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Abstract

This article addresses the weak convergence of numerical methods for Brownian dynamics. Typical
analyses of numerical methods for stochastic differential equations focus on properties such as the
weak order which estimates the asymptotic (stepsize h → 0) convergence behavior of the error of
finite time averages. Recently it has been demonstrated, by study of Fokker-Planck operators, that
a non-Markovian numerical method [Leimkuhler and Matthews, 2013] generates approximations in
the long time limit with higher accuracy order (2nd order) than would be expected from its weak
convergence analysis (finite-time averages are 1st order accurate). In this article we describe the
transition from the transient to the steady-state regime of this numerical method by estimating the
time-dependency of the coefficients in an asymptotic expansion for the weak error, demonstrating
that the convergence to 2nd order is exponentially rapid in time. Moreover, we provide numerical
tests of the theory, including comparisons of the efficiencies of the Euler-Maruyama method, the
popular 2nd order Heun method, and the non-Markovian method.

1 Introduction

Stochastic gradient systems are stochastic differential equations in d dimensions having the form

dX = a(X)dt+ σdw, X(0) = X0, (1.1)

where
a(x) := −∇V (x), (1.2)

V (x), x ∈ Rd, is a potential energy function and σ > 0 is a constant which characterizes the strength of the
additive noise, here described by a standard d-dimensional Wiener process w(t). These systems originate
in the work of Einstein [5, 6] to describe the motion of Brownian particles. They arise in mathematical
models for chemistry, physics, biology and other areas, when the cumulative effect of unresolved degrees
of freedom must be incorporated into a model to ensure its physical relevance. Under mild conditions
on V , the system (1.1) is ergodic [8, 13] and has the unique invariant distribution ρβ ∝ exp(−βV ),
where β = 2σ−2. Numerical methods for solving the equation (1.1) compute a discrete sequence of states
X1,X2, . . . by iteratively approximating the short time evolution. The error in the numerical solution
is typically quantified in either a strong sense (accuracy with respect to a particular stochastic path
associated to (1.1)) or by reference to an evolving distribution (weak error, or error in averages); the
latter is the focus of this article. Ideally, the discrete states are ultimately distributed in a way that is
consistent with the invariant distribution, but for complex applications the introduction of error in the
numerical process is inevitable. In this article we examine the asymptotic (t→∞) behavior of the weak
error.

Undoubtedly, the most common numerical method for solving (1.1) is the Euler-Maruyama method
which approximates X(tk), tk = hk, by the iteration

Xk+1 = Xk + ha(Xk) + σ
√
hξk+1, (1.3)
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where ξk = (ξ1k, . . . , ξ
d
k)> and ξik, i = 1, . . . , d, k = 1, . . . , are i.i.d. random variables with the law N (0, 1).

For analysis of the weak error, one considers a finite time interval [0, τ ], with τ = hN . The probability
measure associated to (1.1) is described by a probability density ρ(t, x) that evolves according to the
Fokker-Planck equation

∂ρ

∂t
= L†ρ,

where L† is the adjoint (in the L2 sense) of the generator for (1.1), defined by

L :=

d∑
i=1

ai(x)
∂

∂xi
+
σ2

2

d∑
i=1

∂2

(∂xi)
2 . (1.4)

The solution ρ(t, x) evolves from an initial probability distribution ρ(0, x) to the steady state ρ(∞, x) =
ρβ . Let ϕ be a test function (such as an element of the Schwartz space of C∞ functions rapidly decaying
at infinity). Then the average of ϕ at time τ may be taken to be

ϕ̄(τ) = Eρ(τ,·)ϕ ≡
∫
Rd

ϕ(x)ρ(τ, x)dx. (1.5)

The discretization scheme (1.3) may also be viewed as giving rise to an evolving probability distri-
bution, and thus one may think of the iterates in (1.3), X1,X2, . . ., as being characterized by densities
ρ1, ρ2, . . .. If stepsize h is used, then the average at time τ = Nh is given by

ϕ̂(τ, h) = EρN (·)ϕ ≡
∫
Rd

ϕ(x)ρN (x)dx. (1.6)

It is natural to compare (1.5) and (1.6) as a means of quantifying the error as a function of h. We refer
to this as the weak error. For the Euler-Maruyama method it is known (see, e.g. [7, 9, 15]) that

|ϕ̄(τ)− ϕ̂(τ, h)| = O(h).

The Landau notation means that the given quantity is bounded for h→ 0 by Ch where C is a constant
that is independent of the stepsize. A better way to write this is

|ϕ̄(τ)− ϕ̂(τ, h)| ≤ C(τ)h,

since C depends inherently on the time interval. This formula can be seen as a consequence of an
asymptotic expansion of the weak error, as proposed by Talay and Tubaro [18] (see also [7, 9, 15]). We
note that C also depends on the distribution of the initial state of the system, i.e. ρ(0, x), as well as the
particular observable, but we suppress these aspects in our notation. The asymptotic (τ →∞) behavior
of C describes the performance of the numerical method for computing averages with respect to the
invariant distribution. For the Euler-Maruyama method, one finds that C is bounded as τ → ∞, thus
one obtains first order approximation of averages both at finite time and in the long time limit.

