confirming the theoretical results are presented.
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This article is devoted to thea priori error analysis ofhp–version symmetric interior penalty (SIP) discontinuous Galerkin
finite element methods (DGFEMs) for the numerical approximation of strongly monotone second–order quasilinear partial
differential equations. In particular, we shall consider the analysis of the so–called two-grid version of the underlying scheme.
We point out that two-grid methods were originally introduced by Xu [1–3]; see, also, [4–11] for related work. The con-
struction of a two-grid method to compute the numerical approximation of a nonlinear partial differential equation maybe
summarised as follows. LetX andY be two Hilbert spaces. Further, we writeN (·; ·, ·) : X × X × Y → R to denote a
semilinear form, with the convention thatN (·; ·, ·) is linear with respect to the arguments to the right of the semi-colon. We
suppose thatu is the unique solution to the variational problem: findu in X such that

N (u;u, v) = 0 ∀v ∈ Y. (1)

Problem (1) can be thought of as the weak formulation of a nonlinear partial differential equation onX whose unique solution
is u ∈ X . In practice (1) cannot be solved in closed form but needs to be approximated numerically. For the purposes
of this paper, we shall consider generalhp–version finite element approximations to (1). In order to construct a Galerkin
approximation to this problem, we consider a sequence of finite–dimensional spaces{Xh,p}, parameterized by the positive
discretization parametersh andp. Simultaneously, consider a sequence of finite–dimensional spaces{Yh,p}. For the purposes
of this paper,Xh,p andYh,p can be thought of as finite element spaces consisting of piecewise polynomial functions of degree
p on a partitionTh, of granularityh, of the computational domain. The (standard) Galerkin approximationuh,p of u is then
sought inXh,p as the solution of the finite–dimensional problem

Nh,p(uh,p;uh,p, vh,p) = 0 ∀vh,p ∈ Yh,p, (2)

whereNh,p(·; ·, ·) : Xh,p ×Xh,p × Yh,p → R. The computation ofuh,p defined in (2) involves the numerical solution of a
potentially very large number of coupled nonlinear equations, which can be extremely computationally expensive. The key
idea of the two-grid approach is as follows: given ‘coarser’finite element spacesXH,P ⊆ Xh,p andYH,P ⊆ Yh,p, first solve
the nonlinear problem: finduH,P ∈ XH,P such that

NH,P (uH,P ;uH,P , vH,P ) = 0 ∀vH,P ∈ YH,P . (3)

Finally, usinguH,P as appropriate data, compute the two grid approximation of (1) by solving thelinear problem: find
u2G ∈ Xh,p such that

Nh,p(uH,P ;u2G, vh,p) = 0 ∀vh,p ∈ Yh,p. (4)

In this article we consider the two-grid SIP DGFEM numericalapproximation of the following quasi-linear elliptic bound-
ary-value problem:

−∇ · (µ(x, |∇u|)∇u) = f in Ω, (5)

u = 0 onΓ, (6)

whereΩ is a bounded polygonal domain inR2, with boundaryΓ andf ∈ L2(Ω).
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Assumption 1 We assume that the nonlinearityµ satisfies the following monotonicity conditions:

1. µ ∈ C0(Ω × [0,∞)) and

2. there exist constants0 < mµ ≤Mµ such that

mµ(t− s) ≤ µ(x, t)t− µ(x, s)s ≤Mµ(t− s), t ≥ s ≥ 0, x ∈ Ω. (7)

For ease of notation we shall suppress the dependence ofµ onx and writeµ(t) instead ofµ(x, t).
The outline of this article is as follows. Section 1 introduces the two-grid SIP DGFEM for the numerical approximation of

(5)–(6). In Section 2 we state ana priori error bound for the proposed numerical scheme, cf. [11]. Finally, in Section 3 we
present some numerical experiments to validate the theoretical results.

1 Two-Grid hp–Version DGFEM

In this section we discuss the numerical approximation of the problem (5)–(6) based on employing both thehp–version of the
(standard) SIP DGFEM, together with its so-called two-gridvariant. To this end, we first introduce the necessary notation.

