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Abstract: This paper presents a survey on the development and use of Artificial Neural Network 

(ANN) models in structural reliability analysis. The survey identifies the different types of ANNs, 

the methods of structural reliability assessment that are typically used, the techniques proposed for 

ANN training set improvement and also some applications of ANN approximations to structural 

design and optimization problems. ANN models are then used in the reliability analysis of a ship 

stiffened panel subjected to uniaxial compression loads induced by hull girder vertical bending 

moment, for which the collapse strength is obtained by means of nonlinear Finite Element Analysis 

(FEA). The approaches adopted combine the use of adaptive ANN models to approximate directly 

the limit state function with Monte Carlo simulation (MCS), First Order Reliability Methods 

(FORM) and MCS with importance sampling (IS), for reliability assessment. A comprehensive 

comparison of the predictions of the different reliability methods with ANN based LSFs and 

classical LSF evaluation linked to the FEA is provided. 
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1 INTRODUCTION 

The methods for structural safety assessment aim at evaluating the probability of limit state 

violation by comparing the probabilistic models of acting loads and resistance of a structural 

component or system. In general, the reliability problem can be formulated by: 

𝑃𝑓 = 𝑃[𝑔(X) ≤ 0] = ∫ 𝑓X(x)
𝑔(X)≤0

𝑑x (1)  

where 𝑃𝑓 is the probability of failure, 𝑔(X) is the limit state function (LSF) and 𝑓X(x) is the joint 

probability density function of the vector X = {𝑋1, 𝑋2, … , 𝑋𝑛} of n basic random variables that 

represent the uncertainty on the material and geometrical properties, structural behaviour and 
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loading. Therefore, 𝑔(x) = 0 is n-dimensional surface that divides the domain into the safety 

region (𝑔(x) > 0) and failure region (𝑔(x) < 0) (see Figure 1). 

 

 x1 

 x2 

 0 

s – Safety Region 

Segurança 

f – Failure Region 

 

 g ( x1,x2 ) = 0 

 f  ( x ) =  const. 

 g ( x1,x2 ) < 0 

 g ( x1,x2 ) > 0 

 

Figure 1– Basic reliability problem for n=2 basic random variables. 

Available methods for reliability assessment can be categorized into two main groups: gradient-

based and simulation-based methods [1]. The first group consist in an iterative minimization 

procedure based on the limit state function gradient estimation in order to find the design point, 

which is a point on the failure surface with the highest probability density, also denoted as the 

most likely failure point. The distance between the origin and this particular point on the limit 

state surface is denoted by reliability index β [2]: 

𝑢∗ = 𝑚𝑖𝑛  { ‖𝑢‖  |  𝑔(𝑢) = 0 }   𝑎𝑛𝑑  𝛽 = ‖𝑢∗‖  (2) 

Traditional first-order reliability method (FORM) ([2], [3], [4]) and the second-order reliability 

method (SORM) ([5];[6];[7];[8]) belong to this class. The simulation techniques have their origin 

in Monte Carlo simulation (MCS) method, which generates a large sample set of limit state 

evaluations and approximates the true value of the probability of failure by 𝑃𝑓 =
𝑆𝐹

𝑆
, where 𝑆𝐹 is 

the number of samples lying in the failure region and S the total number of samples. In order to 

further improve the computational efficiency of MCS, many variance reduction techniques have 

been proposed [9], including importance sampling ([10], [11]), directional simulation [12] or 

subset simulation ([13], [14]). Despite these improvements, the MCS method is still time-

consuming and further development is crucial. The above described methods are less suitable for 

the reliability analysis of complex structures with 𝑔(x) defined implicitly, i.e. the evaluation of 

𝑔(x) requires a time-consuming numerical calculation of the structural response by mean of 

finite element analysis (FEA). In gradient-based approaches such as FORM, the performance 

function is approximated by a linear function in a normalized space at the design point and poor 

accuracy can result from strongly nonlinear performance functions. Moreover, when the LSF has 

an implicit form, the computational cost of the calculations can be very high. In the simulation 

methods the problem lays in the enormous number of simulations required for the reliability 

estimations, since the allowable 𝑃𝑓 of structures is usually very low.  

To overcome these problems, various methods for LSF approximation have been proposed. 

Among the techniques available to cope with implicit limit state functions, the response surface 

method (RSM) has proved to be an efficient and widely applicable method in structural 

reliability analysis. In this method, typically first- or second-order polynomials are chosen to 

replace the real limit state function ([15];[16];[17];[18]).  

Kmiecik and Guedes Soares [19] have used the RSM for probabilistic modelling of the strength 

of compressed steel plates and, recently, Teixeira and Guedes Soares [20] extended the use of 
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this technique to reliability problems involving random fields of corrosion. Gaspar, et al. [21] 

have combined a response surface approach with a Monte Carlo based simulation method to 

efficiently solve structural system reliability problems that involve nonlinear finite element 

analysis.  

Artificial neural network (ANN) algorithms introduced as universal function approximations 

[22] have also been used for structural reliability assessment by several researchers, (e.g. [22], 

[23], [24], [25], [26]). 

Cardoso et al. [27] have shown that ANN is a versatile methodology that can approximate 

accurately highly non-linear functions over the entire domain with very good precision. Several 

studies have also been performed showing the accuracy and efficiency of the ANN-based 

response surface method for reliability assessment in comparison with the conventional response 

surface methods. Gomes and Awruch [26] indicated that the ANN approach is more efficient, 

however, the examples considered were relatively simple. More recently, Bucher and Most [24] 

have applied these approximation methods to several examples of nonlinear structural analysis 

concluding that the relative accuracy of the various approaches depends on the specific problem 

under consideration. 

The present paper reviews the development and use of ANN models in structural reliability 

analysis covering the different types of ANNs, the methods of structural reliability assessment 

that are typically used, the techniques proposed for ANN training set improvement and also 

some applications of ANN approximations to structural design and optimization problems. 

In the second part of this paper, artificial neural network models are applied in the reliability 

analysis of a ship stiffened panel subjected to uniaxial compression loads induced by hull girder 

vertical bending moment, for which the collapse strength is obtained by means of nonlinear finite 

element analysis (FEA). In this application ANN models are used for LSF approximation and 

combined with Monte Carlo simulation (MCS), first order reliability methods (FORM) and 

Monte Carlo simulation with importance sampling (MCIS) techniques for reliability assessment. 

