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In the vicinity of ground-state phase transitions quantum correlations can display non-analytic be-
havior and critical scaling. This signature of emergent collective effects has been widely investigated
within a broad range of equilibrium settings. However, under nonequilibrium conditions, as found
in open quantum many-body systems, characterizing quantum correlations near phase transitions is
challenging. Moreover, the impact of local and collective dissipative processes on quantum correla-
tions is not broadly understood. Here we consider as a paradigmatic setting the superradiant phase
transition of the open quantum Dicke model and characterize quantum and classical correlations
across the phase diagram. We develop an approach to quantum fluctuations which allows us to show
that local dissipation, which cannot be treated within the commonly employed Holstein-Primakoff
approximation, rather unexpectedly leads to an enhancement of collective quantum correlations,
and to the emergence of a nonequilibrium superradiant phase in which the bosonic and spin degrees
of freedom of the Dicke model are entangled.

I. INTRODUCTION

The Dicke model [1] provides a paradigmatic frame-
work for the study of the interaction between a large
ensemble of atoms, described by N spin-1/2 (two-level)
particles, and an electromagnetic cavity field, described
by a bosonic mode [cf. Fig. 1(a)]. This model has been
thoroughly investigated in equilibrium [2–8], where it dis-
plays a second-order ground-state transition from a nor-
mal to a superradiant phase. While the order-parameter
behavior is captured by a mean-field treatment [9], study-
ing quantum correlations requires the analysis of quan-
tum fluctuations [10–17]. In equilibrium, this is typically
done within the so-called Holstein-Primakoff approxima-
tion [18]. This exploits that the system Hamiltonian can
be written in terms of collective (macroscopic) spin op-
erators, which approximately behave as bosons when the
system is close to its ground-state.

Nowadays, also due to a debate concerning a no-go the-
orem on the experimental realization of the equilibrium
Dicke model [19–23], investigations focus on the station-
ary state of the open Dicke model [cf. Fig. 1(a)] rather
than on the equilibrium state of its closed version [2–
7]. Open quantum Dicke models feature a nonequilib-
rium superradiant phase transition, see Fig. 1(b), which
is exactly captured by a mean-field approach [24, 25].
However, in these settings, analyzing quantum fluctua-
tions is challenging [9, 26–29]. As a consequence, little
is known about correlations in the nonequilibrium sta-
tionary states of open quantum Dicke models [29–31] —
whose behavior is expected to be substantially different
from that in the equilibrium ground state [12] — and even
less about the role of local dissipative processes, such as
local spin-decay [29, 32, 33] [cf. Fig. 1(a)].

In this paper, we provide a complete characterization
of quantum and classical correlations in open quantum
Dicke models. We achieve this by developing an approach

FIG. 1. Open quantum Dicke model: superradiant
phase transition and entanglement. (a) An ensemble
of N spin-1/2 systems (with energy splitting ωz between up-
state |↑〉 and down-state |↓〉) is coupled to a bosonic mode (the
frequency ωm determines the energy-cost of creating one field
excitation |n〉 → |n+ 1〉). The presence of an environment
induces boson losses (at rate κ) and local spin-decay (at rate
γ). We will consider all dynamical parameters in units of
κ. (b) At a critical coupling strength λ = λc, the system
undergoes a superradiant phase transition, characterized by
a macroscopic occupation (∝ N) of the bosonic mode, both
in the presence and in the absence of local spin-decay. (c)
The presence of local spin-decay leads to stronger quantum
correlations and also “stabilizes” an entangled nonequilibrium
superradiant phase.

to quantum correlations based on the theory of quantum
fluctuation operators [34–40]. The idea is to focus on
the Heisenberg equations for quantum fluctuations rather
than on the bosonization of the dynamical generator.
This allows one to treat settings in which the dynamics
is not of collective type and where the commonly used
Holstein-Primakoff transformation cannot be exploited,
e.g. in the presence of local dissipative terms. We inves-
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tigate various correlation measures, such as quantum dis-
cord and classical correlation, and show that they display
non-analytic behavior at the critical coupling strength
[see e.g. Fig. 1(c)]. Furthermore, we analyze bipartite
entanglement between the spins and the bosonic mode.
We find that the presence of local spin-decay — an un-
avoidable process in experiments which is usually consid-
ered detrimental for quantum effects — is unexpectedly
beneficial for the build-up of quantum correlations. Our
results indicate that this process leads to increased en-
tanglement in the normal phase, and to the emergence of
a nonequilibrium superradiant phase [cf. Fig. 1(c)] where
entanglement is nonvanishing.
The paper is organized as follows. In Sec. II we introduce
the open Dicke model subject to our investigation and in
Sec. III we review its non-equilibrium superradiant phase
transition. Building on these results, in Sec. IV we intro-
duce quantum fluctuation operators and study their cor-
relations in Sec. V. We discuss our results in Sec. VI. In
Appendix A we present details on the analysis of Sec. III,
while Appendices B and C contain details on the deriva-
tion of the dynamics of the covariance matrix of quantum
fluctuations.

II. OPEN QUANTUM DICKE MODEL

The Dicke model consists of an ensemble of N spin-1/2
subsystems collectively interacting with a single bosonic
mode, see Fig. 1(a). Spin operators for the kth parti-
cle are denoted as σαk , with σx = (|↑〉 〈↓| + |↓〉 〈↑|)/2,
σz = (|↑〉 〈↑| − |↓〉 〈↓|)/2, and σy = −2iσzσx. Here, the
states |↑〉, |↓〉 are the single-particle spin states. The
bosonic mode is described by creation and annihilation
operators a† and a, respectively. For later convenience,
we also introduce the spin operators σ± = σx ± iσy and
the bosonic quadrature operators q = i(a − a†)/

√
2 and

p = (a+ a†)/
√

2.
The system is governed by a Markovian open quantum

dynamics, under which the time-evolution of an operator
O follows the Lindblad equation Ȯ(t) = LN [O(t)] [41–43]
with generator

LN [O] : = i[HD
N , O] + κ

(
a†Oa− 1

2
{a†a,O}

)
+ γ

N∑
k=1

(
σ+
k Oσ

−
k −

1

2
{σ+

k σ
−
k , O}

)
. (1)

The first term on the right-hand side of Eq. (1) gives the
coherent contribution to the dynamics implemented by
the Dicke Hamiltonian (setting ~ = 1)

HD
N = ωma

†a+ ωzS
z +

2λ√
N

(a+ a†)Sx . (2)

Here, ωm > 0 is the bosonic mode frequency, ωz > 0
the energy splitting between spin states and λ > 0 the

coupling parameter [cf. Fig. 1(a)]. The Dicke Hamilto-
nian (2) is written in terms of the collective operators

Sα =
∑N
k=1 σ

α
k , obeying [Sα, Sβ ] = iεαβγSγ , where εαβγ

is the Levi-Civita symbol. Summation over repeated in-
dices is implied here and in the following. The factor
1/
√
N , which rescales the collective spin-boson coupling

in HD
N , is necessary for a well-defined thermodynamic

limit [9]. The last two terms in Eq. (1) account for irre-
versible dynamical effects. These are decay of bosonic ex-
citations at rate κ as well as local (individual) spin-decay,
|↑〉 → |↓〉, at rate γ. As becomes clear from Eq. (1),
the latter process is not described through collective, but
rather local, spin (jump) operators σ−k .

