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Abstract 

This paper studies the effect of network quality on job finding and job match quality using 

longitudinal data and a direct measure of network quality, which is based on the employment of 

friendship ties. Various identification strategies provide robust evidence that a higher number of 

employed contacts increases the job finding rate. Network quality also increases wages for high-

skilled workers forming networks with non-familial contacts. Instead, for low-skilled workers, more 

employed familial contacts lead to a negative but not significant effect on wages.  These findings 

reconcile previous mixed evidence of network effects on wages, indicating heterogeneity by skill 

level and relationship type.  
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1. Introduction 

Informal contacts through social networks have long been considered an important source of 

information in the job search process. Survey evidence gathered across countries and over time has 

consistently indicated that between one third and one half of job matches are created through friends 

and relatives (see e.g. Ioannides and Loury, 2004, and Topa, 2011). Despite the importance of the 

use of contacts in job search, there is limited empirical evidence on the effect of network quality on 

labor market outcomes. Recent theoretical studies have focused on the employment status of network 

members as the relevant measure of network quality for understanding the effectiveness of social 

contacts as a job search channel (e.g. Calvó-Armengol and Jackson, 2004; Fontaine, 2008; Galeotti 

and Merlino, 2014). The main insight from this literature is that a higher employment rate within the 

network of social contacts increases the chances of a successful job match for non-employed network 

members through the transmission of information about job opportunities. The effect of network 

quality on job match quality, however, depends on the degree of homophily, which is the tendency of 

individuals to befriend others who are similar to themselves (e.g. Bentolila et al. 2010; Horvath, 

2014). 

In this paper, we contribute to the empirical literature by studing how the employment status of 

friendship ties affects the job finding probability, starting wages and employment stability, using 

longitudinal data from the British Household Panel Survey (BHPS). There are three main objectives 

of the paper: (i) to measure the effect of network quality on the job finding probability; (ii) to 

measure the effect of network quality on the quality of job matches among those who find a job; and 

(iii) to measure differences in the effect of network quality by the type of contacts (familial vs. non-

familial) and by worker skill level. 

Identifying network effects on labor market outcomes is challenging due to non-random 

selection into networks, simultaneity, and the presence of common shocks. We present an empirical 

model of individual employment transitions, which provides a general analytical framework, and we 

address these issues using three identification strategies. Each of the three strategies we propose is 

derived from the general framework by imposing different assumptions. The first is a fixed effects 

estimator, which partials out time-invariant unobserved heterogeneity by exploiting the availability 

of multiple individual transitions in the data, and time variation of network quality. The second is a 
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semi-parametric correlated random effects estimator of the transition into employment, which takes 

into account initial conditions and models the potential correlation of network quality with 

unobserved heterogeneity. The third is an instrumental variable (IV) estimator, which addresses 

endogeneity due to reverse causality, non-random selection, and other correlated effects from all 

sources of unobserved heterogeneity, not only time-invariant ones.   

Across all models we find consistently that better network quality through a higher number of 

employed friends increases the job finding rate. From our preferred model of correlated random 

effects with initial conditions, we find that an additional employed friend increases the transition 

probability from non-employment to employment by 3.1 percentage points, or by 15 percent. We 

also provide evidence which suggests that the effect of network quality on job finding is not driven 

by local correlated shocks.  

Extending our analyses to match quality, which is measured by wages and employment 

stability, we find a smaller effect of an additional employed friend on both measures once we control 

for selection into employment and unobserved heterogeneity. There is, however, substantial 

heterogeneity by skill level and type of relationship. In particular, an additional employed non-

relative increases the re-employment wage of high-skilled workers by 6.1 percent. Instead, an 

additional employed relative reduces the re-employment wage of low-skilled workers by 4.3 percent, 

but this effect is not statistically significant. We find similar patterns of heterogeneity by skill level 

and type of relationship also for the effect of network quality on employment stability, but these 

results are not statistically significant when controlling for selection into employment and 

unobserved heterogeneity.  

The heterogeneity of the effect of network quality on job match quality is consistent with the 

theoretical litetarute suggesting that the matching effect of networks depends on the degree of 

homophily between network members, where homophily reduces skill mismatch. Our data indicate 

higher similarity of personal attributes within networks of skilled workers and non-relatives. These 

findings on match quality reconcile mixed evidence of the existing literature on the use of social 

contacts as a search channel, indicating heterogeneity by skill level and the type of relationship.  

The remainder of the paper is organized as follows. In Section 2 we discuss the theoretical 

framework which links the employment stauts of social contacts to job finding and match quality. In 
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Section 3 we describe the data and present some sample summary statistics. In Section 4 we outline 

the empirical framework and discuss the three strategies we propose for identifying the effect of 

network quality on job finding rates. In Section 5 we present the findings and sensitivity analyses on 

job finding from each model separately, while in Section 6 we present the analysis and the results for 

the effect of network quality on job match quality. We provide concluding remarks in Section 7. 

 

2. Theoretical Framework and Related Literature 

There are two main functions of networks in the labor market: (i) to transmit information about job 

opportunities; and (ii) to transmit information about the productivity of workers and the quality of 

worker-job match. The theoretical framework we adopt to motivate our empirical analysis is based 

on the role of social networks in reducing search frictions by spreading information about job 

opportunities (e.g. Calvó-Armengol, 2004; Calvó-Armengol and Jackson, 2004; Calvó-Armengol 

and Zenou, 2005; Ioannides and Soetevent, 2006; Fontaine, 2008; Cahuc and Fontaine, 2009; 

Bramoullé and Saint-Paul, 2009; Galeotti and Merlino, 2014).1 In this framework, both employed 

and unemployed workers receive information randomly about job vacancies, and each individual is 

connected with others within a network. Job offers received by unemployed workers are used to 

obtain a job. Employed workers, instead, do not use job offers for themselves but forward them to 

their unemployed contacts. This implies that the number of employed contacts determines the 

amount of information available to unemployed workers. Therefore, the higher the number of 

employed contacts, the higher their job-finding rate would be.  

With wage bargaining between firms and workers, better connected workers will earn higher 

wages, conditional on employment, because the higher job offer arrival rate increases their 

reservation wage (e.g. Fontaine, 2008). However, if workers are heterogeneous in their skills, and 

jobs differ in the type of skills they require, mismatch may arise when employed contacts transmit 

opportunities about jobs which require different skills from the ones the unemployed possess (e.g. 

Bentolila et al., 2010). The degree of mismatch depends on the degree of homophily, which is the 

                                                           
1 Studies in which networks transmit information about the productivity of workers through referrals to current 
employers, or can inform workers and firms about the quality of the match, include Saloner (1985), Montgomery (1991), 
Simon and Warner 1992, Mortensen and Vishwanath, 1994, and more recently, Brown et al. (2012), Dustmann et al. 
(2011) and Galenianos (2014). Referrals can also mitigate moral hazard problems through co-worker monitoring, 
allowing firms to pay lower efficiency wages (Kugler, 2003; Dhillon et al., 2013). 
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tendency of individuals to befriend others who are similar to themselves. With a high degree of 

homophily, a better network quality is more likely to lead to better matches and higher wages. On the 

other hand, with a low level of homophily there will be more mismatch resulting in lower wages 

(Horvath, 2014). 

Consistent with this framework, we offer the first empirical evidence – to the best of our 

knowledge – on the importance of the employment rate of friendship ties on the job finding rate and 

job match quality using longitudinal data.2 Previous empirical research on network effects in the 

labor market is based either on survey information on the use of informal search methods, such as 

friends and relatives, or on administrative records in which networks are defined indirectly using 

observable proxies, such as neighborhood, firm, or ethnicity. Studies on the use of informal search 

methods include Simon and Warner (1992), Pistaferri (1999), Marmaros and Sacerdote (2002), 

Loury (2006), Bentolila et al. (2010) and Pellizzari (2010).3 Studies defining networks indirectly 

using proxies include Topa (2001), Weinberg et al. (2004), Bayer et al. (2008), Hellerstein et al. 

(2011) and Schmutte (2015), who use geographic proximity at the neighborhood level; Cingano and 

Rosolia (2012), who define networks at the firm level; Edin et al. (2003), Munshi (2003) and 

Beaman (2012), who define networks based on immigrants’ ethnic origin; and Dustmann et al. 

(2011), who use information on both firms and ethnicity.4  

The approach we propose in this study combines elements from these two strands of the 

literature for the definition of the relevant network and network quality. In particular, the relevant 

network is defined using survey information about friendship ties, while network quality is measured 

by the employment rate of those ties. That is, we do not rely on the use of informal search methods 

but on the quality of the network, and we do not assume that agents are connected within the 

                                                           
2 Positive correlations between friends’ employment and unemployment exits have been reported by Hannan (1999).  
3 As noted by Topa (2011), one limitation of studies using surveys on the usage of informal channels is that their analysis 
is based on those who are already employed, which can be a selected group among those who are searching for a job. In 
addition, workers who report that they found their current job through friends and relatives are those who have accepted 
the job opportunity offered through their informal contacts, and may have rejected other possible offers arriving from 
formal search channels (Montgomery, 1992). As we discuss in Section 4 we are taking into account this potential form of 
selection in our empirical framework. 
4 Wahba and Zenou (2005) consider the effect of network quality, which is proxied by the local unemployment rate or the 
number of family members in the labor force, on the probability of using friends and relatives for those employed, but 
they do not consider labor market outcomes. 
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boundaries of the network proxy; rather, we directly observe network linkages through friendship 

ties.5  

One feature of our study is its focus on strong ties (close friends), while information on weaker 

social contacts is not available. This approach is common with a number of recent studies, using self-

reported information on friends derived from survey questionnaires, where there is an upper bound 

on the total number of friends that can be reported (e.g. Calvó-Armengol et al. 2009; Conti et al. 

2013). By observing only strong social ties it is not possible to consider whether weak ties matter 

more than strong ties, as discussed especially in sociology (see e.g. Granovetter, 1995). Indeed, if it 

is weak ties (or, more generally, additional contacts besides the ones on which we have information) 

that matter for finding a job and for match quality, then the approach taken in this paper based on 

strong ties would provide a lower bound to the network effect. In any case, the view that only weak 

ties are relevant is not consensual and has been challenged empirically. For example, Kramarz and 

Nordström Skans (2014) define networks at the family level and investigate the role of fathers on the 

employment and earnings of their children, finding that school graduates of lower ability are more 

likely to find a job through their parents, but with a wage penalty. 