In particular, an adaptive ANN-based MCIS approach using ANN-based FORM for search of the 

design point is proposed and its efficiency compared with MCIS with LSF evaluation based on 

direct FEA. 

2 ANN MODELS FOR LIMIT STATE FUNCTION APPROXIMATION  

ANNs are mathematical models based on the neural structure of the brain. ANNs have the 

capacity of establishing a functional relationship between two data spaces during a learning 

process and reproduce that connection during a recall process. Various kinds of ANN can be 

distinguished and many studies on its efficiency and accuracy have been published. The most 

popular ANN architecture also applied in this study is the multi-layer feed forward network. 

Herein, only a brief introduction to multi-layer feed forward networks will be presented. More 

details on different kind of networks and their architecture can be found in literature e.g. [28], 

[26]. 

In the ANN, the neuron is a processing element with several inputs and one output [22]. Neuron 

m receives an input signal vector X = {𝑥1, 𝑥2, … , 𝑥𝑛} from n input channels. Next, the weighted 

sum of x is calculated by multiplying each element 𝑥𝑘 by a coefficient 𝑤𝑚𝑘 demonstrating 

adequate importance of the input channel k. The m-neuron activation am is given by:  

𝑎𝑚 = ∑ 𝑤𝑚𝑘
𝑛
𝑘=1 ∙ 𝑥𝑘 + 𝑏𝑚 (3) 

where  𝑏𝑚, called bias, is a constant corrective term which allows having a non-negative 

activation  𝑎𝑚, when all elements of the input vector X are equal 0. The output signal value 𝑠𝑚 is 
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calculated as a function of the activation, called the transfer function 𝑓(𝑎𝑚). The sigmoid 

transfer functions are typically used for this purpose and a common choice is the hyperbolic 

tangent sigmoid transfer function: 

𝑓(𝑎𝑚) =
2

1+𝑒−2𝑎𝑚
− 1 (4) 

The architecture of a single neuron is shown in Figure 2. 

 

Figure 2 – Artificial neuron 

The multi-layer feed forward network consists of various neurons situated on three or more 

layers – input layer, output layer and one or more hidden layers in between them. The number of 

neurons on the input layer is equal to the number of input variables while on the output layer it 

depends on the number of functions to approximate. However, selection of networks optimal 

architecture is not a simple task and no general rules are applicable for the number of hidden 

layers and number of the neurons on the hidden layer estimations. In general, higher the 

complexity of a problem, larger the number of processing elements in hidden layer is needed for 

a good approximation level and often this is found based on a trial-and-error process. Figure 3 

shows the architecture of an example network with 3, 4 and 2 neurons respectively on input, 

hidden and output layer. 

 

Figure 3 – Multi-layer neural network 

The training of a network is an iterative process and consists in obtaining the unknown weights 

𝑤𝑚𝑘 and biases 𝑏𝑚 required for LSF approximation. The initial weights and biases are set to 
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random values and are subsequently updated by the training algorithm. For this purpose, the 

training data set with input and target values must be previously prepared. The set is then divided 

into two sub-sets: 1) the training sub-set which is used for updating the weights and biases and 2) 

the validation sub-set, used for stopping the training when the network performance fails to 

improve for previously specified number of iterations or for checking the network approximating 

capacities. The iterative training algorithm performs an error minimization procedure that is 

repeated until the network outputs converge to the target values.  

The selection of a representative group of samples for training purposes is an important task. To 

improve training efficiency, each variable should be covered with a sufficient number of samples 

so that in the recall process the network can approximate the LSF successfully in its entire 

domain. The size of the sample set grows when the number of variables in the reliability problem 

rises. Moreover, the samples should be spread over the whole domain for each variable and for 

this purpose training set improvement techniques can be applied. To start the training process, 

training data need to be scaled before introducing to network. The scale range depends on the 

type of the transfer function used. For instance, while using the hyperbolic tangent function the 

input range is ]−∞, +∞[. However, scaling is needed because differences between two very high 

or low values will result in negligible difference in the function output, which turns the training 

process difficult. The output values range of  xi ∈ [– 1, 1], as represented on Figure 4, also need 

scaling to adapt to the desired function range. 

 

Figure 4 – Hyperbolic tangent function 

The default error function used for training feed forward networks is the mean squared error 

(MSE) – the average squared difference between the network output values 𝑠𝑖 and the target 

outputs  𝑡𝑖, defined as: 

𝑀𝑆𝐸 =
1

𝑁
∑ (𝑡𝑖 − 𝑠𝑖)

2𝑁
𝑖=1  (5) 

where 𝑁 is the number of training samples. One of the problems occurring during ANN training 

process is called over fitting and it might take place when the number of neurons on hidden layer 

is excessively large comparing to the number of available training samples. The problem consists 

in the training error being driven to a very small value while the network still does not learn the 

LSF correctly. To avoid this problem, 𝑁 should be greater than the number of unknown weights 

and bias and can be determined by (𝐴 + 𝐶 + 1)𝐵 + 𝐶 < 𝑁, where 𝐴 is the number of input 

values, 𝐵 is the number of hidden neurons on the single hidden layer and 𝐶 is the number of 

functions to approximate [29]. 

3 SURVEY OF APPLICATIONS OF ANN IN STRUCTURAL RELIABILITY 

ANALYSIS 

Despite the fact that the concept of numerical algorithms based on biological neurons was 

introduced in 1943 by McCulloch et al. [22], the first work that foresees the opportunity of 

http://www.mathworks.com/help/toolbox/nnet/ref/mse.html
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applying Artificial Neural Networks (ANN) in structural analysis was published by Hornik et al. 

(1989) [23]. Since the greatest challenge in reliability analysis is the computation of the limit 

state function (LSF), research on ANN capability to approximate LSF was performed and 

several ANN-based structural reliability methods were proposed, compared and modified over 

the years. An overview of ANN-based reliability methods in a chronological order is presented 

in Table 1.  