We note that the above open quantum Dicke model
is not just of mere theoretical interest but actually finds
application in the description of several experimental set-
tings [44, 45].

III. SUPERRADIANT TRANSITION

The open quantum Dicke model undergoes a phase
transition — as a function of the coupling strength
λ — from a normal stationary phase, with subexten-
sive (in N) bosonic occupation, to a superradiant one
where the bosonic mode becomes macroscopically occu-
pied [9, 24, 25] [see sketch in Fig. 1(b)]. An order pa-
rameter for this transition is the stationary expectation
of the renormalized number operator a†a/N in the ther-
modynamic limit of large number of spins, N →∞.

The form of the order parameter suggests the definition
of the so-called mean-field operators

mq
N =

q√
N
, mp

N =
p√
N

and mα
N =

Sα

N
, (3)

where the last term must be considered for α = x, y, z.
The first two operators are relevant as they provide
the order parameter through (mq

N )2 + (mp
N )2 − 1/N =

2a†a/N . The mean-field operators of the spin ensemble
[last term in Eqs. (3)] are also important for studying the
model. Indeed, by computing the action of the generator
LN in Eq. (1) on the mean-field operators in Eqs. (3), one
finds that all these operators are dynamically coupled.
Denoting the second and the third term (dissipators) in
Eq. (1) by DκN [O] and DγN [O], respectively, we can com-
pute the contribution of each term in Eq. (1) to ṁα

N (t)
(with α = x, y, z, q, p) separately. The coherent part acts
non-trivially on all mean-field operators since

i[HD
N ,m

α
N ] =− ωzεzαγmγ

N − 23/2λmp
N ε

xαγmγ
N , (4)

for α = x, y, z, and

i[HD
N ,m

q
N ] =ωmm

p
N + 23/2λmx

N ,

i[HD
N ,m

p
N ] =− ωmmq

N . (5)

For the dissipator DκN , however, we immediately see that
DκN [mα

N ] = 0 for α = x, y, z. The remaining two compo-
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nents are transformed linearly

DκN [mq
N ] = −κ

2
mq
N , DκN [mp

N ] = −κ
2
mp
N . (6)

The dissipator DγN yields DγN [mq
N ] = 0, DγN [mp

N ] = 0 and
it acts on the mean-field operators for α = x, y, z as

DγN [mα
N ] = −γ

2

(
δxαmx

N + δyαmy
N + δzα(1+ 2mz

N )
)
.

(7)

In the thermodynamic limit, the time-evolved operators
mα
N (t) (α = x, y, z, q, p) behave as multiples of the iden-

tity proportional to their expectation, i. e. mα
N (t) →

mα(t) = limN→∞〈mα
N (t)〉 [24, 25]. Hence, exploiting

Eqs. (4-7), it is possible to show that they obey the differ-
ential equations (we drop the explicit time-dependence)

ṁx = −ωzmy − γ

2
mx ,

ṁy = ωzm
x − 23/2λmpmz − γ

2
my ,

ṁz = 23/2λmpmy − γ

2
(1 + 2mz) , (8)

ṁq = ωmm
p + 23/2λmx − κ

2
mq ,

ṁp = −ωmmq − κ

2
mp .

These equations feature two different stationary regimes,
separated by a critical value of the coupling strength

λc =

√√√√[ω2
m +

(
κ
2

)2] [
ω2
z +

(
γ
2

)2]
4ωzωm

. (9)

This can be seen by solving the system of equations ob-
tained by setting the time derivatives in Eqs. (8) to zero.
If γ > 0, one finds that for λ > λc there are two stable
stationary solutions

mx = ± ωz√
2(ω2

z + (γ2 )2)

λc
λ

√
1− λ2

c

λ2

my = ∓ γ

23/2
√
ω2
z + (γ2 )2

λc
λ

√
1− λ2

c

λ2

mz = −1

2

λ2
c

λ2
(10)

mq = ± κωzλc

(ω2
m + (κ2 )2)

√
ω2
z + (γ2 )2

√
1− λ2

c

λ2

mp = ∓ 2ωzλc

(ωm + (κ2 )2 1
ωm

)
√
ω2
z + (γ2 )2

√
1− λ2

c

λ2

and an unstable one

mz = −1

2
, mx = my = mq = mp = 0. (11)

The latter is however the only stable solution for 0 < λ <
λc. Considering instead γ = 0, the two stable stationary

solutions in Eqs. (10) have to be replaced by

mx = ±

√
1− λ4

c

λ4

2
my = 0

mz = − λ2
c

2λ2
(12)

mq = ± κ√
2

λ

(ω2
m + (κ2 )2)

√
1− λ4

c

λ4

mp = ∓ λ

(ωm + (κ2 )2 1
ωm

)/
√

2

√
1− λ4

c

λ4
.

In this case one also has additional stationary solutions,
obtained by sending mz → −mz in Eqs. (11) and (12),
which are, however, not stable. To summarize, as shown
in Appendix A, for 0 < λ < λc there exists a unique sta-
tionary solution to the system in Eqs. (8) which is asymp-
totically stable, given by the trivial solution in Eq. (11).
This is the normal phase. For λ > λc, this becomes un-
stable but two other stable solutions emerge which spon-
taneously break the symmetry a → −a, σ− → −σ− of
the generator LN [9, 46]. These are given in Eqs. (10)
for γ > 0 and in Eqs. (12) for γ = 0. Their finite sta-
tionary values of mx/p imply a macroscopic occupation
of the bosonic mode in this superradiant phase.

