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TWO-GRID hp-VERSION DISCONTINUOUS GALERKIN FINITE

ELEMENT METHODS FOR QUASI-NEWTONIAN FLUID FLOWS
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Abstract. In this article we consider the a priori and a posteriori error analysis of two-grid
hp-version discontinuous Galerkin finite element methods for the numerical solution of a strongly

monotone quasi-Newtonian fluid flow problem. The basis of the two-grid method is to first solve

the underlying nonlinear problem on a coarse finite element space; a fine grid solution is then
computed based on undertaking a suitable linearization of the discrete problem. Here, we study

two alternative linearization techniques: the first approach involves evaluating the nonlinear vis-
cosity coefficient using the coarse grid solution, while the second method utilizes an incomplete

Newton iteration technique. Energy norm error bounds are deduced for both approaches. More-

over, we design an hp-adaptive refinement strategy in order to automatically design the underlying
coarse and fine finite element spaces. Numerical experiments are presented which demonstrate

the practical performance of both two–grid discontinuous Galerkin methods.

Key words. hp-finite element methods; discontinuous Galerkin methods, a posteriori error

estimation, adaptivity, two-grid methods, non-Newtonian fluids

1. Introduction

The purpose of this article is to develop the a priori and a posteriori error analy-
sis of two-grid hp-version discontinuous Galerkin finite element methods (DGFEMs)
for the numerical approximation of strongly monotone quasi-Newtonian fluid flow
problems. The general philosophy of two-grid methods is to first approximate
the underlying nonlinear problem on a coarse finite element partition of the com-
putational domain. On the basis of this coarse grid approximation, a linearized
variant of the discrete problem is then computed on a fine mesh; see, for example,
[4, 8, 9, 16, 23, 27, 30, 31, 32, 33], and the references cited therein. The linearization
required for the construction of the linear problem to be solved on the fine mesh
may be undertaken in a number of different ways. Indeed, a simple approach is to
evaluate the nonlinear coefficients arising in the underlying partial differential equa-
tion using the coarse grid approximation; in this way, the fine grid approximation
essentially includes an underlying modelling or data approximation error stemming
from fixing the data of the problem, cf. [9, 33], for example. On the other hand,
the coarse grid solution may be used as the initial guess for a Newton solver on the
fine mesh; in this setting, one step of the Newton iteration technique is typically
undertaken, cf. [4, 33]. In the context of DGFEMs, Bi & Ginting [9] studied the
first approach for a class of quasilinear elliptic PDEs, where the nonlinear diffusion
coefficient µ depends on the analytical solution u; this analysis was then extended
to consider the case when µ = µ(|∇u|) in [15]. The analysis of DGFEMs using the
two-grid technique based on employing a single step of a Newton solver for this
latter class of scalar PDEs has been studied in [12].

In this article we generalize the analysis presented in [12, 14, 15] for two-grid hp-
version interior penalty (IP) DGFEM approximations of scalar quasilinear elliptic
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PDEs to the following non-Newtonian fluid flow problem:

−∇ · {µ (x, |e (u) |) e (u)}+∇p = f in Ω,(1)

∇ · u = 0 in Ω,(2)

u = 0 on Γ.(3)

Here, Ω ⊂ Rd, d = 2, 3, is a bounded polygonal, or polyhedral, Lipschitz domain
with boundary Γ = ∂Ω, f ∈ L2(Ω)d is a given source term, u = (u1, . . . , ud)

> is
the velocity vector, p is the pressure, and e(u) is the symmetric d× d strain tensor
defined by

eij(u) =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, i, j = 1 . . . d.

Furthermore, |e(u)| is the Frobenius norm of e(u). For the purposes of this article
we assume that the function µ satisfies the following structural hypothesis.

Assumption 1. We assume that the nonlinearity µ ∈ C(Ω̄× [0,∞)) and there exists
positive constants mµ and Mµ such that

(4) mµ(t− s) ≤ µ(x, t)t− µ(x, s)s ≤Mµ(t− s), t ≥ s ≥ 0, x ∈ Ω̄.

As a direct consequence of (4), we note that µ satisfies the following inequalities:
there exists positive constants C1 and C2, such that for all τ , ω ∈ Rd×d and all
x ∈ Ω̄,

|µ(x, |τ |)τ − µ(x, |ω|)ω| ≤ C1|τ − ω|,(5)

C2|τ − ω|2 ≤ (µ(x, |τ |)τ − µ(x, |ω|)ω) : (τ − ω).(6)

For ease of notation we suppress the dependence of µ on x and write µ(t) instead
of µ(x, t). Throughout this paper, we use the following standard notation. Given
D ⊂ Rd, d ≥ 1, a bounded Lipschitz domain, we write Ht(D) to denote the usual
Sobolev space of real-valued functions of order t ≥ 0 with norm ‖·‖Ht(D); for t = 0,

we set L2(D) = H0(D). We write H1
0 (D) to denote the subspace of functions in

H1(D) with zero trace on ∂D, and set L2
0(D) = {q ∈ L2(D) :

∫
D
q dx = 0}.

This article is organized as follows. In Section 2 we formulate the standard (single
grid) IP DGFEM for the numerical approximation of the boundary-value problem
(1)–(3). Sections 3 and 4 develop the a priori and a posteriori error analysis of the
above mentioned variants of the two–grid hp-version IP DGFEM. On the basis of
the a posteriori error bounds established in this article, in Section 5 we consider
the design of an hp-adaptive finite element algorithm capable of automatically en-
riching the underlying coarse and fine finite element spaces; the performance of this
adaptive strategy is studied in Section 6. Finally, in Section 7 we summarise the
main results of this article and draw some conclusions.

2. hp-Version IP DGFEM approximation

In order to construct the two-grid IP DGFEMs considered in this article, we
first recall the family of IP DGFEMs introduced and analysed in [13]. To this
end, we introduce the following notation. Let Th denote a shape-regular quadrilat-
eral/hexahedral partition of the computational domain Ω into disjoint open-element
domains κ such that Ω =

⋃
κ∈Th κ. We assume that each κ ∈ Th is an affine image

of a fixed master element κ̂; i.e., for each κ ∈ Th, there exists an affine mapping
Tκ : κ̂ → κ such that κ = Tκ(κ̂), where κ̂ = (−1, 1)d is the reference element.



TWO-GRID hp-DGFEM FOR QUASI-NEWTONIAN FLUIDS 3

We write hκ to denote the element diameter of κ ∈ Th, and set h = maxκ∈Th hκ;
furthermore, nκ signifies the unit outward normal vector to κ. We allow the meshes
Th to be one-irregular and assume that the family of meshes {Th}h>0 is of ‘bounded
local variation’, i.e., there exists a constant ρ1 ≥ 1, independent of element sizes,
such that

(7) ρ−1
1 ≤ hκ/hκ′ ≤ ρ1

for any pair of elements κ, κ′ ∈ Th which share a common face F = ∂κ ∩ ∂κ′.
Given κ ∈ Th, we write kκ ≥ 1 to denote the local polynomial degree; we set

k = {kκ : κ ∈ Th} and kmax = maxκ∈Th kκ. By construction, we assume that k is
also of bounded local variation, i.e., there exists a constant ρ2 ≥ 1, independent of
the element sizes and k, such that, for any pair of neighbouring elements κ, κ′ ∈ Th,

(8) ρ−1
2 ≤ kκ/kκ′ ≤ ρ2.

We define the finite element spaces

V (Th,k) =
{
v ∈ L2(Ω)d : v|κ ◦ Tκ ∈ Qkκ(κ̂)d, κ ∈ Th

}
,

Q(Th,k) =
{
q ∈ L2

0(Ω) : q|κ ◦ Tκ ∈ Qkκ−1(κ̂), κ ∈ Th
}
,

where Qk(κ̂) denotes the set of all tensor-product polynomials on κ̂ of degree k in
each coordinate direction.

We write FIh to denote the set of all interior faces, FBh the set of all boundary
faces and Fh = FIh ∪ FBh the set of all faces associated with the mesh Th. Given
two adjacent elements, κ+, κ− ∈ Th, which share a common face F ∈ FIh , i.e.,
F = ∂κ+ ∩ ∂κ−, for scalar-, vector- and matrix-valued functions, q, v, and τ ,
respectively, which are smooth inside each element κ ∈ Th, we write q±, v±, and
τ± to denote the traces of the functions q, v, and τ , respectively, on the face F ,
taken from the interior of κ±, respectively. The averages of q, v, and τ at x ∈ F
are given by

{{q}} =
1

2
(q+ + q−), {{v}} =

1

2
(v+ + v−), {{τ}} =

1

2
(τ+ + τ−),

respectively. Similarly, the jumps of q, v, and τ at x ∈ F are given by

[[q]] = q+nκ+ + q−nκ− , [[v]] = v+ · nκ+ + v− · nκ− ,
[[v]] = v+ ⊗ nκ+ + v− ⊗ nκ− , [[τ ]] = τ+nκ+ + τ−nκ− .

On a boundary face F ∈ FBh , we set {{q}} = q, {{v}} = v, {{τ}} = τ , [[q]] = qn,
[[v]] = v · n, [[v]] = v ⊗ n and [[τ ]] = τn, with n denoting the unit outward normal
vector on the boundary Γ.