3.1 Types of the ANNs 

ANN can have different architectures that translate into different approximation advantages and 

disadvantages. For reliability analysis purposes, two most popular networks are used – back 

propagation multi-layer network and radial basis functions network (RBF). Hurtado and Alvarez 

[28] tested both and concluded that RBF networks have the following desirable features: high 

training speed, very small error, accuracy in probability estimation and robustness with respect to 

changes in model parameters, training sample size and generation procedures. In a subsequent 

work [1], the same authors analyse, compare and classify not only network types, cost functions, 

optimization algorithms, sampling methods but also different purposes of use of ANNs. They 

also recommend procedures for applying ANN in the structural reliability calculations.  

Later, Hurtado [30] presented a general application of neural networks in stochastic mechanics 

and an extensive state of art on the subject, classifying and categorizing network types, purposes 

and various implementation issues. 

3.2 ANN-based methods of failure probability computation 

Once an adequate surrogate is defined using ANN, it is fundamental to define a methodology to 

compute the probability of failure compatible with the advantages and limitations of ANN. Both 

accuracy and computational cost change significantly when using ANN compared to direct 

evaluation of the LSF, influencing the advantages and disadvantages of each method. 

The ANN-based Monte Carlo simulation is a simple and robust method for computing the 

probability of failure. When combined with ANN, a substantial reduction of the number of finite 

element calculations can be achieved, as they are only required to build the data set needed for 

the ANN training process, overcoming a significant disadvantage of traditional MCS. Despite 

the significant reduction of the computational time, the method is still time consuming and, for 

this reason, several variance reduction techniques, such as importance sampling or directional 

simulation, have been widely applied. An extensive description, as well as, numerical examples 

of the use of ANN-based MCS in structural reliability can be found in ([31], [32], [27], [33], 

[34]). 

Alternatively, gradient-based methods like FORM or SORM can be used in combination with 

ANN (e.g. [35]). In conventional FORM/SORM, convergence problems might occur while 

evaluating derivatives using finite differences in case of highly nonlinear limit state function. 

The use of ANN smoothes the response and reduces the convergence problems, but the obtained 

results are only an approximation, resulting from the inherit limitations of FORM.  

Genetic algorithms (GA) are a search/optimization technique based on the survival of the fittest 

theory and natural selection proposed by Holland [36]. This method can replace the gradient-

based optimization algorithms used in FORM/SORM, but requires a high number of FEA. When 

using ANN in conjunction with GA, the time of evaluation drops drastically, making GA more 

effective, as shown by [37], [38], [39]. The ANN-based GA does not need the gradient 

calculation and overcomes the problem with the calculation of derivatives described before. 
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Besides the traditional reliability methods, more innovative methods with use of ANN have been 

proposed. Nie and Ellingwood [40] used Fekete deterministic point set for the direction 

identification, while Papadopoulos et al. [14] implemented ANN into subset simulation method 

for reliability estimations. 

3.3  ANN training set improvement techniques 

In ANN based reliability methods, the quality of LSF approximation and hence, the reliability 

estimations, are strongly conditioned by the quality of the sample set used for network training. 

The traditional approach for the training data set preparation involves selection of random 

samples over the whole domain of each random variable and the iterative process of weight and 

bias adjustments until the required level of error is obtained. Despite the coarseness of this tactic, 

it is still one of the most common approaches (e.g. [31], [41], [42]). 

In the reliability analysis only a region located near the g(x)=0 surface has to be well represented 

by ANN, as the samples outside of the interest region do not improve considerably the obtained 

results. In the problems involving complex structures, the region of failure is relatively small 

when compared with the whole variables domain and, therefore, only a low fraction of samples 

lays in the region of interest when using random selection. To improve the training process and 

lower the number of samples needed for the ANN training, iterative training processes were 

proposed and new approaches for ANN training were developed.  

Shaw and Murotsu [43] proposed an active learning algorithm, where the ANN starts training 

with a limited data set and during this process, evaluates the most critical region. Then, more 

data is added only in this region and further training is performed, avoiding unnecessary detailed 

learning at other areas. This process is repeated until a required accuracy is achieved.  

Schueremans and Gemert [44] proposed an interesting simulation method based on adaptive 

ANN model, improved and refined during the reliability analysis. As a result, the number of calls 

to the LSF remains proportional to the number of random variables. An iterative procedure 

consisting of adapting ANN and updating the failure probability until required accuracy is 

reached was proposed. The LSF is only evaluated for samples in the surrounding of the failure 

region. The ANN is updated as soon as new data become available. The authors use directional 

sampling or MCIS techniques for reliability calculations. The directional sampling with ANN is 

more efficient when several directions have a comparable contribution to the failure probability. 

In other cases, MCIS should be used as it does not require any complex root-finding algorithm. 

Cheng et al. [45] proposed an application of the uniform design method (UDM) for the selection 

of the training data sets in the ANN-based FORM technique. UDM improve quality of selected 

training data sets, providing the samples scattered over the entire design area as uniformly as 

possible, turning the set highly representative. The specific feature of UDM is the introduction of 

the number-theoretic method, which finds a set of points that is scattered over an s-dimensional 

unit cube and this set is used instead of randomly generated numbers by MCS method. More 

details on UDM can be found in [46]. 

Ren and Bai [47] presented two methods for ANN training improvement. In the first method the 

early stopping point is determined by monitoring the validation error during the training process. 

The second technique is based on regularization theory and consists in modifying the 

conventional training performance function by adding the sum of squares of the network 

weights, so the weights are forced to have smaller values while the training error decreases. 

The Latin hypercube sampling was first presented in 1979 by McKay et al. [48] while its 

implementation into reliability analysis was extensively presented by Olsson et al. [49]. It was 
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widely used as an efficiency improvement tool of different importance sampling methods and it 

also found use in the sample set preparation for ANN training ([33]). 

3.4 Comparison of ANN-based reliability methods 

The main issues in structural reliability assessment are the excessive computational cost as well 

as the accuracy and applicability of the method to complex structural problems involving 

implicit limit state function. Many authors described and compared the traditional reliability 

methods such as MCS, MCIS, FORM, SORM, RSM or empirical method in conjunction with 

ANN-based reliability methods ([26], [50], [51], [25], [52]). 