In order to calculate averages in systems with complicated potentials and/or a large number of vari-
ables, one often must perform numerical calculations with a very long time interval. It is then desirable
to use as large a timestep as is reasonable in the interest of reducing the computational effort, which is
typically quantified in terms of the number of force evaluations. Weak first-order methods like Euler-
Maruyama can be inefficient in practice. Schemes such as the second order stochastic Heun method [9, 15]
can have greater efficiency: the stochastic Heun method uses two evaluations of the force −∇V at each
timestep, thus, in comparison to Euler-Maruyama, it must introduce less than about half the error at a
given stepsize to be deemed superior. The alternative method discussed in this paper has been proposed
in [11]:

Xk+1 = Xk + ha(Xk) + σ

√
h

2
(ξk + ξk+1), (1.7)

where ξk = (ξ1k, . . . , ξ
i
k)> and ξik, i = 1, . . . , d, k = 1, . . . , are i.i.d. random variables with the law

N (0, 1). This method is very similar in form to the Euler-Maruyama method (1.3), and is as easy to
implement, but the sums of successive random increments are not statistically independent, so the method
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is fundamentally non-Markovian in nature. The scheme was motivated in [11] by an analysis of Langevin
dynamics algorithms. In [12], the same method, along with some alternatives, was further analyzed from
the perspective of the invariant measure, providing a rigorous foundation for the statement that the error
in long-time averaging computed using (1.7) is of order two, i.e.

lim
τ→∞

|ϕ̄(τ)− ϕ̂(τ, h)| ≤ Kh2.

The remarkable feature of this estimate is that the second order accuracy is achieved with only a single
evaluation of the force at each timestep. The result of [12] relies on study of the invariant distribution
and a Baker-Campbell-Hausdorff expansion of the generator of the process. Such an operator-based
approach does not clarify the progression from finite time averaging to infinite time averaging and, in
particular, nothing is demonstrated in [11, 12] about the weak accuracy of the method. In this article, we
address this issue directly, studying the way that the finite-time averages obtained using the numerical
scheme (1.7) converge, as τ →∞, to steady-states of the numerical method. To do this, we compute the
Talay-Tubaro expansion at finite time and show that

|ϕ̄(τ)− ϕ̂(τ, h)| ≤ C0(τ)h+ C1(τ)h2 + . . . ,

Then we demonstrate that
lim
τ→∞

C0(τ) = 0,

implying a superconvergence property in the long-time limit. Moreover, we show that this convergence is
exponential in τ .

We note that there are several recent papers (see [1, 2, 20] and references therein), where the idea
of modified differential equations is exploited in order to construct higher-order schemes for computing
ergodic limits. This approach provides the possibility of modifying schemes which are of weak order one
on finite time intervals to provide second order approximations in ergodic limits. However, such modified
schemes require either to evaluate derivative of forces or to perform two force evaluations [1], i.e., their
computational cost is at least as high as for the Heun scheme and substantially higher than for (1.7).
Furthermore, although the theoretical approaches in our paper and in [1] share some similarities, the
results of [1] are not applicable to the non-Markovian approximation (1.7) and they do not also include
an analysis demonstrating that the leading term in the error of their modified schemes goes to zero
exponentially fast.

2 Preliminaries

Let (Ω, P,F) be a sufficiently rich probability space on which the Ft-measurable Wiener process w(t) from
(1.1) is defined as well as the sequence of random variables ξ1, ξ2, . . . from the method (1.7). We suppose
that all components of random variables ξk arising in (1.7) and the Wiener process w are independent.

This assumption will allow us to use Ito integrals of the form
∫ t
tk
b(s,Xtk,Xk

(s))dw(s), t ≥ tk, where

b(s, x) is a deterministic ‘good’ function (also note that in this paper we are considering the weak-sense
convergence only). In what follows E (·) denotes expectation with respect to the measure P .

We use the following notation for the solution of (1.1): X(t) = Xt0,x(t) when X(t0) = x, t ≥ t0, and
also we will write Xx(t) when t0 = 0. Recall (see, e.g. [8]) that the process X(t) is exponentially ergodic
if for any x ∈ Rd and any function ϕ with a polynomial growth there are C(x) > 0 and λ > 0 such that

|Eϕ(Xx(t))− ϕerg| ≤ C(x)e−λt, t ≥ 0, (2.1)

where

lim
t→∞

Eϕ(Xx(t)) =

∫
ϕ(x)ρ(x) dx := ϕerg. (2.2)

The solution X(t) of (1.1) is exponentially ergodic with the Gibbs invariant density

ρ(x) ∝ exp

(
− 2

σ2
V (x)

)
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under the condition (see e.g. [8, 13]): there exist c0 ∈ R and c1 > 0 such that

(x, a(x)) ≤ c0 − c1|x|2. (2.3)

Under this condition, for all p ≥ 1

E|Xx(t)|2p ≤ K(1 + |x|2pe−λt), (2.4)

where K > 0 and 0 < λ ≤ c1 depend on p (see e.g. [8, 13]).
Introduce the operator L

L :=
∂

∂t
+ L,

where L is the generator for (1.1) defined in (1.4). We recall that the function

u(t, x) = Eϕ(Xt,x(τ)) (2.5)

satisfies the Cauchy problem for the backward Kolmogorov equation

Lu = 0, (2.6)

u(τ, x) = ϕ(x),

i.e., ∂u/∂t = −Lu so
u(t, x) = e(t−τ)Lϕ(x).

The transition density p(t, x, y) for (1.1) satisfies the Fokker-Planck (forward Kolmogorov) equation

∂p

∂t
(t, x, y) = L†p(t, x, y), t > 0, (2.7)

p(0, x, y) = δ(y − x),

where L† is adjoint of L, and the invariant density ρ(x) satisfies the stationary Fokker-Planck equation

L† ρ(x) = 0. (2.8)

3 Main result

We start with a simple illustrative example.