 

3. Data and Sample Statistics 

We exploit longitudinal data on friendship ties and individual labor market outcomes from the 

British Household Panel Survey (BHPS) from 1992-2007. The BHPS is an annual representative 

survey of British households, which is running since 1991 and covers many aspects of life, including 

social ones. The longitudinal design of the BHPS allows observing each respondent’s labor market 

outcomes over time, and, thence, yearly individual transitions across labor market states. 

Information about social networks is gathered through a special questionnaire section on 

‘Social support networks’, which was introduced in 1992 and administered at each even wave since 

then. Survey participants are asked to report information on their three closest friends, with friends’ 

                                                           
5 Holzer (1988) shows that there is a positive link between having more employed friends and searching for a job through 
friends; more employed friends lower the cost of using friends and relatives as a search method, which leads to a higher 
use of this search method. In our data, the method of job search is only available for a small part of the respondents, so 
we can only use the number of employed friends in the analysis. 
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rankings chosen by the respondents.6 Each respondent provides information for each of the three 

friends. The section starts with questions about the demographic characteristics of the first friend 

(age, gender), followed by questions on residential proximity (four intervals in miles), friendship 

duration (years knowing the person in intervals), frequency of contact and type of relationship 

(relative vs. non-relative). The final question refers to the employment status of the friend. The same 

set of questions is then asked sequentially for the second and the third friend. Using the information 

on friends’ employment status we can distinguish between employed and non-employed friends, 

which we use to measure network quality. We can, therefore, relate this friend-employment-based 

measure of network quality – observed at each even-numbered wave – to the respondent’s 

employment transition between an even- and an odd-numbered wave. 

We select a sample of respondents in all even waves during 1992-2006 who are 18 to 65 years 

old, not in full time education, and with non-missing information on employment status. We also 

restrict the sample to individuals with friends within the 18-65 age range in order to consider friends 

of working age. These selection criteria lead to a sample of 35,518 person-year observations. Of 

these, 7,213 are person-year observations in which the individual is non-employed.7 Employment 

includes full-time, part-time and self-employment, while non-employment includes unemployment 

based on the ILO definition and being out of the labor force (e.g. maternity leave, family care, or sick 

and disabled). We consider non-employment, rather than unemployment, for two reasons. First, if we 

only focus on the usual definition of unemployment – as those actively searching for a job in the last 

four weeks – we end up with a very small sample, which renders the main part of our analysis 

infeasible. Second, and most importantly, those who are currently out of the labor force may be 

discouraged workers who can still benefit from social networks. We return to this distinction at the 

beginning of Section 5. 

                                                           
6 Questions on friends are introduced by the following general statement: "Here are a few questions about your friends. 
Please choose the three people you consider to be your closest friends. They should not include people who live with you 
but they can include relatives." The set of questions is the same for each friend, with the exception of current occupation 
which is available only for the first friend. 
7 Information about all three friends is reported by the vast majority of respondents (92%) and the analysis is based on 
these cases. The results reported in Section 5 are robust when including the few cases reporting less than three friends 
(adding dummies for missing friends in the set of controls). Restricting the sample of respondents to those aged 18-50 in 
order to avoid early retirement issues, or considering friends without an upper bound age, leads also to robust results 
compared to the ones presented in Section 5. 
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Table A1 presents summary statistics of the sample. In the first five rows we report statistics 

about the employment status of respondents and their three reported friends. The full sample of 

35,518 person-year observations corresponds to 9,395 individuals, out of which about 79 percent are 

observed in employment (28,305 person-year observations and 7,239 individuals). The remaining 

7,213 person-year observations are in non-employment corresponding to 3,492 individuals. The 

average employment rate of each of the three respondents’ friends is very similar (around 79 

percent), with an average number of employed friends equal to 2.38. Focusing on person-year 

observations in the full sample, the average age of respondents is 39.11, and slightly more than half 

are women (53.2 percent). The demographic characteristics of all three friends are very similar to 

those of respondents’ both in terms of age and gender. The age of friends is 39.4, 38.7 and 38.5 for 

the first, second, and third friend respectively, while the slightly younger second and third friends are 

more likely to be females compared to the first friend (54.7 percent of first friends are females vs. 

56.9 percent of third friends). The remaining respondents’ characteristics relate to education (highest 

qualification attained), family structure (couple, number of children), health (experiencing health 

problems, depression and being a smoker), and ethnicity (categorized in six groups). We also 

observe the region of residence (not reported) and the local unemployment rate defined at the travel-

to-work area (TTWA) level, which has a mean of 4.4 percent. 

Finally, the average yearly job finding rate is 21.16 percent, which is increasing with the 

number of employed friends. While the transition rate is only about 10 percent for those with no 

employed friends, the job finding rate increases to about 16 percent with one employed friend, to 21 

percent with two, and to almost 30 percent with three employed friends.  

 

4. Empirical Framework 

4.1 Modeling Job Finding 

The empirical framework we propose is motivated by the theoretical literature which suggests that 

access to a better network of contacts implies a higher job finding rate. To identify the effect of 

network quality on job finding we model the transition probability from non-employment to 

employment (𝑝𝑇) as: 
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 𝑝𝑇 ≡ Pr (𝐸𝑖,𝑡+1 = 1�𝐸𝑖,𝑡 = 0� = 𝐹(𝛼𝑇 + 𝑋𝑖,𝑡′ 𝛽𝑇 + 𝛿𝑇𝑄𝑖,𝑡 + 𝜂𝑇𝑖), (1) 

where 𝐸𝑖,𝑡 is a dummy indicator of respondent’s 𝑖 employment status in year 𝑡, and F(.) is a function 

which is either linear or logistic.8 Equation (1) defines the probability of transitioning from non-

employment in year 𝑡 to employment in year 𝑡 + 1 as a function of network quality (𝑄𝑖,𝑡), a vector of 

other individual characteristics (𝑋𝑖,𝑡) and individual unobserved heterogeneity (𝜂𝑇𝑖). As we discussed 

in Section 3, the sample of non-employed respondents in year 𝑡 are observed during even waves 

because information on friends is only available during even-numbered waves (1992, 1994,…, 

2006), and the transition is defined between even and odd waves (1992-1993, 1994-1995,…, 2006-

2007). 

The main identification issue we need to address is the potential endogeneity of network 

quality. Endogeneity may arise because friends are not randomly assigned, implying a correlation 

between network quality and the unobserved individual determinants of the employment transition: 

𝑐𝑜𝑣�𝑄𝑖,𝑡, 𝜂𝑇𝑖 � ≠ 0. For example, individuals with a higher attachment to the labor market (higher 

values of 𝜂𝑇𝑖 )  may exhibit a higher propensity to find a job and at the same time be connected to a 

higher quality network, which would lead to an upward biased network quality effect. Alternatively, 

friends may be exposed to similar local labor market shocks if they reside in similar areas (not 

necessarily in the same area), which would also induce spurious correlation between network quality 

and the transition into employment. Finally, the transition probability in equation (1) is conditioned 

on the sample of non-employed, which can be a selected sample; a form of initial conditions bias. To 

address these issues we consider three alternative estimation strategies: a fixed effects estimator, a 

semi-parametric correlated random effects estimator with initial conditions, and an instrumental 

variables (IV) estimator. All three estimation strategies  can be derived from the more general model 

laid out in (1) by using different identifying assumptions, which we illustrate in Sections 4.2-4.4. We 

also control for local labor market conditions and provide additional evidence which suggests that 

our results are not driven by common shocks. 

Identification of network effects is also complicated because of simultaneity, the so-called 

“reflection problem” (Manski, 1993). A large literature has developed in recent years focusing on the 
                                                           
8 The logistic F(.) accounts for the limited dependent variable nature of the outcome, while with linear F(.) the 
specification also includes a white noise error. 
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identification of social interactions (see e.g. Manski, 1993, Moffitt, 2001, Bramoullé et al., 2009, and 

the comprehensive review by Blume et al., 2011). There are two features in our empirical setting 

which help dealing with the simultaneity problem. First, the longitudinal structure of the data allows 

focusing on the effect of the employment status of network connections (in year 𝑡) on the transition 

in year 𝑡 + 1. This time-sequencing argument is similar to the one used by Cingano and Rosolia 

(2012) and Schmutte (2015). Second, as shown by Blume et al. (2011), the non-linearity in models of 

limited dependent variables – like the one of equation (1) – may also break the reflection problem.  

 

4.2 Fixed Effects 

We now turn to the first strategy of estimating the effect of network quality in equation (1) based on 

a fixed effects estimator (either linear or logistic). We pool data on non-employment observations 

from 3,492 respondents across all even waves and exploit the fact that we observe about 50 percent 

of them in non-employment for more than one wave (1,759 individuals). This provides within-

individual variation in network quality over time and across individual non-employment 

observations, which we use to eliminate time-invariant unobserved heterogeneity (𝜂𝑇𝑖) that might be 

correlated with network quality (within estimator). Network quality is defined by aggregating over 

the employment status of the three friends. That is, 𝑄𝑖,𝑡 ≡ 𝑁𝐸𝐹𝑖,𝑡, where 𝑁𝐸𝐹𝑖,𝑡 denotes the number 

of employed friends in year t for individual i, which varies from zero to three.  

Because fixed effects rely on observing individuals as non-employed in more than one even 

wave, we expect the fixed effects estimates to provide a lower bound of the network effect. This is 

because the individuals contributing in the estimation are likely to be negatively selected in the sense 

of being less employable and, therefore, experiencing a lower transition into employment. We also 

use a fixed effects logit estimator which requires a transition into employment in at least one of the 

multiple non-employment person-year observations. For this estimator we exploit 1,604 person-year 

observations out of 501 individuals. 

The fixed effect estimator can be biased if network quality is not strictly exogenous and 

depends on past values of the dependent variable. For instance, individuals who remain non-

employed might be more likely to select new friends who are also non-employed. We present 

descriptive evidence in Table 1 (Panels A and B) which suggests that respondents do not form links 
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with new friends based on whether these new friends are employed or not. We compare the average 

number of employed friends between respondents reporting at least one new friend (Column 2), and 

no new friend (Column 3).9 The difference in the average number of employed friends between the 

two groups (with, or without new friends), reported in Column 4, is very small and it is not 

statistically different from zero, both for the full sample (Panel A) and for the sample of non-

employed (Panel B). This should not be surprising because it is reasonable to expect that close 

friendships are not solely determined by economic considerations. This evidence is consistent with 

strict exogeneity of network quality, although it does not rule out the possibility that past shocks to 

individual employment trajectories affect future levels of network quality. For this reason, later in the 

Section we introduce an instrumental variable estimator which exploits exogenous variation in 

friends’ employment status to addresses endogeneity of network quality due to all possible sources, 

including the one operating through past values of the dependent variable. 