Deheeger and Lemaire [53] and Tan et al. [54] compared the approximation capacities of ANN 

and support vector machines, which are based on the structured risk minimization principle and 

its distinguishing feature lies in ability to define complex decision functions that optimally 

separate two classes of data samples. 

3.5 Reliability-based structural design and optimization with use of ANN 

Although many efficient methods for reliability calculations were developed and improved, it is 

still not common to apply them in structural design. The traditional design approach involves the 

use of empirical equations with partial coefficients calibrated from reliability estimations. This 

method is very simple and straightforward but, as an approximation technique, can easily lead to 

over-design of a structure and consequently to an excessive use of materials. Therefore, the ANN 

based reliability methods can contribute to widespread of reliability analysis into structural 

design ([55], [56], [57]).  

Reliability techniques which use the ANN approximation capacities can be also successfully 

applied in a large scale structural optimization problems ([58], [59]).  

 



 

9 

 

Table 1 – Review of applications of Artificial Neural Networks in structural reliability analysis review 

Authors Year  Main, innovative ideas 

Hornik, K 

Stinchcombe, M 

White, H 

1989 Prove that standard multilayer feed forward networks are capable of 

approximating any measurable function to any desired degree of accuracy. 

Papadrakakis, M. 
Papadopoulos, V. 
Lagaros, N. D. 

1996 Application of ANN in MCS and MCS with IS to the reliability analysis of a 

complex structure. Successful implementation of the back propagation 

algorithm.  

Shao, S. 

Murotsu, Y. 

1997 Further development of LSF approximation with use of ANN by introducing the 

active learning algorithm to improve learning process, limit data set and achieve 

good fitness with the real structure state. 

Hurtado, J. 

Alvarez, D. 

2001a 

2001b 

Test and compare the applicability of back propagation multi-layer perceptron 

and radial basis functions (RBF) networks for reliability assessment of structural 

system.  

Papadrakakis,M. 

Lagaros, N. 

2002 Application of ANN to reliability-based structural optimization (RBSO). The 

reliability analysis is performed by ANN-based MCS method with IS technique 

for the reduction of the sample size. Optimization is performed with evolution 

strategies. 

Gomes, H. 

Awruch, A. 

2004 Test and compare the polynomial-based RSM with ANN-based RSM in terms of 

CPU time and the number of LSF evaluations. 

J. Deng, D. Gu, X. Li 

et al. 

2004 Present and test 3 methods for structural reliability assessment: ANN-based 

MCS, ANN-based FORM and ANN-based SORM. 

J. Nie,  

B. Ellingwood 

2004a 

2004b 

Two types of ANNs are introduced for LSF approximation to facilitate 

directional simulation-based reliability assessment. The Fekete deterministic 

point set is used to identify directions. 

L. Schueremans, 

D. Van Gemert. 

2005 Proposal of iterative procedure for adapting and refining ANN during the 

reliability analysis until required accuracy is reached. The directional sampling  

and the MCIS technique used for reliability calculations. 

J. Deng 2006 Present and test RBF ANN-based MCS, RBF ANN-based FORM and RBF 

ANN-based SORM, then compare with conventional reliability methods. 

H. Elhewy, E. 

Mesbahi, Y. Pu 

2006 Implement a standard ANN into MCS for structural reliability evaluations and 

provide 3 numerical examples. 

K. W. Chau 2007 Employ the ANN-based approach to determine performance functions for 

reliability and performance-based design.  

J. Cheng 2007 Proposes two ANN-based GA methods: 1) hybrid ANN-based GA method and 

2) hybrid GA method consisting of ANN and MCIS. 

J. Cheng,  

Q. Li, R. Xiao 

2008 Application of UDM to ANN-based FORM for reliability analysis. 

J. Cheng, Q. Li 2008 Application of UDM to ANN-based GA for structural reliability analysis. 

J. Cheng 2010 Further development of UDM applied to ANN-based GA with penalty function 

in a case study of suspension bridge reliability evaluation. 

X. Tan, W. Bi, X. 

Hou, W. Wang 

2011 Test and compare ANN-based and support vector machine-based RSM with two 

different sample selection methods: iterative one and one that do not need 

iteration for a sample choice. Probability of failure index is obtained with 

FORM. 

Y. Ren, 

G. Bai, 

2011 Proposal of implementing an early stopping technique and a regularization 

theory into ANN-based RSM 
V.Papadopoulos, 

D.Giovanis, 

N.Lagaros, 

M.Papadrakakis 

2012 Implementation of ANN into subset simulation method for reliability 

estimations.  
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4 ANN-BASED RELIABILITY ANALYSIS OF A STIFFENED PANEL 

An analysis of a deck stiffened panel of a Suezmax oil tanker is performed to assess the 

capability of the ANN models for reliability assessment. The ship was designed according to 

Common Structural Rules for Double Hull Oil Tankers [60]. The adopted model was previously 

considered by Hørte et al. [61] in the development of codes for structural design of ships and 

later by Gaspar et al. [62], [21] in structural reliability studies. Frequent studies of this type of 

elements are due to the fact that it is a basic element of a manifold of civil and marine structures. 

4.1 Reliability assessment methodology 

Three different approaches are herein presented and tested, where two of them are ANN-based 

reliability methodologies that use ANN as the LSF approximator. The first proposed 

methodology simply combines LSF evaluation by ANN with MCS for failure probability 

prediction. The Latin hypercube technique is used for training set improvement. The method is 

tested to predict failure probability of a stiffened steel panel using the ANN to directly 

approximate the LSF. This approach is very simple and easy to implement in standard software 

packages, including Matlab [21].  

The second approach uses adaptive ANN-based Monte Carlo simulation with importance 

sampling (MCIS). In this method the ANN is trained in various stages in order to reduce the size 

of the training set. A first coarse set is established over the whole domain and the ANN is 

trained. Using this adaptive ANN model an estimate of the design point is obtained by FORM 

algorithm. Then, additional samples in its neighbourhood are generated and the network is re-

trained. Afterwards, structural reliability is computed by MCIS, using the iteratively trained 

ANN. 

In the above described methodologies, back propagation multi-layer feed-forward networks with 

one hidden layer, trained with Levenberg–Marquardt ([63],[64]) algorithm are used. The 

hyperbolic tangent transfer functions are employed in both the hidden and output layers.  