Example 3.1. Let a(x) = −αx with α > 0, then X(t) from (1.1) is the Ornstein-Uhlenbeck process,

which is Gaussian with EXx(t) = xe−αt and Cov(Xx(s),Xx(t)) =
σ2

2α
(e−α(t−s) − e−α(t+s)) for s ≤ t. It

is not difficult to calculate that for the Euler scheme (1.3):

EXN = x0(1− αh)N = x0e
−ατ (1 +O(h)),

V ar(XN ) =
σ2

2α

1− (1− αh)2N

1 + αh
=
σ2

2α
(1− e−2ατ )− σ2

2
h+ e−2ατO(h) +O(h2), αh < 1,

where |O(hp)| ≤ Kh with K > 0 independent of τ , and for the scheme (1.7):

EXN = x0(1− αh)N = x0e
−ατ (1 +O(h)),

V ar(XN ) =
σ2

2α

[
1− (1− αh)2N

1− αh

]
=
σ2

2α
(1− e−2ατ ) + e−2ατO(h).

We see that although both schemes have first order accuracy on finite time intervals, the ergodic limit of
the scheme (1.7) is exact while the ergodic limit of the Euler scheme approximates the ergodic limit of
the Ornstein-Uhlenbeck process with order one which is usually the case for weak schemes of order one
[19, 17, 14].
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In what follows we will assume the following.

Assumption 3.1 The potential V (x) ∈ C7(Rd), its first-order derivatives grow not faster than a
linear function at infinity and higher derivatives are bounded. The relations (1.2) and (2.3) hold. The
function ϕ(x) in (2.6) lies∈ C6(Rd) and it and its derivatives grow not faster than a polynomial function
at infinity.

The most restrictive condition in Assumption 3.1 is the requirement for a(x) = −∇V to be globally
Lipschitz:

|a(x)|2 ≤ K(1 + |x|2), (3.1)

where K > 0 is independent of x ∈ Rd. (Refer to Remark 3.1, below, and the example presented in
Subsection 5.2.)

Introduce the multi-index i = (i1, . . . , id) and |i| =
∑d
j=1 ij . Under Assumption 3.1, we have the

following. The solution u(t, x) of (2.6) belongs to C∞,8(R+×Rd), the space of functions of t and x which
have continuous partial derivatives through order 8 in the spatial variables. Moreover, for some constant
K > 0, κ ∈ N, and λu > 0 (see, e.g. [19])

|u(t, x)− ϕerg| ≤ K(1 + |x|κ)e−λu(τ−t), t ≥ 0, (3.2)

and ∣∣∣∣ ∂j+|i|

∂jt∂i1x1 · · · ∂idxd
u(t, x)

∣∣∣∣ ≤ K(1 + |x|κ)e−λu(τ−t), (3.3)

for all 1 ≤ |i| ≤ 8 and 0 ≤ j ≤ 2.
The proof of the following lemma (which is an analogue of the moments bound (2.4) for the scheme

(1.7)) is rather standard and is omitted here.

Lemma 3.1 Assume that (2.3) and (3.1) hold. Let Xk be defined by the scheme (1.7). Then for all
sufficiently small h > 0 for all p ≥ 1 there is γ ∈ (0, 2c1) and K > 0 such that

E|Xk|2p ≤ K(1 + |x|2pe−γtk). (3.4)

We prove the following convergence and error expansion theorem for the scheme (1.7).

Theorem 3.1 Let Assumption 3.1 hold. Then the scheme (1.7) is first order weakly convergent and for
all sufficiently small h > 0 its error has the form

Eϕ(Xx(τ))−Eϕ(XN ) = C0(τ, x)h+ C(τ, x)h2, (3.5)

where

C0(τ, x) = E

∫ τ

0

B0(t,Xx(t))dt, (3.6)

B0(t, x) =
1

2

 d∑
i,j=1

aj(x)
∂

∂xj
ai(x)

∂

∂xi
u(t, x) +

σ2

2

d∑
i,j=1

∂

∂xj
ai(x)

∂2

∂xi∂xj
u(t, x)

+
σ2

2

d∑
i,j=1

∂2

(∂xj)
2 a

i(x)
∂

∂xi
u(t, x)

 ,
and

|C(τ, x)| ≤ K(1 + |x|κe−λτ ),

for some K > 0, κ ∈ N and λ > 0 independent of h and τ .
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Proof. Note that we shall use the lettersK, κ and λ to denote various constants which are independent
of h, t, τ , x. We will exploit ideas from [15, Chapter 2] and, in particular, from the proof of Theorem 2.2.5
on the Talay-Tubaro expansion. It is convenient to introduce the additional notation for Xk from (1.7):
X̄tk−1,Xk−1

(tk) = Xk, which explicitly expresses the dependence on Xk−1.
Since X0 = x, we have Xt1,X0,X0

(t1)(τ) = Xx(τ), and, using independence of Xk and w(t) − w(tk),
t ≥ tk for all k, we can write Xtk,Xk

(τ) = Xtk+1,Xtk,Xk
(tk+1)(τ), k = 0, . . . , N − 1. Then (cf. [15, p. 101]):

Eϕ(Xx(τ)) = Eϕ(Xt1,X0,X0 (t1)
(τ))−Eϕ(Xt1,X1

(τ)) + Eϕ(Xt1,X1
(τ))

= Eϕ(Xt1,X0,X0 (t1)
(τ))−Eϕ(Xt1,X1

(τ)) + Eϕ(Xt2,Xt1,X1 (t2)
(τ))

−Eϕ(Xt2,X2
(τ)) + Eϕ(Xt2,X2

(τ))

= · · · =

N−2∑
k=0

(
Eϕ(Xtk+1,Xtk,Xk

(tk+1)(τ))−Eϕ(Xtk+1,Xk+1
(τ))

)
+ Eϕ(XtN−1,XN−1

(τ)).