We consider shape-regular meshesTh that partitionΩ ⊂ R
2 into open disjoint triangles and/or parallelogramsκ such that

Ω =
⋃

κ∈Th
κ. By hκ we denote the element diameter ofκ ∈ Th, h = maxκ∈Th

hκ, andnκ signifies the unit outward normal
vector toκ. We allow the meshesTh to be1-irregular, i.e., each edge of any one elementκ ∈ Th contains at most one hanging
node (which, for simplicity, we assume to be the midpoint of the corresponding edge). Here, we suppose thatTh is of bounded
local variation, i.e., there exists a constantρ1 ≥ 1, independent of the element sizes, such thatρ−1

1 ≤ hκ/hκ′ ≤ ρ1, for any
pair of elementsκ, κ′ ∈ Th which share a common edgee = ∂κ ∩ ∂κ′.

To eachκ ∈ Th we assign a polynomial degreepκ ≥ 1 (local approximation order) and define the degree vectorp = {pκ :
κ ∈ Th}. We suppose thatp is also of bounded local variation, i.e., there exists a constantρ2 ≥ 1, independent of the element
sizes andp, such that, for any pair of neighbouring elementsκ, κ′ ∈ Th, ρ−1

2 ≤ pκ/pκ′ ≤ ρ2.With this notation, we introduce
the finite element space

V (Th,p) = {v ∈ L2(Ω) : v|κ ∈ Spκ
(κ) ∀κ ∈ Th} ,

whereSpκ
(κ) = Ppκ

(κ) if κ is a triangle andSpκ
(κ) = Qpκ

(κ) if κ is a parallelogram. Here, givenp ≥ 0, Pp(κ) denotes
the space of all polynomials of degree at mostp onκ, whileQp(κ) is the space of all polynomials of degree at mostp in each
variable onκ.

We shall now define some suitable edge operators that are required for the definition of the proceeding DGFEM. To this
end, associated with the meshTh, we denote byEI

h the set of all interior edges of the partitionTh of Ω, and byEB
h the set of

all boundary edges ofTh. In addition,Eh = EB
h ∪ EI

h denotes the set of all edges in the meshTh.
Let v andq be scalar- and vector-valued functions, respectively, which are sufficiently smooth inside each elementκ ∈ Th.

Given two adjacent elements,κ+, κ− ∈ Th which share a common edgee ∈ EI
h , i.e.,e = ∂κ+ ∩ ∂κ−, we writev± andq±

to denote the traces of the functionsv andq, respectively, on the edgee, taken from the interior ofκ±, respectively. With
this notation, the averages ofv andq at x ∈ e are given by{{v}} = 1/2(v+ + v−) and{{q}} = 1/2(q+ + q−), respectively.
Similarly, the jumps ofv andq atx ∈ e are given by[[v]] = v+nκ+ + v−

κ−nκ− and[[q]] = q+ ·nκ+ + q− ·nκ− , respectively,
wherenκ± denotes the unit outward normal vector on∂κ±, respectively. On a boundary edgee ∈ EB

h , we set{{v}} = v,
{{q}} = q, [[v]] = vn and[[q]] = q · n, with n denoting the unit outward normal vector on the boundaryΓ.

For an edgee ∈ Eh, we definehe to be the length of the edge; moreover, the edge polynomial degreepe is defined by
pe = max(pκ, pκ′), if e = ∂κ ∩ ∂κ′ ∈ EI

h , andpe = pκ, if e = ∂κ ∩ Γ ∈ EB
h .