 

4.3 Semi-Parametric Random Effects 

Unrelated to the way in which endogeneity due to unobserved heterogeneity is addressed, the other 

form of potential bias when estimating equation (1) is related to conditioning on the sample of non-

employed (𝐸𝑖𝑡 = 0). As we discussed in Section 4.1, being non-employed can be endogenous in the 

presence of serial correlation of the employment process, which is an issue of initial conditions 

(Heckman, 1981). To deal both with the endogenous selection in non-employment and unobserved 

heterogeneity we propose an alternative estimation strategy. This second strategy relies on a random 

effects estimator, which augments the transition equation with the explicit modeling of the 

probability of being non-employed at time 𝑡 in order to account for endogenous selection in non-

employment. Therefore, with this estimator we do not restrict the sample to the non-employed 

respondents, but instead we consider the full sample of employed and non-employed observations 

(35,518 person-year observations and 9,395 individuals). We model selection into non-employment 

via the following initial condition equation: 

                                                           
9 Each respondent answers the following question for each of the three friends: “About how long have you know him or 
her?” with possible answers “Less than 1 year ”, “1-2 years”, “3-10 years”, “10 years or more”. A friend is defined as 
“new” if he or she is known for less than 1 year.  
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𝑝𝑁 ≡ 𝑃𝑟 (𝐸𝑖,𝑡 = 0) = 𝐹(𝛼𝑁 + 𝑋𝑖,𝑡′ 𝛽𝑁 + 𝛿𝑁𝑁𝐸𝐹𝑖,𝑡 + 𝜃𝑁𝑢𝑖,𝑡−1 + 𝜂𝑁𝑖), (2) 

which defines the individual probability of being non-employed in year 𝑡. The lagged unemployment 

rate in the travel to work area (𝑢𝑖,𝑡−1) is included to proxy the accumulation of past unemployment 

shocks that may affect employment status prior to the transition.  

Similar to the fixed effects estimator we assume time-invariant unobserved heterogeneity 

influencing selection into non-employment, denoted by the term 𝜂𝑁𝑖 . However, rather than 

eliminating it by applying within-individual differencing, we tackle endogeneity by modeling the 

association of unobserved heterogeneity with network quality via a correlated random effects 

specification (see Mundlak, 1978; Chamberlain 1984). The specification of unobserved 

heterogeneity affecting the transition equation (1) and the selection equation (2) is the following: 

 
𝜂𝑇𝑖 =  𝑋�𝑖′𝜆𝑇 +  𝜔𝑇𝑖 

𝜂𝑁𝑖 =  𝑋�𝑖′𝜆𝑁 +  𝜔𝑁𝑖. 
(3) 

The vector 𝑋�𝑖 collects the individual averages of time varying regressors, including network 

quality measured by the number of employed friends (NEF). They are computed across all panel 

waves so they are constant across transitions. After controlling for time averages (especially the 

mean number of employed friends), the remaining unobservables are assumed to be orthogonal to the 

current measure of network quality: 𝑐𝑜𝑣�𝑁𝐸𝐹𝑖,𝑡,𝜔𝑇𝑖� = 0 and 𝑐𝑜𝑣�𝑁𝐸𝐹𝑖,𝑡,𝜔𝑁𝑖� = 0. 

We estimate the transition equation (1) jointly with the selection equation (2) by maximum 

likelihood allowing for correlated unobserved heterogeneity across the two equations. One concern 

with this model might be that identification of the cross-equation correlation of unobservables is 

mainly driven by the functional form of the model. However, as discussed by Mroz and Savage 

(2006), this is more serious if the model includes only time-invariant variables. Exogenously time-

varying regressors, like the local unemployment rate, provide a more robust source of identification. 

Identification is also enhanced by the variation coming from repeated individual non-employment 

which we observe in the data. Another possible concern could be that the employment probability of 

the respondent (the dependent variable in equation 2) is observed contemporaneously with network 

quality (the number of employed friends). This can generate a correlation between NEF and the 

individual error term 𝜔𝑁𝑖 because the employment probability of the respondent may affect the 
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number of employed friends (a form of “reverse causality” in the initial conditions equation). As a 

sensitivity analysis, we also estimate the model excluding the current number of employed friends 

and its time average and we obtain very similar results. We discuss this sensitivity analysis in 

Section 5.2.    

Furthermore, we impose relatively mild assumptions on unobserved heterogeneity, which is 

modeled in a flexible way assuming a discrete distribution, following Heckman and Singer (1984). 

More specifically, the unobserved heterogeneity is defined as a discrete distribution with the support 

points denoted by (𝜔𝑇𝑚,𝜔𝑁𝑚) and the corresponding probability mass given by 𝑃𝑟(𝜔𝑇𝑖 = 𝜔𝑇𝑚, 𝜔𝑁𝑖 

= 𝜔𝑁𝑚)= 𝜋𝑚. Each unobserved factor is assumed to be time-invariant and individual specific for 

each outcome and the sample likelihood is given by 

 𝐿 = ∏ ∑ 𝜋𝑚𝑙𝑖𝑚𝑀
𝑚=1

𝑁
𝑖=1 .  (4) 

The individual likelihood contribution denoted by 𝑙𝑖𝑚, given the observed and unobserved 

characteristics, is defined as: 

 𝑙𝑖𝑚(𝑍𝑖,𝜔𝑇𝑖,𝜔𝑁𝑖) =  (𝑝𝑇𝑚)𝜏𝑇  (1 − 𝑝𝑇𝑚)(1−𝜏𝑇)(𝑝𝑁𝑚)𝜏𝑁  (1− 𝑝𝑁𝑚)(1−𝜏𝑁),  

where 𝑝𝑇𝑚 and 𝑝𝑁𝑚 denote probabilities evaluated at the mass points, τT is a dummy for 𝐸𝑖,𝑡+1 = 1 

in the sample with 𝐸𝑖,𝑡 = 0, τN is a dummy for 𝐸𝑖,𝑡 = 0, and 𝑍𝑖 includes the controls of equations (1) 

and (2) plus the individual averages of time-varying regressors. Since the specification for each 

equation includes a constant, for identification one mass point of each unobserved factor is 

normalized to zero. The function F in equations (1) and (2) is assumed to be logistic. 

 

4.4 Symmetric Network – Instrumental Variables 

The third identification strategy addresses endogeneity of network quality by way of an instrumental 

variables estimator (IV), which does not impose the assumption of time-invariant unobserved 

heterogeneity. The important assumption with the IV estimator is the existence of a valid instrument, 

i.e. a source of exogenous variation in network quality as measured by the employment status of the 

respondent’s friends. It is difficult to uncover such a variable in the BHPS because of the limited 

information on friends’ characteristics. To circumvent this data limitation, we consider the transition 

equation (1) from the friends’ perspective and estimate its symmetric version. That is, instead of 
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estimating the effect of network quality on the respondent’s transition, the symmetric transition 

focuses on the effect of the employment status of the respondent on the employment transition of the 

respondents’ friend.10  

Strictly speaking, estimating this symmetric transition requires observing friends’ identity in 

order to follow their employment status over time, but friends’ identity is not available in the data. 

We therefore base the analysis on the first closest friend assuming that his or her identity is the same 

over the transition period.11 In this symmetric version, network quality is measured by the 

employment status of the BHPS respondents: 𝑄𝑖,𝑡 ≡ 𝐸𝑖,𝑡. Let 𝐹𝐸𝑖,𝑡 be a dummy for whether the first 

friend is employed in year 𝑡, the symmetric transition equation is defined as: 

 𝑝𝑇𝐹 ≡ 𝑃𝑟 (𝐹𝐸𝑖,𝑡+2 = 1�𝐹𝐸𝑖,𝑡 = 0� = 𝐹(𝛼𝑇𝐹 + 𝑋𝑖,𝑡′ 𝛽𝑇𝐹 + 𝛿𝑇𝐹𝐸𝑖,𝑡 + 𝜂𝑇𝐹𝑖). (5) 

Equation (5) is similar to transition equation (1) but it refers to the transition from non-

employment to employment of the first friend, and therefore, is estimated on the sample of 

respondents whose first friend is non-employed at time 𝑡 (𝐹𝐸𝑖,𝑡 = 0). The dependent variable is a 

dummy which takes the value one if the respondent’s first friend makes a transition from non-

employment in year 𝑡 to employment in year 𝑡 + 2, and zero otherwise. We consider a 2-year 

transition because the information on friends in the survey is only available every two years.12 

The vector 𝑋 includes all available friend characteristics (age, gender), and the respondents’ 

characteristics such as education, family structure, health status, experiencing depression, smoking 

and region of residence, which are included in the specification as proxies for the unobserved 

characteristics of the friend. By relying on proxies, we can only imperfectly control for the 

characteristics of the friend, especially when those characteristics are very different between the 

respondent and the friend. We also do not observe the employment status of other friends of the 

respondent’s friend, so network quality is defined only by the employment status of the respondent. 

This could induce omitted variable bias, a caveat to keep in mind when interpreting the results of the 
                                                           
10 We thank Nikos Askitas for his suggestion to consider the symmetric model.  
11 The plausibility of this assumption is assessed in Section 5.3 by investigating the sensitivity of the results for a fixed 
network of friends. We find the results to be robust to the assumption of constant identity of the first friend. Another 
assumption implicit in the symmetric model is that of reciprocity, i.e. that the first friend of the respondent also considers 
the respondent as his or her friend. 
12 The drawback of considering a 2-year transition is that we may miss shorter transitions to employment which are not 
long-lasting. In that case, our findings are expected to be downward biased as we would be ignoring these transitions in 
the definition of the dependent variable. 
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symmetric transition.  

