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Abstract

We consider distributions of dislocations in continuum models of crystals which are such

that the corresponding dislocation density tensor relates to a particular class of solvable Lie

group, and discrete structures which are embedded in these crystals. We provide a canonical

form of these structures and, by finding the set of all generators of a corresponding discrete

subgroup, we determine the ‘material’ symmetries that constrain appropriate strain energy

functions.
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1 Introduction

We consider solid crystals with uniform distributions of defects and extend previous treatments

of the symmetry properties of such crystals to include the case where the distribution of defects

corresponds to a certain class of solvable groups. The particular three dimensional class of

solvable groups that we choose to consider is one of two that Auslander, Green and Hahn [1]

highlight as the non–nilpotent Lie groups which contain discrete subgroups, and they call this

particular group S1. This distinguishing property, that S1 contains discrete subgroups, gives

the prospect of an explicit description of the connection between the symmetries of continuous

and discrete models of crystals with corresponding uniform distributions of defects, where the

dislocation density relates to the structure constants of the Lie group S1, though in this paper

we focus just on the discrete structure and its symmetries.
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To make these ideas definite, the reader may refer to Parry [2], [3], [4], where the motivation

for the work is laid out, and the case of nilpotent groups is treated in detail (the nilpotent case

appears to be the simplest non–trivial instance where continuous and discrete symmetries of a

crystal with defects are related in a transparent way). But we also summarize this work briefly

in points (i)–(vii) below, so that one may readily compare the main results of existing work

with those obtained in this paper.

(i) First, we work with Davini’s model of solid crystals, [5], [6], [7], where the kinematical

state of the crystal corresponds to the prescription of three smooth linearly independent

vector fields `1(·), `2(·), `3(·) in a domain which we may take to be R3. Then the

dislocation density is defined by

S = (Sab) =

(
∇∧ da · db
d1 · d2 ∧ d3

)
, a, b = 1, 2, 3, (1.1)

where the fields d1(·),d2(·),d3(·), are dual to the ‘lattice vector fields’ `1(·), `2(·), `3(·).
We deal with configurations (i.e., distributions of lattice vector fields in R3) such that the

tensor S is constant (in R3), and note that the motivation for this is given in [2]. This

condition, that S is constant, is an integrability condition which guarantees that, if the

lattice vector fields are given, the partial differential system

`a (ψ (x,y)) = ∇1ψ (x,y) `a(x), a = 1, 2, 3, (1.2)

where ∇1ψ(·, ·) denotes the gradient of ψ with respect to its first argument, has a solution

for the unknown function ψ. Moreover, the function ψ : R3 × R3 → R3 can be taken to

satisfy the properties required for it to be a Lie group composition function, with identity

element 0 ∈ R3. Thus, given a value of dislocation density tensor S (consistent with the

requirement that S is constant) one may arrive at a particular Lie group by constructing

fields `a(·), a = 1, 2, 3 such that the dual fields satisfy (1.1), and then solving (1.2) for

the group composition function ψ.

(ii) The dislocation density tensor is an elastic invariant, in that if u : R3 → R3 is an elastic

deformation, fields ˜̀
a(·), a = 1, 2, 3 are defined by

˜̀
a (u(x)) = ∇u(x)`a(x), x ∈ R3, a = 1, 2, 3 (1.3)

and S̃ is calculated by the analogue of (1.1), then

S̃ (u(x)) = S(x), x ∈ R3. (1.4)

In particular, if S is constant, so is S̃. So one sees that the composition function ψ

obtained from (1.2) is just one amongst the infinite number of those which may be found

by making different choices of the lattice vector fields, given a value of S.
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(iii) Discrete subgroups of a group corresponding to a particular choice of ψ, given a value S
of the dislocation density tensor, are constructed as follows. Let `a(·), a = 1, 2, 3, satisfy

(1.2), let ν1, ν2, ν3 be given real numbers and define the integral curve through x0 of the

field νa`a(·) to be the solution {x(t); t ∈ R} of the ordinary differential equation

dx

dt
(t) = νa`a (x(t)) , x(0) = x0. (1.5)

(The summation convention operates). Note that ν ≡ νa`a(0) determines the field νa`a(·),
by (1.2), recalling that ψ(0,y) = y by the properties of Lie group composition, with group

identity 0. Define the exponential mapping exp(ν) : R3 → R3 by

(exp(ν)) (x0) = x(1), (1.6)

and the group element e(ν) by

e(ν) = (exp(ν)) (0). (1.7)

It is an important standard result of Lie group theory that

(exp(ν)) (x) = ψ
(
e(ν),x

)
. (1.8)

This equation states that the flow along the integral curves of the lattice vector fields,

which leads to the definition of the mapping exp(ν), corresponds to group multiplication

by the group element e(ν).

(In the case S = 0, choose `a(·) ≡ `a(0) ≡ ea as solution of (1.1), where {e1, e2, e3} is a

basis of R3. Then ψ(x,y) = x+y is a solution of (1.2) which has the properties of a Lie

group composition function. Solving (1.5) gives x(t) = νt+ x0, where ν = (ν1, ν2, ν3) ≡
νaea, so (exp(ν)) (x) = ν + x = ψ(ν,x). Noting that eν = ν, one sees that (1.8)

holds. Flow along the lattice vector fields themselves (where ν = e1 etc.) corresponds to

group multiplication by e1, e2, e3, which in this case represents translation by e1, e2, e3.

Successive translations produce the lattice L = {p : p = naea, na ∈ Z, a = 1, 2, 3}, whose

symmetries are the province of traditional crystallography.)

Consider the set of group elements produced by iterating the flow (from t = 0 to t = 1)

along the lattice vector fields, starting at the origin, by analogy with what is done in the

case S = 0. By (1.8), one obtains the subgroup that is generated by the group elements

e`1 , e`2 , e`3 , if one writes `a = `a(0), a = 1, 2, 3.
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(iv) According to Thurston [8], if the set of points generated in the procedure outlined in (iii)

is discrete (i.e. there is a non-zero minimum separation between the elements), and if one

further condition that we do not make explicit is satisfied, then the corresponding Lie

group must be nilpotent. Parry [2] shows that this implies that S has the form

S = (λpapb), λ ∈ Q, pa ∈ Z, a = 1, 2, 3, (1.9)

and Cermelli and Parry [9] have shown that the flexibility afforded by the elastic invariance

of S allows one to show that, in an appropriately chosen configuration, the corresponding

discrete group is either a simple lattice or a 4-lattice, in Pitteri and Zanzotto’s terminology

[10] (even though the corresponding composition function is not additive).

(v) Mal’cev [11] has studied the structure of discrete subgroups of nilpotent Lie groups, and

in particular obtained the following results (which are far reaching generalizations of the

results for a perfect lattice):

(a) There are elements `1, `2, `2 of the discrete subgroup (call that subgroup D) such

that

D = {g : g = `m1
1 `m2

2 `m3
3 , m1,m2,m3 ∈ Z} (1.10)

(In the expression `m1
1 `m2

2 `m3
3 , products of group elements are written as, for exam-

ple, ψ(`1, `1) = `21, ψ(`1, `2) = `1`2).

(b) The automorphisms of D, which are the invertible mappings of D to itself which

preserve the group structure, extend uniquely to automorphisms of the corresponding

continuous (nilpotent) group.

(c) The flexibility that comes from the elastic invariance of S allows one to choose the

integral curves of the lattice vector fields through the origin to be straight lines,

the automorphisms of the continuous group to be linear mappings, and (by (b)) the

automorphisms of D to be (restrictions of) linear mappings.

