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a b s t r a c t

Rats’ performance on a progressive-ratio schedule maintained by sucrose (0.6 M, 50 �l) and corn oil
(100%, 25 �l) reinforcers was assessed using a model derived from Killeen’s (1994) theory of schedule-
controlled behaviour, ‘Mathematical Principles of Reinforcement’. When the rats were maintained at 80%
of their free-feeding body weights, the parameter expressing incentive value, a, was greater for the corn
oil than for the sucrose reinforcer; the response-time parameter, ı, did not differ between the reinforcer
types, but a parameter derived from the linear waiting principle (T0), indicated that the minimum post-
reinforcement pause was longer for corn oil than for sucrose. When the rats were maintained under free-
feeding conditions, a was reduced, indicating a reduction of incentive value, but ı was unaltered. Under

9

athematical model

ood deprivation
ucrose
orn oil
9-Tetrahydrocannabinol

the food-deprived condition, the CB1 cannabinoid receptor agonist � -tetrahydrocannabinol (THC: 0.3, 1
and 3 mg kg−1) increased the value of a for sucrose but not for corn oil, suggesting a selective enhancement
of the incentive value of sucrose; none of the other parameters was affected by THC. The results provide
new information about the sensitivity of the model’s parameters to deprivation and reinforcer quality,
and suggest that THC selectively enhances the incentive value of sucrose.
ncentive value
at

. Introduction

In ratio schedules of reinforcement, the subject is required to
mit a specified number of responses, N, to obtain a reinforcer. In
rogressive-ratio schedules, N is systematically increased, usually
rom one reinforcer to the next (Hodos, 1961; Stafford and Branch,
998), but sometimes after batches of two or more reinforcers
Baunez et al., 2002; Randall et al., 2012) or between successive
essions (Griffiths et al., 1978; Czachowski and Samson, 1999). Per-

ormance on progressive-ratio schedules is characterised by rapid
esponding under low ratios which peters out as N is increased.
he ratio at which the subject stops responding, the breakpoint,
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is widely regarded as a measure of the subject’s motivation or the
incentive value of the reinforcer (Hodos, 1961; Hodos and Kalman,
1963 for review, see Ping-Teng et al., 1996; Killeen et al., 2009).

Despite its widespread use, several authors have expressed
doubts about the specificity of the breakpoint (Arnold and Roberts
1997; Killeen et al., 2009; Bradshaw and Killeen, 2012), pointing out
that it is sensitive not only to changes in the incentive properties
of reinforcers (Rickard et al., 2009; Gosnell et al., 2010) but also to
non-motivational manipulations such as changes in the response
requirement (Skjoldager et al., 1993; Aberman et al., 1998) and the
ratio step size (Covarrubias and Aparicio, 2008). It has also been
noted that the breakpoint shows considerable variability, being
derived from a single point in time while data from the rest of
the session are ignored, and that its definition is arbitrary, there
being no consensus as to the time that must elapse without a
response before responding may be said to have stopped (Arnold
and Roberts, 1997; Killeen et al., 2009).

Many of the shortcomings of the breakpoint may be avoided by

the use of quantitative models of performance on progressive-ratio
schedules, for example the model recently proposed by Bradshaw
and Killeen (2012). This model was derived from Killeen’s (1994)
general theory of schedule-controlled behaviour, the Mathematical
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rinciples of Reinforcement (MPR), according to which schedule-
ontrolled responding is determined by an excitatory effect of
einforcers on behaviour, biological constraints on responding, and
he efficiency with which schedules couple responses to rein-
orcers. In addition, the progressive-ratio model invokes the linear
aiting principle (Wynne et al., 1996) to predict the escalating
uration of the post-reinforcement pause in successive ratios,
hereby yielding a dynamic account of performance on this sched-
le. The linear waiting principle expresses the finding that the
ost-reinforcement pause on trial i, TP,i, is linearly related to the
otal inter-reinforcement interval on trial i-1, TTOT,i-1:

P,i = T0 + kTTOT,i−1 (1)

here the parameters T0 and k represent the minimum post-
einforcement pause and the slope of the linear waiting function.
he progressive-ratio model contains two key equations that define
unning response rate, RRUN, and overall response rate, ROVERALL:

RUN,i = 1
ı(1 + TTOT, i−1/a)

(2)

OVERALL,i = Ni/TTOT,i (3)

The parameter a (‘specific activation’), which is defined as the
uration of behavioural activation induced by a single reinforcer, is
egarded as an index of incentive value. ı is the minimum time
eeded to execute a response (the reciprocal of the maximum
esponse rate), and is regarded as a measure of the biological limi-
ations on responding (Killeen, 1994; Reilly, 2003; Covarrubias and
paricio, 2008; Sanabria et al., 2008; Bradshaw and Killeen, 2012).