Using the definition (2.5) of u(t, x) and independence of Xk and w(t)− w(tk), t ≥ tk, we get

Eϕ(Xtk+1,Xtk,Xk
(tk+1)(τ)) = EE(ϕ(Xtk+1,Xtk,Xk

(tk+1)(τ))|Xtk,Xk
(tk+1)) = Eu(tk+1,Xtk,Xk

(tk+1)),

Eϕ(Xtk+1,Xk+1
(τ)) = EE(ϕ(Xtk+1,Xk+1

(τ))|X̄tk,Xk
(tk+1)) = Eu(tk+1, X̄tk,Xk

(tk+1)).

Also, since u(τ, x) = ϕ(x), we have Eϕ(XtN−1,XN−1
(τ)) = Eu(tN ,XtN−1,XN−1

(tN ))) and Eϕ(XN ) =
Eu(tN , X̄tN−1,XN−1

(tN ))). Combining the above expressions, we arrive at the following identity for the
global error of the method (1.7):

R := Eϕ(Xx(τ))−Eϕ(XN ) (3.7)

=

N−1∑
k=0

E(u(tk+1,Xtk,Xk
(tk+1))− u(tk+1, X̄tk,Xk

(tk+1))).

Expanding u(tk+1, X̄tk,Xk
(tk+1))) in powers of h around Xk by the usual Taylor formula, we obtain

Eu(tk+1, X̄tk,Xk
(tk+1))) = Eu(tk+1,Xk) +

d∑
i=1

E

[
∆Xi

k

∂

∂xi
u(tk+1,Xk)

]
(3.8)

+
1

2

d∑
i,j=1

E

[
∆Xi

k∆Xj
k

∂2

∂xi∂xj
u(tk+1,Xk)

]

+
1

6

d∑
i,j,l=1

E

[
∆Xi

k∆Xj
k∆Xl

k

∂3

∂xi∂xj∂xl
u(tk+1,Xk)

]

+
1

24

d∑
i,j,l,m=1

E

[
∆Xi

k∆Xj
k∆Xl

k∆Xm
k

∂4

∂xi∂xj∂xl∂xm
u(tk+1,Xk)

]
+h3r1(tk, x) ,

where

∆Xk = ha(Xk) + σ

√
h

2
(ξk + ξk+1)

and
|r1(tk, x)| ≤ K(e−λ(τ−tk) + |x|κe−λτ ) (3.9)

for some K > 0, κ ∈ N and λ > 0 independent of h, x, t and τ . To derive the estimate (3.9), we used
(3.3), the assumptions on a(x) and its derivatives from Assumption 3.1, and (3.4).

Introduce the auxiliary process

X′k+1 = Xk + ha(Xk) + σ

√
h

2
ξk.
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Note that

Xk = X′k + σ

√
h

2
ξk.

Using the Taylor expansions around X′k, we get for the second term in (3.8):

d∑
i=1

E

[
∆Xi

k

∂

∂xi
u(tk+1,Xk)

]
= h

d∑
i=1

Eai(Xk)
∂

∂xi
u(tk+1,Xk) +

σ2

4
h

d∑
i=1

E
∂2

(∂xi)
2u(tk+1,X

′
k) (3.10)

+
σ4

16
h2

d∑
i=1

d∑
j=i+1

E
∂4

(∂xi)
2

(∂xj)
2u(tk+1,X

′
k) +

σ4

32
h2

d∑
i=1

E
∂4

(∂xi)
4u(tk+1,X

′
k) + h3r2(tk, x);

for the third term in (3.8):

1

2

d∑
i,j=1

E

[
∆Xi

k∆Xj
k

∂2

∂xi∂xj
u(tk+1,Xk)

]
=

1

2
h2

d∑
i,j=1

E

[
ai(Xk)aj(Xk)

∂2

∂xi∂xj
u(tk+1,Xk)

]
(3.11)

+
σ2

4
h2

d∑
i,j=1

E

[
∂

∂xj
ai(X′k)

∂2

∂xi∂xj
u(tk+1,X

′
k)

]
+
σ2

4
h2

d∑
i,j=1

E

[
ai(X′k)

∂3

∂xi (∂xj)
2u(tk+1,X

′
k)

]

+
σ2

4
h

d∑
i,j=1

E
∂2

(∂xi)
2u(tk+1,X

′
k) +

σ4

8
h2

d∑
i=1

d∑
j=i+1

E
∂4

(∂xi)
2

(∂xj)
2u(tk+1,X

′
k)

+
σ4

16
h2

d∑
i=1

E
∂4

(∂xi)
4u(tk+1,X

′
k) + r3(tk, x)h3;

for the fourth term in (3.8):

1

6

d∑
i,j,l=1

E

[
∆Xi

k∆Xj
k∆Xl

k

∂3

∂xi∂xj∂xl
u(tk+1,Xk)

]
=
σ2

4
h2

d∑
i,j=1

E

[
ai(X′k)

∂3

∂xi (∂xj)
2u(tk+1,X

′
k)

]
(3.12)

+
σ4

8
h2

d∑
i=1

d∑
j=i+1

E
∂4

(∂xi)
2

(∂xj)
2u(tk+1,X

′
k) +

σ4

16
h2

d∑
i=1

E
∂4

(∂xi)
4u(tk+1,X

′
k) + r4(tk, x)h3;

for the fifth term in (3.8):

1

24

d∑
i,j,l,m=1

E

[
∆Xi

k∆Xj
k∆Xl

k∆Xm
k

∂4

∂xi∂xj∂xl∂xm
u(tk+1,Xk)

]
(3.13)

=
σ4

16
h2

d∑
i=1

d∑
j=i+1

E
∂4

(∂xi)
2

(∂xj)
2u(tk+1,X

′
k) +

σ4

32
h2

d∑
i=1

E
∂4

(∂xi)
4u(tk+1,X

′
k) + r5(tk, x)h3.