(vi) In a three dimensional Lie group G, with group multiplication ψ, write (as in (v)(a))

ψ(x,y) = xy, (1.11)

as an alternative notation. Let (x,y) denote the commutator of two group elements

x,y ∈ G, so

(x,y) = x−1y−1xy, (1.12)
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where x−1 is the inverse of x, so

ψ(x−1,x) = ψ(x,x−1) = 0, (1.13)

or x−1x = xx−1 = 0, recalling that 0 is the group identity. For a Lie group G where

the underlying manifold is R3, let the components of a group element x be real numbers

x1, x2, x3 relative to a basis {e1, e2, e3} of R3. Let the quadratic terms in the Taylor

expansion of the commutator (x,y) about 0 be denoted, temporarily, by

γ(x,y) ≡ Cijkxjykei, (1.14)

where x = xiei,y = yjej . Then the constants Cijk are the structure constants of the Lie

algebra g of the group G. The function γ : R3 × R3 → R3 is an antisymmetric bilinear

form on the Lie algebra (here identified with R3) called the Lie bracket of g, and we

introduce further notation

γ(x,y) = [x,y]. (1.15)

Vector fields ζ(·) which satisfy

ζ (ψ(x,y)) = ∇1ψ(x,y)ζ(x), x ∈ R3, (1.16)

are said to be right invariant on G, so from (1.2) the lattice vector fields `1(·), `2(·), `3(·)
are right invariant – in fact these fields provide a basis for the vector space of all right

invariant fields on G.

The connection between the dislocation density tensor S, defined via (1.1), and the

structure constants is

Cijk`rj(0)`sk(0) = εprsSkp`ki(0), (1.17)

where εprs is the permutation symbol and `r(0) = `rj(0)ej , see Elzanowski and Parry

[12]. Mal’cev [11] shows that a condition necessary and sufficient that G has non trivial

discrete subgroups is that the structure constants of g be rational with respect to an

appropriate basis, in the case that G is nilpotent, and this translates to the requirement

that S has the form given in (1.9) above.

(vii) For nilpotent Lie groups satisfying the rationality conditions of (vi), Parry and Sigrist

[13] construct all sets of generators of a given discrete subgroup explicitly. The formulae

that connect different sets of generators (of a given discrete subgroup) generalize the well–

known formula for a perfect crystal, where bases {`1, `2, `3}, {`′1, `′2, `′3} of R3 generate

the same lattice if and only if `i = γij`
′
j where (γij) ∈ GL3(Z).
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This paper is concerned with the extension of some of the above results, (i)–(vii), to defective

crystals where the corresponding Lie group is solvable, and the group has non–trivial discrete

subgroups. As stated above, and shown in [1], there are only three classes of three dimensional

Lie groups which have non-trivial discrete subgroups – they are the nilpotent group and two

classes of solvable group, which Auslander, Green and Hahn denote S1 and S2. We shall

consider here the class S1, and treat the remaining class elsewhere.

Recall the following facts regarding solvable Lie groups and algebras:

• In a solvable Lie algebra of dimension 3, it can be shown that there are basis vectors

X,Y ,Z of R3 such that

[X,Y ] = 0, [X,Z] = αX + βY , [Y ,Z] = γX + δY , (1.18)

where α, β, γ, δ are real numbers such that αδ − βγ 6= 0;

• If g is a Lie algebra, and one defines g1 = g,g2 = [g1,g1] . . .gk = [gk−1,gk−1], then g is

called solvable if gk = 0 for some k. It’s clear that if (1.18) holds, then g3 = 0;

• Let G be a connected Lie group, let (G,G) denote the subgroup generated by all commu-

tators of G and define G1 = G, G2 = (G1, G1), . . . Gk = (Gk−1, Gk−1). Then G is called

solvable if Gk = 0 for some integer k.

• G is solvable if and only if g is solvable.

In the case with which we shall be concerned G = S1, and we shall write g = s. It will also

be true that G3 = 0, so that commutators of elements of S1 commute, and this is an important

fact that one should bear in mind throughout.

Note that group elements x ∈ S1 are parameterized by real numbers (x1, x2, x3) and that

we have chosen to identify the group elements with points of R3 (so that any discrete subgroup

corresponds to a set of points in R3, for example). Auslander, Green and Hahn [1], on the

other hand, represent group elements as 4 × 4 matrices (still parameterized by (x1, x2, x3)),

and in that representation the group composition is matrix multiplication – let Sm denote that

representation of the group. Thus if x ∈ S1 and group composition in S1 is denoted ψ, then

rm(x)rm(y) = rm (ψ(x,y)) , x,y ∈ R3, (1.19)

where rm : S1 → Sm is an isomorphism (which represents elements of S1 as 4× 4 matrices). In

fact we calculate ψ from Auslander, Green and Hahn’s representation of Sm using (1.19).
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This enables us to calculate the basis right invariant fields and their duals, the corresponding

dislocation density tensor, and the exponential in S1. Auslander, Green and Hahn [1] assert

that rm(e1), rm(e2), rm(e3) generate a canonical form of discrete subgroups Dm ⊂ Sm, and it

follows that e1, e2, e3 generate a canonical form of discrete subgroups D ⊂ S1 where {e1, e2, e3}
is a basis of R3.

The isomorphism rm involves a function φ : R → SL2(R), with φ(1) ∈ SL2(Z) and this is

central to our calculations. In §2 we derive an expression for ψ in terms of φ, using the remark

above. Also, it turns out the the ‘structure’ of the discrete subgroup D depends in essence on

properties of the matrix

θ ≡ φ(1) ∈ SL2(Z), (1.20)

cf. (3.1) below.

In §3, we discuss a canonical discrete subgroup Dm ⊂ Sm and show that there exist elements

of Dm (4 × 4 matrices), denoted A,B,C, such that a general element of Dm has the form

AQBMCN , Q,M,N ∈ Z. We also calculate the commutator subgroup D′m ≡ (Dm, Dm). Let

D and D′ be the subgroups of S1 such that their matrix representations are Dm and D′m

respectively. We show that D = (Z3,ψ), i.e., that the elements of D ⊂ S1, are the points of

Z3 (and the composition function is ψ, of course), and that the points of D′ can be identified

with a proper two-dimensional sublattice of Z3.

The purpose of the calculations in §3 is to allow us, in due course, to calculate the ‘symme-

tries’ of the discrete subgroup D. More precisely, we find the set of all generators of D – that

is we find all choices of three elements g1, g2, g3 ∈ D such that the collection of all products

of g1, g2, g3 and their inverses equals D. To do this, let G denote the subgroup of S1 which

consists of all products of g1, g2, g3 and their inverses (this subgroup G is unrelated to the

connected Lie group of the third bullet point above). In Lemma 1 we construct a different set

of generators for G which has a particular property that is useful for later calculations (the

matrix representation of the new generators has the form (4.6)). Then we note that, in the case

of interest where commutators commute, one can make sense of the symbol, (x,y)P , x,y ∈ G,

where P is a polynomial in the generators of G and their inverses. This allows us to give a

canonical expression for an arbitrary element g ∈ G:

g = gα1g
β
2g

γ
3(g1, g2)

P3(g2, g3)
P1(g3, g1)

P2 , (1.21)

cf.(4.19) Lemma 2, where P1, P2, P3, are polynomials of the stated form. This relation, (1.21),

is a generalization of the expression x = m1`1 +m2`2 +m3`3, m1,m2,m3 ∈ Z for the general
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element x of a perfect lattice with basis `1, `2, `3 and a generalization of Mal’cev’s expression

g = gm1
1 gm2

2 gm3
3 ,m1,m2,m3 ∈ Z for the elements of a discrete subgroup of a nilpotent Lie

group in terms of a canonical basis g1, g2, g3, to the case at hand where the relevant Lie group

is solvable. The statement that (1.22) holds may be found in Bachmuth [14], but we have not

found a proof of the statement, so that is provided in Lemma 2.