IV. QUANTUM FLUCTUATIONS

The observables mα
N — which are analogous to the

sample mean variables of the law of large numbers —
provide, in the thermodynamic limit N → ∞, a classi-
cal average description of the Dicke model [25, 39, 47].
The latter carries no information about correlations or
fluctuations. In order to explore collective quantum cor-
relations in the two phases of the model, it is necessary to
introduce a new set of observables, the so-called quantum
fluctuation operators [34–40]. These account for devia-
tions of the operators mα

N from their average behavior
and are analogous to the fluctuation variables of central
limit theorems.

Quantum fluctuation operators are defined as

FαN =
√
N (mα

N − 〈mα
N 〉) . (13)

For α = x, y, z, these are the usual spin fluctuation oper-
ators [38, 39], and we have defined the bosonic ones (α =
q, p) in full analogy. Remarkably, despite being collective,
the operators in Eqs. (13) retain a quantum character in
the thermodynamic limit, in which the limiting opera-
tors Fα = limN→∞ FαN behave as bosons (for a rigorous
discussion see e. g. Ref. [37]). This is straightforward to
check for F q/p, since F qN = q − 〈q〉 and F pN = p − 〈p〉.
However, also collective spin fluctuations give rise to an
emergent bosonic mode. This can be seen as follows.
Looking at the commutator of fluctuation operators, one
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finds that [Fα, F β ] = iεαβγmγ (α, β = x, y, z), which is
a multiple of the identity. Now, we rotate the reference
frame for the spin ensemble aligning the z-direction with
the direction identified by mean-field variables, which is
n̂ = ~ms/|~ms| with ~ms = (mx,my,mz)T . In this ro-
tated frame we have m̃x = m̃y = 0 and m̃z > 0, so
that the only nonzero commutator is [F̃ x, F̃ y] = im̃z.
Here the corresponding rotation matrix Rn̂ transforms

the vector of fluctuations as ~F → ~̃F = Rn̂ ~F . A canonical
bosonic mode is finally obtained by applying a further
rescaling matrix J only changing F̃ x → Q = F̃ x/

√
m̃z,

F̃ y → P = F̃ y/
√
m̃z, which then fulfill [Q,P ] = i.

In what follows, we work with the set of fluctuations
r = (Q,P, F̃ z, F q, F p)T . The first two elements represent
an emergent bosonic mode describing collective proper-
ties of the spin ensemble; the last two are the fluctuations
of the original bosonic mode, while F̃ z is a fluctuation
operator which commutes with the others [37, 39].

To analyze correlations in the Dicke model through
fluctuation operators, we introduce the covariance ma-
trix Σ̃αβ = 〈{rα, rβ}〉/2. Recalling Eq. (13), we can

identify the elements Σ̃αα as the susceptibility of the
order parameter mα. For Gaussian states, this matrix
contains the full information about fluctuations and can
be used to quantify collective correlations [48, 49]. Be-
fore going to that, however, we briefly discuss the time-
evolution of Σ̃ under the dynamics implemented by the
generator in Eq. (1). A detailed analysis can be found
in Appendix B. For each parameter regime, we consider
the dynamics of fluctuations emerging, in the thermo-
dynamic limit, from an initial state which is stationary
with respect to the mean-field observables and possesses
Gaussian fluctuations. Under this assumption we can
infer the dynamics of Σ̃ from the one of the covariance
matrix Σαβ = 〈{Fα, F β}〉/2 of quantum fluctuations in
the original frame since

˙̃Σ = JRn̂Σ̇RTn̂J. (14)

Defining the two-point functions CαβN :=
〈
FαNF

β
N

〉
and

rewriting the covariance matrix in the original frame in
terms of them

Σαβ = lim
N→∞

1

2

〈
{FαN , F

β
N}
〉

= lim
N→∞

CαβN + CTN
αβ

2
,

(15)
we see that in order to arrive at a dynamical equation for
Σ the time-derivative of the two-point functions has to
be established. Because of their definition, fluctuations
are zero averaged, 〈FαN 〉 = 0, which allows to derive the
differential equation

ĊαβN =
〈
LN [FαNF

β
N ]
〉

=〈iFαN [HD
N , F

β
N ]〉+ 〈i[HD

N , F
α
N ]F βN 〉 (16)

+ 〈DκN [FαNF
β
N ]〉+ 〈DγN [FαNF

β
N ]〉.

Evaluating each of the expectation values in the second
and third line of Eqs. (16) leads, in the thermodynamic

limit, to a matrix differential equation for C and hence
to the one for the covariance in the rotated frame [39, 50]

˙̃Σ(t) = Σ̃(t)G̃T + G̃Σ̃(t) + W̃ . (17)

Here the matrices G̃ and W̃ , whose explicit form is given
in Appendix B, depend on the parameters of the model
and on the stable stationary mean-field variables of Eqs.
(8). The time-evolution in Eq. (17) has the structure of a
bosonic Gaussian open quantum dynamics [51], suggest-
ing that the Gaussianity of fluctuations is preserved at
all times. This is true even in the presence of local decay
which does not spoil the Gaussian character of quantum
fluctuations [40] (see Appendix B). As we show in Ap-
pendix C, Eq. (17) moreover possesses a unique station-

ary solution Σ̃∞ as long as λ 6= λc, 0. For γ > 0 this
solution is given by (in vectorized form)

vec(Σ̃∞) = (G̃⊗ 15 + 15 ⊗ G̃)−1vec(−W̃ ).

For γ = 0 a slight modification is required as explained
in Appendix C.

Since we are mainly interested in quantum correla-
tions, we discard the information associated with the
trivial fluctuation F̃ z. This can be done by extracting
from the stationary covariance matrix Σ̃∞ the 4× 4 mi-
nor obtained by neglecting its third row and its third
column. The resulting covariance matrix

Σ̃t−m
∞ =

(
Γs Γc
ΓTc Γb

)
,

contains the full information about the two bosonic
modes Q,P and F q, F p. In particular, Γs is the 2 × 2
matrix containing the second moments of the operators
Q,P , Γb contains those of F q, F p, and Γc contains cor-
relations between Q,P and F q, F p.

V. QUANTUM AND CLASSICAL
CORRELATIONS

In order to explore the correlation structure in the
open quantum Dicke model, we focus on measures which
can distinguish between correlations of different nature,
e. g. quantum or classical, and that are fully determined
by the covariance matrix Σ̃t−m

∞ . Since the spin fluctua-
tion operators involve all the spin degrees of freedom, the
correlations that we discuss here are of collective type,
i. e. reflecting, for instance, how the spin ensemble as a
whole is collectively correlated with the bosonic mode.