Given a (fine) mesh Th, together with a corresponding polynomial degree vector
k, the standard IP DGFEM is defined as follows: find (uh,k, ph,k) ∈ V (Th,k) ×
Q(Th,k) such that

Ah,k(uh,k;uh,k,vh,k) +Bh,k(vh,k, ph,k) = Fh,k(vh,k),(9)

−Bh,k(uh,k, qh,k) = 0(10)
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for all (vh,k, qh,k) ∈ V (Th,k)×Q(Th,k), where

Ah,k(ψ;u,v) =

∫
Ω

µ(|eh(ψ)|)eh(u) : eh(v) dx+
∑
F∈Fh

∫
F

σh,k[[u]] : [[v]] ds

−
∑
F∈Fh

∫
F

{{µ(|eh(ψ)|)eh(u)}} : [[v]] ds

+ θ
∑
F∈Fh

∫
F

{{µ(h−1
F |[[ψ]])|)eh(v)}} : [[u]] ds,

Bh,k(v, q) =

∫
Ω

q∇h · v ds+
∑
F∈Fh

∫
F

{{q}}[[v]] ds,

Fh,k(v) =

∫
Ω

f · v dx,

cf. [13]. Here, eh(·) and ∇h denote the element-wise strain tensor and gradient
operator, respectively, and θ ∈ [−1, 1]. The interior penalty parameter σh,k is
defined as follows:

(11) σh,k = γ
k2
F

hF
,

where γ ≥ 1 is a constant, which must be chosen sufficiently large (independent of
the local element sizes and the polynomial degree); see Lemma 2 below. Moreover,
for a face F ∈ Fh, hF = diam(F ) and the face polynomial degree kF is defined by

kF =

{
max(kκ, kκ′), if F = ∂κ ∩ ∂κ′ ∈ FIh ,
kκ, if F = ∂κ ∩ Γ ∈ FBh .

Employing (7) and (8), together with the inverse inequality derived in [25, The-
orem 4.76], we deduce the following result.

Lemma 1. There exists a positive constant CT = CT (ρ1, ρ2), independent of the
discretization parameters h and k, such that∑

F∈Fh

∫
F

hF k
−2
F |{{eh(w)}}|2 ds ≤ CT ‖eh(w)‖2L2(Ω) for all w ∈ V (Th,k).

Introducing the energy norms

‖v‖2h,k = ‖eh(v)‖2L2(Ω) +
∑
F∈Fh

∫
F

σh,k|[[v]]|2 ds,

‖(v, q)‖2DG(h,k) = ‖v‖2h,k + ‖q‖2L2(Ω) ,

we note that Ah,k is coercive in the following sense.

Lemma 2. There exists a constant γmin such that the semilinear form Ah,k(·; ·, ·)
is coercive in the sense that there exists a positive constant C, independent of h and
k, such that

Ah,k(φ;v,v) ≥ C ‖v‖2h,k
for all v,φ ∈ V (Th,k), providing that the interior penalty parameter γ ≥ γmin.
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Proof. The proof follows in an analogous fashion to the case of the scalar PDE con-
sidered in [15], albeit, based on employing the inverse inequality stated in Lemma 1;
for details, see [11]. �

We assume that the bilinear form Bh,k satisfies the following discrete inf-sup
condition: there exists a positive constant ν, independent of the discretization
parameters h and k, such that

(12) inf
06=q∈Q(Th,k)

sup
0 6=v∈V (Th,k)

Bh,k(v, q)

‖v‖h,k ‖q‖L2(Ω)

≥ νk−1
max.

We note that this inf-sup condition holds

• for kκ ≥ 2, κ ∈ Th, or
• for k ≥ 1 if Th is conforming and kκ = k for all κ ∈ Th;

see Theorem 6.2 and Theorem 6.12, respectively, in [24]. Exploiting this condition
it can be shown that the formulation (9)–(10) is well-posed, see [13]. Furthermore,
the following a priori error bound holds (see [13, Theorem 4.1]).

Theorem 3. Let the penalty parameter γ be sufficiently large, and assume that the
solution (u, p) of (1)–(3) belong to (C1(Ω)∩H2(Ω))d×(C0(Ω)∩H1(Ω)), and u|κ ∈
Hsκ(κ)d, p|κ ∈ Hsκ−1(κ), sκ ≥ 2, κ ∈ Th. Then, provided that the discrete inf-sup
condition (12) is valid, the following estimate holds

‖(u− uh, p− ph)‖2DG(h,k)

≤ Ck4
max

∑
κ∈Th

(
h

2 min{sκ,kκ+1}−2
κ

k2sκ−3
κ

‖u‖2Hsκ (κ)+
h

2 min{sκ,kκ+1}−2
κ

k2sκ−2
κ

‖p‖2Hsκ−1(κ)

)
,

where (uh, ph) is the IP DGFEM solution defined in (9)–(10), and the constant C >
0 is independent of the mesh size and the polynomial degrees.

3. Two-grid hp-Version IP DGFEM

In this section we develop a two-grid version of the IP DGFEM for the numerical
approximation of (1)–(3) based on the formulation proposed in [9, 14, 15]. To
this end, we consider a fine and coarse partition of the computational domain Ω,
denoted by Th and TH , respectively, which we assume are nested in the sense that,
for any κh ∈ Th there exists a κH ∈ TH such that κ̄h ⊆ κ̄H . Moreover we define
the polynomial degree vectors k = {kκ : κ ∈ Th} and K = {Kκ : κ ∈ TH},
associated with the meshes Th and TH , respectively, with the property that, given
κh ∈ Th and the associated κH ∈ TH , such that κ̄h ⊆ κ̄H , the corresponding
elemental polynomial degrees satisfy the condition that kκh ≥ KκH . Equipped with
Th, k and TH , K, we define the corresponding fine and coarse hp-finite element
spaces V (Th,k), Q(Th,k) and V (TH ,K), Q(TH ,K), respectively, which satisfy
the inclusions: V (TH ,K) ⊆ V (Th,k) and Q(TH ,K) ⊆ Q(Th,k).

The two–grid IP DGFEM discretization of (1)–(3) is given by:

(1) (Nonlinear solve) Compute (uH,K , pH,K) ∈ V (TH ,K) × Q(TH ,K) such
that

AH,K(uH,K ;uH,K ,vH,K) +BH,K(vH,K , pH,K) = FH,K(vH,K),(13)

−BH,K(uH,K , qH,K) = 0(14)

for all (vH,K , qH,K) ∈ V (TH ,K)×Q(TH ,K).



6 SCOTT CONGREVE AND PAUL HOUSTON

(2) (Linear solve) Determine the fine grid solution (u2G, p2G) ∈ V (Th,k) ×
Q(Th,k) such that

Ah,k(uH,K ;u2G,vh,k) +Bh,k(vh,k, p2G) = Fh,k(vh,k),(15)

−Bh,k(u2G, qh,k) = 0(16)

for all (vh,k, qh,k) ∈ V (Th,k)×Q(Th,k).

The existence and uniqueness of the solution (uH,K , pH,K) follows immediately
from [13], cf. above. Since Ah,k(uH,K ; ·, ·) is coercive on V (Th,k) × V (Th,k),
cf. Lemma 2, the continuity of Ah,k(uH,K ; ·, ·) on V (Th,k) × Q(Th,k), Bh,k(·, ·)
on V (Th,k)×Q(Th,k) and Fh,k(·) on V (Th,k), together with the discrete inf-sup
condition (12) implies the existence and uniqueness of (u2G, p2G), cf. [10, 17, 24, 26].
Hence, the formulation (13)–(16) is well-posed.

3.1. A priori error bound. In this section we deduce the following error bound
for the two-grid approximation (13)–(16) of the non-Newtonian fluid flow problem
(1)–(3).

Theorem 4. Assuming that (u, p) ∈ (C1(Ω)∩H2(Ω))d× (C0(Ω)∩H1(Ω)), u|κh ∈
Hsκh (κh)d, p|κh ∈ Hsκh−1(κh), sκh ≥ 2, for κh ∈ Th, and u|κH ∈ HSκH (κH)d,
p|κH ∈ HSκH−1(κH), SκH ≥ 2, for κH ∈ TH , then the solution (u2G, p2G) ∈
V (Th,k)×Q(Th,k) of (13)–(16) satisfies the bounds

‖uh,k − u2G‖2h,k

≤ Ck4
max

∑
κH∈TH

{
H

2RκH−2
κH

K
2SκH−3
κH

‖u‖2HSκH (κH) +
H

2RκH−2
κH

K
2SκH−2
κH

‖p‖2HSκH−1(κH)

}
,(17)

‖ph,k − p2G‖2h,k

≤ Ck6
max

∑
κH∈TH

{
H

2RκH−2
κH

K
2SκH−3
κH

‖u‖2HSκH (κH) +
H

2RκH−2
κH

K
2SκH−2
κH

‖p‖2HSκH−1(κH)

}
,(18)

‖(u− u2G, p− p2G)‖2DG(h,k)

≤ Ck4
max

∑
κh∈Th

{
h

2rκh−2
κh

k
2sκh−3
κh

‖u‖2Hsκh (κh) +
h

2rκh−2
κh

k
2sκh−2
κh

‖p‖2Hsκh−1
(κh)

}(19)

+ Ck6
max

∑
κH∈TH

{
H

2RκH−2
κH

K
2SκH−3
κH

‖u‖2HSκH (κH) +
H

2RκH−2
κH

K
2SκH−2
κH

‖p‖2HSκH−1(κH)

}
,

where C is a positive constant independent of u, p,h,H,k and K, with 1 ≤ rκh ≤
min(sκh , kκh+1), kκh ≥ 1, for all κh ∈ Th, 1 ≤ RκH ≤ min(SκH ,KκH+1),KκH ≥ 1,
for all κH ∈ TH .