Despite these limitations, the main advantage of the symmetric transition is that we can 

construct an instrument for the potentially endogenous network quality – measured by employment 

status (𝐸𝑖,𝑡) – by exploiting the abundance of information about the respondents in the BHPS. We use 

two sources of information to construct the instrument. The first is whether the respondent 

experiences health problems. The second is the answer to the following question: “Does your health 

limit the type of work or the amount of work you can do?” The instrument for the potentially 

endogenous employment status of the respondent is the onset of a health problem between the 

previous and the current interview, which limits the work activities of the respondent. The 

instrument, which is denoted by 𝑊𝐿𝑖,𝑡, is a dummy taking the value one for the respondents who 

experienced the onset of health related work limitations between year 𝑡 − 1 and year 𝑡, and zero 

otherwise. The instrumenting equation determining the endogenous employment status of the 

respondent is given by: 

 𝑝𝐸 ≡ Pr (𝐸𝑖,𝑡 = 1) = 𝐹(𝛼𝐸 + 𝑋𝑖,𝑡′ 𝛽𝐸 + 𝜃𝐸𝑊𝐿𝑖,𝑡 + 𝜂𝐸𝑖). (6) 

The onset of a health related work limitation between year 𝑡 − 1 and 𝑡 is expected to have a 

negative effect on the probability of the respondent to be employed in the current period. The 

identifying assumption that the instrument is exogenous, i.e. 𝑐𝑜𝑣�𝑊𝐿𝑖,𝑡 ,  𝜂𝑇𝐹𝑖� = 0, implies that the 

onset of a health related work limitation for the respondent in the past period has no direct effect on 

the employment transition of the first friend in the current period. The identifying assumption of this 

estimator would be violated in the presence of correlation between the health status of the respondent 

and that of the first friend. In that case, the unobserved health status of the first friend would be 

correlated with the instrument (the onset of health limitations for the respondent). We address this 

issue by including indicators for the current (in year 𝑡) level of respondent’s health among the 

regressors in the transition equation. By controlling for the current health status we are able to 

capture the potential correlation in health between the respondent and the first friend.13 

                                                           
13 Individuals taking time out of job search activities to help their friends hit by health shocks may induce violation of the 
exclusion restriction. While possible in principle, we do not consider such mechanism harmful in practice for our 
estimates: the most relevant source of help for individuals experiencing illness is represented by spouses who are not 
counted as friends in the BHPS as long as they co-reside with the respondent. Excluding relatives (the other likely source 
of helping the ill) from the friends’ count did not alter the substance of our main findings. 
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Finally, due to the limited dependent variable nature of both the dependent variable and the 

instrumented variable, equations (5) and (6) are estimated jointly by maximum likelihood allowing 

for unrestricted correlation between the unobserved characteristics (𝜂𝑇𝐹𝑖 , 𝜂𝐸𝑖) using a discrete 

distribution. The construction of the likelihood is similar to the one for the random effects estimator 

presented above. We also estimate the model assuming linearity, which provides robust results 

(discussed in Section 5.3). 

 

5. Results – Transition into Employment 

In this section, we discuss the results for the effect of network quality on the transition into 

employment for the three empirical approaches: the fixed effects estimator (in Section 5.1), the semi-

parametric random effects estimator (in Section 5.2) and the symmetric IV estimator (in Section 5.3).  

We start by presenting estimates from a simple pooled linear regression of transition equation 

(1) ignoring both unobserved heterogeneity and selection into non-employment. The coefficient of 

the number of employed friends, reported in the first column of Table 2 (Panel A), has a value of 

0.04 and it is statistically significant. This suggests that one additional employed friend increases the 

job finding probability by 4 percentage points (p.p.). We also estimate the transition equation 

allowing for a flexible specification of network quality with dummies for the number of friends 

employed, i.e. having one, two, or three employed friends, relative to having no employed friends. 

The coefficients of the dummy specification, reported in the second column of Panel A, suggest a 

non-linear relationship. Having one employed friend increases the job finding probability by 1.6 p.p., 

but the coefficient estimate is not statistically different from zero, whereas two or three employed 

friends are associated with a 4.9 p.p. and 11.1 p.p. increase in the job finding probability, 

respectively, which are both statistically significant.  

The baseline result is also significant (at the 1 percent significance level) when we estimate 

separately the employment transition for the unemployed and those out of the labor force. The 

coefficient estimate for the sample of unemployed is higher compared to the estimate for the sample 

of those who are out of labor force (0.048 vs. 0.035 – not reported). As we discussed in Section 3, in 

what follows we will focus on the sample of non-employed, which includes both groups.  
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5.1 Fixed Effects Estimates 

5.1.1 Baseline Results 

The pooled linear regression estimates just shown are likely to be upward biased because of potential 

endogeneity of network quality due to non-random assignment of friendship ties. Following the 

discussion of Section 4.1, the first strategy we use to address the potential endogeneity driven by 

unobserved heterogeneity is based on estimating the transition equation (1) with fixed effects. Once 

we control for individual time-invariant unobserved heterogeneity, the coefficient of the number of 

employed friends in the linear fixed effects estimation is reduced to 0.018, but it remains statistically 

significant. This estimate, reported in third column of Table 2 (Panel A), suggests an increase of 1.8 

p.p. in the transition probability for an additional employed friend. Identification in the linear fixed 

effects estimator relies on individuals who are observed with at least two non-employment person-

year observations (1,759 individuals out of 3,492 non-employment observations). As this group is 

likely to be less employable, it is not surprising that the linear fixed effects estimate is much smaller 

than the one obtained from the pooled linear regression in Table 2.14  

We also estimate the linear fixed effects model by allowing for a flexible specification of 

network quality, and we report the coefficient estimates in the fourth column of Panel A. Similarly 

with the pooled linear regression results, we find that having two or three employed friends (relative 

to none) has a positive and significant effect on the probability of becoming employed. The higher 

the number of employed friends the higher is the increase in the transition probability, but the effect 

of an additional friend from the fixed effects estimates does not follow the clear non-monotonic 

pattern we obtained from the pooled linear regression. 

 

5.1.2 Sensitivity Analyses 

The baseline fixed effects estimates suggest that having more employed contacts increases the 

chances of finding a job even after controlling for individual time-invariant unobserved 

heterogeneity. We perform a series of sensitivity checks with the fixed effects estimator, which we 

present in Panel B of Table 2. 
                                                           
14 Indeed, the coefficient estimate from a pooled linear regression on the sample of individuals who contribute to the 
linear fixed effects estimation is 0.024 (not reported in Table 2), which is substantially lower compared to the one from 
the full sample (0.040 from Column 1, Panel A). 
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 First, we allow for a differential effect of network quality among new friends, which allows 

separating the effect of network quality of a fixed network from a potentially endogenously changing 

network quality. We define as “new” those friends with a length of friendship of less than a year. We 

find that the interaction of the number of employed friends with an indicator of having any new 

friends has no effect on the transition probability (Column 1, Panel B).  

Second, we estimate the transition equation with a conditional logit fixed effects estimator. The 

coefficient estimate of the number of employed friends from this conditional logit fixed effects, 

reported in the second column of Panel B, is also positive and statistically significant. The marginal 

effect is equal to 0.035, which falls between the pooled and the linear fixed effects estimates.15 The 

sample contributing to the estimation in the conditional fixed effect logit is a much smaller group of 

individuals (in total 501 non-employed respondents), who are expected to be the least negatively 

selected among those with multiple non-employment observations because they all become 

employed at least once. Therefore, we would expect for that group a higher overall effect. This is 

indeed what we observe when we estimate a pooled linear regression using only the observations 

contributing to the logit fixed effects estimator. We obtain a coefficient estimate of 0.043 against an 

estimate of 0.024 when we use the sample which contributes to the linear fixed effects regression 

(see footnote 14) and an estimate of 0.040 from the full sample.  

Third, we checked the sensitivity of the baseline results to the inclusion of additional controls. 

In particular, we included a full set of interactions of time-varying individual and friend 

characteristics with the gender dummy to capture unobserved heterogeneity in the data that varies 

over time and might be correlated with network quality. We also included a full set of dummies of 

the industry in the last employment. In both cases the main effect is not sensitive to the inclusion of 

these additional controls; results from these sensitivity checks are not reported and are available upon 

request. 

 

5.1.3 Correlated Shocks  

A remaining concern about these baseline results is the presence of correlated shocks. Network 

                                                           
15 The marginal effect for the fixed effect logit is computed as

 
(1 )T p pδ − , where Tδ  is the estimated coefficient on the 

number of employed friends, while p is the average sample predicted probability. 
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formation may occur through residential proximity; therefore, spatial correlation is an obvious source 

of correlated shocks. For example, a plant closure at the local area is a common shock that might 

affect the conditions for all members of the network. We consider the importance of local economic 

conditions for our findings in three ways.  

First, we find that the fixed effects estimates are not sensitive to the exclusion of the travel-to-

work area unemployment rate (results of this sensitivity check are not reported and are available 

upon request). Second, we investigate the extent to which the effect of network quality varies by the 

frequency of contact and residential location of friends. Table A2 in the Appendix shows that only 

the strength of friendship (contact frequency) and not the location of friends (residential proximity) 

matters for the job finding probability. In Panel A of Table A2, we present the coefficient estimates 

of two different regressions; one for contact frequency and the other for residential proximity. The 

estimates for the number of employed friends with strong ties (frequency of contact at least once a 

week) and the number of employed friends who live close (less than 50 miles) are positive and 

statistically significant (coefficients of 0.023 and 0.020, respectively). In Panel B, we present the 

estimates from a single regression in which we consider the effect of network quality jointly by 

contact frequency and residential proximity. These results suggest that the location of friends is not a 

driving factor for our findings; the estimate for the number of employed friends who are strong ties is 

significant for both friends who reside in close distance and further away. In contrast, the effect of 

network quality among friends who do not interact frequently is insignificant for both friends who 

live close and for those who live far from the respondent. That is, stronger ties among close friends 

increase job finding rates irrespective of their location.  

We also find that the effect of strong and far-living ties is related to residential mobility of the 

respondent. In Panel C we report the estimates of a similar regression to the one presented in Panel B 

but with the dependent variable defined as the probability of entering employment combined with a 

residential move over the transition period. We find that individuals with more employed strong and 

far-living ties are significantly more likely to become employed and also move residentially. Far-

living weak ties also increase the probability to move with a new job, but the effect is not statistically 

significant. In contrast, close-living ties (either strong or weak) have no effect on the probability of 

getting a job which is combined with residential mobility. These results provide additional evidence 
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that the positive effect of strong ties on job finding when residing far away from the respondent is 

related to the transmission of job opportunities, since job finding is combined with residential 

mobility. 

Third, we check whether the employment status of friends predicts the probability of job loss. 

We can identify job loss in the BHPS using information on the reason for stopping the previous job, 

and in particular, whether the respondent was ‘made redundant’ or ‘dismissed or sacked’.  We 

consider the sample of individuals who are employed in period 𝑡 and we estimate a linear fixed effect 

model for the probability of losing the job in period 𝑡 + 1. If our model succeeds in eliminating 

correlated shocks, then we should expect no effect of the number of employed friends on such 

‘reverse’ transition. The coefficient estimate, reported in the third column of Table 2 (Panel B), is 

essentially equal to zero. Both the finding of an effect through contact strength (and not through 

residential proximity), and the lack of any effect on the job loss transition, provide evidence which 

suggests that the effect of network quality on job finding rates is not driven by correlated shocks.16 

 

5.2 Semi-Parametric Random Effects Estimates 

We turn to the results from the second estimation strategy for identifying the effect of network 

quality by way of the semi-parametric random effects estimator presented in Section 4.3, which 

allows for unobserved heterogeneity and takes into account selection in the initial state of non-

employment. The effect of the number of employed friends on the transition into employment is 

positive and significant (coef. 0.252, se. 0.063) and the corresponding marginal effect is equal to 3.1 

percentage points. These results are reported in the fifth column of Table 2 (Panel A). The magnitude 

of this effect lies between the one obtained from the simple pooled linear model, which ignores both 

unobserved heterogeneity and the initial condition (4 p.p.), and the fixed effects model, which 

controls for unobserved heterogeneity but ignores selection into non-employment (1.8 p.p.). 