Firstly, we consider the classical correlation J [52–56]
between the spin ensemble and the bosonic mode. For a
bipartite quantum state ρA,B this quantity can be defined
as

J (ρA,B) = S(ρA)− inf
{Πi}

∑
i

piS(TrB(ρA,BΠi)/pi) (18)
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with S(ρ) = −Tr(ρ log ρ) the von Neumann entropy,
ρA(B) the reduced state for system A(B) and pi =
TrA,B(ρA,BΠi). It encodes the maximum information
that can be extracted on one subsystem, by making
generalized (Gaussian) measurements (represented by
POVMs {Πi},

∑
i Πi = 1) on the other one. In this

sense, the classical correlation is “asymmetric” since it
can be defined in two ways, i. e. either considering that
measurements are performed on the spin ensemble or on
the bosonic mode. In the following we denote the respec-
tive quantities by J→ and J←. Secondly, we study the
so-called quantum discord D [52–56], which is defined as
the difference between the total correlation, quantified by
the quantum mutual information

I(ρA,B) = S(ρA) + S(ρB)− S(ρA,B),

and the classical correlation J . This quantity measures
the genuine quantum contribution to the total correla-
tions between the two subsystems. According to its defi-
nition through the classical correlation, also the quantum
discord is asymmetric under exchange of the role of the
spin ensemble and of the bosonic mode. We adopt the
notation for the classical correlation by writing D→ for
the quantum discord corresponding to measurements on
the spin ensemble and D← for the one corresponding to
measurements on the bosonic mode. At the level of the
covariance matrix Σ̃t−m

∞ , explicitly carrying out the min-
imization in Eq. (18) and defining

A = det(2Γs), B = det(2Γb)

C = det(2Γc), D = det
(
2Σt−m
∞

)
,

leads to the closed expressions for the classical correlation
and the quantum discord [52, 54]

J←(Σ̃t−m
∞ ) = f(

√
A)− f(

√
Emin), (19)

D←(Σ̃t−m
∞ ) = f(

√
B)− f(ν−)− f(ν+) + f(

√
Emin),

(20)

with

Emin =


2C2+(B−1)(D−A)+2|C|

√
C2+(B−1)(D−A)

(B−1)2 ,

for (D −AB)2 ≤ (1 +B)C2(A+D)
AB−C2+D−

√
C4+(−AB+D)2−2C2(AB+D)

2B ,

otherwise

and the function

f(x) =

(
x+ 1

2

)
log

[
x+ 1

2

]
−
(
x− 1

2

)
log

[
x− 1

2

]
.

According to Williamson’s theorem [57], ν+, ν− are the
pairwise occurring symplectic eigenvalus of the stationary
two-mode covariance matrix, obtained as the diagonal
elements of the symplectic diagonalized matrix 2Σ̃t−m

∞ .

FIG. 2. Classical correlation and quantum discord.
(a-b) Classical correlation J← and quantum discord D← for
measurements on the bosonic mode as functions of γ and λ.
(c-d) Classical correlation J→ and quantum discord D→ for
measurements on the spin system as functions of γ and λ.
The critical line λc(γ) (dashed line) separates the normal
phase from the superradiant one. All quantities display a
non-analytic behavior at the critical line, with the classical
correlations diverging. The insets visualize the λ-dependence
of the corresponding quantities for γ = 2. For all plots, we
fixed ωm = 1 and ωz = 4. All dynamical parameters are given
in units of κ.

In Fig. 2(a-b), we show the stationary behavior of the
classical correlation J← and the quantum discord D←,
as a function of the coupling strength λ and of the lo-
cal spin-decay rate γ. As shown, the classical correlation
diverges at the nonequilibrium phase transition line, wit-
nessing strong spin-boson correlations. Concerning the
presence of quantum correlations, we observe that the
quantum discord is different from zero almost everywhere
in the phase diagram. It is maximal along the critical
line, where it shows a non-analytic behavior even though
it remains bounded. We further illustrate the parameter-
dependence for J→ and D→ in Fig. 2(c-d), for which it
has to be interchanged det(2Γs)↔ det(2Γb) in Eqs. (19),
(20). From there we see that the maxima of the quan-
tum discord are still distributed along the critical line if
the measurements are performed on the spin ensemble
but they are now of approximately the same height. The
classical correlation still diverges at λc(γ).

We now consider the emergence of collective entangle-
ment between the spins and the bosonic mode. This can
be quantified from the covariance matrix Σ̃t−m

∞ , through
the logarithmic negativity EN — a proper entanglement
measure — defined as [58–60]

EN = max(0,− log(ν̃−)) .

Here, ν̃− is the smallest symplectic eigenvalue [60] of
the partially transposed covariance matrix obtained from
2Σ̃t−m
∞ by exchanging F p → −F p [57, 61–63]. As we
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FIG. 3. Bipartite entanglement between the spin en-
semble and the bosonic mode. (a) Logarithmic negativity
EN as a function of γ and λ. (b-c) Logarithmic negativity EN
as a function of λ for γ = 0 (blue), shown in (b), and γ = 2
(red), shown in (c). The plots were produced assuming that
ωm = 1 and ωz = 4. All dynamical parameters are in units
of κ.

show in Fig. 3(a), the open quantum Dicke model dis-
plays collective spin-boson entanglement in a large pa-
rameter regime. We are particularly interested in under-
standing the impact of local spin-decay on entanglement.
For small, yet nonvanishing, values of γ we identify a pro-
nounced peak near the critical line λc(γ). This suggests
that a small rate of local spin-decay leads to larger en-
tanglement. However, when γ vanishes, entanglement is
dramatically reduced. This becomes evident when com-
paring the behavior of entanglement, as a function of λ,
for γ = 0 and γ 6= 0. An example is shown in Fig. 3(b-c).
In the absence of local spin-decay, entanglement vanishes
at the critical point and is always zero in the superradi-
ant phase [cf. Fig. 3(b)]. However, when local spin-decay
is present, entanglement assumes larger values across the
whole phase diagram and can also persist in the super-
radiant phase [cf. Fig. 3(c)]. Furthermore, for γ 6= 0, the
logarithmic negativity shows a non-analytic behavior at
the critical point and undergoes a “sudden death” well in-
side the superradiant phase, as shown in Fig. 3(c). These
results show that local spin-decay has, rather surpris-
ingly, an overall beneficial effect on quantum correlations,
and on quantum entanglement in particular. Comparing
Figs. 2(b),(d) and Fig. 3(a), we also see that there exist
parameter regions where the quantum discord assumes a
finite value but the logarithmic negativity is zero. In this
region, the quantum state of fluctuations is separable but
nevertheless non-trivially quantum correlated.

