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The discrete element method (DEM) has been used to simulate triaxial tests on a bonded material at
high pressures. A key feature of the model is the use of a flexible membrane that allows the correct
volumetric deformation and the true failure mode to develop while applying constant confining
pressure to the triaxial sample. The correct pattern of behaviour has been observed across a wide
range of confining pressures, with both shear planes and barrelling failure being observed. The radial
pressure applied by the membrane remains constant after large strains and deformation.
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INTRODUCTION
The high-pressure triaxial apparatus has the capacity of
applying confining pressures in excess of 64 MPa. The
apparatus features the use of flexible membranes, which
often vary in thickness according to the confining pressure.
Although membrane effects have been acknowledged (Henkel
& Gilbert, 1952) they still allow free deformation of the
specimen and permit the natural failure mode to develop.

Although a large proportion of numerical work has been
in two dimensions (e.g. Utili & Nova, 2008), the wide-
spread availability of the discrete element method (DEM)
and advances in computing power have enabled triaxial
tests to start to be modelled in three dimensions. Many
researchers have simulated true triaxial tests; that is, a
cubical sample within flat rigid boundaries (e.g. Sitharam
et al., 2002; Belheine et al., 2009; Salot et al., 2009).

For the purposes of simulating accurate laboratory
conditions, it is essential that any membrane allows the
correct confining pressure to be applied while allowing free
deformation. The importance of flexible membranes has
been highlighted in recent years. In two dimensions, biaxial
tests with flexible membranes have been modelled by
researchers such as Iwashita & Oda (1998) and Wang &
Leung (2008). In three dimensions, authors such as Cheung
& O’Sullivan (2008) and O’Sullivan & Cui (2009) have
simulated the effects of confining pressure by applying
forces directly to the sample and allowing it to deform
freely. However, it is unclear how accurately they
accounted for the change in surface area of the sample.
They projected the coordinates of the membrane particles
to a rectangular plane using Voronoi cells to obtain the
corresponding area of each particle. Although effective,
this method assumes that the membrane remains cylind-
rical, but this is not true for a triaxial test with flexible
boundaries. Their applied forces were directed towards the
centre of the specimen rather than normal to the specimen
surface, and their method did not give consideration to the
vertical component of confining pressure. Wang & Tonon

(2009) simulated the effects of confining pressure in a
similar approach at conventional pressures. A disadvantage of
solely modelling the effects of confining pressure and not the
actual membrane is that it does not leave scope for
investigating the role played by the membrane and how its
properties affect the behaviour. Nonetheless, these works
highlight the important role of flexible boundaries and
demonstrate how rigid boundaries inhibit localisation, causing
significant non-uniformities in the stresses along the boundary.

DISCRETE ELEMENT MODEL OF A FLEXIBLE
MEMBRANE
The software used in this study was PFC3D (Itasca, 2005). The
membrane developed consists of a cylindrical array of bonded
particles encasing the lateral boundary of the specimen, with
discrete forces applied to each particle to give the effect of
confining pressure. The membrane particles are hexagonally
arranged; the identity of each membrane particle is known,
allowing their properties to be retrieved and manipulated
easily. It is important that the membrane particles are small
enough to prevent penetration of the specimen particles
through the membrane. However, their size impacts the
calculation time; with this in mind, the membrane particles are
generated 33% smaller than the smallest sample particle.

The membrane particles are bonded using ‘contact bonds’
(Itasca, 2005) that transmit no moments, ensuring membrane
flexibility. The bonds are defined by shear and normal tensile
strengths, set high enough that the membrane does not split.

Considering the membrane as a series of individual rows
allows the vertical surface area to be calculated. Each row
consists of a series of particles connected in a loop. The
vertical position of a given row is obtained by averaging the
z-coordinates of the component particles and the row
thickness is approximated by interpolation between the
position of that row and adjacent rows (Fig. 1), although
all rows have equal thickness initially. The length of each
row is obtained by summing the distance between each row
particle, obtained from their coordinates. This enables the
vertical surface area of the row to be determined; summing
for all rows gives the total vertical membrane surface area.
Repeating this process, but considering the area enclosed
by a polygon (created by the membrane particles) instead
of the length gives the volume (Fig. 2).
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For a row of membrane particles, the total horizontal
force is the product of the confining pressure and vertical
surface area; this force is distributed equally to all the
particles in the row. This ensures that the confining
pressure is applied evenly to the specimen, regardless of
significant changes in shape, and avoids complex calcula-
tions used by authors such as Cheung & O’Sullivan (2008).
Each discrete horizontal particle force is applied in a
direction normal to the membrane surface (i.e. bisecting the
line joining two adjacent spheres).