3.1.1. Proof of Theorem 4. In order to prove Theorem 4, we first state the
following result.

Lemma 5. Let uh,k ∈ V (Th,k) and u2G ∈ V (Th,k) be the velocity vector com-
ponents of the solutions to (9)–(10) and (13)–(16), respectively, then assuming
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that (u, p) ∈ (C1(Ω) ∩ H2(Ω))d × (C0(Ω) ∩ H1(Ω)), u|κH ∈ HSκH (κH)d, p|κH ∈
HSκH−1(κH), SκH ≥ 2, for κH ∈ TH , then

Ah,k(uH,K ;uh,k,φ)−Ah,k(uh,k;uh,k,φ) ≤ C ‖φ‖h,k k
2
max

×

( ∑
κH∈TH

{
H

2RκH−2
κH

K
2SκH−3
κH

‖u‖2HSκH (κH) +
H

2RκH−2
κH

K
2SκH−2
κH

‖p‖2HSκH−1(κH)

}) 1
2

,

for all φ ∈ V (Th,k) with 1 ≤ RκH ≤ min(SκH ,KκH + 1), KκH ≥ 1, for all
κH ∈ TH , where C is a positive constant independent of u, p, h, H, k and K.

Proof. We write Ah,k(uH,K ;uh,k,φ)−Ah,k(uh,k;uh,k,φ) ≡ T1 + T2 + T3, where

T1 =

∫
Ω

(µ(|eh(uH,K)|)− µ(|eh(uh,k)|))eh(uh,k) : eh(φ) dx,

T2 = −
∑
F∈Fh

∫
F

{{(µ(|eh(uH,K)|)− µ(|eh(uh,k)|))eh(uh,k)}} : [[φ]] ds,

T3 = θ
∑
F∈Fh

∫
F

{{(µ(|h−1
F [[uH,K ]]|)− µ(h−1

F |[[uh,k]]|))eh(φ)}} : [[uh,k]] ds.

Employing analogous arguments to those presented in the proof of Theorem 3.1 in
[15], we get

|Ah,k(uH,K ;uh,k,φ)−Ah,k(uh,k;uh,k,φ)|

≤ C
{
‖u− uh,k‖h,k + ‖eH(u− uH,K)‖L2(Ω)

}
‖φ‖h,k ,

where C is a positive constant, independent of the discretization parameters. Since
V (TH ,K) ⊆ V (Th,k) and Q(TH ,K) ⊆ Q(Th,k), applying Theorem 3 completes
the proof. �

We now proceed to prove Theorem 4. Writing φ = uh,k − u2G ∈ V (Th,k), by
Lemma 2 we note that there exists a positive constant C, independent of h and k,
such that

C ‖uh,k − u2G‖2h,k ≤ Ah,k(uH,K ;uh,k − u2G,φ)

= Ah,k(uH,K ;uh,k,φ)−Ah,k(uH,K ;u2G,φ).

By subtracting (10) from (16) we note that Bh,k(φ, qh,k) = 0 for all qh,k ∈ Q(Th,k).
Hence, since φ ∈ V (Th,k) and p2G, ph,k ∈ Q(Th,k), applying (15) and (9) gives

C ‖uh,k − u2G‖2h,k ≤ Ah,k(uH,K ;uh,k,φ)−Ah,k(uH,K ;u2G,φ)−Bh,k(φ, p2G)

= Ah,k(uH,K ;uh,k,φ)− Fh,k(φ)

= Ah,k(uH,K ;uh,k,φ)−Ah,k(uh,k;uh,k,φ)−Bh,k(φ, ph,k)

= Ah,k(uH,K ;uh,k,φ)−Ah,k(uh,k;uh,k,φ).

Application of Lemma 5 completes the proof of the first bound in Theorem 4.
We now consider the proof of the second bound in Theorem 4. From the inf-sup

condition (12), there exists ξ ∈ V (Th,k) such that

(20) νk−1
max ‖ph,k − p2G‖L2(Ω) ≤

Bh,k(ξ, ph,k − p2G)

‖ξ‖h,k
.



8 SCOTT CONGREVE AND PAUL HOUSTON

Subtracting (15) from (9) gives

Bh,k(ξ, ph,k − p2G) = Ah,k(uH,K ;u2G, ξ)−Ah,k(uh,k;uh,k, ξ)

= Ah,k(uH,K ;u2G − uh,k, ξ) +Ah,k(uH,K ;uh,k, ξ)

−Ah,k(uh,k;uh,k, ξ).(21)

We note that the last two terms in (21) can be bounded based on employing
Lemma 5. To bound the first term, we proceed as follows.

Ah,k(uH,K ;u2G − uh,k, ξ)

≤
∫

Ω

|µ(|eh(uH,K)|)||eh(u2G − uh,k)||eh(ξ)|dx

+
∑
F∈Fh

∫
F

σh,k|[[u2G − uh,k]]||[[ξ]]|ds

+
∑
F∈Fh

∫
F

{{|µ(|eh(uH,K)|)||eh(u2G − uh,k)|}}|[[ξ]]|dx

+ |θ|
∑
F∈Fh

∫
F

{{|µ(h−1
F |[[uH,K ]]|)||eh(ξ)|}}|[[u2G − uh,k]]|dx

≤Mµ ‖eh(u2G − uh,k)‖L2(Ω) ‖eh(ξ)‖L2(Ω)

+MµC
1
2

T γ
− 1

2 ‖eh(u2G − uh,k)‖L2(Ω)

 ∑
F∈Fh

σh,k

∥∥∥[[ξ]]
∥∥∥2

L2(F )

 1
2

+MµC
1
2

T γ
− 1

2 ‖eh(ξ)‖L2(Ω)

 ∑
F∈Fh

σh,k

∥∥∥[[u2G − uh,k]]
∥∥∥2

L2(F )

 1
2

+

 ∑
F∈Fh

σh,k

∥∥∥[[u2G − uh,k]]
∥∥∥2

L2(F )

 1
2
 ∑
F∈Fh

σh,k

∥∥∥[[ξ]]
∥∥∥2

L2(F )

 1
2

≤ C ‖uh,k − u2G‖h,k ‖ξ‖h,k .

Employing the first bound in Theorem 4 gives

Ah,k(uH,K ;u2G − uh,k, ξ) ≤ Ck2
max ‖ξ‖h,k

×

( ∑
κH∈TH

{
H

2RκH−2
κH

K
2SκH−3
κH

‖u‖2HSκH (κH) +
H

2RκH−2
κH

K
2SκH−2
κH

‖p‖2HSκH−1(κH)

}) 1
2

.

Exploiting this result together with Lemma 5, equation (21) may be bounded by

Bh,k(ξ, ph,k − p2G) ≤ Ck2
max ‖ξ‖h,k

×

( ∑
κH∈TH

{
H

2RκH−2
κH

K
2SκH−3
κH

‖u‖2HSκH (κH) +
H

2RκH−2
κH

K
2SκH−2
κH

‖p‖2HSκH−1(κH)

}) 1
2

.

Inserting this result into (20) and dividing through by νk−1
max completes the proof

of the second bound in Theorem 4. We note that an application of the triangle
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inequality and Theorem 3 gives the bound in equation (19) and completes the
proof. �.

3.2. A posteriori error bound. In this section we develop the a posteriori error
analysis of the two-grid IP DGFEM defined by (13)–(16). Writing Πκ,kκ to denote
the element-wise L2-projection onto V (Th,k) we state the following upper bound.

Theorem 6. Let (u, p) ∈ H1
0 (Ω)d × L2

0(Ω) be the analytical solution of (1)–(3),
(uH,K , pH,K) ∈ V (TH ,K)×Q(TH ,K) the numerical approximation obtained from
(13)–(14) and (u2G, p2G) ∈ V (Th,k) × Q(Th,k) the numerical approximation ob-
tained from (15)–(16); then the following hp-a posteriori error bound holds

‖(u− u2G, p− p2G)‖DG(h,k)

≤ C

(∑
κ∈Th

(
η2
κ + ξ2

κ

)
+
∑
κ∈Th

h2
κk
−2
κ ‖f −Πκ,kκf‖

2
L2(κ)

) 1
2

,

with a constant C > 0, which is independent of h, H, k, K. Here, for all κ ∈ Th,
the local fine grid error indicators ηκ are defined by

η2
κ =h2

κk
−2
κ ‖Πκ,kκf +∇ · {µ(|e(uH,K)|)e(u2G)}‖2L2(κ) + ‖∇ · u2G‖2L2(κ)

+ hκk
−1
κ

∥∥∥[[p2G]]− [[µ(|e(uH,K)|)e(u2G)]]
∥∥∥2

L2(∂κ\Γ)
+ γ2h−1

κ k3
κ

∥∥∥[[u2G]]
∥∥∥2

L2(∂κ)

(22)

and the local two-grid error indicators ξκ are defined, for all κ ∈ Th, by

(23) ξ2
κ = ‖(µ(|e(uH,K)|)− µ(|e(u2G)|))e(u2G)‖2L2(κ) .