Finally, we analyze quantum correlations within each
subsystem separately. These are measured by the squeez-
ing parameter ξ = 2 min(Θ1,Θ2) [50, 64–66] where Θ1,
Θ2 denote the eigenvalues of Γs for spin squeezing and of
Γb for boson squeezing. The parameter ξ quantifies the
minimum variance among all possible quadrature oper-
ators. A state is called squeezed if ξ < 1, i. e. if the
variance in one of the quadratures is smaller than the
smallest possible simultaneous uncertainty of two canon-
ically conjugated quadrature operators (also referred to
as shot-noise limit [66]). Fig. 4(a) shows that there is no
spin-squeezing in the stationary state of the model since
ξs is always larger than or equal to 1. In contrast, the

FIG. 4. Squeezing. (a) Spin squeezing parameter ξs and (b)
boson squeezing parameter ξb as functions of γ and λ. Both
insets show a cut through the density plot at γ = 2. We have
chosen ωm = 1 and ωz = 4. All dynamical parameters are in
units of κ.

system can feature squeezing in the bosonic mode be-
low a threshold, i. e. γ . 4. As shown in the inset of
Fig. 4(b) the bosonic squeezing parameter ξb takes its
minimum values near λ = λc(γ).

VI. DISCUSSION

We explored the stationary structure of correlations
in an open quantum Dicke model. We found that, in
the absence of local spin-decay (γ = 0), the superra-
diant phase does not feature spin-boson entanglement.
Even though this may appear somehow counter-intuitive
since superradiant phases arise in the strong coupling
regime [67], disentangled nonequilibrium superradiant
phases have also been observed in other settings [68].
However, as we have shown, the presence of local spin-
decay (γ 6= 0) appears to be beneficial for the build-up
of quantum correlations and can even be used to “sta-
bilize” entanglement in superradiant stationary regimes.
Furthermore, through other measures of correlations, we
have shown that, even when there is no spin-boson entan-
glement, there are residual quantum correlations in the
system which evidence non-classical properties across the
whole phase diagram of the open quantum Dicke model.
Also these correlations, and not only entanglement, could
be exploited to achieve quantum-enhanced sensitivity in
metrological applications [69].

While the model considered here can also be effi-
ciently investigated numerically [24, 32], our analytical
approach provides key insight on the behavior of fluctu-
ations, which is necessary to quantify quantum correla-
tions. For instance, from bare numerical simulations, it
would not be possible to completely characterize entan-
glement, since the logarithmic negativity could be zero
even for entangled states in generic systems, nor the
quantum discord since it is not known how to compute
this quantity for the finite-N (mixed) stationary state of
a many-body open quantum system.
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APPENDIX A: STABILITY ANALYSIS OF THE STATIONARY MEAN-FIELD SOLUTIONS

In Sec. III we discussed the derivation of the mean-field equations, Eqs. (8), and have presented their stable
stationary solutions. The purpose of this Appendix is to provide details on the stability analysis, which we perform
using Lyapunov’s indirect method [70].

For γ = 0 the constraint mz2 = 1
4 −m

y2−mx2, occurring due to the conservation of ~S2, reduces Eqs. (8) to a system
of four coupled first-order non-linear differential equations

ṁx = −ωzmy

ṁy = ωzm
x ∓ 23/2λmp

√
1

4
−my2 −mx2

ṁq = ωmm
p + 23/2λmx − κ

2
mq

ṁp = −ωmmq − κ

2
mp

which completely determines the dynamics. It can be written in the form ~̇u = f(~u) with ~u = (mx,my,mq,mp)T and
the Jacobian of f is

J(~u) =


0 −ωz 0 0

ωz ± 23/2λmp mx√
1
4−my2−mx2

±23/2λmp my√
1
4−my2−mx2

0 ∓23/2λ
√

1
4 −my2 −mx2

23/2λ 0 −κ2 ωm
0 0 −ωm −κ2

 .

The characteristic polynomial is calculated as

det(J(~u)− 1χ) = a0χ
4 + a1χ

3 + a2χ
2 + a3χ+ a4

with coefficients

a0 =1

a1 =κ+
23/2mympλ√
1
4 −mx2 −my2

a2 =
κ2

4
+

23/2mympκλ√
1
4 −mx2 −my2

+ ω2
m −

23/2mxmpλωz√
1
4 −mx2 −my2

+ ω2
z

a3 =
mympκ2λ

√
2
√

1
4 −mx2 −my2

+
23/2mympλω2

m√
1
4 −mx2 −my2

− 23/2mxmpκλωz√
1
4 −mx2 −my2

+ κω2
z

a4 =− mxmpκ2λωz
√

2
√

1
4 −mx2 −my2

− 8

√
1

4
−mx2 −my2λ2ωmωz −

23/2mxmpλω2
mωz√

1
4 −mx2 −my2

+
κ2ω2

z

4
.

Then, Hurwitz’ theorem [71, 72] states that all roots of this polynomial have negative real parts (which is a sufficient
condition for stability of the solution) if and only if the inequalities

a1 > 0

a1a2 − a0a3 > 0

(a1a2 − a0a3)a3 − a2
1a4 > 0

a4 > 0
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hold. Employing this theorem we see that for our choice of parameters ωz = 4, ωm = 1, κ = 1 all roots of the
characteristic polynomial have a negative real part if and only if, for 0 < λ < λc, the stationary solution is the one
in Eq. (11), or, for λ > λc, the stationary solution is either of the two in Eqs. (12). Then the respective stationary
solutions are asymptotically stable [70]. Moreover, numerical evidence shows that for λ = λc small perturbations of
the solution in Eq. (11) (coinciding at this point with the solutions in Eqs. (12)) as initial conditions of the dynamics
still drive the system to a stationary state where mz = −1/2, mx = my = mq = mp = 0.
We proceed with the case γ > 0. Here the Jacobian is