                                                           
16 A related issue is that of continuing spells. The fixed effects model relies on observing individuals in non-employment 
more than once, and some of these observations may belong to the same spell of non-employment. If respondents and 
their friends participate in the same job search process, they will start and end non-employment spells at the same time, 
inducing spurious correlation between network quality and respondents’ job finding. Estimating the model excluding 
data from continuing spells, however, produced a coefficient for network quality of 0.065,  though imprecisely estimated 
due to small cells (t-ratio = 1.03). Estimates from this sample rely only on variation of network quality between 
employment spells, suggesting that our main results are unlikely to be driven by spurious correlation due to continuing 
spells. 
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Considering together these effects, we find robust evidence that network quality has a positive and 

significant effect on job finding rates. Our preferred estimate from the correlated random effects 

model, which controls for selection in non-employment, suggests that an additional employed friend 

increases the job finding probability by as much as 15 percent (marginal effect of 3.1 p.p. and 

unconditional exit rate of 21.16 percent). We also report the estimates from the dummy specification 

in the sixth column of Panel A. As with the pooled OLS and the linear fixed effects estimates, the 

effect is increasing with the number of employed friends and it is significant for those with two or 

three employed friends. We also note that the network quality effect in the correlated random effect 

estimation preserves the non-linearity we observed in the raw data and in the pooled OLS 

regressions. 

To form a comparison with the results from fixed effects, we also estimated the correlated 

random effects model ignoring selection into non-employment.  The fourth column in Panel B (Table 

2) shows that the coefficient estimate for the number of employed friends is positive and statistically 

significant (coef. 0.155, s.e. 0.061). The marginal effect suggests that an additional employed friend 

increases the transition probability into employment by 1.8 percentage points. This effect is similar 

in magnitude to the one obtained with fixed effects, which also does not take into account selection 

into non-employment.  

Finally, as we discussed in Section 4.3, the number of employed friends in the initial condition 

equation is observed in the same time period with employment status, which may lead to 

simultaneity bias. As a sensitivity analysis, we have estimated the model excluding the current 

number of employed friends and its time average from the initial condition equation. The estimated 

coefficient for the effect of the number of employed friends on job finding probability changes from 

0.252 (s.e. 0.063) to 0.235 (s.e. 0.062). We conclude that our main findings from the correlated 

random effects model with initial conditions are robust to this potential concern.  

 

5.3 Symmetric Network Instrumental Variable Estimates 

The third approach for estimating the effect of network quality on the transition into employment is 

based on the symmetric model, where the transition is defined on the sample of respondents whose 

first friend is non-employed in year 𝑡. The network quality effect is captured by the employment 
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status of the respondent, which is potentially endogenous. We address this endogeneity by using the 

onset of health related work limitations as an instrument, which can create exogenous variation of 

network quality (see the discussion in Section 4.4). Relative to the two previous approaches, the IV 

estimator deals with endogeneity due to all types of unobserved heterogeneity, not only time-

invariant ones, and with potentially endogenous network formation driven by past outcomes. 

Table 3 displays the results from estimating the symmetric transition equation (5) for the 

sample of non-employed first friends. We start by discussing the results without instrumenting for 

the endogenous employment status of the respondent. The estimation in the first column of Table 3 

(Panel A) is based on a linear regression and shows a positive and statistically significant effect of 

the respondent’s employment status on the employment transition of the first friend. The estimated 

coefficient suggests a 9.2 p.p. increase in the transition probability of having an employed contact 

(referring to the respondent, which is denoted as “Respondent Employed” in the table) compared to 

having a non-employed contact.17 In the second column of Panel A, we report the results of 

estimating the symmetric transition equation with fixed effects, similar to the analysis for the direct 

model of equation (1) discussed in Section 4.1. The effect of the respondent’s employment status is 

reduced from 0.092 to 0.065, but it is still statistically significant at the 5 percent confidence level. 

We now turn to the IV results of Table 3 in Panel B where we present two different estimations 

based on different specifications. We start by discussing the baseline estimates reported in the first 

column. The coefficient estimate of the instrumental variable indicates that the instrument operates in 

the expected direction. The onset of health related work limitations between year 𝑡 − 1 and year 𝑡 

reduces the employment probability of the respondent in year 𝑡, with the coefficient estimate being 

statistically significant at the 1 percent confidence level (t-ratio: 3.72). Considering the estimate of 

the main effect of interest in the transition equation, we find a positive and statistically significant 

network effect (coef. 0.393, s.e. 0.094). In terms of marginal effect, an employed respondent 

increases by 7.5 p.p. the transition probability from non-employment to employment of the first 

                                                           
17 A direct comparison with the marginal effects from the fixed effects and the semi-parametric random effects estimates 
cannot be made because the transition in the symmetric model is defined over the (𝑡, 𝑡 + 2) interval, rather than (𝑡, 𝑡 +
1) as in the fixed or random effects, and the variable of interest is a dummy for the employment status of the respondent 
rather than the respondents’ number of employed friends. 
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friend. This marginal effect lies between the marginal effects from the linear fixed effects (6.5 p.p.) 

and the linear pooled estimation (9.2 p.p.), which are reported in Panel A.18 

In the second column of Panel B, we report the results from another specification in which we 

include the current health and depression indicators of the respondent. If the onset of a health 

limitation by the respondent is due to a common shock that is also affecting the health status of the 

friend, this would violate the identification assumption of the IV estimator. By controlling for the 

current (in year 𝑡) health indicators of the respondent (on top of the onset of a health limitation 

between 𝑡 − 1 and 𝑡), we attempt to control for this potential correlation and check the robustness of 

our IV results. Since the current health and depression indicators are correlated with the onset of 

health limitations in the last year, we expect that including them in the specification will lead to a 

weaker instrument. This is what we observe from the coefficient and the marginal effect of the 

instrument, reported in the second column of Panel B, which is smaller in absolute terms and the 

level of significance is reduced. What is important, however, is that the main effect of interest 

remains practically unchanged as the effect of the respondent being employed changes only slightly 

from a marginal effect of 0.075 to 0.073.19  

As we discussed in Section 4.4, the estimation of the symmetric model relies on assuming the 

identity of the first friend remains constant between subsequent even waves. We investigate the 

sensitivity of our results to this assumption by restricting the sample to non-employed first friends 

who remain fixed between years 𝑡 and 𝑡 + 2.  We perform this sensitivity check for two subsamples. 

The first is the sample restricted to respondents who do not have a new first friend in the next wave 

in which they report information about their close friends. A friend is defined as “new” if the length 

of friendship is less than 2 years (the distance between the two waves with information on friends). 

The second is the sample restricted to respondents who report a first friend in the next wave of the 

same gender as in the current wave, and of age which is logically consistent two years later.  We 

report the results from these two sensitivity checks in Table A3, which confirm that the main 

                                                           
18 The coefficient estimate from a linear IV estimation is equal to 0.082 (or a 8.2 p.p. increase in the transition 
probability), which is significant at the 1 percent confidence level (s.e 0.007).  
19 We also performed the estimation excluding each indicator – health or depression – in turn, reaching identical 
conclusions to those reported in the text. In addition, we have considered accidents as a potentially alternative way to 
model the onset of health related work limitation. However, the frequency of accidents in our sample is small so we 
could not pursue this further. 
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findings are not sensitive to the constant identity assumption of the first friend. Both in the sample 

without a new first friend (Panel A), and in the sample of friends with the same demographic 

characteristics (Panel B), we find a positive and statistically significant network effect. When the 

respondent is employed, the transition from non-employment to employment of the first friend 

increases. Similar findings are obtained when we consider only long friendships, which are not 

reported but are available from the authors. Overall, the IV estimates provide robust evidence of the 

existence of a network effect, which is consistent with the evidence obtained both from the fixed 

effects and the semi-parametric correlated random effects estimators. 

 

6. Match Quality 

In this section, we extend the analysis to the effect of network quality on the quality of the matches 

formed by those who found a job, measuring match quality using labor market outcomes such as 

wages and employment stability. As discussed in Section 2, better connected workers will increase 

their reservation wage and earn higher wages because of increased bargaining power. If informal 

networks lead to better matches who pay higher wages, this should result in lower separation rates 

(Dustmann et al., 2011), and thus to higher employment stability. However, mismatch may arise 

when there is a low degree of homophily among social ties, and employed contacts transmit 

opportunities about jobs which require different skills from the ones the unemployed possess. This 

mismatch may lead to lower wages and lower employment stability. The empirical literature so far 

has produced mixed results. Some studies find positive network effects on wages (e.g. Simon and 

Warner, 1992; Marmaros and Sacerdote, 2002; Loury, 2006), while others find negative effects (e.g. 

Pistaferri, 1999; Bentolila et al., 2010).  

The analysis for the effects of network quality on wages and employment stability is conducted 

by extending the correlated random effect estimator of Section 4.3 to outcomes occurring after the 

transition into employment. Small cell size and unavailability of wages for the first friend prevent us 

to use fixed effects and IV estimators, respectively, in this context. 

 

6.1 Wages 

Given the longitudinal nature of the data, we can follow individuals over time and investigate the 
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effect of network quality on wages for those who find a job. The (log) wage equation is given by: 

 𝑙𝑜𝑔 (𝑊𝑖,𝑡+1) = 𝛼𝑊 + 𝑋𝑖,𝑡+1′ 𝛽𝑊 + 𝛿𝑊𝑁𝐸𝐹𝑖,𝑡 + 𝜂𝑊𝑖 + 𝜀𝑖,𝑡+1, 𝑖𝑓 𝐸𝑖,𝑡+1 = 1 𝑎𝑛𝑑 𝐸𝑖,𝑡 = 0 (7) 

where the dependent variable 𝑊𝑖,𝑡+1 denotes the hourly wage and the independent variables are 

measured in year 𝑡 + 1. The specification includes 𝜂𝑊𝑖, which captures the effect of unobserved 

heterogeneity on wages, and a white noise error. Network quality is measured by the number of 

employed friends (NEF) in year 𝑡; the year before the transition in which the worker was non-

employed. 