3.2.1. Proof of Theorem 6. The proof of Theorem 6 follows as an extension of
the corresponding a posteriori error bound for the standard hp-version IP DGFEM
for strongly monotone quasi-Newtonian fluid flows, see [13] for details. We consider
an auxiliary one-irregular fine mesh partition Th̃ obtained from Th by uniform sub-
division of all elements κ ∈ Th where an edge in κ contains a hanging node, cf. [35,
Section 4.2] for the two-dimensional case and [34, Section 4.2] for three dimensions.

We denote by V (Th̃, k̃) and Q(Th̃, k̃) the corresponding DGFEM finite element

spaces with polynomial degree vector k̃ defined by k̃κ̃ = kκ, for any κ̃ ∈ Th̃ with

κ̃ ⊆ κ and some κ ∈ Th. We note that V (Th̃, k̃) ⊆ V (Th,k), Q(Th̃, k̃) ⊆ Q(Th,k)
and due to the assumptions in Section 2, the energy norms ‖·‖h,k and ‖·‖h̃,k̃ cor-

responding to the spaces V (Th,k) and V (Th̃, k̃), respectively, are equivalent on
V (Th,k); in particular there exists positive constants c1 and c2, independent of the
discretization parameters, such that

(24) c1
∑
F∈Fh

∫
F

σh,k|[[v]]|2 ds ≤
∑
F̃∈F

h̃

∫
F̃

σh̃,k̃|[[v]]|2 ds ≤ c2
∑
F∈Fh

∫
F

σh,k|[[v]]|2 ds

for all v ∈ V (Th,k), cf. [13, 21, 35]. Here, F
h̃

denotes the set of all faces in the

mesh Th̃ and σh̃,k̃ is the discontinuous penalization parameter on V (Th̃, k̃) which

is defined analogously to σh,k on V (Th,k).
Following the approach developed in the articles [22, 19], for example, we write

V (Th̃, k̃) =
[
V (Th̃, k̃)

]c
⊕‖·‖

h̃,k̃

[
V (Th̃, k̃)

]⊥
,
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where
[
V (Th̃, k̃)

]c
= V (Th̃, k̃) ∩ H1

0 (Ω)d. Thereby, the solution u2G obtained by

(13)–(16) may be split accordingly

(25) u2G = uc2G + u⊥2G,

where uc2G ∈
[
V (Th̃, k̃)

]c
and u⊥2G ∈

[
V (Th̃, k̃)

]⊥
. We can define the error in the

velocity vector and pressure obtained by (13)–(16) as

(26) eu = u− u2G, ep = p− p2G,

respectively, and let

(27) ecu = u− uc2G ∈ H1
0 (Ω)d.

We now state the following auxiliary result.

Lemma 7. With u⊥2G defined by (25), the following bound holds

∥∥u⊥2G∥∥h̃,k̃ ≤ C
 ∑
F∈Fh

∫
F

σh,k|[[u2G]]|2 ds

 1
2

where the positive constant C is independent of γ and the discretization parameters,
but depends only on the shape regularity of the mesh and the constants ρ1 and ρ2

from (7) and (8), respectively.

Proof. This proof follows in an analogous manner to the proof of [35, Lemma 4.6]
and [34, Lemma 4.1], for the case when d = 2, 3, respectively. �

In order to prove the a posteriori error bound stated in Theorem 6, we set

(28) Ah,k(ψ;u, p,v, q) = Ah,k(ψ;u,v) +Bh,k(v, p)−Bh,k(u, q).

With this notation the following inf-sup stability result holds.

Lemma 8. There exists a positive constant CS, independent of the discretization
parameters, such that for any (u, p) ∈ H1

0 (Ω)d × L2
0(Ω) and (w, r) ∈ H1

0 (Ω)d ×
L2

0(Ω), there exists (v, q) ∈ H1
0 (Ω)d × L2

0(Ω) with

Ah,k(u;u, p,v, q)−Ah,k(w;w, r,v, q) ≥ CS ‖(u−w, p− r)‖DG(h,k) ,

‖(v, q)‖DG(h,k) ≤ 1.

Proof. See [13, Proposition 2.4b]. �

The proof of Theorem 6 now follows in a similar fashion as for the standard IP
DGFEM for the numerical approximation of the non-Newtonian fluid flow problem
(9)–(10), cf. [13]. Recalling the definition of the error, defined in (26), by (25),
(24), Lemma 7 and the fact that γ ≥ 1 and kκ ≥ 1, we have that

‖eu, ep)‖DG(h,k) ≤ ‖(e
c
u, ep)‖DG(h,k) +

∥∥u⊥2G∥∥h,k
≤ ‖(ecu, ep)‖DG(h,k) + C

(∑
κ∈Th

η2
κ

) 1
2

.(29)

Employing Lemma 8, we note that there exists (v, q) ∈ H1
0 (Ω)d × L2

0(Ω) such that

CS ‖(ecu, ep)‖DG(h,k) ≤ Ah,k(u;u, p,v, q)−Ah,k(uc2G;uc2G, p2G,v, q),
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‖(v, q)‖DG(h,k) ≤ 1. Therefore, from (25), we deduce that

CS ‖(ecu, ep)‖DG(h,k)

≤
∑
κ̃∈T

h̃

∫
κ̃

{µ(|e(u)|)e(u)− µ(|e(uc2G)|)e(uc2G)} : e(v) dx

−
∑
κ̃∈T

h̃

∫
κ̃

(p− p2G)∇ · v dx+
∑
κ̃∈T

h̃

∫
κ̃

q∇ · (u− uc2G) dx

=
∑
κ̃∈T

h̃

∫
κ̃

{µ(|e(u)|)e(u)− µ(|e(uH,K)|)e(u2G)} : e(v) dx

+
∑
κ̃∈T

h̃

∫
κ̃

{µ(|e(uH,K)|)e(u2G)− µ(|e(u2G)|)e(u2G)} : e(v) dx

+
∑
κ̃∈T

h̃

∫
κ̃

{µ(|e(u2G)|)e(u2G)− µ(|e(uc2G)|)e(uc2G)} : e(v) dx

−
∑
κ̃∈T

h̃

∫
κ̃

(p− p2G)∇ · v dx+
∑
κ̃∈T

h̃

∫
κ̃

q∇ · (u− u2G + u⊥2G) dx

≡ T1 + T2 + T3,(30)

where

T1 =
∑
κ̃∈T

h̃

∫
κ̃

{µ(|e(u)|)e(u)− µ(|e(uH,K)|)e(u2G)} : e(v) dx

−
∑
κ̃∈T

h̃

∫
κ̃

(p− p2G)∇ · v dx+
∑
κ̃∈T

h̃

∫
κ̃

q∇ · (u− u2G) dx,

T2 =
∑
κ̃∈T

h̃

∫
κ̃

{µ(|e(u2G)|)e(u2G)− µ(|e(uc2G)|)e(uc2G)} : e(v) dx

+
∑
κ̃∈T

h̃

∫
κ̃

q∇ · u⊥2G dx,

T3 =
∑
κ̃∈T

h̃

∫
κ̃

{µ(|e(uH,K)|)e(u2G)− µ(|e(u2G)|)e(u2G)} : e(v) dx.

We note that T1 and T2 are analogous to the corresponding terms that arise in the
a posteriori error analysis of the standard IP DGFEM discretization of (1)–(3), cf.
[13]. Indeed, by following the analysis presented in [13], we deduce that

(31) |T1|+ |T2| ≤ C

(∑
κ∈Th

η2
κ +

∑
κ∈Th

h2
κk
−2
κ ‖f −Πκ,kκf‖

2
L2(κ)

) 1
2

.

We note that term T3 may be bounded in a similar manner to the corresponding
term which arises in the two-grid IP DGFEM of the second-order quasilinear scalar
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elliptic problem, cf. [15]; indeed, we have

|T3| ≤
∑
κ∈Th

∫
κ̃

|µ(|e(uH,K)|)e(u2G)− µ(|e(u2G)|)e(u2G)||e(v)|dx

≤

(∑
κ∈Th

‖{µ(|e(uH,K)|)− µ(|e(u2G)|)}e(u2G)‖2L2(κ)

) 1
2
(∑
κ∈Th

‖e(v)‖2L2(κ)

) 1
2

≤

(∑
κ∈Th

ξ2
κ

) 1
2

‖(v, q)‖DG(h,k)

≤

(∑
κ∈Th

ξ2
κ

) 1
2

.

(32)

Inserting (31) and (32) into (30) gives

‖(ecu, ep)‖DG(h,k) ≤ C−1
S C

(∑
κ∈Th

η2
κ +

∑
κ∈Th

h2
κk
−2
κ ‖f −Πκ,kκf‖

2
L2(κ)

) 1
2

+ C−1
S

(∑
κ∈Th

ξ2
κ

) 1
2

.

Combining this result with (29) and applying the Cauchy inequality completes the
proof of Theorem 6. �

Remark 1. For brevity we omit lower error bounds for the numerical approximation
(u2G, p2G) obtained from (13)–(16) as the proof follows in an analogous manner to
the analysis presented in [15] and [13]; for details, see [11].