J(~m) =


−γ2 −ωz 0 0 0
ωz −γ2 −23/2λmp 0 −23/2λmz

0 23/2λmp −γ 0 23/2λmy

23/2λ 0 0 −κ2 ωm
0 0 0 −ωm −κ2


and the coefficients of the characteristic polynomial

det(J(~m)− 1χ) = −b0χ5 − b1χ4 − b2χ3 − b3χ2 − b4χ− b5

are given by

b0 =1

b1 =2γ + κ

b2 =
5

4
γ2 + 2γκ+

1

4
κ2 + 8mp2λ2 + ω2

m + ω2
z

b3 =
1

4
γ3 +

5

4
γ2κ+

1

2
γκ2 + 4mp2γλ2 + 8mp2κλ2 + 2γω2

m + γω2
z + κω2

z

b4 =
1

4
γ3κ+

5

16
γ2κ2 + 4mp2γκλ2 + 2mp2κ2λ2 +

5

4
γ2ω2

m + 8mp2λ2ω2
m + 8mzλ2ωmωz + γκω2

z +
1

4
κ2ω2

z + ω2
mω

2
z

b5 =
1

16
γ3κ2 +mp2γκ2λ2 +

1

4
γ3ω2

m + 4mp2γλ2ω2
m + 8mzγλ2ωmωz + 29/2mympλ3ωmωz +

1

4
γκ2ω2

z + γω2
mω

2
z .

All roots of this degree 5 polynomial have negative real parts [71, 72] if and only if the inequalities

b1 > 0

b1b2 − b0b3 > 0

(b1b2 − b0b3)b3 − b21b4 + b0b1b5 > 0

((b1b2 − b0b3)b3 − b21b4 + b0b1b5)b4 + (b2b3 + b1b4)b0b5 − b20b25 − b1b22b5 > 0

b5 > 0

hold. For ωz = 4, ωm = 1, κ = 1 the solution in Eq. (11) is asymptotically stable for 0 ≤ λ < λc. On the other hand,
for λ > λc the solutions in Eqs. (10) are stable. Also in this case there is numerical evidence that for λ = λc the
(unique) stationary solution is approached eventually.

APPENDIX B: TIME-EVOLUTION OF THE COVARIANCE MATRIX

In this Appendix we complete our discussion of Sec. IV, giving the full calculation yielding the form of the (param-

eter) matrices G̃ and W̃ . Starting from Eqs. (16) we consider first the commutator of the Dicke Hamiltonian with the
fluctuation vector components for which

i[HD
N , F

α
N ] =

∑
η∈{x,y,z}

δαη(
−ωz√
N
εzαγSγ − 23/2

√
N
λmp

N ε
xαγSγ) + δαq(ωmp+

23/2λ√
N

Sx)− δαpωmq.
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Exploiting the fact that 〈FαN 〉 = 0, we can write

〈i[HD
N , F

α
N ]F βN 〉 = 〈i[HD

N , F
α
N ]F βN 〉 − 〈i[H

D
N , F

α
N ]〉〈F βN 〉

N�1
=
∑

η∈{x,y,z}

δαη(−ωzεzαγ〈F γF β〉 − 23/2λεxαγmγ〈F pF β〉

− 23/2λεxαγmp〈F γF β〉) + δαq(ωm〈F pF β〉
+ 23/2λ〈F xF β〉)− δαpωm〈F qF β〉

= : AαγCγβ = (AC)αβ

with

A =


0 −ωz 0 0 0
ωz 0 −23/2λmp 0 −23/2λmz

0 23/2λmp 0 0 23/2λmy

23/2λ 0 0 0 ωm
0 0 0 −ωm 0

 .

In the above calculation we have used that mα
N → mα, multiple of the identity, in the thermodynamic limit.

Analogously, we can calculate

〈iFαN [HD
N , F

β
N ]〉 N�1

=
∑

η∈{x,y,z}

δβη(−ωzεzβγ〈FαF γ〉 − 23/2λεxβγmγ〈FαF p〉 − 23/2λεxβγmp〈FαF γ〉)

+ δβq(ωm〈FαF p〉+ 23/2λ〈FαF x〉)− δβpωm〈FαF q〉
=:CαγBγβ = (CB)αβ

with

B =


0 ωz 0 23/2λ 0
−ωz 0 23/2λmp 0 0

0 −23/2λmp 0 0 0
0 0 0 0 −ωm
0 −23/2λmz 23/2λmy ωm 0

 = AT .

For the dissipative contributions in ĊN we expand them as

1

2
([A†, FαNF

β
N ]A+A†[FαNF

β
N , A]) = FαN (

1

2
([A†, F βN ]A+A†[F βN , A])) + (

1

2
([A†, FαN ]A+A†[FαN , A]))F βN + [A†, FαN ][F βN , A]

to achieve

DκN [FαNF
β
N ] =FαNDκN [F βN ] +DκN [FαN ]F βN +

Nκ

2
[mp

N + imq
N , F

α
N ][F βN ,m

p
N − im

q
N ]

and

DγN [FαNF
β
N ] = FαND

γ
N [F βN ] +DγN [FαN ]F βN + γ

N∑
k=1

[σ+
k , F

α
N ][F βN , σ

−
k ]. (B1)

Focusing on DκN , we find for the last term on the right-hand side

κ

2
[p+ iq, FαN ][F βN , p− iq] =

κ

2
(−sαpN spβN − is

αq
N spβN + isαpN sqβN − s

αq
N sqβN ) =: −sαγN D′γδsδβN = (−sND′sN )αβ

where the symplectic matrix sN is given by the commutation relations of the fluctuation operators sαβN = −i[FαN , F
β
N ]

and explicitly

sN
N�1

=


0 mz −my 0 0
−mz 0 mx 0 0
my −mx 0 0 0
0 0 0 0 1
0 0 0 −1 0

 = s.
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Furthermore

D′ =
κ

2


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 i
0 0 0 −i 1

 .

The single-fluctuation κ-dissipator reads

DκN [FαN ] =
κ

4
(ispαN p+ spαN q − sqαN p+ isqαN q + ipsαpN − qs

αp
N + psαqN + iqsαqN )

and therefore

〈DκN [FαN ]F βN 〉
N�1

=
κ

2
(sαq〈F pF β〉 − sαp〈F qF β〉) =: sαγEγδCδβ = (sEC)αβ .

Analogously

〈FαNDκN [F βN ]〉 N�1
=

κ

2
(−〈FαF p〉sqβ + 〈FαF q〉spβ) =: CαγE′γδsδβ = (CE′s)αβ

with

E =
κ

2


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 −1 0

 = E′.