From (1.21), a general element of the commutator subgroup G′ ≡ (G,G) has the form

(g1, g2)
P3(g2, g3)

P1(g3, g1)
P2 , (1.22)

for appropriate polynomials P1, P2, P3. This leads to an expression for basis elements of G′,

considered now as a two dimensional sublattice of Z3. In fact we know from §3.3 that a basis

of D′ can be given in terms of the columns of the matrix θ ≡ φ(1) ∈ SL2(Z). So, if G′ = D′ (as

is necessary if we require that G = D), then we have a connection between an arbitrary set of

generators of D and the columns of θ. The algebraic conditions deriving from this connection

are treated in §6 – there are other conditions which are (nominally) required in order that

G = D, but we show in §6.2 and §6.3 that they are identically satisfied if G′ = D′.

Note that (1.22) shows, in the language of continuum mechanics, that the Burgers vector

corresponding to any choice of circuit can be decomposed as the product of three fundamental

Burgers vectors, and that these three Burgers vectors generate a two dimensional lattice

(additively).

The conditions which ensure that G = D turn out to be divisibility conditions on integers

that appear in the matrix representations of the group elements g1, g2, g3, and we summarize

those condition in the conclusion to the paper. There we also discuss the symmetries of a

continuum strain energy function that models a discrete solid crystal with local structure

corresponding to the points of D – these symmetries derive from the infinite number of different

choices of generators of D.

Finally we note that a particular symmetry of the strain energy, corresponding to a change

in generators from g1, g2, g3 to g′1, g
′
2, g
′
3 may or may not correspond to an automorphism of

D. Magnus, Karrass and Solitar [15] give a condition that is necessary and sufficient for such

a change to correspond to an automorphism of D. When that condition holds, a result of

Gorbatsevich [16] shows that the automorphisms (of D) extends uniquely to automorphisms of

the continuous group S1, so that in continuum mechanical terms, the discrete symmetries of D

are (restrictions of) elastic deformations when Magnus, Karrass and Solitar’s condition holds.
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So, when that condition holds, the dislocation density is unchanged, because it is an elastic

invariant. Thus the symmetries of the strain energy function may be divided into two classes,

in the case at hand – there are the (self) mappings of the points of D which are restrictions

of elastic deformations, and these are those which are not. One might call these the elastic,

and the inelastic, symmetries of the crystal. We remark that in the case of the perfect crystal,

where S = 0, Magnus, Karrass and Solitar’s condition is empty, so all self mappings of a perfect

lattice corresponding to a change of generators are restrictions of elastic deformations.

2 Continuous groups

According to Auslander, Green and Hahn [1], if S is a connected, simply connected, non

compact, three dimensional Lie group with a discrete subgroup D such that S/D is compact,

and S is not nilpotent, then S is isomorphic to a matrix group Sm where the elements of Sm

have the form

rm(x) ≡


φ(x3)

0 0

0 0

0 x1

0 x2

1 x3

0 1

 , x ≡


x1

x2

x3

 ∈ R3. (2.1)

In (2.1) , φ(x3) ∈ SL2(R), φ(1) ∈ SL2(Z). Also, {φ(x3) : x3 ∈ R} is a one parameter subgroup

of the unimodular group, so

φ(x)φ(y) = φ(x+ y), x, y ∈ R. (2.2)

It follows that

φ(0) = I2 ≡

(
1 0

0 1

)
, (2.3)

and by differentiating (2.2) with respect to y and putting y = 0, etc.,

φ′(x) = φ(x)φ′(0) = φ′(0)φ(x), (2.4)

where ′ denotes
d

dx
. Let us write

φ(x) =

(
a(x) b(x)

c(x) d(x)

)
, (2.5)

so

φ′(0) ≡ A =

(
a′(0) b′(0)

c′(0) d′(0)

)
, (2.6)
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and

a(x)d(x)− b(x)c(x) = 1. (2.7)

From (2.4)

φ(x) = eAx ≡
∞∑
j=0

Aj x
j

j!
. (2.8)

Since φ(0) = I2, by differentiating (2.7) and putting x = 0 one obtains that a′(0) + d′(0) = 0,

hence

A2 + det(A)I2 =

(
0 0

0 0

)
, (2.9)

where det(A) is the determinant of A. It is then straightforward to show that, for arbitrary

2× 2 matrices B, satisfying (2.9),

eB =


(cosh k)I2 +

(
sinh k

k

)
B, if det(B) < 0, k ≡

√
−det(B);

(cos k)I2 +

(
sin k

k

)
B, if det(B) > 0, k ≡

√
det(B);

I2 + B, if det(B) = 0.

(2.10)

See Gallier [17], for example.

We shall be concerned, in this paper, with the particular case where

a(1) + d(1) > 2, (2.11)

which is the condition that guarantees that the integer matrix

φ(1) ≡

(
a(1) b(1)

c(1) d(1)

)
(2.12)

has (real) positive eigenvalues. We call corresponding group S1, rather than S, for definiteness,

as noted above. Now, with tr denoting trace, so tr A = 0,

a(1) + d(1) = tr eA =


2 cosh k, if det(A) < 0;

2 cos k, if det(A) > 0;

2, if det(A) = 0,

(2.13)
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where k denotes
√
|det(A)| here and henceforward. Hence, according to (2.11) above, we shall

be concerned here with the case that det(A) < 0, k =
√
−det(A), where φ : R → SL2(R) is

given explicitly by

φ(x) = eAx = (cosh kx) I2 +

(
sinh kx

k

)
A. (2.14)

Note also that

φ(1) = (cosh k)I2 +

(
sinh k

k

)
A, (2.15)

so

tr φ(1) = 2(cosh k). (2.16)

Hence if we define

φ(1) =

(
a b

c d

)
, (2.17)

so a = a(1), etc., then

a+ d = 2 cosh k, (2.18)

and we have

φ(1) ≡

(
a b

c d

)
=

1

2
(a+ d)I2 +

(sinh k)

k

(
a′(0) b′(0)

c′(0) d′(0)

)
(2.19)

and

(sinh k)

k
A =

(
1
2(a− d) b

c 1
2(d− a)

)
. (2.20)

Let ψ : R3 × R3 → R3 be the group operation in S1, then since the group operation in Sm is

matrix multiplication we have

rm(x)rm(y) = rm (ψ(x,y)) , x,y ∈ R3, (2.21)

and one calculates that

ψ(x,y) = x+ (a (x3) y1 + b (x3) y2) e1 + (c (x3) y1 + d (x3) y2) e2 + y3e3, (2.22)

where x = xiei ≡ (x1, x2, x3)
T , y = yiei ≡ (y1, y2, y3)

T , where T denotes transpose, where

{e1, e2, e3} is a basis of R3 and the summation convention operates.
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Thus S1 is the Lie group (R3,ψ), isomorphic (via rm) to the matrix group Sm. Let s be the

Lie algebra corresponding to S1, and let [·, ·] denote the corresponding Lie bracket, so

[x,y] = Cijkxjykei, (2.23)

where

Cijk ≡
∂2ψi
∂xj∂yk

(0,0)− ∂2ψi
∂xk∂yj

(0,0), (2.24)

and ψ ≡ ψiei. One calculates from (2.22) and this last definition that

∂2ψi
∂xj∂yk

(0,0) =



a′(0), if i = 1, j = 3, k = 1;

b′(0), if i = 1, j = 3, k = 2;

c′(0), if i = 2, j = 3, k = 1;

d′(0), if i = 2, j = 3, k = 2;

0, otherwise,

(2.25)

and from this one obtains

[x,y] =
(
a′(0)x ∧ y · e2 − b′(0)x ∧ y · e1

)
e1 +

(
c′(0)x ∧ y · e2 − d′(0)x ∧ y · e1

)
e2. (2.26)

In particular

[e1, e2] = 0, [e1, e3] = −a′(0)e1 − c′(0)e2, [e2, e3] = −b′(0)e1 − d′(0)e2. (2.27)

Next we calculate the dislocation density tensor corresponding to this choice of Lie group.