4. Two-grid hp-Version IP DGFEM based on an Incomplete Newton
iteration

In this section we turn our attention to a family of two-grid IP DGFEMs for the
numerical approximation of (1)–(3) based on employing a single step of a Newton
iteration on the fine finite element space, cf. [5, 12, 33]. Using the same notation
defined in the previous section, the two-grid version of the IP DGFEM discretization
of (1)–(3) is defined by:

(1) (Nonlinear solve) Compute (uH,K , pH,K) ∈ V (TH ,K) × Q(TH ,K) such
that

AH,K(uH,K ;uH,K ,vH,K) +BH,K(vH,K , pH,K) = FH,K(vH,K),(33)

−BH,K(uH,K , qH,K) = 0(34)

for all (vH,K , qH,K) ∈ V (TH ,K)×Q(TH ,K).
(2) (Linear solve) Determine the fine grid solution (u2G, p2G) ∈ V (Th,k) ×

Q(Th,k) such that

A′h,k[uH,K ](u2G,vh,k) +Bh,k(vh,k, p2G) = A′h,k[uH,K ](uH,K ,vh,k)

−Ah,k(uH,K ;uH,K ,vh,k) + Fh,k(vh,k),(35)

−Bh,k(u2G, qh,k) = 0(36)
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for all (vh,k, qh,k) ∈ V (Th,k)×Q(Th,k).

Here A′h,k[u](φ,v) denotes the Fréchet derivative of u→ Ah,k(u;u,v), for fixed v,
evaluated at u; thereby, given φ we have

A′h,k[u](φ,v) = lim
t→0

Ah,k(u+ tφ;u+ tφ,v)−Ah,k(u;u,v)

t
.

For simplicity of presentation, in this section we only consider the incomplete IP
DGFEM formulation corresponding to the case when θ = 0. In addition, we
strengthen the regularity assumption on the nonlinearity µ, cf. Assumption 1,
as follows.

Assumption 2. We assume that the stricter regularity condition µ ∈ C2(Ω̄× [0,∞))
holds.

For the proceeding error analysis we state the following inf-sup stability result.

Lemma 9. For any (u, p) ∈ V (Th,k) × Q(Th,k) and w ∈ V (Th,k), there exists
(v, q) ∈ V (Th,k)×Q(Th,k) such that

CSk
−2
max ‖(u, p)‖DG(h,k) ≤ A

′
h,k[w](u,v) +Bh,k(v, p)−Bh,k(u, q),

‖(v, q)‖DG(h,k) ≤ 1,

where CS is a positive constant, independent of the discretization parameters.

Proof. From [13, Proposition 3.2(b)], the following inf-sup stability bound holds: for
any (w1, r1), (w2, r2) ∈ V (Th,k)×Q(Th,k) there exists (v, q) ∈ V (Th,k)×Q(Th,k)
such that

CSk
−2
max ‖(w1 −w2, r1 − r2)‖DG(h,k) ≤ Ah,k(w1;w1,v)−Ah,k(w2;w2,v)

+Bh,k(v, r1 − r2)−Bh,k(w1 −w2, q),

‖(v, q)‖DG(h,k) ≤ 1.

By setting w1 = w + tu, w2 = w, r1 = tp and r2 = 0, where t > 0 then

CSk
−2
max ‖(tu, tp)‖DG(h,k)

≤ Ah,k(w + tu;w + tu,v)−Ah,k(w;w,v) +Bh,k(v, tp)−Bh,k(tu, q).

Thereby,

CSk
−2
max ‖(u, p)‖DG(h,k) ≤

Ah,k(w + tu;w + tu,v)−Ah,k(w;w,v)

t
+Bh,k(v, p)−Bh,k(u, q).

Taking the limit as t→ 0 completes the proof. �

4.1. A priori error bound. In this section we derive an a priori error bound for
the two-grid approximation defined in (33)–(36) for the numerical approximation
of the non-Newtonian fluid flow problem (1)–(3). For simplicity of presentation,
in this section we assume that the mesh is quasi-uniform with (global) mesh size
h; moreover, we assume that the polynomial degree is uniform over the mesh, and
write k in lieu of k.



14 SCOTT CONGREVE AND PAUL HOUSTON

Theorem 10. Assuming that (u, p) ∈ (C1(Ω) ∩ Hs(Ω))d × (C1(Ω) ∩ Hs−1(Ω)),
s ≥ 2; then the solution (u2G, p2G) ∈ V (Th,k)×Q(Th,k) of the incomplete Newton
two-grid method (33)–(36) satisfies the error bounds

‖(uh,k − u2G, ph,k − p2G)‖DG(h,k)

≤ C
k23/2

h

{
H2R−2

K2s−3
‖u‖2Hs(Ω) +

H2R−2

K2s−2
‖p‖2Hs−1(Ω)

}
,(37)

‖(u− u2G, p− ph,k)‖DG(h,k)

≤ Ck2

{
h2r−2

k2s−3
‖u‖2Hs(Ω) +

h2r−2

k2s−2
‖p‖2Hs−1(Ω)

} 1
2

+ C
k23/2

h

{
H2R−2

K2s−3
‖u‖2Hs(Ω) +

H2R−2

K2s−2
‖p‖2Hs−1(Ω)

}
,(38)

with 1 ≤ r ≤ min(s, k + 1), k ≥ 1 and 1 ≤ R ≤ min(s,K + 1), K ≥ 1, where C is
a positive constant, independent of u, p, h,H, k and K.

Remark 2. Theorem 10 represents the generalization of the corresponding bound
derived in [12] for a scalar quasilinear PDE to the case of the non-Newtonian fluid
flow problem defined in (33)–(36).

Remark 3. We note that the error bounds stated in Theorem 10 contain terms
which have a strong dependence on the fine mesh polynomial degree k compared to
the corresponding results derived for the two-grid IP DGFEM approximation of a
scalar quasilinear elliptic PDE, cf. [12]; indeed, in this latter case the exponent of
k is reduced from 23/2 to 7/2. This degradation in the suboptimal exponent of k is
attributed to employing the discrete inf-sup condition (12) within the analysis, since
this stability result depends on the maximum polynomial degree kmax. It is worth
remarking that [24, Remark 6.5] notes that numerical experiments undertaken for
the Stokes equations in two dimensions, cf. [26], indicates that the discrete inf-sup
condition is independent of the polynomial degree k and hence (12) may not be
sharp with respect to k.

4.1.1. Auxiliary Results. In order to prove Theorem 10 we first state and prove
the following auxiliary results.

Lemma 11. For a function q ∈ Q(Th,k) and a function v ∈ V (Th,k) we have the
inverse inequalities

‖q‖L4(Ω) ≤ Ckh
−1/2 ‖q‖L2(Ω) , ‖v‖L4(Ω) ≤ Ckh

−1/2 ‖v‖L2(Ω) ,

where C is a positive constant, independent of the discretization parameters.

Proof. See [12, Lemma 3.2] for details. �

Lemma 12. For any v,w,φ ∈ V (Th,k),

(39) Ah,k(w;w,φ) = Ah,k(v;v,φ) +A′h,k[v](w − v,φ) +Q(v,w,φ),

where the remainder Q satisfies

|Q(v,w,φ)| ≤ Ck2h−1
(

1 + ‖e(v)‖L∞(Ω) + ‖e(w)‖L∞(Ω)

)
‖w − v‖2h,k ‖φ‖h,k ,

where C is a positive constant, independent of the discretization parameters.
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Proof. We follow the proof outlined by [33, Lemma 3.1], cf., also, [12]. To this end,
setting ξ(t) = v + t(w − v) and η(t) = Ah,k(ξ(t); ξ(t),φ), we note that the first
equation follows from the identity

η(1) = η(0) + η′(0) +

∫ 1

0

η′′(t)(1− t) dt

with

Q(v,w, ξ) =

∫ 1

0

η′′(t)(1− t) dt.

In particular,

η′′(t) = A′′h,k[ξ(t)](w − v,w − v,φ);

thereby,

Q(v,w, φ)

= 2

∫ 1

0

∫
Ω

µ′e(u)(|e(ξ(t))|) : e(w − v)e(w − v) : e(φ) dx(1− t) dt

+

∫ 1

0

∫
Ω

µ′′e(u)(|e(ξ(t))|)|e(w − v)|2e(ξ(t)) : e(φ) dx(1− t) dt

− 2

∫ 1

0

∑
F∈Fh

∫
F

{{µ′e(u)(|e(ξ(t))|) : e(w − v)e(w − v)}} : [[φ]] ds(1− t) dt

−
∫ 1

0

∑
F∈Fh

∫
F

{{µ′′e(u)(|e(ξ(t))|)|e(w − v)|2e(ξ(t))}} : [[φ]] ds(1− t) dt

≡T1 + T2 + T3 + T4.

Here, µ′e(u)(| · |) and µ′′e(u)(| · |) denote the first and second derivatives of µ(| · |),
respectively. First consider T1: employing Assumption 2 and Lemma 11 gives

T1 ≤ C ‖e(w − v)‖2L4(Ω) ‖e(φ)‖L2(Ω) ≤ Ck
2h−1 ‖e(w − v)‖2L2(Ω) ‖e(φ)‖L2(Ω) .

Secondly, term T2 is bounded in an analogous manner as follows:

T2 ≤ C
(
‖e(w)‖L∞(Ω) + ‖e(v)‖L∞(Ω)

)
‖e(w − v)‖2L4(Ω) ‖e(φ)‖L2(Ω)

≤ C
(
‖e(w)‖L∞(Ω) + ‖e(v)‖L∞(Ω)

)
k2h−1 ‖e(w − v)‖2L2(Ω) ‖e(φ)‖L2(Ω) .