The functions ri(tk, x), i = 2, . . . , 5, satisfy estimates of the form (3.9), which are derived using the same
facts as in the case of r1(tk, x).

By Lemma 2.1.9 from [15, p. 99] and again using independence of Xk and w(t)−w(tk), t ≥ tk, we get

Eu(tk+1,Xtk,Xk
(tk+1)) = Eu(tk+1,Xk) + hELu(tk+1,Xk) +

h2

2
EL2u(tk+1,Xk) + r6(tk, x)h3 . (3.14)

We have for the second term in (3.14):

hELu(tk+1,Xk) = h

d∑
i=1

Eai(Xk)
∂

∂xi
u(tk+1,Xk) +

σ2

2
h

d∑
i=1

∂2

(∂xi)
2u(tk+1,X

′
k) (3.15)

+
σ4

16
h2

d∑
i,j=1

E
∂4

(∂xi)
2

(∂xj)
2u(tk+1,X

′
k) + r7(tk, x)h3;
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for the third term in (3.14):

h2

2
EL2u(tk+1,Xk) =

h2

2

d∑
i,j=1

Eai(Xk)aj(Xk)
∂2

∂xi∂xj
u(tk+1,Xk) (3.16)

+
h2

2

d∑
i,j=1

Eaj(Xk)
∂

∂xj
ai(Xk)

∂

∂xi
u(tk+1,Xk) +

σ2

4
h2

d∑
i,j=1

Eai(X′k)
∂3

∂xi (∂xj)
2u(tk+1,X

′
k)

+
σ2

4
h2

d∑
i,j=1

Eai(X′k)
∂3

(∂xj)
2
∂xi

u(tk+1,X
′
k) +

σ2

4
h2

d∑
i,j=1

E
∂2

(∂xj)
2 a

i(Xk)
∂

∂xi
u(tk+1,Xk)

+
σ2

2
h2

d∑
i,j=1

E
∂

∂xj
ai(X′k)

∂2

∂xi∂xj
u(tk+1,X

′
k) +

σ4

8
h2

d∑
i,j=1

E
∂4

(∂xi)
2

(∂xj)
2u(tk+1,X

′
k) + r8(tk, x)h3.

The functions ri(tk, x), i = 6, 7, 8, satisfy estimates of the form (3.9), which are derived using the same
facts as in the case of r1(tk, x) except r6(tk, x) where (2.4) was also used.

Let

r(tk, x) = r6(tk, x) + r7(tk, x) + r8(tk, x)− r5(tk, x)− r4(tk, x)− r3(tk, x)− r2(tk, x)− r1(tk, x).

Substituting (3.8)-(3.16) in (3.7), we obtain

R =
h2

2

N−1∑
k=0

 d∑
i,j=1

Eaj(Xk)
∂

∂xj
ai(Xk)

∂

∂xi
u(tk+1,Xk) (3.17)

+
σ2

2

d∑
i,j=1

E
∂

∂xj
ai(X′k)

∂2

∂xi∂xj
u(tk+1,X

′
k) +

σ2

2

d∑
i,j=1

E
∂2

(∂xj)
2 a

i(Xk)
∂

∂xi
u(tk+1,Xk)


+

N−1∑
k=0

Er(tk,Xk)h3

= h2E

N−1∑
k=0

1

2

 d∑
i,j=1

aj(Xk)
∂

∂xj
ai(Xk)

∂

∂xi
u(tk,Xk) +

σ2

2

d∑
i,j=1

∂

∂xj
ai(Xk)

∂2

∂xi∂xj
u(tk,Xk)

+
σ2

2

d∑
i,j=1

∂2

(∂xj)
2 a

i(Xk)
∂

∂xi
u(tk,Xk)

+

N−1∑
k=0

Er(tk,Xk)h3

:= h2E

N−1∑
k=0

B0(tk,Xk) +

N−1∑
k=0

Er(tk,Xk)h3,

where (cf. (3.9))
|r(tk, x)| ≤ K(e−λ(τ−tk) + |x|κe−λτ ). (3.18)

Due to the properties of u(t, x) (see ((3.3))-(3.3)) and of a(x) (see Assumption 3.1), we have

|B0(t, x)| ≤ K(1 + |x|κ)e−λu(τ−t) (3.19)

for some K > 0 and κ ∈ N independent of h, x, t and τ . Using (3.19) and (3.4), we obtain from (3.17):

|R| ≤ Kh(1 + |x|κe−λτ ), (3.20)

for some constants K > 0, κ ∈ N and λ > 0 independent of h, x, and τ , i.e., the scheme (1.7) is of first
weak order.
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It remains to prove the expansion (3.5). Consider now the (d+ 1)-dimensional system

dX = a(X)dt+ σdw(t), X(0) = X0 , (3.21)

dY = B0(t,X)dt, Y(t0) = 0 .