First

∇1ψ(0,x) =


1 0

0 1

0 0

(
φ′(0)

(
x1

x2

))
1

 , (2.28)

and this gives that the right invariant lattice vector fields `a(x) ≡ ∇1ψ(0,x)ea are given by

`1(x) = e1, `2(x) = e2, `3(x) =
(
a′(0)x1 + b′(0)x2

)
e1 +

(
c′(0)x1 + d′(0)x2

)
e2 +e3. (2.29)

The dual lattice fields da(x) are

d1(x) = e1−
(
a′(0)x1 + b′(0)x2

)
e3, d2(x) = e2−

(
c′(0)x1 + d′(0)x2

)
e3, d3(x) = e3. (2.30)

Hence the lattice components of the dislocation density tensor are

(
∇∧ da · db
d1 · d2 ∧ d3

)
=


−b′(0) −d′(0) 0

a′(0) c′(0) 0

0 0 0

 =
k

sinh(k)


−b 1

2(a− d) 0
1
2(a− d) c 0

0 0 0

 , (2.31)



Crystal defects and solvable groups 13

from (2.20). In particular the dislocation density tensor is symmetric. Note that, from (2.11)

and (2.13), ek + e−k is an integer greater than 2. Also, if the dislocation density tensor is

known, so is φ′(0) ≡ A via (2.6), so is φ(0) via (2.8), and vice versa.

Let sm be the Lie algebra corresponding to the matrix Lie group Sm, then the following

diagram is commutative, see for example Warner [18], Varadarajan [19]

s
∇rm(0)

//

e(·)
��

sm

matrix exponential
��

S1 rm
// Sm

Fig 1: Mappings between Lie algebras s, sm and Lie groups S1, Sm.

In the figure, e(·) : s→ S1 is the exponential calculated in the manner that was outlined in

the introduction. Thus

rm

(
e(x)

)
= e∇rm(0)x, (2.32)

where the exponential on the right hand side is the matrix exponential. From (2.1),

∇rm(0)x =


φ′(0)x3

0 0

0 0

0 x1

0 x2

0 x3

0 0

 , (2.33)

and one calculates that

e∇rm(0)x =


eφ
′(0)x3

0 0

0 0

0

0

1

0

(
f(φ′(0)x3)

(
x1

x2

))
x3

1

 , (2.34)

where we define f : GL2(R)→ GL2(R) by

f(A) ≡
∞∑
j=0

Aj

(j + 1)!
. (2.35)

(So f(A) =
eA − I2
A

if detA 6= 0).

Recall that from (2.6) and (2.8)

eφ
′(0)x3 = φ(x3). (2.36)
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Since rm : R3 → Sm is invertible, from (2.1), (2.34) and (2.32) we obtain

e(x) =

 f(φ′(0)x3)

(
x1

x2

)
x3

 . (2.37)

This formula gives the explicit form of the exponentiation which is involved in the iteration

process described in the introduction (derived differently to the method given there).

3 Discrete groups

3.1 D = (Z3,ψ)

According to Auslander, Green and Hahn [1] once again, one can assume that the discrete

subgroup D ⊂ S1 is isomorphic, via rm, to a discrete subgroup Dm ⊂ Sm and that Dm is

generated by three elements rm(e1), rm(e2), rm(e3) of Sm. Set

A ≡ rm(e3) =


φ(1)

0 0

0 0

0 0

0 0

1 1

0 1

 , B ≡ rm(e1) =


1 0 0 1

0 1 0 0

0 0 1 0

0 0 0 1

 , C ≡ rm(e2) =


1 0 0 0

0 1 0 1

0 0 1 0

0 0 0 1

 .

(3.1)

Let (x,y) ≡ x−1y−1xy, denote the commutator of elements x,y ∈ D and similarly let

(X,Y ) ≡ X−1Y −1XY denote the commutator of elements X,Y ∈ Dm.

Recalling (2.17) one finds that

(A,B) = B1−dCc, (A,C) = BbC1−a, (B,C) = 0. (3.2)

Now any element of Dm can be expressed as a product of the form

dm = Aα1Bβ1Cγ1Aα2Bβ2Cγ2 . . . AαrBβrCγr (3.3)

with αi, βi, γi ∈ {0,±1} , i = 1, 2 . . . r. Noting that BC = CB, and computing that

(BβCγ , Aα) = Bm−βCn−γ , where

(
m

n

)
=

(
a b

c d

)−α(
β

γ

)
, (3.4)

we have

BβCγAα = AαBβCγBm−βCn−γ = AαBmCn.
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Using this we can rewrite (3.3) as

dm = Aα1+α2+...αrBMCN

for some M,N ∈ Z.

Notice then that Dm contains dm = AQBMCN for any Q,M,N,∈ Z. So a general element

dm = AQBMCN ∈ Dm ⊂ Sm has the representation
(
a b

c d

)Q
0 0

0 0

0

0

(
a b

c d

)Q(
M

N

)
1 Q

0 1

 . (3.5)

One calculates that(
a b

c d

)Q
= UQ

(
a b

c d

)
− UQ−1I2, (3.6)

where

UQ :=
ekQ − e−kQ

ek − e−k
(3.7)

are the Chebyshev polynomials of the second kind, defined alternatively by the recurrence

relation

UQ+1 = nUQ − UQ−1, (3.8)

where U0 = 0, U1 = 1 and n ≡ a+ d.

Henceforward we write

θ ≡ φ(1) ≡

(
a b

c d

)
≡

(
a(1) b(1)

c(1) d(1)

)
, (3.9)

and recall that the condition tr θ ≡ a + d > 2 implies that θ has (real) positive eigenvalues.

In fact, since the eigenvalues of A are ±
√
|detA| ≡ ±k, by (2.9) and Cayley–Hamilton, the

eigenvalues of θ ≡ eA are e±k > 0.

Let x ∈ R3 be such that

rm(x) = AQBMCN , Q,M,N ∈ Z. (3.10)
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Then

x =

 θQ

(
M

N

)
Q

 . (3.11)

Since θ ∈ SL2(Z), it is clear that r−1m (Dm) ≡ D = (Z3,ψ), i.e. that the discrete subgroup of S1

with which we are concerned is the cubic lattice Z3 with group multiplication given by(2.22).

3.2 Composition in Dm

Suppose that d1 = Ax3Bx1Cx2 and d2 = Ay3By1Cy2 are elements of Dm (i.e. xi, yi ∈ Z, i =

1, 2, 3). Then

d1d2 =


θx3

0

0
θx3

(
x1

x2

)
0 0 1 x3

0 0 0 1




θy3

0

0
θy3

(
y1

y2

)
0 0 1 y3

0 0 0 1



=


θx3+y3

0

0
θx3+y3

((
y1

y2

)
+ θ−y3

(
x1

x2

))
0 0 1 x3 + y3

0 0 0 1


= Az3Bz1Cz2 ,

(3.12)

and so
z1

z2

z3

 =


(
y1

y2

)
+ θ−y3

(
x1

x2

)
x3 + y3

 =


(
x1

x2

)
+

(
y1

y2

)
+ (θ−y3 − I)

(
x1

x2

)
x3 + y3

 .