Collecting intermediately all the results concerning DκN , we see

〈DκN [FαNF
β
N ]〉 N�1

= (CEs+ sEC − sD′s)αβ .

Proceeding with DγN , we have for the single-fluctuation dissipator

DγN [FαN ] =
γ

2
√
N

N∑
k=1

(δxα(σzkσ
−
k + σ+

k σ
z
k) + δyα(iσzkσ

−
k − iσ

+
k σ

z
k) + δzα(−σ+

k σ
−
k − σ

+
k σ
−
k ))

=
γ

2
(δxα(− Sx√

N
) + δyα(− Sy√

N
) + δzα(−

√
N1− 2

Sz√
N

))

and

〈DγN [FαN ]F βN 〉
N�1

=
γ

2
(−δxα〈F xF β〉 − δyα〈F yF β〉 − δzα2〈F zF β〉) =: QαγCγβ = (QC)αβ

with

Q =


−γ2 0 0 0 0
0 −γ2 0 0 0
0 0 −γ 0 0
0 0 0 0 0
0 0 0 0 0

 .

Also, we have that

〈FαND
γ
N [F βN ]〉 N�1

=
γ

2
(−δxβ〈FαF x〉 − δyβ〈FαF y〉 − δzβ2〈FαF z〉) = CαγQγβ = (CQ)αβ .

For the last term in Eq. (B1) we get

γ

N∑
k=1

[σ+
k , F

α
N ][F βN , σ

−
k ] =

γ

N

N∑
k=1

(δxαδxβ
1k

4
+ δxαδyβ

−i1k
4

+ δxαδzβ(−σzkσ−k )

+ δyαδxβ
i1k
4

+ δyαδyβ
1k

4
+ δyαδzβ(−iσzkσ−k )

+ δzαδxβ(−σ+
k σ

z
k) + δzαδyβiσ+

k σ
z
k + δzαδzβσ+

k σ
−
k )
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and by means of σρkσ
ν
k = δρν 1k4 + iερνµ

σµk
2 ,

〈γ
N∑
k=1

[σ+
k , F

α
N ][F βN , σ

−
k ]〉 N�1

= γ(δxαδxβ
1

4
+ δxαδyβ

−i
4

+ δxαδzβ
mx − imy

2

+ δyαδxβ
i

4
+ δyαδyβ

1

4
+ δyαδzβ

my + imx

2

+ δzαδxβ
mx + imy

2
+ δzαδyβ

my − imx

2

+ δzαδzβ(
1

2
+mz)) =: Z ′

αβ
.

Here

Z ′ = γ


1
4

−i
4

mx−imy
2 0 0

i
4

1
4

my+imx

2 0 0
mx+imy

2
my−imx

2
1
2 +mz 0 0

0 0 0 0 0
0 0 0 0 0

 .

Now, collecting the results concerning DγN gives

〈DγN [FαNF
β
N ]〉 N�1

= (CQ+QC + Z ′)αβ

and we conclude for Eq. (16) in the thermodynamic limit

Ċ = CAT +AC + CEs+ sEC − sD′s+ CQ+QC + Z ′.

Considering then Eq. (15), we finally get the differential equation for the covariance matrix

Σ̇ =Σ(AT + Es+Q) + (A+ sE +Q)Σ− sD′s+ sTD′T sT

2
+
Z ′ + Z ′T

2

=ΣGT +GΣ− sDs+ Z

where we defined G := A+ sE +Q and

Z := γ


1
4 0 mx

2 0 0

0 1
4

my

2 0 0
mx

2
my

2
1
2 +mz 0 0

0 0 0 0 0
0 0 0 0 0

 , D :=
κ

2


0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 1

 .

We note that the differential equation for the covariance matrix involves, in general, time-dependent matrices G, s
and Z. These may indeed be time-dependent through the time-dependence of the mean-field operators which appear
in their matrix elements. However, as stated in the main text, for the purpose of this work the matrices G, s and
Z are time-independent since we investigate here the behavior of fluctuations when the initial state of the system is
stationary with respect to the mean-field observables. As a consequence, this differential equation for the covariance
matrix in the original frame can be connected to the one in Eq. (17) by considering Eq. (14) and that

G̃ = JRn̂GR
T
n̂J
−1 , W̃ = JRn̂(Z − sDs)RTn̂J.

We want to conclude this section by elaborating on the fact that local decay as a dissipative process acting on
fluctuation operators does not spoil the Gaussian character of the latter (a full proof of this statement can be found
in Ref. [40]). Since the decay only acts non-trivially on spin operators, we restrict the analysis here to spin fluctuation
operators.

We simply consider the time-evolution generated by the dissipator DγN and study the emergent characteristic
function (i.e. the Fourier transform of the probability distribution) of a quantum fluctuation operator FαN . This is
defined as follows

χ(`) = lim
N→∞

〈
ei`F

α
N

〉
t
,
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where, here, 〈·〉t is the expectation value over a quantum state which has evolved up to time t solely through a
dissipative dynamics involving local decay. We further assume, for the sake of simplicity, that the initial state is a

product state, i.e., 〈σαk σ
β
h〉 = 〈σαk 〉〈σ

β
h〉, for all h 6= k and that it is further translation invariant 〈σαk 〉 = 〈σαh 〉, for all h, k.

Given that local decay is a process which occurs independently from site to site, the quantum state remains product
and translation invariant at every time. This observation makes the computation of χ(`) rather straightforward.

Writing the exponential of the fluctuation operator as a product of single site exponentials, and exploiting the fact
that the quantum state is a product state at any time, we have

〈
ei`F

α
N

〉
t

=

N∏
k=1

〈
e
i`√
N

(σαk−〈σ
α
k 〉t)
〉
t
.

Furthermore, exploiting the translation invariance of the state and expanding the exponentials we find

〈
ei`F

α
N

〉
t

=

[〈
1 +

i`√
N

(σα − 〈σα〉t)−
`2

2N
(σα − 〈σα〉t)2

〉
t

+O(N−3/2)

]N
.

The term proportional to N−1/2 evaluates to zero under expectation. The terms O(N−3/2) can be neglected in the
large N limit. Thus, taking N →∞ in the above relation, we arrive at the following expression

χ(`) = e−
`2

2 Σαα ,

where

Σαα = 〈(σα − 〈σα〉t)2〉t = lim
N→∞

1

2
〈{FαN , FαN}〉t .