To bound Term T3, we employ the inverse inequality stated in Lemma 1, together
with Lemma 11; thereby, we get

T3 ≤ C

 ∑
F∈Fh

hk−2
∥∥{{|e(w − v)|2}}

∥∥2

L2(F )


1
2
 ∑
F∈Fh

∫
F

k2h−1|[[φ]]|2 ds


1
2

≤ C ‖e(w − v)‖2L4(Ω) ‖φ‖h,p
≤ Ck2h−1 ‖e(w − v)‖2L2(Ω) ‖φ‖h,p .
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We can bound T4 in an analogous fashion as follows:

T4 ≤ C

 ∑
F∈Fh

hk−2
∥∥{{|e(w − v)|2|e(w)|}}

∥∥2

L2(F )


1
2
 ∑
F∈Fh

∫
F

k2h−1|[[φ]]|2 ds


1
2

+ C

 ∑
F∈Fh

hk−2
∥∥{{|e(w − v)|2|e(v)|}}

∥∥2

L2(F )


1
2
 ∑
F∈Fh

∫
F

k2h−1|[[φ]]|2 ds


1
2

≤ C
{∥∥|e(w − v)|2|e(w)|

∥∥
L2(Ω)

+
∥∥|e(w − v)|2|e(w)|

∥∥
L2(Ω)

}
‖φ‖h,k

≤ C
{
‖e(w)‖L∞(Ω) + ‖e(v)‖L∞(Ω)

}
‖e(w − v)‖2L4(Ω) ‖φ‖h,k

≤ Ck2h−1
{
‖e(w)‖L∞(Ω) + ‖e(v)‖L∞(Ω)

}
‖e(w − v)‖2L2(Ω) ‖φ‖h,k .

Combining these bounds for terms T1, T2, T3 and T4 completes the proof. �

Lemma 13. Let (u, p) ∈ H2(Ω)d × H1(Ω) be the analytical solution of (1)–(3)
and uh,k ∈ V (Th,k) be the velocity component of the numerical solution defined by
(9)–(10). Then, assuming that e(u) ∈ L∞(Ω)d×d, we have that

‖e(uh,k)‖L∞(Ω) ≤ Ck
7/2,

where C is a positive constant, independent of the discretization parameters.

Proof. Writing Pu to denote the projection of u onto the finite element space
V (Th,k) defined in [6], we have that

‖u− Pu‖Hq(Ω) ≤ C
h2−q

k2−q ‖u‖H2(Ω) , ‖∇(u− Pu)‖L∞(Ω) ≤ C ‖u‖H2(Ω)

for all q ≤ 2. We also note the inequality

‖e(v)‖L∞(Ω) =
∥∥ 1

2

(
∇v + (∇v)>

)∥∥
L∞(Ω)

≤ 1
2 ‖∇v‖L∞(Ω) + 1

2

∥∥(∇v)>
∥∥
L∞(Ω)

= ‖∇v‖L∞(Ω) .

Exploiting these results, standard inverse inequalities, cf. [25], and Theorem 3, we
get

‖e(uh,k)‖L∞(Ω) ≤ ‖e(uh,k − Pu)‖L∞(Ω) + ‖e(Pu)‖L∞(Ω)

≤ Ck2h−1 ‖e(uh,k − Pu)‖L2(Ω) + ‖e(u− Pu)‖L∞(Ω)

+ ‖e(u)‖L∞(Ω)

≤ C
{
k2h−1

(
‖u− uh,k‖h,k + ‖e(u− Pu)‖L2(Ω)

)
+ ‖u‖H2(Ω)

}
+ ‖e(u)‖L∞(Ω)

≤ C

{
k4

h

[
h2

k
‖u‖2H2(Ω) +

h2

k2
‖p‖2H1(Ω)

] 1
2

+ (1 + k) ‖u‖H2(Ω)

}
+ ‖e(u)‖L∞(Ω)

≤ Ck7/2
{
‖u‖H2(Ω) + ‖p‖H1(Ω) + ‖e(u)‖L∞(Ω)

}
.
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Since u ∈ H2(Ω)d, e(u) ∈ L∞(Ω)d×d, and p ∈ H1(Ω), the quantities ‖u‖H2(Ω),

‖e(u)‖L∞(Ω) and ‖p‖H1(Ω) are bounded uniformly by a constant; this then com-

pletes the proof. �

4.1.2. Proof of Theorem 10. We now employ the above results to prove Theo-
rem 10. To this end, we define δu = uh,k − u2G and δp = ph,k − p2G. Then, from
Lemma 9, there exists (v, q) ∈ V (Th,k)×Q(Th,k) such that

CSk
−2 ‖(δu, δp)‖DG(h,k) ≤ A

′
h,k[uH,K ](δu,v) +Bh,k(v, δp)−Bh,k(δu, q),(40)

‖(v, q)‖DG(h,k) ≤ 1.(41)

Thereby, from (9), (10), (35), (36), and Lemma 12 we deduce that

CSk
−2 ‖(δu, δp)‖DG(h,k)

≤ A′h,k[uH,K ](δu,v) +Bh,k(v, δp)−Bh,k(δu, q)

= A′h,k[uH,K ](uh,k − uH,K ,v) +A′h,k[uH,K ](uH,K − u2G,v) +Bh,k(v, δp)

= A′h,k[uH,K ](uh,k − uH,K ,v) +Ah,k(uH,K ;uH,K ,v)− Fh,k(v) +Bh,k(v, ph,k)

= A′h,k[uH,K ](uh,k − uH,K ,v) +Ah,k(uH,K ;uH,K ,v)−Ah,k(uh,k;uh,k,v)

= −Q(uH,K ,uh,k,v).

Hence, employing Lemma 12 again gives

‖(uh,k − u2G, ph,k − p2G)‖DG(h,k)

≤ Ck4h−1
(

1 + ‖e(uh,k)‖L∞(Ω) + ‖e(uH,K)‖L∞(Ω)

)
‖uh,k − uH,K‖2h,k ‖v‖h,k .

Applying Lemma 13, noting that k ≥ K ≥ 1, inequality (41) and the a priori error
bound stated in Theorem 3, gives

‖(uh,k − u2G, ph,k − p2G)‖DG(h,k)

≤ C k
15/2

h

{
‖u− uh,k‖2h,k + ‖u− uH,K‖2h,k

}
≤ C k

23/2

h

{
h2r−2

k2s−3
‖u‖2Hs(Ω) +

h2r−2

k2s−2
‖p‖2Hs−1(Ω) +

H2R−2

K2s−3
‖u‖2Hs(Ω)

+
H2R−2

K2s−2
‖p‖2Hs−1(Ω)

}
.

Noting that h ≤ H and that k ≥ K completes the proof of the first bound (37). To
prove the second bound (38), we first employ the triangle inequality

‖(u− u2G, p− p2G)‖DG(h,k)

≤ ‖(u− uh,k, p− ph,k)‖DG(h,k) + ‖(uh,k − u2G, ph,k − p2G)‖DG(h,k) .

Thereby, applying the a priori error bound in Theorem 3, along with the bound
(37) completes the proof of Theorem 10. �

4.2. A posteriori error bound. In this section we state the following a poste-
riori upper bound for the numerical approximation defined by (33)–(36).
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Theorem 14. Let (u, p) ∈ H1
0 (Ω)d × L2

0(Ω) be the analytical solution of (1)–
(3), (uH,K , pH,K) ∈ V (TH ,K)×Q(TH ,K) the numerical approximation obtained
from (33)–(34) and (u2G, p2G) ∈ V (Th,k)×Q(Th,k) the numerical approximation
obtained from (35)–(36); then the following hp-a posteriori error bound holds

‖(u− u2G, p− p2G)‖DG(h,k)

≤ C

(∑
κ∈Th

(
η2
κ + ξ2

κ

)
+
∑
κ∈Th

h2
κk
−2
κ ‖f −Πκ,kκf‖

2
L2(κ)

) 1
2

,

with a constant C > 0, which is independent of h, H, k, K. Here, for all κ ∈ Th,
the local fine grid error indicators ηκ are defined by

(42) η2
κ = h2

κk
−2
κ ‖Πκ,kκf +∇ · {µ(|e(uH,K)|)e(u2G)}‖2L2(κ) + ‖∇ · u2G‖2L2(κ)

+ hκk
−1
κ

∥∥∥[[p2G]]− [[µ(|e(uH,K)|)e(u2G)]]
∥∥∥2

L2(∂κ\Γ)
+ γ2h−1

κ k3
κ

∥∥∥[[u2G]]
∥∥∥2

L2(∂κ)

and the local two-grid error indicators ξκ are defined, for all κ ∈ Th, as

(43) ξ2
κ = ‖(µ(|e(uH,K)|)− µ(|e(u2G)|))e(u2G)‖2L2(κ)

+
∥∥∥(µ′e(u)(|e(uH,K)|) : (e(u2G)− e(uH,K))

)
e(uH,K)

∥∥∥2

L2(κ)

+ hF k
−1
F

∥∥∥(µ′e(u)(|e(uH,K)|) : (e(u2G)− e(uH,K))
)
e(uH,K)

∥∥∥2

L2(∂κ)
.