The coefficient estimate of network quality in equation (7) from a simple linear regression, 

reported in the first column of Table 4 (Panel A), is equal to 0.034 and it is statistically significant. 

While this result suggests a positive network quality effect on wages one has to view it with caution; 

those who find a job are likely to be selected among the non-employed because they may possess 

unobserved traits which render them more likely to become employed and also receive higher wages. 

To address this selection due to unobservables, we estimate the wage equation (7) jointly with the 

non-employment transition (1) and the initial condition equation (2) (defined in Sections 4.1 and 4.3, 

respectively), taking into account the correlation of unobserved heterogeneity across the three 

outcomes. By jointly estimating the probability of entering employment and the realized outcome 

(wages), we are able to separate the effect of interest from selection based both on observable and 

unobservable characteristics. The coefficient estimate of the number of employed friends from the 

correlated random effects model, presented in first column of Panel B (Table 4), is equal to 0.017 

and it is not statistically significant. This suggests that the linear regression estimate (0.034) is 

upward biased because of correlation of unobserved heterogeneity among network members. 

 

6.2 Wages - Heterogeneity by Skill Level and Type of Relationship 

We have argued that the matching effect of network quality varies by homophily of social contacts; 

to investigate whether this is the case, we extend further the analysis allowing for heterogeneity by 

skill level of the respondents, and by the type of relationship between the respondents and their 

social contacts. We distinguish between high- and low-skilled respondents, and between contacts 
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who are friends or relatives.20 While we do not observe the skill level of the reported friends, we 

expect a higher degree of homophily between skilled respondents and their networks of friends — 

rather than their networks of relatives — because skilled respondents are more likely to befriend with 

similar individuals.  

That high-skilled friends, rather than relatives, are more similar to each other is confirmed in 

the BHPS data by considering two dimensions of homophily; occupation and age. Focusing on the 

sample of employed respondents and employed first friends, for whom we observe current 

occupation, we find that friends and high-skilled respondents are significantly more likely to be in 

the same occupation compared to relatives and low-skilled respondents. We obtain these results by 

regressing an indicator of being in the same occupation on a high-skilled dummy, and on a dummy 

for the first reported friend being a friend rather than a relative. We also obtain positive and 

statistically significant estimates for the friend and the skilled dummies when we consider as the 

dependent variable whether the respondents and their first friends are of the same age. That is, in 

both dimensions we find higher homophily between high-skilled respondents and friends rather than 

between low-skilled respondents and relatives.21  

Due to homophily between skilled friends, we expect the quality of friends’ networks of high-

skilled respondents to increase the matching quality of jobs, leading to higher wages. In contrast, due 

to low degree of homophily, and in particular occupational mismatch between low-skilled and 

relatives, we expect the quality of relatives’ networks of low-skilled respondents to reduce the 

matching quality of jobs, leading to lower wages (e.g. Bentolila et al., 2010).  

Both the results from a simple linear regression of equation (7), reported in Panel A of Table 4, 

and from the correlated random effects model that accounts for the transition into employment, 

reported in Panel B of Table 4, show that better network quality leads to higher wages for high-

skilled workers, and in particular for high-skilled workers with a higher number of employed friends 

who are non-relatives. The simple linear regression coefficient estimate of the number of employed 

                                                           
20 High skilled are defined as those respondents with A-levels and higher education. Each respondent is also asked if a 
reported friend is a relative or not. Reporting a relative or a non-relative among the three close friends is not related to the 
quality of the network. Indeed, for the sample of non- employed respondents there is no difference in the mean number of 
employed friends between those who ever report a relative as a friend and those who never report a relative among their 
friends. 
21 The sample for the age regression is based on all respondents, both employed and non-employed. Both regressions 
include a female dummy and year fixed effects. These results are available upon request. 
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friends for high-skilled workers is equal to 0.047 (Column 2, Panel A), while the random effects 

estimate is equal to 0.044 (Column 2, Panel B), where both are positive and significant. 

Distinguishing between network quality among relatives and non-relatives, the linear regression 

coefficient of the number of employed non-relatives for high-skilled workers is equal to 0.064 

(Column 4, Panel A) and the random effects estimate is equal to 0.061 (Column 4, Panel B), where 

both are again positive and significant. The coefficient estimate of 0.061 implies that an additional 

non-relative employed friend for high skilled individuals leads to a 6.1 percent increase in hourly 

wages. 

While for high-skilled respondents the estimate of network quality changes only slightly 

between the simple linear regression and the random effects model (from 0.064 to 0.061), for low-

skilled respondents we observe a stronger upward bias in the linear regression results. In particular, 

the coefficient estimate in the linear regression which is equal to 0.021 (Column 2, Panel A) reduces 

to -0.012 in the random effects model (Column 2, Panel B). We also observe a similar reduction 

between the linear regression and the random effects estimates for the specification in which we 

distinguish between relative and non-relative contacts (Column 4). The fact that the variation is more 

pronounced for the low-skilled is likely to be driven by a stronger correlation of unobserved 

heterogeneity among low-skilled network members. Overall, for low-skilled individuals we find that 

a higher number of employed friends, and in particular relatives, leads to a wage penalty (coefficient 

of -0.043 in the fourth column of Panel B) although the effect is not statistically significant.22 

These findings are consistent with previous evidence on positive wage effects for high-skilled 

workers, who find a job through friends, and negative wage effects for low-skilled workers who find 

a job through relatives. For example, Simon and Warner (1992) find that hiring through contacts for 

a sample of high-qualified workers leads to a higher initial wage, while Kramarz and Nordström 

Skans (2014) find that school graduates of lower ability are more likely to work in the firm in which 

their father is employed, but with a wage penalty. Overall, these results help reconcile the mixed 

evidence of the previous literature on searching through social contacts and wages, indicating 

                                                           
22 Table A5 reports the estimates of the distribution of unobserved heterogeneity. Compared to the baseline, there is a 
group of individuals who are more likely to be observed as non-employed, are less likely to exit non-employment 
conditional on being non-employed, and receive lower wages once they exit employment. There is also another group, 
which is less likely to enter non-employment and is more likely to find a job with higher wages. 
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heterogeneity by skill level and relationship type, and underline the importance of controlling for 

selection into employment. 

It is important to note that while there is heterogeneity in the wage effects of network quality 

by skill level and by type of relationship, the effect of network quality on the probability of finding a 

job is positive and significant for both skill levels and irrespective of whether the friend is a relative 

or not. Table A4 presents the estimates for the transition from non-employment to employment, 

which indicate that better network quality among non-relatives for the high-skilled has the highest 

effect on job finding (4.4 p.p.), followed by the one among relatives for the low-skilled (3.5 p.p.).  

 

6.3 Employment Stability 

Finally, we examine the network effect, and its heterogeneity by skill level, on the probability of 

falling back into non-employment for those who were non-employed in period 𝑡 and found a job in 

period 𝑡 + 1. If networks transmit information leading to better matches, then those who find a job 

through informal contacts should also exhibit lower job separation rates and consequently better 

employment stability.23 We estimate the following equation:  

𝑝𝑁𝐸 ≡ Pr (𝐸𝑖,𝑡+2 = 0�𝐸𝑖,𝑡 = 0,𝐸𝑖,𝑡+1 = 1 � = 

𝐹(𝛼𝑁𝐸 + 𝑋𝑖,𝑡+1′ 𝛽𝑁𝐸 + 𝛿𝑁𝐸𝑁𝐸𝐹𝑖,𝑡 + 𝜂𝑁𝐸𝑖), 
(8) 

which is the probability of being non-employed in 𝑡 + 2 for the sample of individuals who found a 

job between 𝑡 and 𝑡 + 1. The specification is similar to the one used for the wage estimation in 

equation (7). 

Panel A in Table 5 shows the estimates of equation (8) using a linear probability model. When 

we ignore selection and correlation of network quality with unobserved heterogeneity, we find a 

negative effect of better network quality on the probability to exit employment, which is significant 

both on average and by skill level, and independent of whether we consider network quality among 

relatives and non-relatives. These negative coefficients suggest higher employment stability for 

better connected workers.  

                                                           
23 We focus on employment stability and not on job stability because the information needed to isolate job separations is 
in general available for a subset of observations, and this results in small cells once we focus on those who find a job in 
𝑡 + 1 as we do in this section.  
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Panel B reports the correlated random effects estimates, which are obtained by extending the 

model of Section 4.3 including the transition equation (8). Because we estimate equation (8) using 

the logistic distribution, we report both the coefficients and the marginal effects. After accounting for 

correlated unobservables, all the coefficient estimates of the number of employed friends are 

substantially lower and statistically insignificant. From the estimates by skill level (Columns 2 and 4 

in Panel B of Table 5) there seems to exist some heterogeneity, similar to the one observed in the 

estimates for wages, but the coefficients are imprecisely estimated. In particular, the marginal effect 

associated with the coefficient estimate of network quality for high-skilled is twice the average 

marginal effect (-0.012 in Column 2 vs. -0.006 in Column 1) and is driven mostly by non-relatives 

(Column 4). Relative to an unconditional probability to exit employment of 17.4 percent, an 

additional employed friend for high-skilled respondents (marginal effect equal to -0.01) is associated 

with 5.7 percent reduction in the probability of exiting employment, but this effect is not statistically 

significant. In contrast, for the low-skilled with a higher number of employed relatives we obtain a 

positive coefficient (marginal effect of 0.004), which is associated with lower employment stability, 

but again this effect is not statistically significant. These effects, although very imprecisely estimated 

and less sizeable, are qualitatively similar to those reported for wages and provide some additional 

suggestive evidence for network heterogeneity by skill level and type of relationship also in match 

quality measured by employment stability. 

 

7. Conclusion 

The labor market effects of social networks have received considerable attention in recent decades. 

The literature has identified various mechanisms through which social contacts might influence 

individual labor market outcomes. The most common view posits that networks transmit information 

about job opportunities improving the matching process. By facilitating job search, workers in 

networks with a higher employment rate among their members are more likely to form a job match. 

In addition, because of improved bargaining power, they may also obtain a better match through 

higher starting wages. However, the matching quality effect of networks is more controversial 

because of potential mismatch between the information transmitted through the network and the 

skills possessed by the workers. Networks with more similarity among members (homophily) are 
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more likely to improve match quality compared to networks with higher heterogeneity among 

network members. The empirical literature has produced mixed evidence, with studies finding both 

positive and negative effects on wages. 