(3.13)

Now

(θ−y3 − I) =
(
θ−1 − I

) (
I + θ−1 + θ−2 + · · ·+ θ−y3+1

)
=

(
d− 1 −b
−c a− 1

)(
p q

r s

) (3.14)

for some p, q, r, s ∈ Z which depend on y3. Thus

d1d2 = Ax3+y3Bx1+y1Cx2+y2
(
Bd−1C−c

)px1+qx2 (
B−bCa−1

)rx1+sx2
. (3.15)
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3.3 The commutator subgroup D′m

The commutator (or derived) subgroup D′m of Dm is the subgroup generated by all commutators

(d1, d2) = d−11 d−12 d1d2, d1, d2 ∈ Dm. From the previous section we can see that

d−11 =


θ−x3

0

0

−x1
−x2

0 0 1 −x3
0 0 0 1

 = A−x3BUx3−1x1−Ux3 (ax1+bx2)CUx3−1x2−Ux3 (cx1+dx2) (3.16)

and then

(d1, d2) =


θ−x3−y3

0

0
−θ−x3

(
y1

y2

)
−

(
x1

x2

)
0 0 1 −x3 − y3
0 0 0 1




θx3+y3

0

0
θx3+y3

(
y1

y2

)
+ θ−y3

(
x1

x2

)
0 0 1 x3 + y3

0 0 0 1



=


1 0 0

0 1 0

0 0 1

0 0 0

(θ−y3 − I)

(
x1

x2

)
− (θ−x3 − I)

(
y1

y2

)
0

1


= (Bd−1C−c)px1+qx2−ty1−uy2(B−bCa−1)rx1+sx2−vy1−wy2

(3.17)

where(
p q

r s

)
= I2 + θ−1 + · · ·+ θ−y3+1

(
t u

v w

)
= I2 + θ−1 + · · ·+ θ−x3+1. (3.18)

Thus every commutator inDm can be written as a product ofBd−1C−c = (B,A) andB−bCa−1 =

(C,A). Let rm(u) = (B,A), rm(v) = (C,A). Since, from (2.22), ψ(x,y) = x+y if x3 = y3 = 0,

and all commutators have third components equal to zero, it follows that rm(αu + βv) =

(B,A)α(C,A)β, α, β ∈ Z. So if D′m ≡ rm(D′), then the points of D′ coincide with the sublattice

of Z3 generated (additively) by u and v. Let 〈u,v〉 denote the integer linear span of the vectors

u,v ∈ Z3.

For convenience, we write u =

(
d− 1

−c

)
instead of u =


d− 1

−c
0

. Let {u,v} denote

the 2× 2 matrix with columns u,v, so

{u,v} =

(
d− 1 −b
−c a− 1

)
= (θ−1 − I2) ≡ (θ−1 − I2){e1, e2}. (3.19)
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Note

det(θ−1 − I2) = 2− (a+ d) < 0. (3.20)

So in the case that a+ d = 3, the points of D′ are just Z2 ≡ {(a, b, c) ∈ Z3; c = 0}. In the case

that a+ d > 3, the points of D′ coincide with those of a proper sublattice of Z2 (with unit cell

of area (a+ d− 2)).

3.4 Maximal normal nilpotent subgroup N

According to Auslander, Green and Hahn, [1], S1 has an unique maximal normal connected

nilpotent subgroup N , which is abelian in this case. Thus N =
({

(x, y, z) ∈ R3; z = 0
}
,ψ
)

and

ψ(x,y) = x + y,x,y ∈ N . Moreover, D ∩ N = (Z2,ψ) = (Z2,+), and D′ ∩ N = (〈u,v〉,+)

according to the previous section.

4 Generators of D

Let g1, g2, g3 be elements of D. We wish to determine conditions on the choice of those

three elements which are necessary and sufficient that the group generated by g1, g2, g3, with

composition function (2.22) denoted

G = gp(g1, g2, g3), (4.1)

equals D.

Let gim ≡ rm(gi). Then, via (3.10), we may write

g1m = Aα1Bβ1Cγ1 ,

g2m = Aα2Bβ2Cγ2 ,

g3m = Aα3Bβ3Cγ3 , αi, βi, γi ∈ Z, i = 1, 2, 3.

(4.2)

If G = D, then Gm ≡ gp(g1m, g2m, g3m), with matrix multiplication as group operation, equals

Dm. But if gm ∈ Gm, then

gm = gε11mg
ν1
2mg

µ1
3mg

ε2
1mg

ν2
2mg

µ2
3m . . . g

εr
1mg

νr
2mg

µr
3m, (4.3)

where εi, νi, µi ∈ {0,±1}, i = 1 . . . r. This expression may be rewritten, via (3.2), (3.4), (4.2),

as

gm = Aα1(ε1+···+εr)+α2(ν1+···+νr)+α3(µ1···+µr)BMCN , (4.4)
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for some M,N ∈ Z whose values depend on αi, βi, γi, εi, νi, µi for i = 1, 2, 3. Since A ∈ Gm and

A` 6= BmCn for any `,m, n,∈ Z\{0}, it follows that there are integers ε ≡ ε1 + · · · + εr, ν ≡
ν1 + · · · + νr, µ ≡ µ1 + · · · + µr, such that α1ε + α2ν + α3µ = 1. Therefore α1, α2, α3 are

relatively prime integers. Let hcf(a, b . . . c) denote the positive highest common factor of the

set of integers {a, b . . . c}. Then

hcf(α1, α2, α3) = 1. (4.5)

Lemma 1. Let g1m, g2m, g3m be given by (4.2), let Gm = gp(g1m, g2m, g3m) and suppose that

hcf(α1, α2, α3) = 1. Then there is a set of generators of Gm, denoted g′1m, g
′
2m, g

′
3m, such that

g′1m = ABβ′1Cγ
′
1 , g′2m = Bβ′2Cγ

′
2 , g′3m = Bβ′3Cγ

′
3 , β′i, γ

′
i ∈ Z, i = 1, 2, 3. (4.6)

Proof

Given gm = AαBβCγ , note that gAm ≡ α is well defined because A` 6= BmCn for any `,m, n ∈
Z\{0}. Note that if P ∈ SL3(Z) with

P = (Pij) ≡


a1 a2 a3

b1 b2 b3

c1 c2 c3

 , i, j = 1, 2, 3, (4.7)

and {g1m, g2m, g3m}P is defined to be the set of elements{
ga11mg

b1
2mg

c1
3m, g

a2
1mg

b2
2mg

c2
3m, g

a3
1mg

b3
2mg

c3
3m

}
≡
{
g′1m, g

′
2m, g

′
3m

}
(4.8)

of Gm, then

g′1m
A = gA1ma1 + gA2mb1 + gA3mc1, etc., (4.9)

so

g′im
A = gAjmPji, i = 1, 2, 3. (4.10)

Also note that, according to Coxeter and Moser [20], p92, any element P ∈ SL3(Z) is expressible

as a product of the following matrices:
0 1 0

0 0 1

1 0 0

 ,


1 1 0

0 1 0

0 0 1

 ,


0 1 0

−1 0 0

0 0 1

 . (4.11)

For each matrix P ′ in the above list (4.11). {g1m, g2m, g3m}P ′ generatesGm, since {g1m, g2m, g3m} →
{g1m, g2m, g3m}P ′ is a free substitution, in Magnus, Karrass and Solitar’s terminology [15]. It
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follows that {g1m, g2m, g3m}P generates Gm whenever P ∈ SL3(Z).