Proof. The proof of this theorem follows in an analogous manner to the proof of
Theorem 6. We note that the a posteriori error bound for the two-grid method
based on a single Newton iteration contains two extra terms in the local two-
grid error indicators compared to the result derived in Theorem 6 for the two-grid
approximation defined in (13)–(14). These two extra terms appear, trivially, from
the bound of T1 from (30), cf. [13], where instead of adding (9), with a specific
vh,k, (35) has to be added instead. �

5. hp-Adaptive Mesh Refinement

For the standard IP DGFEM discretization of the non-Newtonian problem (1)–
(3), cf. (9)–(10), the mesh and polynomial degree distribution may be automatically
constructed using the hp-adaptive refinement algorithm outlined in [13]. In that
setting, the local error indicators are defined in an analogous way to ηκ given in
(22) or (42), for the two different two-grid methods, with uH,K and u2G both
replaced by uh,k. In the context of the two-grid IP DGFEM discretizations defined
by (13)–(16) and (33)–(36), it is necessary to refine both the fine and coarse meshes,
together with their corresponding polynomial degrees, in order to decrease the error
measured in the energy norm.

In [15] we proposed an algorithm that refined the fine mesh based only on ηκ and
the coarse mesh based only on ξκ. In the current article we propose an alternative,
more general purpose algorithm. In order to formally define this algorithm we first
re-write the algorithm from [15] in the following form.

Algorithm 1. The hp–finite element spaces V (Th,k), Q(Th,k), V (TH ,K) and
Q(TH ,K) are constructed, based on employing the following algorithm.
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(0) Initial step: Select initial coarse and fine meshes TH and Th, respectively,
as well as initial coarse and fine polynomial degree distributions K and k,
respectively, in such a manner that V (TH ,K) ⊆ V (Th,k) and Q(TH ,K) ⊆
Q(Th,k).

(1) Select elements in Th and TH for refinement/derefinement, based on the
local fine grid error indicators ηκ and the two-grid local error indicators ξκ
from (22)/ (42) and (23)/ (43), respectively.

(2) For elements marked for refinement in the fine and coarse mesh, determine
whether to perform h- or p-refinement; see, for example, [20, 29].

(3) Perform mesh smoothing to ensure:
• For all fine elements κ ∈ Th there exists a coarse mesh element κH ∈
TH such that κ ⊆ κH ;

• For all κ ∈ Th and κH ∈ TH , where κ ⊆ κH , that Kκ ≤ kκ.
In this article we perform h-refinement on the fine mesh Th and p-dere-
finement on the coarse mesh TH where necessary.

Remark 4. For the purposes of the numerical experiments in the following sec-
tion, in Step 0 above, the two-grid hp-adaptive algorithm is initially started with
V (TH ,K) = V (Th,k) and Q(TH ,K) = Q(Th,k).

In order to employ this algorithm we need a strategy to select elements in Th
and TH for refinement/derefinement, cf. Step 1 above. In this paper we propose an
algorithm based on first identifying regions to refine using ηκ+ξκ and then selecting
the mesh to refine dependent on which of the two error indicators is dominant.

Algorithm 2. Elements in the coarse and fine meshes TH and Th, respectively, are
selected for refinement/derefinement based on employing the following algorithm.

(1) Determine the sets R(Th) ⊆ Th and D(Th) ⊆ Th of fine elements to be
(potentially) refined/derefined, respectively, based on the size of ηκ + ξκ
using a standard refinement algorithm, e.g., the fixed fraction refinement
strategy.

(2) For all elements selected for derefinement decide whether to perform dere-
finement of the fine or coarse mesh: for all κ ∈ D(Th)
• if λF ξκ ≤ ηκ derefine the coarse element κH ∈ TH , where κ ⊆ κH , and
• if λCηκ ≤ ξκ derefine the fine element κ.

(3) For all elements selected for refinement decide whether to perform refine-
ment of the fine or coarse mesh: for all κ ∈ R(Th)
• if λF ξκ ≤ ηκ refine the fine element κ and
• if λCηκ ≤ ξκ refine the coarse element κH ∈ TH , where κ ⊆ κH .

Here, λF , λC ∈ (0,∞) are steering parameters selected such that λFλC ≤ 1.

Remark 5. We note that it is possible that a coarse element κH ∈ TH could be
marked for both refinement and derefinement. When this occurs the coarse element
is refined, as refinement should take precedence over derefinement.

Proposition 15. For all elements κ ∈ R(Th) either the fine element κ ∈ Th or the
coarse element κH ∈ TH , where κ ⊆ κH , will be marked for refinement.

Proof. To prove this statement it is sufficient to show that either p(κ) : λF ξκ ≤ ηκ
or q(κ) : λCηκ ≤ ξκ is true for all κ ∈ Th. For any κ ∈ Th, if p(κ) is true then
p(κ) ∨ q(κ) is true by definition; hence, it is only necessary to prove that q(κ) is
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Figure 1. Example 1. (a) Comparison of the error in the DG
norm, using the standard (u∗ = uh,k, p∗ = ph,k) and both two-
grid methods (u∗ = u2G,p∗ = p2G), with respect to the number
of degrees of freedom; (b) Comparison of number of degrees of
freedom in the coarse and fine mesh.

true if p(κ) is false. As q(κ) is false and λFλC ≤ 1 then

λF ξκ > ηκ ≥ λFλCηκ.
Dividing through by λF > 0 gives that ξκ ≥ λCηκ; hence, q(κ) is true if p(κ) is
false. �

Remark 6. We note that although a similar result exists for the derefinement of
elements κ ∈ D(Th) it is possible for no element to be derefined for an element
κ ∈ D(Th) due to Remark 5.

6. Numerical Experiments

In this section we perform a series of numerical experiments to demonstrate
the performance of the a posteriori error bounds derived in Theorems 6 and 14
within the automatic hp-adaptive mesh refinement procedure based on one-irregular
quadrilateral elements for Ω ⊂ R2 defined in Section 5. Throughout this section the
two-grid IP DGFEM solutions obtained by (13)–(16) and (33)–(36) are calculated
with θ = 0. We additionally set the constant γ arising in the interior penalty
parameter σh,k defined by (11) to 10. The resulting system of nonlinear equations,
on the coarse mesh, are solved based on employing a damped Newton method; for
each inner (linear) iteration, as well as the linear fine mesh system, we employ the
MUMPS Solver, see [1, 2, 3].

The mesh adaptation is undertaken based on employing Algorithm 1 with the
decision concerning whether to refine coarse or fine meshes, Step 1, based on util-
ising Algorithm 2 with steering parameters λC = 1/2 and λF = 1. The selection
of regions to refine, Step 1 of Algorithm 2, is achieved via a fixed fraction strategy
where the refinement and derefinement fractions are set to 25% and 5%, respec-
tively. We employ the hp-adaptive strategy developed by [20] to decide whether to
perform h- or p-refinement/derefinement in Step 2 of Algorithm 1. We note here
that we start with a polynomial degree of kκh = 3 for all κh ∈ Th and KκH = 3
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Figure 2. Example 1. Cumulative CPU timing of the standard
(u∗ = uh,k,p∗ = ph,k) and both two-grid (u∗ = u2G,p∗ = p2G)
solvers compared to the error in the DG norm.
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Figure 3. Example 1. Effectivity of the h- and hp-refinement
using both two-grid methods.

for all κH ∈ TH . For each example, as well as solving using both two-grid IP
DGFEMs, we compute the standard IP DGFEM formulation (9), (10) for compar-
ison. In addition to hp-refinement, we also compute the numerical solution using
all three discretization methods with an h-adaptive refinement strategy, using the
same 25% and 5% refinement/derefinement fixed fraction strategy, with a fixed
(uniform) polynomial degree distribution; for h-refinement, we set λC = 1.

6.1. Example 1: Smooth solution. In this example we consider the cavity-like
problem from [7, Section 6.1] using the Carreau law nonlinearity

(44) µ(|e(u)|) = k∞ + (k0 − k∞)(1 + λc|e(u)|2)(ϑ−2)/2,
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Figure 4. Example 1. Coarse and fine mesh after 13 h-adaptive
mesh refinements: (a) & (b) Coarse and fine mesh, respectively,
for first two-grid method (Section 3); (c) & (d) Coarse and fine
mesh, respectively, for second two-grid method (Section 4)

with k∞ = 0, k0 = 2, λc = 1 and ϑ = 1.2. We let Ω = (0, 1)2 be the unit square and
select the forcing function f such that the analytical solution to (1)–(3) is given by

u(x, y) =


(

1− cos

(
2
π(eϑx−1)

eϑ−1

))
sin(2πy)

−ϑeϑx sin

(
2
π(eϑx−1)

eϑ−1

)
1−cos(2πy)

eϑ−1

 ,(45)

p(x, y) = 2πϑeϑx sin

(
2
π
(
eϑx − 1

)
eϑ − 1

)
sin(2πy)

eϑ − 1
.(46)