1.1 Standard interior penalty DGFEM discretization

In this section we first introduce the so-calledstandardSIP DGFEM for the numerical approximation of the problem (5)–(6).
To this end, given a (fine) mesh partitionTh of Ω, together with a corresponding polynomial degree vectorp, the standard SIP
DGFEM is defined as follows: finduh,p ∈ V (Th,p) such that

Ah,p(uh,p;uh,p, vh,p) = Fh,p(vh,p) (8)

for all vh,p ∈ V (Th,p), where

Ah,p(ψ;u, v) =
∑

κ∈Th

∫
κ

µ(|∇hψ|)∇hu · ∇hv dx +
∑
e∈E

h

∫
e

σh,p[[u]] · [[v]] ds

−
∑
e∈E

h

∫
e

({{µ(|∇hψ|)∇hu}} · [[v]] + {{µ(|∇hψ|)∇hv}} · [[u]]) ds,

Fh,p(v) =
∑

κ∈Th

∫
κ

fv dx.
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Here,σh,p = γp2
e/he, whereγ > 0 is a sufficiently large constant (independent of the local element sizes and polynomial

degrees), is theinterior penalty parameter; cf. [12,13], for example.

Remark 1.1 The SIP DGFEM scheme defined in (8) is identical to the method studied in [12], and represents a slight
alternative to the parameterized DGFEMs considered in [13].

1.2 Two-grid interior penalty discretization

In this section, we now proceed to introduce the so–called two-grid SIP DGFEM approximation to (5)–(6). To this end, we
consider two partitionsTh andTH of the computational domainΩ, of granularityh andH , respectively. Here, we refer toTh

andTH as the fine and coarse mesh partitions ofΩ, respectively. In particular, we assume thatTh andTH are nested in the
sense that, for anyκh ∈ Th there exists an elementκH ∈ TH such that̄κh ⊆ κ̄H . Moreover, to each meshTh andTH , we
associate a corresponding polynomial degree distributionp = {pκ : κ ∈ Th} andP = {Pκ : κ ∈ TH}, respectively, with
the property that, givenκh ∈ Th and the associatedκH ∈ TH , such that̄κh ⊆ κ̄H , the corresponding polynomial degrees
satisfy the following condition:pκh

≥ PκH
. GivenTh, p andTH , P , we may construct the corresponding fine and coarse

finite element spacesV (Th,p) andV (TH ,P ), respectively, which satisfy the following condition:V (TH ,P ) ⊆ V (Th,p).
With this notation, we now introduce thehp–version of the two-grid algorithm [10, Algorithm 1] for theSIP DGFEM

discretization of (5)-(6):

1. Compute the coarse grid approximationuH,P ∈ V (TH ,P ) such that

AH,P (uH,P ;uH,P , vH,P ) = FH,P (vH,P ) ∀vH,P ∈ V (TH ,P ). (9)

2. Determine the fine grid solutionu2G ∈ V (Th,p) such that

Ah,p(uH,P ;u2G, vh,p) = Fh,p(vh,p) ∀vh,p ∈ V (Th,p). (10)

Existence and uniqueness of the solutionuH,P for this formulation is demonstrated in [12]. The formulation (10) is a
symmetric interior penalty discretization of a linear elliptic PDE, where the coefficientµ(|∇huH,P |) is a known function;
thereby, provided that the constantγ is chosen sufficiently large, the existence and uniqueness of the solutionu2G to this
problem follows immediately, cf., for example, [14].

2 Error Analysis

In this section, we develop thea priori error analysis of the two-grid SIP DGFEM defined by (9)–(10).To this end, we equip
the finite element spaceV (Th,p) with the followingenergy norm:

‖v‖2
h,p = ‖∇hv‖2

L2(Ω) +
∑
e∈E

h

∫
e

σh,p|[[v]]|2 ds.

We first recall the followinga priori error bound for the standard SIP DGFEM approximation (8) of the quasi-linear
problem (5)–(6).

Lemma 2.1 Assuming thatu ∈ C1(Ω) andu|κ ∈ Hkκ(κ), kκ ≥ 2, for κ ∈ Th then the solutionuh,p ∈ V (Th,p) of (8)
satisfies the error bound

‖u− uh,p‖2
h,p

≤ C1

∑
κ∈Th

h2sκ−2
κ

p2kκ−3
κ

‖u‖2
Hkκ (κ) , (11)

with 1 ≤ sk ≤ min{pκ + 1, kκ}, pκ ≥ 1, for κ ∈ Th, andC1 is a positive constant independent ofu, h andp.