Solving (3.21) by the scheme (1.7), we get

E

N−1∑
k=0

B0(tk,Xk)h = EȲ(τ) = EY(τ) + rB(τ, x)h = C0(τ, x) + rB(τ, x)h, (3.22)

where C0(τ, x) is equal to

C0(τ, x) = EY(τ) = E

∫ τ

0

B0(s,Xx(s))ds (3.23)

and

rB(τ, x)h =

N−1∑
k=0

∫ tk+1

tk

[EB0(s,Xx(s))−EB0(tk,Xk)] ds. (3.24)

Introduce
B̃0(t, x) = B0(t, x)eλu(τ−t), (3.25)

for which we have (cf. (3.19)):
|B̃0(t, x)| ≤ K(1 + |x|κ),

where K > 0 does not depend on x, t, and τ . Using the demonstrated first-order convergence of (1.7)
(cf. (3.20)), it is not difficult to obtain that

|rB(τ, x)|h ≤ e−λu(τ−t)
N−1∑
k=0

∫ tk+1

tk

∣∣∣EB̃0(s,Xx(s))−EB̃0(tk,Xk)
∣∣∣ ds (3.26)

≤ e−λu(τ−t)h

N−1∑
k=0

∣∣∣EB̃0(tk,Xx(tk))−EB̃0(tk,Xk)
∣∣∣+ hK(1 + |x|κe−λτ )

≤ hK(1 + |x|κe−λτ ).

The equality (3.17) together with (3.18) and (3.22)-(3.26) implies (3.5)-(3.6). �

Now we prove that in the limit of τ →∞ the scheme (1.7) has second order of accuracy in h.

Theorem 3.2 Let Assumption 3.1 hold. Then the coefficient C0(τ, x) from (3.6) goes to zero as τ →∞ :

|C0(τ, x)| ≤ K(1 + |x|κ)e−λτ (3.27)

for some constants K > 0, κ ∈ N and λ > 0, i.e., over a long integration time the scheme (1.7) is of
order two up to exponentially small correction.

Proof. We have

C0(τ, x) =

∫ τ

0

EB0(t,Xx(t))dt =

∫ τ

0

∫
Rd

B0(t, y)p(t, x, y)dydt (3.28)

=

∫ τ

0

∫
Rd

B0(t, y)ρ(y)dydt+

∫ τ

0

∫
Rd

B0(t, y)[p(t, x, y)− ρ(y)]dydt,

where p(t, x, y) is the transition density for (1.1) (see (2.7)) and ρ(y) is the invariant density. Using
integration by parts and (1.2), it is not difficult to verify that for any 0 ≤ t ≤ τ :∫

Rd

B0(t, y) exp

(
− 2

σ2
V (y)

)
dy = 0. (3.29)
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Further, using geometric ergodicity of X(t) (cf. (2.1)), we have for B̃0(s, x) from (3.25)

|EB̃0(s,Xx(t))−
∫
Rd

B̃0(s, y)ρ(y)]dy| ≤ K(1 + |x|κ)e−λBt, 0 ≤ s ≤ τ, t > 0, (3.30)

for some constants K > 0, κ ∈ N and λB > 0 independent of x, t, and τ .
Using (3.30), we obtain for some λ > 0 and all sufficiently large τ > 0:∣∣∣∣∫ τ

0

∫
Rd

B0(t, y)[p(t, x, y)− ρ(y)]dydt

∣∣∣∣ =

∣∣∣∣∫ τ

0

e−λu(τ−t)
∫
Rd

B̃0(t, y)[p(t, x, y)− ρ(y)]dydt

∣∣∣∣
≤ K(1 + |x|β)e−λτ ,

which implies (3.27). �

Remark 3.1 We note that the global Lipschitz condition in Assumption 3.1 is not restrictive as the
concept of rejecting exploding trajectories from [16, 17] can be used in implementing (1.7) when the
coefficients of (1.1) are not globally Lipschitz.

4 Discussion

1. We emphasize that the fact that the average of B0(t, x) with respect to the invariant measure is equal
to zero (see (3.29)) is the reason why the scheme (1.7) is second order accurate in approximating ergodic
limits (see Theorem 3.2).
2. In the case of the Euler scheme (1.3) we get the same error expansion as (3.5) for the scheme (1.7)
but with a different B0(t, x) = BE0 (t, x) (see [15, Section 2.2.3]):

BE0 (t, x) =
1

2

 d∑
i,j=1

aj
∂u

∂xj
ai
∂u

∂xi
+
σ2

2

d∑
i,j

∂2aj

(∂xi)
2

∂u

∂xj
+
σ2

2

d∑
i,j=1

ai
∂3u

∂xi (∂xj)
2

+σ2
d∑

i,j=1

∂aj

∂xi
∂2u

∂xj∂xi
+
σ4

6

d∑
i,j=1

∂4u

(∂xi)
2

(∂xj)
2

 .
The average of BE0 (t, x) with respect to the invariant measure is not equal to zero and, consequently, the
Euler scheme (1.3) approximates ergodic limits with order one – the same order as its weak convergence
over a finite time interval (see also Example 3.1).
3. Let a one-step weak approximation X̄t,x(t+ h) of the solution Xt,x(t+ h) of (1.1) generate a method
of order p. Then, according to the Talay-Tubaro expansion [18] (see also [15, Section 2.2.3]), the global
error of the method has the form

R := Eϕ(Xx(τ))−Eϕ(X̄x(τ)) = C0(τ, x)hp + · · ·+ Cn(τ, x)hp+n +O(hp+n+1) , (4.1)

where n ∈ N (n can be arbitrarily large if the potential V (x) belongs to C∞(Rd), its first-order derivatives
grow not faster than a linear function at infinity and its higher derivatives of any order are bounded) and
the functions C0(τ, x), . . . , Cn(τ, x) are independent of h. It follows from the proof of Theorem 2.2.5 in
[15] that the coefficients Ci in (4.1) can be presented in the form

Ci(τ, x) =

∫ τ

0

EBi(s,Xx(s))ds.