Now let {g1m, g2m, g3m} be given as in (4.2) above, so that gAim = αi, i = 1, 2, 3. Since

hcf(α1, α2, α3) = 1 by (4.5), one may choose Q ∈ SL3(Z) with first row (α1, α2, α3), so that

(α1, α2, α3)Q
−1 = (1, 0, 0). Let P = Q−1, so that P ∈ SL3(Z) and {g1m, g2m, g3m}P ≡

{g′1m, g′2m, g′3m} generates Gm by the above remarks. Then from (4.10),

g′im
A = gAjmPji = gAjmQ

−1
ji

= αjQ
−1
ji = δi1, i = 1, 2, 3,

(4.12)

where (δij) is the Krönecker delta, and the result follows. �

To facilitate some of the following calculations, we introduce the notation

hp = p−1hp, h,p ∈ G, (4.13)

for the conjugate of an element h ∈ G. Then we have:

(xy)z = x(yz), (xy)z = xzyz, (xy)−1 =
(
x−1

)y
, xx

−1y = xy, (x, y)z = (xz,yz) , (4.14)

for x,y, z ∈ G.

We define

xny ≡ (xn)y = (xy)n, n ∈ Z,x,y = G.

Also, for example,

(x, z)y
x (
y−1,x

)yx
= (x, zy) , x,y, z ∈ G;

(xm,y) =
m∏
j=1

(x,y)x
m−j

, x,y ∈ G, m ∈ Z>0;

(x,ym) =
m∏
j=1

(x,y)y
m−j

, x,y ∈ G, m ∈ Z>0;

(4.15)

Now commutators commute in G, and since (x,y)z = (xz,yz), terms of the form (x,y)z

also commute in G, x,y, z ∈ G. Furthermore

(i)
(
x−1,y

)
= (x,y)−x

−1

,
(
x,y−1

)
= (x,y)−y

−1

,
(
x−1,y−1

)
= (x,y)x

−1y−1

, x,y,∈ G;

(ii) (x,y)wz = (x,y)(w
−1,z−1)zw

= (zw)−1(w−1, z−1)−1(x,y)(w−1, z−1)zw

= (x,y)zw, x,y, z,w ∈ G,
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since (w−1, z−1)−1 is a commutator.

So one can define (x,y)P , where P is a polynomial with integer coefficients in the generators

of G = gp(g1, g2, g3), and their inverses, as follows. Let P be written (uniquely) in the form

P =
∑
α
εαpα, where εα is nonzero only for a finite number of choices of multi-index α =

(α1, α2, α3), εα ∈ Z, α1, α2, α3 ∈ Z, where pα ≡ gα1
1 g

α2
2 g

α3
3 , and let P ′ =

∑
α
ε′αp

′
α be similarly

defined. Then put

(x,y)P =
∏
α

(x,y)εαpα , (4.16)

and also put

{(x,y)P }P ′ =
∏
α′

{
(x,y)P

}ε′αp′α
. (4.17)

It is straightforward to show that, with these definitions,

(x,y)nP = {(x,y)n}P = {(x,y)P }n,
(x,y)P (x,y)P

′
= (x,y)P+P ′ ,

{(x,y)P }P ′ = {(x,y)P
′}P = (x,y)PP

′
.

(4.18)

Lemma 2. Let g be arbitrary element of G = gp(g1, g2, g3). Then g can be written in the form

gα1g
β
2g

γ
3 (g1, g2)

P3 (g2, g3)
P1 (g3, g1)

P2 , (4.19)

where P1, P2, P3 are polynomials in g1, g2, g3 and their inverses.

Proof

Any non trivial g ∈ G can be written in the form

g = gε11 g
ν1
2 g

µ1
3 . . . gεr1 g

νr
2 g

µr
3 (4.20)

for εi, νi, µi ∈ {0,−1, 1}, i = 1 . . . r, r a positive integer. We proceed by induction on r. Note

that the lemma holds in the case r = 1, and suppose that it also holds for r ≤ k − 1. Then

g = gε11 g
ν1
2 g

µ1
3 . . . gεk1 g

νk
2 g

µk
3 = gε11 g

ν1
2 g

µ1
3

(
gα
′

1 g
β′

2 g
γ′

3 (g1, g2)
P ′3 (g2, g3)

P ′1 (g3, g1)
P ′2
)

(4.21)

where α′ = ε2 + · · ·+ εk, etc. Noting that terms of the form (x,y)z, and therefore terms of the

form (x,y)P , commute and also that (x,y) z = z (x,y)z this can be rearranged as follows:

g = gε11 g
ν1
2 g

µ1
3

(
gα
′

1 g
β′

2 g
γ′

3 (g1, g2)
P ′3 (g2, g3)

P ′1 (g3, g1)
P ′2
)

= gε11 g
ν1
2 g

α′
1 g

µ1
3 (gµ13 , g

α′
1 )gβ

′

2 g
γ′

3 (g1, g2)
P ′3 (g2, g3)

P ′1 (g3, g1)
P ′2

= gε11 g
ν1
2 g

α′
1 g

µ1
3 g

β′

2 g
γ′

3 (g1, g2)
P ′3 (g2, g3)

P ′1 (g3, g1)
P ′2 (gµ13 , g

α′
1 )g

β′
2 g

γ′
3

= gε1+α
′

1 gν1+β
′

2 gµ1+γ
′

3 (g1, g2)
P ′3 (gν12 , g

α′
1 )g

β′
2 g

µ1+γ
′

3 (g2, g3)
P ′1 (gµ13 , g

β′

2 )g
γ′
3 (g3, g1)

P ′2 (gµ13 , g
α′
1 )g

β′
2 g

γ′
3
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Next, observe that the commutator (gν12 , g
α′
1 )g

β′
2 g

µ1+γ
′

3 is the identity if ν1 = 0, and if ν1 = ±1

then using point (ii) above and (4.15) it can be rewritten as

(gν12 , g
α′
1 )g

β′
2 g

µ1+γ
′

3 =



(g2, g
α′
1 )g

β′
2 g

µ1+γ
′

3 =
α′∏
j=1

(g2, g1)
gα
′−j

1 gβ
′

2 g
µ1+γ

′
3 when ν1 = 1, α′ > 0,

(g−α
′

1 , g2)
gα
′

1 g
β′
2 g

µ1+γ
′

3 =
−α′∏
j=1

(g1, g2)
g−j1 gβ

′
2 g

µ1+γ
′

3 when ν1 = 1, α′ < 0,

(gα
′

1 , g2)
gβ
′−1

2 g
µ1+γ

′
3 =

α′∏
j=1

(g1, g2)
gα
′−j

1 gβ
′−1

2 g
µ1+γ

′
3 when ν1 = −1, α′ > 0,

(g2, g
−α′
1 )g

α′
1 g

β′−1
2 g

µ1+γ
′

3 =
−α′∏
j=1

(g2, g1)
g−j1 gβ

′−1
2 g

µ1+γ
′

3 when ν1 = −1, α′ < 0.

Hence (gν12 , g
α′
1 )g

β′
2 g

µ1+γ
′

3 = (g1, g2)
Q3 where Q3 is the polynomial given by

Q3 =



α′∑
j=1
−gα

′−j
1 gβ

′

2 g
µ1+γ′

3 when ν1 = 1, α′ > 0,

−α′∑
j=1
g−j1 g

β′

2 g
µ1+γ′

3 when ν1 = 1, α′ < 0,

α′∑
j=1
gα
′−j

1 gβ
′−1

2 gµ1+γ
′

3 when ν1 = −1, α′ > 0,

−α′∑
j=1
−g−j1 g

β′−1
2 gµ1+γ

′

3 when ν1 = −1, α′ < 0.