The vertical component of force necessary to give the true
confining pressure has little effect on the results until large
strains; however, it can be calculated and applied in a similar
manner. If the cross-sectional area enclosed by a row of
membrane particles is considered along with that for the row
above and the row below, this gives a measurement of the
local shape of the membrane and the vertical component of
confining pressure can then easily be inferred. For example,
initially, the horizontal area enclosed by every row of
membrane particles will be approximately 0?002 m2 – the
cross-sectional area of the sample before deformation.
Because each row has the same horizontal area, this implies
no vertical component of confining pressure. After deforma-
tion, considering the cross-sectional area of a given row, if
the corresponding area of the row above is larger and the
row below has a smaller area, this implies an upwards
component of force which can be estimated from the
disparity in area. The membrane extends beyond the platens
by 20%, and the top and bottom loops of particles are fixed
to simulate the effects of O-rings (Fig. 3).

MEMBRANE PROPERTIES FOR HIGH PRESSURES
Due to the standard contact model considering stiffnesses
to act in series between two interacting objects, it is not

possible to calibrate the numerical membrane with
laboratory conditions. If the membrane particle normal
stiffness (used in tension as well as compression when
bonds are used) is adjusted so that the membrane has a
realistic ‘elastic extension modulus’ (Henkel & Gilbert,
1952), excessive overlap occurs between the membrane and
the sample when subjected to high confining pressures. The
membrane particles completely enter the specimen, dis-
appearing, as shown in Fig. 4(a). Using an artificially high
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Fig. 2. Schematic diagram illustrating the length and cross-
sectional area of a given row of membrane particles
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Fig. 3. Numerical membrane consisting of bonded particles
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Fig. 4. Failure of the membrane: (a) low particle stiffness
causing excessive overlap; (b) membrane particles not staying
correctly aligned
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stiffness to prevent this leads to unwanted hoop tension
being induced when the specimen expands.

Additionally, the contact normal stiffness is important
for particle interaction within the membrane; if the
particles are given a high compressive stiffness and low
tensile stiffness (user-defined contact model), the particles
do not stay aligned. Because of the high pressures, the
discrete forces applied to the membrane particles are large
enough to render the resistance to tensile displacement
between bonded particles negligible; the membrane parti-
cles slide apart and behave as if unbonded, as demonstrated
in Fig. 4(b).

To avoid a complex user-defined contact model, the
particles are given artificially high stiffnesses, with a system
in place to adjust the radii of certain membrane particles,
relieving the unwanted hoop tension. As the specimen
begins to deform, the material typically expands; as the
membrane stretches, rows of membrane particles will cover
an increased length, accommodated by tensile displacement
between the bonded membrane particles. For each row, the
mean displacement between neighbouring particles is
monitored and if this exceeds 1% of the particle radius,
then all the particles in the row are expanded, alleviating
the associated forces and avoiding unwanted pressure. The
value of 1% means the radii are only expanded by 0?5% at a
time, ensuring a gradual process with no sudden overlaps.

Any value of stiffness above a threshold proportional to
the confining pressure can be attributed to membrane
particles to prevent them entering the sample. This value
can be determined empirically or analytically. For the
membrane described in Table 1 and a confining pressure
12 MPa, the minimum required value of stiffness is
0?6 MN/m, which is sufficient to prevent membrane
particles sliding apart from one another. Lower values
cause the membrane to fail at high strains, while higher
values have no effect on the results.

The minor principal stresses are checked using ‘measure-
ment spheres’ (a function of the software) to ensure that the
confining pressure is being applied correctly. Several are
used, throughout the height of the specimen, as large as
possible without protruding outside the sample. Using a
sample (Fig. 5) described by the properties given in
Table 2, the membrane’s ability to maintain a constant
pressure can be demonstrated. The results of two simula-
tions sheared under a confining pressure of 1 MPa are
shown in Fig. 6. Both have the same membrane (Table 1);
one alleviates hoop tension by the method described, while
the other allows hoop tension to be induced. The
simulation that alleviates hoop tension by expanding
particles ensures a constant minor principal stress; the
alternative simulation displays an increasing value, with the
rate of increase determined by the membrane particle
stiffness. This effect is also visible in the higher value of
deviatoric stress. The minor principal stresses were checked
for all simulations and in any case never deviated more
than 5% from the applied pressure.