The last methodology consists in using FORM and MCIS with standard LSF evaluation via 

direct coupling with the finite element analysis. This approach is considered very efficient for 

reliability problems with explicit LSFs and is used as a benchmark for evaluating the accuracy of 

the ANN-based approaches.  

4.2 Nonlinear finite element structural model 

The stiffened panel of a deck structure of a ship is composed by steel plates, transverse frames 

and longitudinal stiffeners with T-type cross-section, as presented in Figure 5. Since the panel is 

symmetric, only one of the stiffeners of the stiffened panel with attached plating is analysed, as 

shown in Figure 6. 

The boundary conditions of the stiffened plate are represented by [ux, uy, uz, rx, ry, rz], where “0” 

indicates translational or rotational constraint and “1” indicates no constraint. For the present 

analysis, the following boundary conditions are applied: 

- AC e A'C' border (symmetric conditions): [ 1, 0, 1, 0, 1, 1 ], 

- AA' border (symmetric condition):  [ 1, 1, 1, 1, 0, 0 ], 

- CC' border (symmetric condition):  [ 0, 1, 1, 1, 0, 0 ], 

- Transverse floors - for plate nodes:  [ 1, 1, 0, 1, 1, 1 ], 

- For stiffener web nodes:   [ 1, 0, 1, 1, 1, 1 ].  
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Figure 5 – Deck-stiffened panel Figure 6 – Analysed element of the panel  

                 (stiffener with attached plating) 

The displacements of nodes on borders AC and A'C' along the y direction are linked. This 

procedure ensures uniform displacement even under a point force applied to one of the coupled 

nodes and also avoids the local distortions of the profile. The design values for the non-corroded 

condition are given in Table 2, where a is the stiffener span and b is the spacing between 

stiffeners in the panel. The cross-section geometry is described by the plate (t1), web (t2), and 

flange (t3) thicknesses, the web height (t4) and the flange breadth (t5). When corroded condition 

is considered, thicknesses t1, t2 and t3 are reduced by 2 mm that corresponds to 50% of the 

corrosion margin for deck structures as defined in the recent design codes for oil tankers. For the 

plate material, a high-strength steel 32AH with yield stress σc = 315 MPa, Young’s modulus  

E = 206000 MPa and Poisson’s ratio  = 0.3, is considered.  

Table 2– Design dimensions of the stiffened panel [mm]  

Variable Design Value 

a 5450 

b 900 

t1 22.5 

t2 11.5 

t3 16.0 

t4 400 

t5 100 

4.3 Initial deflections 

Welding induced initial deflections with significant contribution to the resistance reduction are 

considered in the finite element model. The considered pattern is represented in Figure 7, which 

is composed by the superposition of 4 different deflection shapes equivalent to buckling mode 

shapes, represented in Figures 7b-7e and given by:   

𝑤𝑝 = 𝑤𝑜𝑝 ∙ cos (
𝑚𝜋𝑥

𝑎
) ∙ cos (

𝜋𝑦

𝑏
) (6) 

𝑤𝑤 = 𝑤𝑜𝑤 ∙ cos (
𝑚𝜋𝑥

𝑎
) ∙ sin (

𝜋𝑧

𝑡4
) (7) 

𝑤𝑐 = 𝑤𝑜𝑐 ∙ cos (
𝜋𝑥

𝑎
) (8) 

𝑤𝑠 = 𝑤𝑜𝑠 ∙ (1 − 𝑠𝑖𝑛 (
𝜋𝑧

2ℎ𝑤
+

𝜋

2
)) ∙ cos (

𝜋𝑥

𝑎
) (9) 

Stiffened plate 

element 

Transverse  
girder 

Deck plate 

Longitudinal 

 stiffener 

Transverse  

girder 
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where wop, wow, woc and wos are the amplitudes of, respectively, the attached plating deflection, 

the stiffener web deflection, the stiffener column-type distortion and the stiffener sideways 

distortion. The design values of those amplitudes are usually assumed to be  𝑤𝑝 = 𝑏/200, 𝑤𝑤 =

𝑡4/200, 𝑤𝑐 = 𝑎/1000, 𝑤𝑠 = 𝑎/1000  according to [60], [65]. The number of buckling half-

waves in longitudinal direction is normally the integer of ratio of longer and shorter side of the 

plate (𝑚 = 𝑎/𝑏), and here is considered as  m = 7. The finite element model with the combined 

shape of initial distortions implemented is shown on Figure 7a (with a scale factor ×50). 

 
a)  Combined  geometrical deflection    

      
                b)  Plate geometrical deflection                             c) Stiffener web geometrical deflection 

           
d)  Beam-column type geometrical deflection           e) Sideways geometrical deflection 

Figure 7 – Initial geometrical distortions of the stiffened plate   

 

4.4 Probabilistic models of basic random variables 

13 random variables associated with strength (Table 3) and two related to load actions (Table 4) 

are considered in the reliability analysis.  

The probabilistic models adopted for the geometrical and material properties of the structural 

element are well described in the literature [66] and were used in previous studies [21]. The 

design amplitudes of the welding induced imperfections correspond to the 95th percentile and the 

coefficient of variation (COV) is assumed as equal 0.50. 
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Table 3– Stochastic models of the strength basic random variables  

(* - values corresponding to the corroded state) 

Variable Units Probabilistic Distribution Mean Value,  COV Standard Deviation, 

t1 mm Normal 22.5 (20.5)* 0.02 0.45 (0.41)* 

t2 mm Normal 11.5 (9.5)* 0.02 0,23 (0.19)* 

t3 mm Normal 16.0 (14.0)* 0.02 0.32 (0.28)* 

t4 mm Normal 400 0.01 4.0 

t5 mm Normal 100 0.03 3.0 

Ep MPa Lognormal 206000 0.10 12.36 

Es MPa Lognormal 206000 0.10 12.36 

cp MPa Lognormal 348 0.08 20.88 

cs MPa Lognormal 348 0.08 20.88 

wop mm Lognormal 2.30 0.50 1.15 

wow mm Lognormal 1.00 0.50 0.50 

woc mm Lognormal 2.80 0.50 1.40 

wos mm Lognormal 2.80 0.50 1.40 

 

The probabilistic models adopted for the hull girder vertical bending moments are defined based 

on work of Horte et al. [61] and as specified in IACS [60]. The still water bending moment (Msw) 

is described by a normal distribution with mean equal to 𝜇 = 0.7 ∙ 𝑀𝑠𝑤,𝑚𝑎𝑥 and standard 

deviation 𝜎 = 0.2 ∙ 𝑀𝑠𝑤,𝑚𝑎𝑥, where 𝑀𝑠𝑤,𝑚𝑎𝑥 = 2119.6 MNm is the maximum still water 

bending moment specified in the ship loading manual.  