The above argument thus exploits the fact that local decay acts independently from site to site to show that this
cannot break the Gaussianity of an initial product Gaussian state. This argument can be straightforwardly generalized
to account for the characteristic function of all quantum fluctuation operators. It can further be generalized to more
complex initial Gaussian states following the more technical proof in Ref. [40].

APPENDIX C: STATIONARY COVARIANCE
MATRIX

In this Appendix we show how the stationary covari-
ance matrix can be obtained through a vectorization pro-
cedure. We will refer to an odd-dimensional square ma-
trix as in “cross form” if its central row and central col-
umn consist only of zeros. An even-dimensional square
matrix arising from an odd-dimensional one M by delet-
ing the central row and central column is said here to be
in “reduced form” and we denote it by Mred.
We start with the differential equation for the covariance
matrix in Eq. (17)

˙̃Σ(t) = Σ̃(t)G̃T + G̃Σ̃(t) + W̃ . (C1)

We focus on parameters chosen for the figures in the main
text, i. e. ωz = 4, ωm = 1, κ = 1. Let I ⊆ R be an open
interval. Here t ∈ I and t > t0 ∈ I. At t0 it is assumed
that the quantum state is such that

~m(t0) =

{
~msub for λ ∈ [0, λc]

~msup for λ ∈ (λc,∞) ,

where ~msub is the vector containing the stable solution
of the mean-field equations in the normal phase, while

~msup is the vector containing the solution of the mean-
field equations in the superradiant phase.

The cases γ = 0 and γ > 0 are treated separately and
we first focus on γ > 0. The task is to find the stationary

covariance matrix Σ̃∞ which is such that ˙̃Σ∞ = 0. The
matrix equation to be solved, given by

Σ̃∞G̃
T + G̃Σ̃∞ = −W̃ ,

is equivalent [73] to finding the 25 unknowns of the fol-
lowing linear system of 25 equations

(G̃⊗ 15 + 15 ⊗ G̃)vec(Σ̃∞) = vec(−W̃ ) (C2)

where ⊗ is the Kronecker product and the opera-
tion vec(·) acts on a generic (m × n)-matrix K =
(K∗1,K∗2, ...,K∗n) (with K∗i the i-th column vector) as

K 7→ vec(K) = (KT
∗1,K

T
∗2, ...,K

T
∗n)T .

Eq. (C2) has a unique solution if and only if G̃ ⊗ 15 +

15 ⊗ G̃ is invertible. The solution is, in vectorized form,
given by

vec(Σ̃∞) = (G̃⊗ 15 + 15 ⊗ G̃)−1vec(−W̃ ).

Equivalently to invertibility, we want to prove that any
eigenvalue of G̃ ⊗ 15 + 15 ⊗ G̃ is non-zero. If the spec-
trum of G̃ is σ(G̃) = {µ1, µ2, µ3, µ4, µ5} then the set of
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these eigenvalues is σ(G̃ ⊗ 15 + 15 ⊗ G̃) = {µi + µj |i =
1, ..., 5, j = 1, ..., 5}. Thus, any eigenvalue is nonzero if

σ(G̃) ∩ σ(−G̃) = ∅, i.e. if no element of σ(−G̃) can be

obtained by a point reflection of an element of σ(G̃) at
the origin of the complex plane. Using again Hurwitz’
theorem it can be proven that for λ 6= λc all eigenvalues
of G̃ lie in the open left half-plane. Consequently the
matrix G̃⊗ 15 + 15 ⊗ G̃ is invertible if λ 6= λc.

In the γ = 0 case one cannot proceed the same way. In
this setting, we focus on initial covariance matrices Σ̃(t0)
that are in cross form (see the definition at the beginning

of this Appendix). The matrix Z̃ is the zero matrix and

the differential equation (C1) reduces to

˙̃Σ(t) = −s̃D̃s̃+ Σ̃(t)G̃T + G̃Σ̃(t).

Known as the differential Sylvester equation [74], it has
the unique solution

Σ̃(t) =eG̃(t−t0)Σ̃(t0)eG̃
T (t−t0)

−
∫ t

t0

eG̃(t−s)s̃D̃s̃eG̃
T (t−s)ds. (C3)

We note that

s̃ =


0 1 0 0 0
−1 0 0 0 0
0 0 0 0 0
0 0 0 0 1
0 0 0 −1 0

 , G̃ =



0 − 23/2mpλmx+mzωz
|~m| 0 0 0

23/2mpλmx+mzωz
|~m| 0 0 0 − sgn(mx)23/2λmz√

|~m|
0 0 0 0 0

sgn(mx)23/2λmz√
|~m|

0 23/2λmx

|~m| −κ2 ωc

0 0 0 −ωc −κ2



and D̃ = D. With eG̃(t−t0) =
∑∞
n=0

G̃n

n! · (t− t0)n it is

eG̃(t−t0)Σ̃(t0)eG̃
T (t−t0)

= lim
m,n→∞

m∑
k=0

n∑
l=0

(t− t0)k(t− t0)l

k!l!
G̃kΣ̃(t0)(G̃T )l.

This is in cross form since Σ̃(t0) is in this form and thus

G̃kΣ̃(t0)(G̃T )l is in cross form, for all k, l ∈ N0. Similarly,

since s̃D̃s̃ is in cross form, also eG̃(t−s)s̃D̃s̃eG̃
T (t−s) is. It

follows that the unique solution in Eq. (C3) has cross
form for all t ∈ I with t > t0. Therefore it remains to
solve

˙̃Σred(t) = ˙̃Σt−m(t)

=− s̃redD̃reds̃red + Σ̃t−m(t)G̃Tred + G̃redΣ̃t−m(t).

We want to find the stationary covariance matrix
˙̃Σt−m
∞ (t) = 0. Solving the matrix equation

Σ̃t−m
∞ G̃Tred + G̃redΣ̃t−m

∞ = s̃redD̃reds̃red

is equivalent to finding the 16 unknowns of the linear
system of 16 equations

(G̃red ⊗ 14 + 14 ⊗ G̃red)vec(Σ̃t−m
∞ ) = vec(s̃redD̃reds̃red).

With the same steps as above, we establish the invert-
ibility of G̃red ⊗ 14 + 14 ⊗ G̃red for λ 6∈ {0, λc} such that
in this regime the unique stationary CM is given by

vec(Σ̃t−m
∞ ) = (G̃red ⊗ 14 + 14 ⊗ G̃red)−1vec(s̃redD̃reds̃red).
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