The function B0(s, x) is the coefficient at the leading term in the one-step error expansion of the method
analogous to B(s, x) in Theorem 3.1. The other Bi(s, x), i ≥ 1, consists of the coefficient at hp+i+1

from the the one-step error expansion of the method (analogously to as B0(s, x) does at hp+1) and of
the coefficients at hp+i+1 from one-step error expansions for approximations of Cj with j < i (see details
in [15, Section 2.2.3]). Furthermore, one can deduce from the proof of Theorem 3.2 that if the averages
of Bi(s, x) 0 ≤ i ≤ q ≤ n, with respect to the invariant measure are equal to zero then in the limit of
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τ →∞ the scheme has p+ q order of accuracy in h. Hence, such a detailed one-step error analysis is the
basis for discovering long time integration properties of numerical schemes and can serve as a guide in
the construction of highly efficient numerical methods for computing ergodic limits for diffusions.

We observe that higher order methods for sampling from the Gibbs distribution have recently been
constructed based on the idea of modified differential equations e.g. in [1]) but they are Markovian in
comparison with the scheme (1.7) considered here. To our knowledge (see also the recent paper [20]), a
non-Markovian scheme with order higher than 2 in computing ergodic limits has not yet been proposed.
We note in particular the remarkable simplicity of the scheme (1.7), which requires just a single evaluation
of force per step but nevertheless has second order accuracy in the computation of ergodic limits.

5 Numerical experiments

We compare the sampled distributions for the Euler-Maruyama scheme (1.3) with the second-order (in
the sense of approximating ergodic limits) scheme (1.7), with both methods equal in cost (measured in
terms of evaluations of the force). We also compare the sampled distributions with Heun’s method, a
second-order scheme requiring two evaluations of a(x) = −∇V (x):

X̂k+1 = Xk + ha(Xk) + σ
√
hξk+1,

Xk+1 = Xk +
h

2

[
a(X̂k+1) + a(Xk)

]
+ σ
√
hξk+1.

(5.1)

As the scheme (1.7) computes exact long-time averages for all quadratic potential energy functions V , it
is necessary to consider anharmonic models in order to capture the representative behavior of the scheme.

5.1 Anharmonic scalar model

We consider solutions to (1.1) using the one-dimensional potential energy function

V (x) = cos(x),

with periodic x ∈ [0, 2π).

5.1.1 Error in infinite time

We sample the configurational distribution exp(−V (x)) using trajectories generated using the Euler-
Maruyama scheme (1.3), Heun’s method (5.1) and the method (1.7), where the trajectory runs over a
fixed time interval of [0, 2× 108].

We note that the weak-sense convergence results are proved in Section 3 under the assumption that
test functions ϕ(x) are sufficiently smooth and they and their derivatives grow not faster than polynomial
functions at infinity (see Assumption 3.1). This is a usual assumption in stochastic numerics [7, 9, 15] .
At the same time, this assumption is not sufficient to guarantee convergence in distribution of the scheme
(1.7), which would require to consider ϕ(x) being step functions. In [3] first-order weak-sense convergence
of the Euler scheme and the corresponding Talay-Tubaro error expansion were proved in the case of ϕ(x)
being measurable bounded functions, which, in particular, implies convergence in distribution of the
Euler scheme. Further, first-order convergence for density of the Euler scheme was proved in [4]. Ideas
from [3, 4] can be exploited to extend the convergence results obtained in Section 3 for the scheme (1.7)
to include the case of nonsmooth ϕ(x). Here we show and compare convergence in distribution of the
scheme (1.7) and the other two tested methods experimentally.

For each scheme, we divide [0, 2π] into 100 equal histogram bins to approximate the sampled distri-
bution, and compare the observed density of bin i (denoted ρ̂i) to the exact canonical density of bin i
(denoted ρi) computed to high precision using a numerical solver. The error in the distribution is then
reported as either the approximate L2 difference in the sampled distributions, or as the relative entropy
(or Kullback-Leibler divergence [10]) of the two distributions, defined by I =

∫
ρ(x) ln[ρ(x)/ρ̂(x)]dx. The
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relative entropy gives a measure of the information lost between two probability distributions. The two
error quantities are approximated as

Relative entropy error:
∑
i

ρi ln

(
ρi
ρ̂i

)
, L2 error:

√∑
i

(ρ̂i − ρi)2.

We compute the configurational distribution using each scheme at 16 different timesteps, where the
smallest is h = 0.2 and subsequent timesteps are increased by 10%. The distributions are averaged over
32 independent realizations per timestep, and the overall errors are plotted in Figure 1.
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Timestep Timestep

L2 error
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r

Euler-Maruyama

Heun’s Method

Candidate Scheme (1.7)

10-3

10-5

0.2 0.4 0.8

Relative entropy error

Euler-Maruyama

Heun’s M
ethod

Candidate Scheme (1.7)
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10-4

10-2

10-1
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r

10-3

10-4

10-2

Figure 1: The error in computed distributions is plotted for each scheme at many stepsizes. We compare
both the relative entropy (Kullback-Leibler divergence) and the L2 error of the computed distributions
of q. The plotted black guidelines give trends with respect to stepsize, with the dashed and dotted lines
giving first and second order respectively in the right plot, and second and fourth order respectively in
the left plot.