In Figure 1(a) we present a comparison of the true error, measured in the
DGFEM norm ‖(·, ·)‖DG(h,k), of the standard and two-grid IP DGFEMs with the

square root of the number of the degrees of freedom (of the fine mesh) on a linear-
log scale for both h- and hp-adaptive mesh refinement algorithms. Here, we can see
that the true error stemming from using the two-grid IP DGFEM based on a sin-
gle Newton iteration (the second two-grid method) is similar to the corresponding
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Figure 5. Example 1. Coarse and fine mesh after 13 hp-adaptive
mesh refinements: (a) & (b) Coarse and fine mesh, respectively,
for first two-grid method (Section 3); (c) & (d) Coarse and fine
mesh, respectively, for second two-grid method (Section 4)

quantity computed for the standard IP DGFEM, for a given number of degrees of
freedom in the two-grid fine mesh as in the standard IP DGFEM mesh; in contrast,
the first two-grid method is notable inferior for h-refinement. In Figure 1(b) we
plot the number of degrees of freedom in the coarse mesh compared to the number
in the fine mesh for both two-grid methods; here we observe that there are consid-
erable less degrees of freedom in the coarse finite element space than the fine one,
as we would expect. The comparison of the true error, measured in the DGFEM
norm, of the standard and two-grid IP DGFEMs with respect to the cumulative
computation time, in seconds, on a log-log scale for both h- and hp-adaptive mesh
refinement algorithms is shown in Figure 2. As can be seen for both strategies the
two-grid methods result in the same true error for a lower computation time, when
compared to the standard (single-grid) IP DGFEM. The second two-grid method
based on a single Newton iteration appears to perform slightly better than the first
two-grid method in terms of computation time reduction. From Figure 3 we see
that for both the h- and hp-refinement strategies that the a posteriori error bound
for both the two-grid IP DGFEMs overestimates the true error by a consistent
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Figure 6. Example 2. (a) Comparison of the error in the DG
norm, using the standard (u∗ = uh,k, p∗ = ph,k) and both two-
grid methods (u∗ = u2G,p∗ = p2G), with respect to the number
of degrees of freedom; (b) Comparison of number of degrees of
freedom in the coarse and fine mesh.

amount in the sense that the effectivity indices are roughly constant for all meshes;
we point out that the second two-grid method based on a single Newton iteration
gives rise to a slightly higher effectivity index for hp-refinement.

In Figure 4 we show the coarse and fine meshes for both two-grid IP DGFEMs
after 13 h-mesh refinements. We note that the coarse and fine mesh appear to be
refined in roughly the same manner, but with less refinement in the coarse mesh.
We can also see that the second two-grid IP DGFEM based on a single Newton
iteration has resulted in slightly more coarse refinement and less fine refinement.
Figure 5 shows the coarse and fine meshes after 13 hp-mesh refinements. Here, the
h-refinements have occurred mostly around the interior of the hills and valleys of
the pressure with p-refinement in the rest of the domain which is largely smooth, as
would be expected from a smooth analytical solution, with the highest p-refinement
being around the vortex centre at the point (1/ϑ log((eϑ+1)/2), 1/2). We note here
that the two different two-grid methods have broadly refined in a similar manner,
the most noticeable difference being on the coarse mesh.

6.2. Example 2: Singular solution. For this example we consider a nonlinear
version of the singular solution from [28, p. 113], see also [18], using the nonlinearity

µ(|e(u)|) = 1 + e−|e(u)|.

We let Ω be the L-shaped domain (−1, 1)2 \ [0, 1)× (−1, 0] and select f so that the
analytical solution to (1)–(3), where (r, ϕ) denotes the system of polar coordinates,
is given by

u(r, ϕ) = rλs

(
(1 + λs) sin(ϕ)Ψ(ϕ) + cos(ϕ)Ψ′(ϕ)
sin(ϕ)Ψ′(ϕ)− (1 + λs) cos(ϕ)Ψ(ϕ)

)
,

p(r, ϕ) = −rλs−1 (1 + λs)
2Ψ′(ϕ) + Ψ′′′(ϕ)

1− λs
,
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Figure 7. Example 2. Cumulative CPU timing of the standard
(u∗ = uh,k,p∗ = ph,k) and both two-grid (u∗ = u2G,p∗ = p2G)
solvers compared to the error in the DG norm.
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Figure 8. Example 2. Effectivity of the h- and hp-refinement
using both two-grid methods.

where

Ψ(ϕ) =
sin((1 + λs)ϕ) cos(λsω)

1 + λs
− cos((1 + λs)ϕ)

− sin((1− λs)ϕ) cos(λsω)

1− λs
+ cos((1− λs)ϕ),

and ω = 3π
2 . Here, the exponent λs is the smallest positive solution of

sin(λsω) + λs sin(ω) = 0;

thereby, λs ≈ 0.54448373678246.
We again compare in Figure 6(a) the true error, measured in the DGFEM norm,

of the standard and two-grid IP DGFEMs with respect to the third root of the
degrees of freedom (of the fine mesh) on a linear-log scale for both adaptive mesh
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Figure 9. Example 2. Coarse and fine mesh after 11 h-adaptive
mesh refinements: (a) & (b) Coarse and fine mesh, respectively,
for first two-grid method (Section 3); (c) & (d) Coarse and fine
mesh, respectively, for second two-grid method (Section 4)

refinement algorithms. We notice that the error in the DGFEM norm for the two-
grid IP DGFEMs is roughly the same as the error in the DGFEM norm for the
standard IP DGFEM, when employing the same number of degrees of freedom in
the fine mesh as in the mesh for the standard IP DGFEM. Figure 6(b) compares
the number of degrees of freedom in the two meshes for both two-grid methods.
Both two-grid methods appear to have similar numbers of degrees of freedom in
the coarse and fine meshes as each other. We also note that, although initially the
number of degrees of freedom in the coarse meshes for h-refinement are consider-
ably less than in the fine meshes, as refinement continues the number of degrees
of freedom in the coarse and fine meshes converge. As before we are interested
in the performance improvement that is attained by undertaking the two-grid IP
DGFEMs as opposed to the standard IP DGFEM; therefore, in Figure 7 the true
error, measured in the DGFEM norm, of the standard and two-grid IP DGFEMs
is compared to the cumulative computation time, in seconds, on a log-log scale
for both h- and hp-adaptive mesh refinement algorithms. We note that a com-
putational time improvement is seen for both the h- and hp-adaptive two-grid IP
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Figure 10. Example 2. Coarse and fine mesh after 11 hp-adaptive
mesh refinements: (a) & (b) Coarse and fine mesh, respectively, for
first two-grid method (Section 3); (c) & (d) Coarse and fine mesh,
respectively, for second two-grid method (Section 4)

DGFEMs compared to the standard IP DGFEM. Unlike in the smooth problem
the second two-grid method based on a single Newton iteration appears to perform
slightly worse than the first two-grid method in terms of computation time reduc-
tion. Figure 8 illustrates that, for both the h- and hp-refinement strategy, that
the effectivity constants are roughly constant indicating that the a posteriori error
bound for both two-grid IP DGFEMs overestimates the true error by roughly a
constant; indeed for the h-adaptive refinement it is almost exactly 8 for all meshes.
For the hp-adaptive refinement the effectivity indices does rise initially before be-
coming constant at around 12 for the first two-grid method and rising slightly more
in the second two-grid method based on a single Newton iteration.

We show the coarse and fine meshes for both two-grid IP DGFEMs after 11 h-
and hp-adaptive mesh refinements in Figure 9 and Figure 10, respectively. For h-
adaptive refinement we note that the focus of the refinement in the fine mesh is in
the vicinity of the singularity at the origin; however, in the coarse mesh, refinement
is undertaken in the region near both the singularity and the line y = −x coming
from the singularity, where it appears that the coarse mesh needs to be almost as
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refined as the fine mesh. This behaviour is also demonstrated with hp-adaptive
mesh refinement, although less noticeable, for the first two-grid method. The two
methods have resulted in notably different hp-refinements with the second two-grid
method undertaking very minimal refinement along the line y = −x.

7. Concluding remarks

In this article we have extended the a priori and a posteriori analysis devel-
oped in [13], for hp-version interior penalty discontinuous Galerkin methods for the
discretization of quasi-Newtonian fluid flow problems, to the two-grid setting. In
particular, we have studied two variants of the two-grid IP DGFEM: one is based on
committing a modelling/data approximation error on the fine finite element mesh,
while the second approach is based on utilizing a single step of a Newton iterative
solver. The latter method yields improved a priori error bounds, in the sense that,
to attain optimal convergence of the underlying method, the coarse finite element
space may be less refined than for the former approach. However, when conducting
hp-adaptive mesh refinement, we observe that the two discretization methods yield
very similar convergence behaviour. We also note that the reduction in computa-
tional time between utilizing the two-grid methods proposed in this article for a
quasi-Newtonian fluid flow problem, in comparison to the employing the standard
IP DGFEM, is quite modest for the simple numerical test cases computed in this
article. We point out that this is in part due to the exploitation of the very efficient
MUMPS direct solver for the solution of the underlying linear systems of equations;
for larger problems, which require the use of iterative methods, such as precondi-
tioned GMRES, for example, typically two-grid methods are computationally much
more efficient than employing standard single grid techniques; cf. [11, 15], for exam-
ple. Additionally, two-grid methods possess a number of very attractive features.
Indeed, the numerical approximation of nonlinear problems on fine finite element
partitions can be very computationally expensive; for more challenging problems
than those considered in this article, it is not guaranteed that a nonlinear solver will
converge as the complexity, i.e., the number of degrees of freedom in the underlying
finite element space, increases. Hence, approximating the nonlinear problem only
on a coarser mesh, where, for example, a (damped) Newton solver can be exploited
to efficiently compute a coarse solution, followed by the solution of only a linear
problem on the desired fine mesh, potentially yields a more robust solver. Finally,
since two-grid methods naturally employ two embedded finite element spaces, the
solution of the underlying linear problem on the finest finite element space naturally
lends itself to the exploitation of domain decomposition preconditioners. This latter
issue, together with the analysis of two-grid methods for more general nonlinearities
than those studied in this article, forms the basis of our future work.
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