Similarly, one can rewrite the commutators (gµ13 , g
β′

2 )g
γ′
3 and (gµ13 , g

α′
1 )g

β′
2 g

γ′
3 as terms of the

form (g2, g3)
Q1 and (g3, g1)

Q2 respectively where Q1, Q2 are polynomials in g1, g2, g3 and their

inverses, computed in the same way as Q3 above. So from (4.20) we have

g = gε1+α
′

1 gν1+β
′

2 gµ1+γ
′

3 (g1, g2)
P ′3 (g1, g2)

Q3 (g2, g3)
P ′1 (g2, g3)

Q1 (g3, g1)
P ′2 (g3, g1)

Q2

= gε1+α
′

1 gν1+β
′

2 gµ1+γ
′

3 (g1, g2)
P ′3+Q3 (g2, g3)

P ′1+Q1 (g3, g1)
P ′2+Q2

which is in the form (4.19), where α = ε1 +α′ = ε1 + ε2 + . . . εk, P3 = P ′3 +Q3 etc. This proves

the lemma. �

Corrollary 3. Let g′ ∈ G′ ≡ (G,G). Then g′ can be written in the form

(g1, g2)
P3(g2, g3)

P1(g3, g1)
P2 , (4.22)

which is a product of terms of the form

(gi, gj)
gα1 g

β
2g

γ
3 , α, β, γ ∈ Z, i, j = 1, 2, 3. (4.23)

Proof

That g′ can be written in the form (4.22) follows immediately from the proof of the lemma

since α = β = γ = 0, when g′ is a commutator. That g′ can be written in the form (4.23)

follows from the definition (4.16) and (gi, gj)
−1 = (gj , gi). �
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5 Generators of G′

Let gi ∈ D, i = 1, 2, 3,, let gim ≡ rm(gi), i = 1, 2, 3, and suppose that (4.2) holds. Then

gi = r−1m (gim) = r−1m
(
AαiBβiCγi

)

= r−1m


φ(αi)

0 0

0 0

0

0

1

0

φ(αi)

(
βi

γi

)
αi

1

 ,
(5.1)

according to (3.9) with no summation over i. So

gi =

 θαi

(
βi

γi

)
αi

 , (5.2)

since φ(αi) = (φ(1))α1 ≡ θαi , αi ∈ Z.

So from (2.22)

ψ(gi, gj) ≡

 θ(αi+αj)

(
θ−αj

(
βi

γi

)
+

(
βj

γj

))
αi + αj

 . (5.3)

One calculates that g−1i = −gi, and also that

g−1j gigj =

 (θαi − I2)

(
βj

γj

)
+ θαi−αj

(
βi

γi

)
αi

 ,

(
gi, gj

)
=

 (θ−αj − I2)

(
βi

γi

)
− (θ−αi − I2)

(
βj

γj

)
0

 ,

g−1j gigj = gi + θαi
(
gi, gj

)
.

(5.4)

Now it follows from Corollary 3 that G′ is generated by (gi, gj)
h, for all h of the form gα1g

β
2g

γ
3 ,

α, β, γ ∈ Z. Also from (5.4)3,(
gi, gj

)h
= h−1(gi, gj)h

= (gi, gj) +
(
(gi, gj),h

)
,

(5.5)

noting that rm
(
(gi, gj)

)
= BβCγ , for some β, γ ∈ Z.
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So from (5.4)2,(
gi, gj

)h
=

(
gi, gj

)
+
(
θ−h3 − I2

) (
gi, gj

)
= θ−h3

(
gi, gj

)
,

(5.6)

where h3 is found as the exponent of A in the expression for rm(h):

gα1mg
β
2mg

γ
3m =

(
Aα1Bβ1Cγ1

)α (
Aα2Bβ2Cγ2

)β (
Aα3Bβ3Cγ3

)γ
. (5.7)

Hence

h3 = αα1 + βα2 + γα3. (5.8)

Since α1, α2, α3 are relatively prime, h3 assumes all integer values as α, β, γ range over Z.

Lemma 4.

G′ =
〈
(gi, gj), θ(gi, gj); i < j, i, j = 1, 2, 3

〉
(5.9)

Proof

First ψ(a, b) = a + b, a, b ∈ G′. By the preceding remarks, G′ consists of all integer linear

combinations of θh(gi, gj), i, j,∈ 1, 2, 3, h ∈ Z. From (3.6)

θh = Uhθ − Uh−1I2, h ∈ Z, (5.10)

and Uh ∈ Z for all h ∈ Z. Since (gi, gj)
−1 = (gj , gi) = −(gi, gj), the result follows. �

Recall that, according to Lemma 1, G = gp(g1, g2, g3) has a set of generators {g′1, g′2, g′3}
such that g′im ≡ rm(g′i), i = 1, 2, 3 have the form (4.6). We deal with sets of generators of G of

this form henceforward, and write (dropping the primes),

g1m = ABβ1Cγ1 , g2m = Bβ2Cγ2 , g3m = Bβ3Cγ3 . (5.11)

Then from (5.4):

(g1, gk) = −

 (θ−1 − I2)

(
βk

γk

)
0

 , k = 2, 3; (g2, g3) = 0. (5.12)

So from Lemma 4, with generators of Gm chosen in the form (4.6),

G′ = 〈a, b, θa, θb〉, (5.13)

where a ≡ (g1, g2), b ≡ (g1, g3).
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6 Necessary and sufficient conditions that G = D

6.1 Conditions that G′ = D′

From §3.3, D′ = 〈
(
θ−1 − I2

)
e1, (θ

−1 − I2)e2〉, and from §5,

G′ =

〈
(θ−1 − I2)

(
β2

γ2

)
, (θ−1 − I2)

(
β3

γ3

)
, θ(θ−1 − I2)

(
β2

γ2

)
, θ(θ−1 − I2)

(
β3

γ3

)〉
.

(6.1)

Define τ 1, τ 2, τ 3, τ 4 ∈ Z2 by

τ 1 =

(
β2

γ2

)
, τ 2 =

(
β3

γ3

)
, τ 3 = θ

(
β2

γ2

)
, τ 4 = θ

(
β3

γ3

)
. (6.2)

Then since (θ−1 − I2) is non singular, it follows that D′ = G′ if and only if

〈τ 1, τ 2, τ 3, τ 4〉 = 〈e1, e2〉. (6.3)

To determine conditions necessary and sufficient in order that (6.3) hold, it is convenient to

introduce a matrix B such that(
β2 β3

γ2 γ3

)
B = θ

(
β2 β3

γ2 γ3

)
, (6.4)

so that

B =

(
adj

(
β2 β3

γ2 γ3

))
θ

(
β2 β3

γ2 γ3

)/
∆

≡

(
b1 c1

b2 c2

)/
∆,

(6.5)

where ∆ ≡ β2γ3 − β3γ2 ∈ Z, where adj

(
β2 β3

γ2 γ3

)
≡

(
γ3 −β3
−γ2 β2

)
, and the elements of(

b1 c1

b2 c2

)
are integers.

From (6.3), there are integers λi, µi, i = 1, 2, 3, 4 such that

λ1τ 1 + λ2τ 2 + λ3τ 3 + λ4τ 4 = e1, µ1τ 1 + µ2τ 2 + µ3τ 3 + µ4τ 4 = e2, (6.6)

and it follows, in particular, that if we write that the components of τ i, i = 1, 2, 3, 4, are(
τ1i

τ2i

)
then,

hcf (τ11, τ12, τ13, τ14) = hcf (τ21, τ22, τ23, τ24) = 1. (6.7)
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Also from (6.3), with

(
p

q

)
∧

(
r

s

)
≡ ps− rq, one sees that some integer linear combination

of the quantities τ i ∧ τ j , i < j, equals e1 ∧ e2 = 1, and it follows that

hcf ({τ i ∧ τ j ; i < j, i, j = 1, 2, 3, 4}) = 1. (6.8)

Note that τ 1 ∧ τ 2 = τ 3 ∧ τ 4, since det θ = 1, and that one can re-express (6.8) as

hcf(b1, b2, c1, c2,∆) = 1, (6.9)

after a short calculation.