The long-term probability distribution of the vertical wave-induced bending moment is 

represented by a Weibull distribution with shape parameter equal to 1 and scale parameter 

satisfying: P [Mwv > Mwv,max] = 10-8, where Mwv,max is the maximum vertical wave-induced 

bending moment considered for design purposes [60]. The Weibull distribution represents the 

vertical wave-induced bending moment at a random point in time. The peak values over the 

reference time period (Tr) of 1 year are then described by the Gumbel distribution. Table 4 shows 

the stochastic models for load basic random variables, more details can be found in [61] and 

[21]. 

Table 4 – Stochastic models of the load basic random variables. 

Variable Units Probabilistic Distribution Mean Value,  COV Standard Deviation,  

Msw MNm Normal 1483.700 0.29 430.300 

Mwv MNm Gumbel 4603.153 0.09 401.181 

 

The compressive loading on the stiffened plate of the ship deck is calculated from the total 

vertical bending moment and the mid-ship section modulus at deck equal to Z = 41.1 m3, for the 

intact scantlings and Z = 37.3 m3, for the  corroded scantlings. The longitudinal compressive load 

(𝜎𝑎) applied to the ship stiffened plate is calculated as follows: 

𝜎𝑎 =
𝑀𝑠𝑤+𝑀𝑤𝑣

𝑍
 (10) 

The limit state function g(X) used in the reliability analysis corresponds to the buckling failure of 

the ship stiffened plate under uniaxial compressive loading, given by: 

𝑔(X) = 𝜎𝑐𝑜𝑙 − 𝜎𝑎 (11) 
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where 𝜎𝑐𝑜𝑙 is the ultimate compressive strength of the stiffened plate. In this study the ANN 

predicts directly the LSF, g(X). 

5 RESULTS OF THE RELIABILITY ANALYSIS 

A sample set created with Latin hypercube technique is used for the ANN-based reliability 

methodologies. The finite element analysis program ANSYS is used to perform the non-linear 

analysis and to compute the collapse strength of the stiffened plate. 

Figure 8 shows the stress-strain curve obtained assuming the mean value of the basic random 

variables. The ultimate compressive strength, defined as the maximum value of the stress-strain 

curve, is 𝜎𝑐𝑜𝑙 = 283.36 MPa. The non-linear finite element analysis for each sample takes 3.71 

second. Parallel computing technique with 4 dual-core processors has been used, reducing 

significantly the computational time, when compared with the sequential version. 

 

Figure 8- Average stress-strain curve for the mean value of the strength  

basic random variables for the corroded condition. 

5.1 ANN-based reliability analysis by Monte Carlo simulation  

The results of the first method that consists of using ANN for LSF approximation and MCS for 

reliability assessment, can be found in Table 5. Training sets of different dimension, ranging 

from 2000 to 20000, have been considered to check their influence on the ANN approximation 

capacities and the reliability analysis errors. The results from Table 5 show a trade-off between 

computational time and accuracy, as presented in Figure 9. The best results, with error 

considered as equal 0, were obtained with the largest sample set. However, the preparation of the 

training set can be highly time consuming, as it is proportional to the number of samples 

required. Therefore, for computational cost reduction purposes an intermediate value of 10000 

elements can be chosen, which ensures the error of the ANN around 1%. A very efficient 

Levenberg-Marquard training algorithm has been used and the time consumed for the ANN 

training is considered as irrelevant to this study. 
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Figure 9 –Time spent on the training set preparation and ANN accuracy  

as function of the size of the training set. 

After the ANN has been successfully trained, the ANN-based MCS was performed for  

reliability index prediction. The number of LSF simulations needed to evaluate the probability of 

failure with a required precision depends on its order of magnitude. According to Shooman [67], 

the accuracy of MCS can be measured by coefficient of variation (COV) of the probability of 

failure (𝑃𝑓) given by: 

𝐶𝑂𝑉(𝑃𝑓) =
1

𝑃𝑓
√

(1−𝑃𝑓)𝑃𝑓

𝑛𝑀𝐶𝑆
 (12) 

where 𝑛𝑀𝐶𝑆 is the number of MCS samples. In the present case, 𝑛𝑀𝐶𝑆 = 1 × 108 was adopted, 

which corresponds to 𝐶𝑂𝑉(𝑃𝑓) ≈ 2.5%. 

Figure 10 shows the variation of the calculated reliability index (𝛽)and confidence intervals (CI) 

with the number of elements in the training set. The estimated failure probability computed by 

the first methodology converges with the increase of the elements in the training set to  

Pf =1.97×10–5, which corresponds to the reliability index  𝛽 = −ф−1(𝑃𝑓) = 4.11. 

The CI curves presented in Figure 10 were obtained using a procedure inspired by the bootstrap 

technique. The basic bootstrap technique uses a sample set as a pseudo-population in order to 

resample and obtain statistic measures [68], [69]. In this case, the bootstrap technique could not 

be applied for the CI estimations as it is incompatible with the Latin hypercube methodology 

implemented in the ANN-based approach, crucial for the ANN training efficiency. 