For the simulation with constant confining pressure (i.e.
alleviating additional hoop tension), increasing the mem-
brane particle stiffness further has a negligible effect on the
results. Increasing the membrane particle size reduces the
number of contacts between the membrane and the specimen
and, if large enough, can lead to specimen particles

Table 1. Membrane properties

Number of particles 11979
Friction coefficient 0?0
Normal and shear stiffness: N/m 0?66106

Density: kg/m3 1000
Particle size: mm 0?67
Initial surface area: m2 0?02

Fig. 5. Numerical specimen, consisting of approximately 7000
particles

Table 2. Sample properties

Sample size: mm 506100
Number of particles 6759
Friction coefficient 0?5
Normal and shear stiffness: N/m 106106

Density: kg/m3 2650
Coefficient of uniformity 2?0
Minimum particle diameter: mm 2?00
Median particle size, d50: mm 4?00
Initial void ratio 0?55
Contact model Linear springs (default)
Damping coefficient 0?7 (default value)

Deviatoric 
stress, q 
(hoop 
tension)
Deviatoric 
stress, q (no 
hoop tension)
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Fig. 6. Minor principal stress and deviatoric stress versus axial
strain for unbonded samples sheared at 1 MPa confining
pressure
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penetrating the membrane. Giving the membrane particles
friction leads to a slight increase in peak stress, although
further work is needed to fully clarify the role membrane
friction plays in laboratory tests.

FAILURE BEHAVIOUR
A series of simulations featuring a bonded granular
material representing cemented sand (used solely to
demonstrate brittle deformation) was conducted across a
range of confining pressures. Much experimental work has
been conducted on cemented sand (Coop & Atkinson,
1993; Schnaid et al., 2001; Asghari et al., 2003; Haeri et al.,
2004; Marri et al., 2012) and failure modes have been
categorised: brittle failure/shear planes for cemented
samples and barrelling failure for equivalent uncemented
samples. An increase in confining pressure suppresses the
effects of cementation and causes a transition from brittle
to ductile behaviour.

The sample particles were bonded using ‘parallel bonds’
(a cylindrical piece of material between two particles), as
used in previous studies (e.g. Potyondy & Cundall, 2004;
Wang & Leung, 2008). The bonds are defined by normal
and shear stiffness (stress/displacement), normal and shear
strength (stress) and size. All bonds have the same size
(radius 1 mm). Because this study is not concerned with
calibration against physical tests, parallel bond stiffnesses
have been defined to give values equal to the particle
stiffnesses (force/displacement). The bond strength has
been defined so as to give equivalent contact bond
strengths of 50 N. The same numerical sample is used,
representing Portaway sand (Marri et al., 2012). Parallel
bonds representing the cementation were installed at
existing contacts between particles before the sample was
subjected to confinement. Confining pressure was applied

to the specimen, after which the top platen was accelerated
over 100 000 timesteps to a velocity of 0?05 m/s.

The use of bonds causes a peak deviatoric stress to
appear and increases the maximum stress; varying the
magnitude of the bond strength changes the maximum
stress and prominence of the peak. Figure 7 shows the
triaxial results for the same bonded material sheared at
confining pressures of 1, 4, 8 and 12 MPa. Increasing the
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Fig. 7. Triaxial response of bonded material sheared across a
range of confining pressures (negative volumetric strain
represents dilation)
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Fig. 8. Triaxial response of cemented sand across a range of
confining pressures (Marri et al., 2012)

Fig. 9. Sheared cemented samples: (a) 1 MPa confining
pressure with visible shear planes; (b) 12 MPa confining
pressure (Marri et al. 2012)
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confining pressure leads to a higher maximum deviatoric
stress, comparable to the experimental data shown in Fig. 8
(Marri et al., 2012). The strain associated with the
maximum stress increases with confining pressure. The
peak is much more prominent at lower pressures, becoming
less distinguishable at 12 MPa. There is a transition from
brittle to ductile behaviour, with the effects of cementation
being suppressed by increasing confinement. The dilation
decreases with increasing confining pressure.