Lemma 5. Condition (6.7) and (6.9) are necessary and sufficient that (6.3) should hold.

Proof

The above remarks show the necessity of (6.7) and (6.9). To prove sufficiency, note that (6.7)

and (6.9) imply that the invariant factors (see Gantmacher [21]) of the two matrices

T ≡

(
τ11 τ12 τ13 τ14

τ21 τ22 τ23 τ24

)
and E ≡

(
1 0 0 0

0 1 0 0

)
(6.10)

coincide. So there exist unimodular matrices P,Q (P ∈ SL2(Z), Q ∈ SL4(Z)) such that

PTQ = E. (6.11)

Hence

TQ = P−1E. (6.12)

Let the first two columns of Q be (λ′1, λ
′
2, λ
′
3, λ
′
4)
T , (µ′1, µ

′
2, µ
′
3, µ
′
4)
T . Then (6.12) gives that

λ′1τ 1 + λ′2τ 2 + λ′3τ 3 + λ′4τ 4 = p−11 , µ′1τ 1 + µ′2τ 2 + µ′3τ 3 + µ′4τ 4 = p−12 , where p−11 ,p−12 are the

first and second columns of P−1 ∈ SL2(Z). Since {p−11 ,p−12 } is a basis of Z2, it follows that

each of e1, e2 is expressible as an integer linear combination of τ 1, τ 2, τ 3, τ 4 and this is enough

to prove that (6.3) holds. �

6.2 Conditions that D ∩N = G ∩N

In §3.4 we showed that D ∩N = {Z2,+}. From Lemma 2, if g ∈ G, then g can be written in

the form gα1g
β
2g

γ
3(g1, g2)

P3(g2, g3)
P1(g3, g1)

P2 . Recall that we are now dealing with generators

g1, g2, g3 such that (4.6) holds, so if g ∈ G∩N , then α = 0. It follows that G∩N is generated

by g2, g3 and the generators of G′ = G′ ∩N . So, using the results of the previous section,

G ∩N =
〈
τ 1, τ 2, (θ

−1 − I2)τ 1, (θ
−1 − I2)τ 2, θ(θ

−1 − I2)τ 1, θ(θ
−1 − I2)τ 2

〉
. (6.13)
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Now since det θ = 1, θ2 = (a+ d)θ − I2, so θ = (a+ d)I2 − θ−1, and

θ(θ−1 − I2)τ 1 = τ 1 − θτ 1 = (θ−1 − I2)τ 1 − (a+ d− 2)τ 1, (6.14)

which is an integer linear combination of τ 1, (θ
−1 − I2)τ 1. It follows quickly that

G ∩N = 〈τ 1, τ 2, τ 3, τ 4〉, (6.15)

recalling that τ 3 ≡ θτ 1, etc.. So conditions (6.7) and (6.9), which are necessary and sufficient

that G′ = D′, are also necessary and sufficient that G ∩N = D ∩N .

6.3 Conditions that G = D

It is necessary, in order that G = D, that conditions (6.7) and (6.9) hold. These conditions are

also sufficient for this purpose, for if they hold, then any n =


r

s

0

 ∈ D lies in D∩N = G∩N

and so is a product of elements g1, g2, g3 of the form (4.6). Note that gα1 =


r′

s′

α

 for some

integers r, s. Therefore ψ(n, gα1 ) = n+gα1 , from (2.22), is a product of elements g1, g2, g3 (and

their inverses), and can be set equal to any element of (Z3,ψ) by choice of the integers r, s, α,

which concludes the argument.

7 Conclusion

The purpose of the calculations given in the body of the paper is to determine the symmetries

that should be imposed on a continuum strain energy density per unit volume that has the

constitutive form w = w({`1, `2, `3},S). We take the point of view that the kinematical

quantities `1, `2, `3,S that are the arguments of the strain energy determine a discrete structure

whose symmetries are to transfer to the continuum strain energy (just as the symmetries of

a lattice L = {x : x = na`a, na ∈ Z, a = 1, 2, 3} transfer to the continuum strain energy

w = w({`1, `2, `3}, 0) of a perfect crystal). The discrete structure is a discrete subgroup of the

Lie group whose structure constants C ≡ (Cijk) are related to the dislocation density tensor S
via (1.17), with `r(0), r = 1, 2, 3, determined by the values of `r, r = 1, 2, 3. (It is a matter of

choice, whether or not one interprets the given values `1, `2, `3 as elements in the Lie algebra

g, so that `r(0) = `r, r = 1, 2, 3, or interprets `1, `2, `3 as group generators, in which case

e(`r(0)) = `r, r = 1, 2, 3. In either case, there is a one to one correspondence between `r(0) and
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`r, here. We choose the latter interpretation, below, for ease of presentation). Bearing (1.17)

in mind, we can rewrite the strain energy as

w({`1, `2, `3},S) ≡ w̃({`1, `2, `3}, C). (7.1)

Thus the strain energy relates to a particular subgroup, with generators `1, `2, `3, of a Lie

group with structure constants C. The elements of that subgroup correspond to a discrete set

of points in R3, and it is only the relative disposition of those points in R3 that determines the

energy (i.e. the description of the set of points in terms of Lie groups and generators does not

does not affect the energy). So if kinematical quantities `′1, `
′
2, `
′
3, C

′ lead to the same set of

points, then

w̃({`1, `2, `3}, C = w̃({`′1, `′2, `′3}, C ′). (7.2)

In this paper we have dealt with a single solvable Lie group of a particular class, and implicitly

decomposed tensor quantities with respect to a single basis, so in (7.2) we have C = C ′. We

have considered what different sets of generators lead to a given discrete subgroup and so shown

that

w̃({`1, `2, `3}, C) = w̃({`′1, `′2, `′3}, C). (7.3)

provided that, given generators {`1, `2, `3} ≡ {g1, g2, g3}, different generators {`′1, `′2, `′3} ≡
{g′1, g′2, g′3} are constructed as follows:

(i) One recalls (6.2) and chooses

(
β2

γ2

)
,

(
β3

γ3

)
such that (6.7) and (6.9) (or(6.8)) hold.

This gives that g̃1m ≡ ABβ1Cγ1 , g̃2m ≡ Bβ2Cγ2 , g̃3m ≡ Bβ3Cγ3 generate the matrix

representation of the same discrete subgroup, for arbitrary β1, γ1;

(ii) Let P ∈ SL3(Z) be arbitrary and define {g′1m, g′2m, g′3m} ≡ {g̃1m, g̃2m, g̃3m}P , recalling

(4.8). Then if g′i, i = 1, 2, 3, is such that g′im = rm(g′i), i = 1, 2, 3, it follows that

{g′1, g′2, g′3} is a set of generators of the same subgroup. Moreover, all sets of generators

are obtained in this way.

Finally, we have remarked in the introduction that the symmetries, (7.3) above, which

guarantee that the elements of D (as points of R3) are preserved, may be classified according

as to whether or not they are (restrictions of) elastic deformations of the continuum (or,

automorphisms of the Lie group). We intend to provide the explicit classification, into elastic

and inelastic symmetries, in future work.
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