In order to overcome this difficulty, an ANN trained with a very large sample set was assumed to 

represent the true LSF. Then, different sample sets obtained with Latin hypercube were 

generated and the corresponding LSF values retrieved. Estimations of mean and standard 

deviation are used for the CI (95%) of the reliability index calculations. As show in Figure 10, 

the CI becomes narrower as the number of elements in the set increases due to the effect of 

reducing standard error of the probability of failure estimations by MCS. The best prediction of 

the reliability index is obtained with use of ANN trained with the largest set of 20000 samples, 

corresponding to a CI of [4.08, 4.17]. 
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Table 5- Times and errors of ANN training and results of the ANN-based MCS reliability analysis 

Artificial Neural  Network Reliability Analysis 

Training 

set 

Max. relative 

error 

Mean square 

error 

Time of 

FEA 
Pf β=-Pf) 

Relative 

error 

[%] 

Time of the 

simulation 

20000 

16000 

12000 

8000 

4000 

2000 

0.71% 

0.79% 

0.87% 

1.23% 

1.20% 

1.80% 

2.26×10–4 

9.67×10–5 

1.20×10–4 

1.82×10–4 

2.28×10–4 

3.01×10–4 

50694s 

40558s 

28934s 

18499s 

9210s 

4542s 

1.970×10–5 

1.980×10–5 

1.893×10–5 

2.071×10–5 

1.262×10–5 

1.782×10–5 

4.111 

4.110 

4.120 

4.099 

4.213 

4.134 

~0 

0.508 

3.909 

5.127 

35.939 

9.543 

~21h  

[4 processors] 

~17h 

[6 processors] 

~12h 

[10 processors] 

 

 

 

Figure 10 – Estimated probability of failure as a function of the number  

of elements in the training data set. 

5.2 ANN-based reliability analysis by MCIS 

The efficiency of the direct MCS method depends on the magnitude of the failure probability, 

i.e. smaller failure probabilities, which usually appear in structural reliability, require larger 

numbers of samples. This drawback of MCS method can be overcome by generating samples on 

the base of a different probability density function so that a large number of outcomes fall in the 

failure domain. This technique is called importance sampling and the related probability density 

function  ℎX(x), is denoted as importance sampling density. The failure probability given by Eq. 

1 can be rewritten, without losing the generality, as: 

𝑃𝑓 = ∫ (
𝑓X(x)

ℎX(x)
) ℎX(x)

𝑔(X)≤0
𝑑x (13) 

The efficiency of this technique depends on the selection of  ℎX(x). Importance sampling is 

generally recognized as the most efficient variance reduction technique. A successful choice of 

 ℎx(𝑥) yields reliable results and reduces significantly the number of simulations, while an 

inappropriate choice produces inaccurate results.  
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Many different suggestions of sampling distributions can be found in the literature. The best of 

these choices are supported on information from FORM or SORM analyses about where the 

most essential contributions to the failure probability are located. 

If sampling is made around the most probable point of failure u∗, evaluated previously from a 

FORM/SORM analysis, the density function  ℎU(u) in the standard normal space is the joint 

probability density function of the basic random variables   𝜑U(u) centred in u∗, as illustrated on 

Figure 11 and given by: 

  ℎU(u) =
1

(2𝜋)𝑛/2 𝑒𝑥𝑝 [−
1

2
‖u − u∗‖] (14) 

The relative standard error of IS technique is calculated by: 

𝛿 =
1

𝑝𝑓

√ 1

𝑛𝑀𝐶𝐼𝑆(𝑛𝑀𝐶𝐼𝑆−1)
∑ (I(𝑔(x))

𝑓(x)

ℎ(x)
− 𝑝̂𝑓)

2
𝑛𝑀𝐶𝐼𝑆

𝑖=1    (15)  

where 𝑛𝑀𝐶𝐼𝑆 is the number of IS simulations and 𝑝̂𝑓 is the failure probability estimated with use 

of MCIS. More details on procedure of MCIS can be found in e.g. [70]. 

 
 u 2 

g ( u ) = 0 

 0   u 1 

n ( u,0,I ) = const 

 u* 

Failure region 

Safety region 

 

Figure 11- Monte Carlo simulation method with importance sampling 

In this work, the importance sampling method is applied based on an adaptively trained ANN. In 

a first step the network is trained over the whole domain with a reduced number of samples 

generated using the Latin hypercube method. Three different ANNs with 500, 250 and 100 

training samples were tested. The trained ANN is then used to find the design point  u∗ and the 

related reliability index (bFORM) by FORM algorithm. In the second step more samples in the 

surrounding of design point are created and added to the previous training set. In this process 

500, 250 and 100 samples are generated over a hypercube with a reduced size domain of width 

equal to the standard deviation and centred at the FORM-design point. The re-trained ANN is 

used in the ANN-based FORM algorithm to obtain a new design point. This process is repeated 

until the new design point is found in the hypercube used in the previous step iteration. This 

stopping criterion ensures that the new samples are generated in the region of real interest and 

the network is sufficiently well trained. Afterwards, structural reliability is computed using the 

successfully trained ANN with MCIS around the most recent design point.  

In the present case, a satisfactory level of ANN approximation is obtained after performing only 

one iteration of the second step, in all cases. Table 6 presents the results of this approach in terms 
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of error of the ANN limit state function approximations and reliability indices obtained for each 

step. 

The estimated failure probability converges to the value Pf MCIS = 2.07105, which corresponds 

tobMCIS = 4.100 calculated based on a training set of 500+500 samples. In this case, the 

computational time of the analysis has been reduced to 3143 s. The average standard error of IS 

remains lower than 12% when the number of ANN evaluations in MCIS is higher than 1000. 

Table 6- Results of the ANN-based MCIS 

Training set 

(Step1+Step2) 

ANN-training 
Reliability Analysis  

(FORM+MCIS) Total 

estimation time 

[s] 
ANN error [%] bFORM  PfMCIS 

[×10–5] 
b MCIS 

Step 1 Step 2 Step 1 Step 2 

500+500 2.3 0.9 2.070 4.329 2.07 4.100 3143 

250+250 3.2 1.0 2.008 4.374 2.01 4.107 1717 

100+100 7.4 2.3 2.381 4.365 1.25 4.215 693 

5.3  Monte Carlo Simulation with importance sampling using FEA-based LSF 

The last reliability assessment approach consists in using FORM and MCIS with standard LSF 

evaluation via direct coupling with the finite element analysis. In this case the calls of limit state 

function are transferred to the FEA and the results are passed back to the reliability processor.  

Table 7 presents the results of structural reliability analysis obtained by FORM and Monte Carlo 

simulation with importance sampling (MCIS). The reliability index βFORM is obtained with five 

iterations of the FORM algorithm corresponding to nFORM= 85 calculation of the limit state 

function and hence of the ultimate strength of the stiffened plate by FEA. 