In this paper we contribute empirically to the literature by estimating the effect of a direct 

measure of network quality, based on the number of employed friends, on job finding and match 

quality using longitudinal data from the BHPS. Using three identification strategies, we provide 

robust evidence that better network quality has a positive and significant effect on the job finding 

rate. In particular, one additional employed friend increases the job finding probability by 3.1 

percentage points, which corresponds to an increase in the job finding rate by as much as 15 percent. 

We also find that network quality increases job match quality for high-skilled workers whose 

networks are characterized by higher degree of homophily; these are networks formed among non-

familial contacts. Instead, networks formed among familial contacts appear to lead to lower quality 

jobs for low-skilled workers. In particular, an additional employed (non-relative) friend among high-

skilled workers leads to a wage premium (a statistically significant 6.1 percent wage increase for 

each employed friend), while an additional employed relative among low-skilled leads to a wage 

penalty (a 4.3 percent wage loss for each employed relative, which is not statistically significant). 

Results on employment stability indicate qualitatively similar heterogeneity by skill level with a 

positive effect for the high-skilled and a negative effect for the low-skilled. However, the effects on 

employment stability are imprecisely estimated. 

These findings on match quality reconcile previous mixed empirical evidence on the use of 

contacts as a search channel. Although our data do not provide information on direct referrals, these 

results are also related to that literature because referrals from familial vs. non-familial contacts may 

affect individuals differently in terms of labor market outcomes (e.g. Brown et al., 2012; Kramarz 

and Nordström Skans, 2014). Familial contacts may offer opportunities in jobs which require 

different skills from the ones job searchers possess, lowering match quality.  
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Table 1. Number of Employed Friends (Average) by Friendship Type and Type of Transition 
                    
      Panel A. Full Sample 
      All   With New   Without New   Diff (3)-(2) 
          Friends   Friends     

      (1)   (2)   (3)   (4) 
Number of Employed Friends 
(Average)   2.383   2.394   2.380   -0.015 

          (0.010)   (0.005)   (0.011) 
                    
Number of Observations   35,518   6,906   28,612     
                    
      Panel B. Sample of Non-Employed 
      All   With New   Without New   Diff (3)-(2) 
          Friends   Friends     

      (1)   (2)   (3)   (4) 
Number of Employed Friends 
(Average)   1.826   1.795   1.833   0.038 

      
 

  (0.026)   (0.013)   (0.028) 
      

 
            

Number of Observations   7,213   1,387   5,826     
Note: Shown is the mean number of employed friends for all respondents (column1) and by whether they are reporting a 
new friend (columns 2 and 3). A friend is defined as “new” if the length of friendship is less than 1 year. Column 4 
reports the difference in the average number of employed friends between those without and those with at least one new 
friend. Panel A refers to the full sample, while Panel B to the sample of the non-employed. Standard errors are reported in 
parentheses. 
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Coef. s.e. Coef. s.e. Coef. s.e. Coef. s.e. Coef. s.e. Coef. s.e.
Number of Employed Friends 0.040 0.005 *** 0.018 0.008 *** 0.252 0.063 ***
Marginal Effect

One Friend Employed 0.016 0.013 0.023 0.016 0.183 0.220
Marginal Effect
Two Friends Employed 0.049 0.013 *** 0.034 0.019 * 0.401 0.218 *
Marginal Effect
Three Friends Employed 0.111 0.016 *** 0.057 0.024 ** 0.704 0.232 ***
Marginal Effect

Number of Observations

s.e.
Number of Employed Friends ** 0.083 ** **
Marginal Effect [0.035]

Number of Employed Friends
* Having Any New Friend

Number of Observations

[0.049]

[0.087]

7,213 7,213 7,213 7,213 35,518 35,518

Table 2. Transition into Employment by Number of Employed Friends

Panel A - Baseline Results
Linear Pooled Linear Fixed Effects Logit Correlated
Regressions Regressions Random Effects

[0.031]

[0.022]

(6)(1) (2) (3) (4) (5)

Dummy

Coef. s.e.

Panel B - Sensitivity Analyses

New Friend Fixed Effects
Logit

s.e.Coef.

Linear Fixed EffectsLinear Fixed Effects Conditional Logit Correlated

(1) (2) (3)

-0.001 0.026

7,213

0.1640.018 0.008

1,604

0.155 0.061
[0.018]

35,518

Reverse Job Loss
Transition

-0.0006 0.0012

28,305

Random Effects
Without Selection

Coef. s.e.Coef.
(4)
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Note: In all regressions the sample is based on person-year observations of individuals aged 18-65 in the even years of the period 1992-2006, when information on their three 
closest friends is available. The sample is also restricted to friends aged 18-65. The sample in columns 1-4 of Panel A and columns 1 and 2 of Panel B is further restricted to 
non-employed person-year observations. The sample in columns 5 and 6 of Panel A and column 4 of Panel B includes the full sample of observations. Finally, the sample in 
column 3 of Panel B is restricted to employed person-year observations. Other regressors include individual time-varying covariates (five age group dummies, elapsed 
duration, dummies for living as a couple, number of children (1, 2 or more), having health problems, experiencing depression, smoking, time and region dummies), individual 
time-invariant covariates (female dummy, dummies for the level of education, ethnicity dummies) and local economic conditions (local unemployment rate at travel-to-work 
area). Regressors for friends’ characteristics include a female dummy and five age groups dummies for each friend. Standard errors are clustered at the individual level. 
***/**/* denote significance at the 1%/5%/10% level, respectively. 
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Table 3. Symmetric Transition into Employment for the First Friend 
                

  Panel A – Pooled Linear and Fixed Effects Estimates 
  Pooled Linear   Linear Fixed Effects 
  (1)   (2) 
  Coef. s.e.     Coef. s.e.   
Respondent Employed 0.092 0.014 ***   0.065 0.026 ** 
                
Number of Observations 7,219     7,219   
                
  Panel B - Instrumental Variables Estimates 
  FIML IV    FIML IV 
  W/out Current Health   With Current Health  
  and Depression   and Depression 
  (1) 

 
(2) 

  Coef. s.e.     Coef. s.e.   
Instrument: Onset of Health -0.693 0.186 ***   -0.450 0.188 ** 
Related Work Limitation               
Marginal Effect [-0.081]     [-0.052]   
                
Respondent Employed 0.393 0.094 ***   0.381 0.094 *** 
Marginal Effect [0.075]     [0.073]   
                
Number of Observations 7,219     7,219   
Note: The sample is defined over the non-employment spells of the respondents' first friend. The dependent 
variable is a dummy for the transition into employment of the first friend. The variable of interest is 
"Respondent Employed", which captures whether the respondent is employed or not. Other controls include all 
the available friend characteristics (age, gender), and the respondents’ characteristics which are used as proxies 
for friends’ characteristics that are not available in the BHPS, namely education, family structure, having 
currently health problems, experiencing depression, smoking, and region of residence. The instrumental 
variable is a dummy which takes the value one if a respondent experienced a negative health shock that induced 
the onset of work limitation between t-1 and t, and zero otherwise. Since both the dependent and the 
endogenous variables are binary, the two equations are estimated jointly with Maximum Likelihood using a 
logistic distribution allowing for correlated unobserved heterogeneity across the two equations. Average 
marginal effects are reported in squared brackets below the estimates. ***/**/* denote significance at the 
1%/5%/10% level, respectively. 
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Table 4. Number of Employed Friends and Hourly Wages by Skill Level and Friends' 
Relation 

                      
Panel A. Pooled Linear Regressions 

  (1)   (2) 
  Baseline   High Skilled   Low Skilled 
  Coef. s.e.     Coef. s.e.     Coef. s.e. 
Number of Employed Friends 0.034 0.015 **   0.047 0.022 **   0.021 0.019 
Number of Observations 1,150   1,150 
                      
  (3)   (4) 
  Baseline   High Skilled   Low Skilled 
  Coef. s.e.     Coef. s.e.     Coef. s.e. 
Number of Employed Relatives -0.007 0.023     -0.009 0.034     -0.005 0.028 
Number of Employed Non-
Relatives 0.046 0.016 ***   0.064 0.024 ***   0.029 0.021 
Number of Observations 1,130   1,130 
                      

Panel B. FIML 
Joint Estimation of the Transition into Employment and Wages 

Correlated Random Effects with Initial Conditions 
  (1)   (2) 
  Baseline   High Skilled   Low Skilled 
  Coef. s.e.     Coef. s.e.     Coef. s.e. 
Number of Employed Friends 0.017 0.021     0.044 0.025 *   -0.012 0.026 
Number of Observations 35,518   35,518 
                      
  (3)   (4) 
  Baseline   High Skilled   Low Skilled 
  Coef. s.e.     Coef. s.e.     Coef. s.e. 
Number of Employed Relatives -0.026 0.032     -0.014 0.040     -0.043 0.039 
Number of Employed Non-
Relatives 0.031 0.021     0.061 0.026 **   -0.001 0.026 
Number of Observations 34,568   34,568 

Note: Panel A reports results from linear wage regressions restricted on the sample of those who make a transition into 
employment. Panel B reports results from the wage equation when estimated on the full sample jointly with the transition 
into employment, and taking into account initial conditions and correlated random effects. Estimations 1 in both panels 
show the effect of the number of employed friends on wages (Baseline). Estimations 2 in both panels show the effect of 
the number of employed friends when fully interacted with dummies for the skill level of the respondent (High Skilled 
vs. Low Skilled). Estimations 3 in both panels distinguish between the effect of the number of employed friends who are 
relatives vs. the number of employed friends who are non-relatives on wages. Finally, estimations 4 in both panels show 
the effect by relative status when they are also fully interacted with the skill dummies (combining 2 and 3). All 
estimations include as additional regressors those reported in the note of Table 2. ***/**/* denote significance at the 
1%/5%/10% level, respectively. 
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Table 5. Number of Employed Friends and Employment Stability by Skill Level and Friends' 
Relation 

                        
Panel A. Pooled Linear Regressions 

  (1)   (2)   
  Baseline   High Skilled   Low Skilled   
  Coef. s.e.     Coef. s.e.     Coef. s.e.   
Number of Employed Friends -0.041 0.014 ***   -0.032 0.017 *   -0.051 0.020 ** 
Number of Observations 1,150     1,150   
                        
  (3)   (4)   
  Baseline   High Skilled   Low Skilled   
  Coef. s.e.     Coef. s.e.     Coef. s.e.   
Number of Employed Relatives -0.043 0.020 **   -0.026 0.025     -0.058 0.029 * 
Number of Employed Non-
Relatives -0.042 0.015 ***   -0.033 0.018 *   -0.049 0.021 ** 
Number of Observations 1,130     1,130   
                        