The results match the analysis given in Section 3 for the large-time regime. In the case of the L2

error, the Euler-Maruyama scheme gives a first order error in the computed distribution, while the other
schemes give second order errors. For the computation of relative entropy, we see a doubled rate of
convergence (from first to second order, or from second to fourth order). Writing ρ̂ = ρ(1 + εψ), where ε
is a small parameter and

∫
ψρ = 0 (conservation of total probability), we have,∫

ρ ln[1/(1 + εψ)]dx = −
∫
ρ ln(1 + εψ)dx = −

∫
ρ(εψ − ε2ψ2 + . . .)dx = −ε2

∫
ψ2ρdx+ . . . .

In the discrete context, if ρ̂i = ρi + hkψi for an order k scheme, then we find that the relative entropy is
proportional to h2k. In practice, we observe that Heun’s method and the method (1.7) give a fourth order
relationship with the stepsize, whereas the Euler-Maruyama scheme has relative entropy proportional to
ε2. The non-Markovian method gives approximately an order of magnitude improvement in this example.

5.1.2 Error in finite time

We consider the weak accuracy of the Euler-Maruyama scheme (1.3), Heun’s method (5.1) and the method
(1.7). In order to realize the evolving distribution computed for each scheme, we average over 2.56× 109

independent trajectories with initial points drawn from a normal distribution with mean π and variance
1 (where the tails of the distribution outside the periodic region are cut off). We divide [0, 2π] into 21
histogram bins, and run over t ∈ [0, 9].

As the exact solution is unknown, we compute a baseline solution using Heun’s method with h = 0.04
over the time interval. This solution is compared to the evolving distributions for h = 0.16, 0.24, 0.32
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Figure 2: The lower plot shows the error in the distribution after time t, as computed using each scheme
at h = 0.16. In the plots at the top, we compare the error growth with respect to stepsize h at multiples of
t = 0.96. The Euler-Maruyama scheme (◦), Heun’s method (+) and the method (1.7) (×) are compared
to first order (dotted) and second order (dashed) guidelines.

and 0.48. The growth of the error at multiples of t = 0.96 is plotted at the top and bottom of Figure 2,
along with guidelines to indicate the order of accuracy.

We plot the error after time t for each scheme, using h = 0.16, in the central plot of Figure 2. Initially
the error in the scheme (1.7) reduces like exp(−λt), but stabilizes after t = 4. This is due to the behavior
described in Section 3, where only the first order component has an exponentially decreasing prefactor.
The stabilization occurs when the h2 part of the error begins to dominate the observed error.

5.2 Lennard-Jones box

As a more challenging problem, we compute the error in the radial distribution function for r ∈ (0, 6) for
a 6× 6× 6 periodic box of 64 Lennard-Jones particles, with interaction potential

V (q) =

64∑
i=1

64∑
j=i+1

r−12ij − r−6ij , rij = ‖qi − qj‖,

where qi denotes the position of particle i, i.e., x in (1.1)-(1.2) is 3 × 64 = 192-dimensional. We chose,
arbitrarily, β = 10 and estimate the radial distribution function during simulation by dividing the interval
(0, 6) into 120 histogram bins of equal length, with the error computed as the L2 difference between the
exact and computed radial distributions.
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Figure 3: We plot the observed L2 error in the computed radial distribution functions for a periodic box
of 64 Lennard-Jones particles. The Euler-Maruyama (◦) and the method (1.7) (×) schemes require one
force evaluation per step, while Heun’s method (+) requires two.

We observe that the Lipschitz condition (3.1) is not, formally, satisfied for many molecular dynamics
potentials (including Lennard-Jones potentials) due to the presence of singularities. Nonetheless it is
likely that, due to energetic considerations it would be possible to create a modified domain (a) in which
typical solutions remain and (b) in which the Lipschitz condition (3.1) can be verified. The numerical
example presented here strongly suggests that the global Lipschitz condition could be relaxed. More
directly, the assumption (3.1) can be verified if the potential is replaced by one without singularities,
e.g. by using instead Morse potentials, or by a smoothly truncated singular potential, or by a smooth
Gaussian approximation of the singular potential [21].

Due to the size and complexity of the problem, we cannot use standard numerical solvers to compute
the exact solution. Therefore we compute a baseline solution using the scheme (1.7) to compute 368
realizations of a 107 step trajectory (after a 106 step equilibration period), with a small stepsize of
h = 0.0016.

We next compute the radial distribution functions computed using the three schemes in Section 5.1,
at ten different timesteps beginning at h = 0.002 and with subsequent timesteps increasing by 10%. The
trajectories were all taken over a constant time window of [0, 20000], with sampling beginning after a 106

step equilibration.
We plot the error for all three schemes in Figure 3. For both the Euler-Maruyama scheme and Heun’s

method we average over 32 realizations for each timestep that we consider. This was sufficient to resolve
the error introduced by these discretization methods. However, the scheme (1.7) proved to be sufficiently
accurate that further computation was required to discern the leading error term, with the error at each
timestep computed using 256 realizations to reduce the sampling error.

The results show good agreement with the theory presented in Section 3. The method (1.7) demon-
strates an order of magnitude improvement in the long-time error of averages compared to Heun’s method,
while at the same time requiring half the cost (in terms of force evaluations).

6 Summary

In this article we have closed the gap in understanding between the typical weak error analysis of numerical
discretization methods and the invariant measure accuracy of e.g. [11, 12, 1], demonstrating in particular
that the non-Markovian numerical integration method (1.7) makes an exponentially rapid transition
from first order weak accuracy to second order accuracy as τ →∞. Our results are confirmed in several
numerical experiments, with the ultimate conclusion being that the scheme (1.7) is typically superior to
the Euler-Maruyama and Heun’s methods in terms of accuracy and efficiency for the purpose of averaging
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in the long term (in the transient region, the other methods may of course be better, depending on the
problem).
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