P r o o f. See [12] or [13]; we note, however, that the latter article employs a slightly different DGFEM formulation.

Employing Lemma 2.1, we now deduce the following error boundfor the two-grid approximation defined in (10).

Theorem 2.2 Assuming thatu ∈ C1(Ω), u|κ ∈ Hkκ(κ), kκ ≥ 2, for κ ∈ Th andu|κ ∈ HKκ(κ), Kκ ≥ 2, for κ ∈ TH ,
then the solutionu2G ∈ V (Th,p) of (10)satisfies the error bounds

‖uh,p − u2G‖2
h,p

≤ C2

∑
κ∈TH

H2Sκ−2
κ

P 2Kκ−3
κ

‖u‖2
HKκ (κ) , (12)

‖u− u2G‖2
h,p ≤ C1

∑
κ∈Th

h2sκ−2
κ

p2kκ−3
κ

‖u‖2
Hkκ (κ) + C2

∑
κ∈TH

H2Sκ−2
κ

P 2Kκ−3
κ

‖u‖2
HKκ (κ) , (13)

with 1 ≤ sk ≤ min{pκ + 1, kκ}, pκ ≥ 1, for κ ∈ Th, 1 ≤ Sk ≤ min{Pκ + 1,Kκ}, Pκ ≥ 1, for κ ∈ TH , andC1 andC2 are
positive constants independent ofu, h,H,p andP .
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Fig. 1 (a) Plot of‖uh,p − u2G‖
h,p

againstH , for a fixed fine mesh; (b) Plot of‖u − u2G‖
h,p

againsth as both the fine and coarse meshes
are uniformly refined, withH = h/2.

P r o o f. See [11] for details.

Remark 2.3 We note that due to the dependence of the nonlinear coefficient µ on |∇u|, the error bound derived in The-
orem 2.2 indicates that the mesh and polynomial distribution of both the fine and coarse finite element spacesV (Th,p) and
V (TH ,P ), respectively, should grow at roughly the same rate. This isin contrast to theh–versiona priori error analysis
undertaken in [10] in the case whenµ = µ(u). Indeed, in this setting, it is shown that for convergence, the coarse and fine
mesh sizesH andh, respectively, should satisfyH = O(

√
h), when the polynomial degree is (uniformly) set equal to one.

3 Numerical Experiment

In this section we present numerical experiments which confirm the theoretical results outlined in Theorem 2.2. To this end,
we letΩ = (0, 1)2 ⊂ R

2 be the unit square, and define the nonlinear coefficient asµ(|∇u|) = 2 + 1
1+|∇u| . Furthermore, we

select the right-hand forcing functionf so that the analytical solution to (5)–(6) is given byu(x, y) = x(1 − x)y(1 − y)(1 −
2y)e−20(2x−1)2. Firstly, we consider the case when the fine meshTh is fixed (256× 256 uniform square mesh) and the coarse
grid is uniformly refined. In Figure 1(a) we plot‖uh,p − u2G‖h,p

againstH in the case when the coarse and fine polynomial
degreesP andp, respectively, are both uniform and equal, i.e.,Pκ = p for all κ ∈ TH andpκ = p for all κ ∈ Th; here, we
consider the case whenp = 1, 2, 3. We clearly observe that the error‖uh,p − u2G‖h,p

converges to zero at the rateO(Hp), as
H tends to zero, for each fixed polynomial degree, which is in full agreement with (12). Secondly, we now consider the case
when the fine and coarse meshes are both simultaneously refined together. To this end, we again consider the case whenP and
p are both uniform and equal, and consider a sequence of uniformly refined meshes, such thatH = h/2. From Figure 1(b),
we observe that‖u− u2G‖h,p convergences to zero at the rateO(hp), ash tends to zero, for each fixed polynomial degree;
this confirms (13).
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