Several IS sample sizes (nMCIS) in the region around the design point obtained by FORM, have 

been considered and, therefore, the total number of calculations of the limit state function is 

nFORM+nMCIS. Table 7 shows that βFORM= 4.270 and that more accurate estimates can be obtained 

as the number of IS simulations (nMCIS) increase. 

Figure 12 clearly shows that the reliability index decreases and stabilizes with the increase of   

nMCIS. Furthermore, the figure also shows that the 95% confidence intervals (CI) of the reliability 

index also tend to become narrower as the number of simulations increase due to the effect of 

reducing standard error of the probability of failure estimated by importance sampling. 

The best prediction of the reliability index is βMCIS = 4.098, obtained with 1085 (nFORM+nMCIS) 

evaluations of the limit state function. In this case, the confidence interval is [4.06, 4.14], which 

corresponds to a change of only -4% on the reliability index βFORM = 4.270 obtained with only 85 

calculations of the function limit state.  

Table 7- Results of the Monte Carlo simulation with importance sampling (MCIS) 

using FEA-based LSF 

FORM (nFORM=85)bFORM =4.270                    Pf=9.78×10–6 

Monte Carlo simulation with importance sampling (MCIS) 

 n MCIS 100 200 400 600 1000 

b MCIS 4.232 4.139 4.097 4.120 4.098 

 Pf  MCIS 1.16×10-5 1.75×10-5 2.09×10-5 1.90×10-5 2.09×10-5 

 COV pf 0.247 0.153 0.120 0.091 0.080 
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Figure 12- Results of the Monte Carlo simulation with importance sampling (MCIS) 

using FEA-based LSF  

5.4 Comparison of methods 

Table 8 presents a comparison of the results obtained by the different training and reliability 

approaches together with the number of FEAs performed in each one. The first two methods use 

ANN as a LSF approximator while the third method uses a FEA-based LSF. For the ANN 

approaches, only the most accurate results are included in the table. All methods lead to very 

similar results although the first method requires a much larger number of FEAs. The second and 

third methodologies are both very efficient despite being based on very different approaches.  

The results in Table 8 demonstrate that the ANN-based reliability approach can be as efficient as 

the FEA-based approach for structural reliability analysis. Despite the complexity of the problem 

analyzed, the network can approximate the LSF very accurately and turn the MCS method a 

viable tool for reliability analysis of structures with low reliability level, particularly when 

combined with efficient adaptive training schemes. 

Table 8- Comparison of the results obtained by the different training and reliability approaches  

 ANN-based LSF FEA-based LSF 

 ANN (20000)+ MCS  
ANN (500+500) 

+FORM+MCS with IS 
FORM+MCS with IS 

Pf 1.97×10–5 2.07×10–5 2.09×10–5 

β 4.111 4.100 4.098 

Number of 

FEAs 
20000 1000 1085 

6 CONCLUSIONS 

Although great improvements on the application of artificial neural networks in reliability 

analyses have been made over recent years, state of art reviews on this topic are difficult to find. 

Therefore, this work intended to provide a wide overview on the use of ANN-based  

methodologies. Different nomenclatures have been used among various research groups and one 

of the main focuses of present work was to synthesize the subject. A chronological list showing 

the introduction of significant improvements on the use of ANN in structural reliability was 

presented. As the research effort in this field has been focused in various directions, advances 
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presented in the literature were grouped in five main topics: 1) types of ANNs; 2) ANN-based 

methods of failure probability computation; 3) ANN training set improvement techniques; 4) 

comparison of ANN-based reliability methods; and 5) reliability-based structural design and 

optimization using ANN. 

In the second part of the present work, a case study on the reliability analysis of stiffened steel 

plate was carried out, with the objective of comparing the efficiency of different reliability 

analysis approaches. The example case is a complex structural problem involving many variables 

and sophisticated finite element analysis, including non-linear material and geometrical 

behaviour. Three methods were applied, two of which use ANNs as a limit state function 

surrogate. The reliability assessments were performed by crude Monte Carlo simulation and with 

importance sampling. The ANN-based MCS is easy to implement and has very good accuracy, 

but the data preparation for training purposes is quite time consuming. To overcome this 

disadvantage, a second approach that combined ANN-based MCIS with adaptive training was 

introduced. In this case, the network was trained in several steps. Firstly the network was trained 

over the entire domain of each variable using a limited number of samples and then re-trained 

with an enriched set, containing additional samples from the neighbourhood of the design point. 

An ANN-based FORM algorithm was applied to iteratively estimate the design point. Structural 

reliability was computed by ANN-based MCIS, using the final network.  

A third approach consisting in MCIS with LSF calculated directly by a finite element analysis, 

instead of ANN, was also applied. This technique can be considered very efficient and provided 

reliable comparison for the ANN-based methods. 

The first methodology has the main benefit of making MCS a viable tool for complex structures 

with low probabilities of failure but the time consumed with training set preparation can be 

relatively high. This disadvantage can be minimized by implementing parallel computation as 

the calculations involved in the analysis are highly scalable. However, global ANN 

approximations offer a significant advantage in the context of structural design, as the same 

network  trained over the adequate domain can be used in the analysis of similar problems with 

different variable values. It also can be used in conjunction with structural optimization tools to 

produce reliability-based optimal designs.  

The second approach has demonstrated that more advanced ANN training approaches (with 

adaptive schemes for increasing accuracy in regions of interest) implemented with sophisticated 

reliability methods can be considered as efficient as the traditional reliability methods. This 

methodology, combining adaptive ANN, FORM and MCIS, resulted in significant computational 

cost reduction without loss on accuracy on the predicted probabilities of failure. A drawback of 

using a very specifically trained network in the neighbourhood of the most probable failure point 

is a loss of global approximation characteristic of the ANN models. The accuracy and efficiency 

of this approach is similar to a third methodology, that combined FORM with MCIS based on 

FEA results, used in this work as a benchmark.  

The results obtained show that ANN-based reliability methodologies are robust and efficient 

alternatives to traditional reliability methods for the analysis of complex structures, particularly, 

when using advanced training set selection techniques.   
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