The flexibility of the membrane is demonstrated by
observing the failure modes after deformation. Figure 9
shows photographs of cemented specimens after shearing at 1
and 12 MPa confining pressure, revealing shear planes at
1 MPa and barrelling at 12 MPa. This contrast in behaviour
in the numerical samples is best observed by plotting particle
rotations. Figure 10 shows the particle rotations on a vertical
plane at 1 and 12 MPa confining pressures, at the point of
maximum rate of dilation (1?0 and 7?5% axial strain,
respectively). No clear shear plane is visible at 12 MPa,
whilst there is a prominent shear plane visible at 1 MPa. The
samples sheared at higher pressures display the correct
barrelling failure and there is transitional behaviour in
between these pressures. Without a flexible membrane, the
formation of these failure modes would be inhibited, as shown
by Cheung & O’Sullivan (2008).

CONCLUSIONS
A DEM model has been created that successfully simulates
high-pressure triaxial tests on cemented and uncemented
sand, with a flexible membrane allowing the correct
deformation to develop. The model presented features a
simple and effective way to apply the correct confining
pressure after the sample becomes distorted and the
membrane exhibits a non-uniform shape. The flexible
boundaries also allow the vertical component of confining
pressure to be applied to the specimen.

Simulations highlighting the ability to accommodate
various failure modes have been performed. The correct
qualitative behaviour for cemented sand has been observed
with regard to varying confining pressure. The correct

transition from brittle to ductile behaviour was witnessed
with increasing confining pressure, with high pressures
suppressing the effects of cementation. The flexible
membrane permits a well-defined peak strength, dilation
and formation of a shear band at low confining pressures,
with a less well-defined peak and more volumetric
contraction and no visible rupture plane at high confining
pressures. Without a flexible membrane, the formation of
these failure modes would be inhibited, as shown in
previous literature. The method presented here shows
much promise for the future modelling of triaxial tests
using the DEM.
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samples. Géotechnique 3, No. 1, 20–29.

Itasca (2005). Particle flow code in three dimensions, software
manual. Minneapolis, MN: Itasca Consulting Group Inc.

Iwashita, K. & Oda, M. (1998). Rolling resistance at contacts in
simulation of shear band developments by DEM. J. Engng
Mech. 124, No. 3, 285–292.

Marri, A., Wanatowski, D. & Yu, H. (2012). Drained behaviour
of cemented sand in high pressure triaxial compression test.
Geomech. Geoengng, http://dx.doi.org/10.1080/17486025.2012.
663938.

O’Sullivan, C. & Cui, L. (2009). Micromechanics of granular
material response during load reversals: combined DEM and
experimental study. Powder Technol. 193, No. 3, 289–302.

Potyondy, D. & Cundall, P. (2004). A bonded-particle model for
rock. Int. J. Rock Mech. Mining Sci. 41, No. 8, 1329–1364.

Salot, C., Gotteland, P. & Villard, P. (2009). Influence of relative
density on granular materials behaviour: DEM simulations of
triaxial tests. Gran. Matter 11, No. 4, 221–236.

Schnaid, F., Prietto, P. & Consoli, N. (2001). Characterization of
cemented sand in triaxial compression. J. Geotech. Geoenviron.
Engng 127, No. 10, 857–868.

Sitharam, T. G., Dinesh, S. V. & Shimizu, N. (2002).
Micromechanical modelling of monotonic drained and
undrained shear behaviour of granular media using three-
dimensional DEM. Int. J. Numer. Anal. Methods Geomech. 26,
No. 12, 1167–1189.

Utili, S. & Nova, R. (2008). DEM analysis of bonded granular
geomaterials. Int. J. Numer. Anal. Methods Geomech. 32, No.
17, 1997–2031.

Wang, Y. & Leung, S. (2008). A particulate-scale investigation of
cemented sand behaviour. Can. Geotech. J. 45, No. 1, 29–44.

Wang, Y. & Tonon, F. (2009). Modelling triaxial test on intact
rock using DEM with membrane boundary. J. Engng Mech.
135, No. 9, 1029–1037.

WHAT DO YOU THINK?

To discuss this paper, please email up to 500 words to
the editor at journals@ice.org.uk. Your contribution will
be forwarded to the author(s) for a reply and, if
considered appropriate by the editorial panel, will be
published as a discussion.

(a) (b)

Fig. 10. Particle rotation at maximum rate of dilation for
confining pressure of (a) 1 MPa and (b) 12 MPa. Dark grey
indicates particles that have undergone the most rotation; white
denotes the least rotation
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