Panel B. Logit FIML 
Joint Estimation of the Transition into Employment and Employment Stability 

Correlated Random Effects with Initial Conditions 
                        
  (1)   (2)   
  Baseline   High Skilled   Low Skilled   
  Coef. s.e.     Coef. s.e.     Coef. s.e.   
Number of Employed Friends -0.112 0.189     -0.205 0.236     -0.032 0.227   
Marginal Effect [-0.006]     [-0.012]     [-0.002]   
Number of Observations 35,518     35,518   
                        
  (3)   (4)   
  Baseline   High Skilled   Low Skilled   
  Coef. s.e.     Coef. s.e.     Coef. s.e.   
Number of Employed Relatives 0.027 0.283     -0.006 0.357     0.059 0.335   
Marginal Effect [0.002]     [-0.0003]     [ 0.004]   
                        
Number of Employed Non-
Relatives -0.100 0.187     -0.171 0.232     -0.033 0.228   
Marginal Effect [-0.006]     [-0.010]     [-0.002]   
Number of Observations 34,568     34,568   
Note: Panel A reports linear regression results from the sample of those who have entered employment. The dependent 
variable is binary taking the value one if the individual returns back to non-employment within the next year and zero 
otherwise. Panel B reports the estimation results of the transition back to non-employment when it is estimated on the full 
sample jointly with the transition into employment, and taking into account initial conditions and correlated random effects. 
For this joint estimation the transitions are defined using the logistic distribution, and average marginal effects are reported in 
squared brackets below the estimates. For the description of the specification in each estimation see the note of Table 4. All 
estimations include as additional regressors those reported in the note of Table 2. ***/**/* denote significance at the 
1%/5%/10% level, respectively. 
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Table A1. Sample Statistics 
  

 
Full Sample 

Employment Mean 
St. 

Dev. 

 
Employed Currently 0.797 0.402 

 
First Friend Employed Currently 0.789 0.408 

 
Second Friend Employed Currently 0.795 0.403 

 
Third Friend Employed Currently 0.799 0.401 

 
Number of Employed Friends 2.38 0.81 

Demographics     

 
Age 39.11 11.98 

  Age of First Friend 39.40 12.06 
  Age of Second Friend 38.73 11.81 
  Age of Third Friend 38.49 11.87 

 
Dummy for Female 0.532 0.499 

  Dummy for First Friend Female 0.547 0.498 
  Dummy for Second Friend Female 0.575 0.494 
  Dummy for Third Friend Female 0.569 0.495 
Education (Ref: No Educ. Qualifications)     
  Other Qualifications 0.083 0.275 
  O-Level 0.199 0.399 
  A-Level 0.126 0.332 
  Other Higher Education 0.293 0.455 
  Degree: First and Higher Education 0.154 0.361 
Family Structure     
  Dummy for Couples 0.746 0.436 

 
Number of Children (Ref: No Children)     

  One Child  0.168 0.374 
  Two Children 0.164 0.370 
  Three or More Children 0.061 0.240 
Health Related Variables     
  Dummy for Having Health Problems 0.515 0.500 
  Dummy for Experiencing Depresion 0.063 0.243 
  Dummy for Being a Smoker 0.277 0.448 
Ethnicity (Ref: Other)     
  White 0.946 0.226 
  Black African 0.004 0.065 
  Black Carribean 0.003 0.051 
  Indian 0.011 0.106 
  Pakistan 0.003 0.055 
Travel-to-Work Unemployment Rate 4.412 3.463 
Person-Year Observations 35,518 
Number of Persons 9,395 

Note: The sample consists of individuals aged 18-65 in the even years of the 
period 1992-2006 when information on their three reported close friends is 
available. The sample is also restricted to friends aged 18-65. 
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Note: Panel A shows the linear fixed effects estimates from two separate regressions of the transition into employment. 
Estimation 1 distinguishes between the number of employed friends with strong and weak ties.  “Strong ties” are defined 
as those in which the frequency of contact either by visiting, writing, or by telephone is at least once a week. “Weak ties” 
are defined as those in which the frequency of contact is less often than once a week. Estimation 2 distinguishes between 
the number of employed friends who are living close, or living far. Friends “living close” are defined as those who live 
up to 50 miles away from the respondent, while friends “living far” are those who live more than 50 miles away from the 
respondent. Estimation 3 in Panel B distinguishes the number of employed friends by both contact frequency and 
residential proximity. Estimation 4 in Panel C is similar to Panel B except that the dependent variable captures transitions 
into employment combined with residential mobility of the respondent. Residential mobility is based on the question of 
whether the respondent has moved over the year. For the definition of the sample and the other regressors included in the 
regressions see the note in Table 2. ***/**/* denote significance at the 1%/5%/10% level, respectively. 

 

Coef. s.e. Coef. s.e. Coef. s.e. Coef. s.e.
Number of Employed Friends 0.023 0.008*** 0.005 0.012 0.020 0.008 ** 0.001 0.022

Number of Observations

Coef. s.e. Coef. s.e. Coef. s.e. Coef. s.e.
Number of Employed Friends 0.020 0.008 ** 0.006 0.010 0.040 0.021 * 0.015 0.018

Number of Observations

Coef. s.e. Coef. s.e. Coef. s.e. Coef. s.e.
Number of Employed Friends -0.001 0.003 -0.005 0.004 0.017 0.008 ** 0.012 0.008

Number of Observations 7,213

Panel A - Transition into Employment

Panel B - Transition into Employment by

Panel C - Transition into Employment with Residential Mobility by
Contact Frequency and Residential Proximity

Strong Ties Weak Ties Strong Ties Weak Ties
and Living Close and Living Close and Living Far and Living Far

and Living Close and Living Close and Living Far and Living Far

7,213

7,213 7,213

Contact Frequency and Residential Proximity
Strong Ties Weak Ties Strong Ties Weak Ties

Table A2. Transition into Employment and Residential Mobility
by  Number of Employed Friends, Contact Frequency and Residential Proximity

Contact Frequency Residential Proximity

Strong Ties Weak Ties Living Close Living Far
(1) (2)
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Table A3. Symmetric Transition into Employment 
 for the First Closest Friend - Sample with No New Friends 
                

  Panel A - Sample without a New First Friend 
  (1)   (2) 
  Pooled OLS   Fixed Effects 
  Coef. s.e.     Coef. s.e.   
Respondent Employed 0.093 0.014 ***   0.069 0.027 *** 
Number of Observations 6,940     6,940   
    
  (3) 

 
(4) 

  FIML IV    FIML IV 
  W/out Current Health   With Current Health  
  and Depression   and Depression 
  Coef. s.e.     Coef. s.e.   
Instrument: Onset of Health -0.672 0.194 ***   -0.440 0.195 ** 
Related Work Limitation               
Marginal Effect [-0.076]     [-0.050]   
                
Respondent Employed 0.409 0.102 ***   0.405 0.101 *** 
Marginal Effect [0.078]     [0.078]   
Number of Observations 6,940     6,940   
                
  Panel B - Sample without Any New Friend 
  (1)   (2) 
  Pooled OLS   Fixed Effects 
  Coef. s.e.     Coef. s.e.   
Respondent Employed 0.098 0.020 ***   0.080 0.044 * 
Number of Observations 3,605     3,605   
    
  (3) 

 
(4) 

  FIML IV    FIML IV 
  W/out Current Health   With Current Health  
  and Depression   and Depression 
  Coef. s.e.     Coef. s.e.   
Instrument: Onset of Health -0.921 0.273 ***   -0.602 0.275 ** 
Related Work Limitation               
Marginal Effect [-0.098]     [-0.062]   
                
Respondent Employed 0.505 0.128 ***   0.471 0.114 *** 
Marginal Effect  [0.098]     [0.091]   
Number of Observations 3,605     3,605   

Note: The estimations reported in this table are similar to the ones of Table 4. Panel A is restricted to those individuals 
who do not report a new first friend in the next wave. A friend is defined as “new” if the length of friendship is less than 
2 years. Panel B is restricted to individuals who report a first friend in the next even wave of the same gender to the 
current wave and of age equal to the current age plus two (age next wage = age current + 2). Average marginal effects are 
reported in square brackets. ***/**/* denote significance at the 1%/5%/10% level, respectively. 
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Table A4. Number of Employed Friends and Transition into Employment 
by Skill Level and Friends' Relation 

  (1)   (2) 
  All   High Skilled     Low Skilled   
  Coef. s.e.     Coef. s.e.     Coef. s.e.   
Number of Employed Friends 0.268 0.061 ***   0.301 0.077 ***   0.237 0.075 *** 
Marginal Effect [ 0.033]     [0.038]     [0.030]   
                        
Number of Observations 35,518   35,518   
  (3)   (4) 
  All   High Skilled     Low Skilled   
  Coef. s.e.     Coef. s.e.     Coef. s.e. 

 Number of Employed Relatives 0.250 0.092 ***   0.231 0.115 **   0.261 0.111 ** 
Marginal Effect [0.031]     [0.029]     [0.033]   
Number of Employed Non-Relatives 0.274 0.063 ***   0.324 0.080 ***   0.227 0.078 *** 
Marginal Effect [0.034]     [0.041]     [0.028]   
                        
Number of Observations 34,568     34,568   

Note: The sample consists of individuals aged 18-65 in the even years of the period 1992-2006 when information on their three 
reported close friends is available. The sample is also restricted to friends aged 18-65. Other regressors are similar to those reported 
in Table 2. High skilled are defined as those with A-levels or higher education. Average marginal effects are reported in square 
brackets.  ***/**/* denote significance at the 1%/5%/10% level, respectively. 
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Table A5. Distribution of Unobserved Heterogeneity 
                          
  Mass Point 1    s.e.   Mass Point 2   s.e.   Mass Point 3   s.e.   
                          
Non-Employment Transition -0.212   0.514   -2.135   0.137 *** 2.359   0.179 *** 
Initial Conditions Equation 1.526   0.352 *** 2.751   0.087 *** -2.865   0.089 *** 
Wage Equation 1.030   0.165 *** -0.288   0.053 *** 0.096   0.055 * 
                          
Probability 1  0.44 
Probability 2 0.12 
Probability 3 0.44 

Note: The estimates of the discrete unobserved heterogeneity are from the estimation of the joint model of the transition from non-
employment to employment, the wage equation and the initial conditions equation (the probability of being non-employed). There are three 
mass points for the unobserved term of each equation with three associated probabilities. The second and the third mass points are defined as 
deviation from the first. ***/**/* denote significance at the 1%/5%/10% level, respectively. 