Several lines of evidence support these interpretations of a
nd ı. Consistent with the notion that a is an index of incen-
ive value, it has been found that this parameter is monotonically
elated to the volume of a sucrose-solution reinforcer (Rickard et al.,
009: data re-analysed by Bradshaw and Killeen, 2012). Recently,
larte-Sánchez et al. (2013) compared the values of a for corn
il and sucrose reinforcers; their findings were consistent with
xtant evidence that sucrose is less efficacious than corn oil on
volume-for-volume basis, but more efficacious on a calorie-for-

alorie basis (Naleid et al., 2008). Valencia-Torres et al. (2014) found
hat diabetes induced by systemic treatment with streptozotocin
as associated with a reduction of a, consistent with an antihedo-
ic effect of this treatment (Nefs et al., 2012). D1 and D2 dopamine
eceptor antagonists also reduce a, consistent with the purported
ntihedonic effect of these drugs (Olarte-Sánchez et al., 2012:
ata re-analysed by Bradshaw and Killeen, 2012; Olarte-Sánchez
t al., 2013). Some drugs with known sedative properties, includ-
ng clozapine and cyproheptadine, have been found to increase
he response-time parameter ı (Olarte-Sánchez et al., 2012: data
e-analysed by Bradshaw and Killeen, 2012).

The experiment described in this paper further explored the util-
ty of the progressive-ratio model. The aims were firstly to examine
he sensitivity of the parameters of the model to the food depri-
ation condition and the type of reinforcer used, and secondly to
xamine the effect of �9-tetrahydrocannabinol (THC), a principal
onstituent of cannabis resin with high affinity for CB1 cannabinoid
eceptors (Gaoni and Mechoulam, 1964; Howlett, 2002; Ledent
t al., 1999; Matsuda et al., 1990), on the parameters of the model.
ince, ex hypothesi, a represents the incentive value of a reinforcer,
t was expected that the value of this parameter would be greater
nder conditions of food deprivation than under free-feeding con-
itions. Moreover, in view of the known orexigenic effect of THC
Abel, 1975; De Luca et al., 2012; Higgs et al., 2003; Williams et al.,

998; Williams and Kirkham, 2002a,b), it was expected that this
rug would induce an increase in the value of a. However, in appar-
nt conflict with the latter prediction, Olarte-Sánchez et al. (2012)
ecently reported that THC had no effect on the value of a for food-
l Processes 113 (2015) 122–131 123

pellet reinforcers. The present experiment extended these findings
by examining the effect of THC on performance on progressive-ratio
schedules maintained by sucrose and corn oil reinforcers. In addi-
tion, since Olarte-Sánchez et al. (2012) analysed their data using
an earlier model derived from MPR, designed to account for per-
formance on fixed-ratio schedules (Killeen, 1994), a re-analysis of
their data was carried out using the new progressive-ratio model.

2. Methods

The experiment was carried out in accordance with UK Home
Office regulations governing experiments on living animals.

2.1. Subjects

Twenty-four female Wistar rats (Charles River, UK) approxi-
mately 4 months old and weighing 250–300 g at the start of the
experiment were used. They were housed individually under a con-
stant cycle of 12 h light and 12 h darkness (light on 0600–1800 h),
and were maintained at 80% of their initial free-feeding body
weights (see below) by providing a limited amount of standard
rodent diet after each experimental session. Tap water was freely
available in the home cages.

2.2. Apparatus

The rats were trained in operant conditioning chambers (CeNeS
Ltd. Cambridge, UK) of internal dimensions 25 × 25 × 22 cm. One
wall of the chamber contained a central recess covered by a hinged
Perspex flap, into which a peristaltic pump delivered the liquid
reinforcer (see below). An aperture located 5 cm above and 2.5 cm
to one side of the recess (left for half the subjects; right for the other
half) allowed insertion of a motorised retractable lever (CeNeS Ltd.
Cambridge, UK) into the chamber. The lever could be depressed
by a force of approximately 0.2 N. The chamber was enclosed in a
sound-attenuating chest with additional masking noise generated
by a rotary fan. No houselight was present during the sessions. An
Acorn microcomputer programmed in Arachnid BASIC (CeNeS Ltd.
Cambridge, UK) located in an adjacent room controlled the schedule
and recorded the behavioural data.

2.3. Behavioural training

Two weeks before starting the experiment the food deprivation
regimen was introduced and the rats were gradually reduced to 80%
of their free-feeding body weights. They were randomly allocated
to two groups that underwent training with different reinforcers:
50 �l of a 0.6 M solution of sucrose in distilled water (n = 12), and
25 �l of undiluted corn oil (n = 12). The rats were first trained to
press the lever for the liquid reinforcer, and were then exposed to
an fixed-ratio 1 schedule for 3 days followed by fixed-ratio 5 for a
further 3 days. Thereafter, they underwent daily training sessions
under the progressive-ratio schedule. The progressive-ratio sched-
ule was based on the exponential progression: 1, 2, 4, 6, 9, 12, 15,
20, 25, 32, 40, . . ., derived from the formula (5 × e0.2n) − 5, rounded
to the nearest integer, where n is the position in the ratio sequence
(Roberts and Richardson, 1992). Sessions took place at the same
time each day during the light phase of the daily cycle (between
0800 and 1300 h) 7 days a week. At the start of each session, the
lever was inserted into the chamber; the session was terminated
by withdrawal of the lever 40 min later.
2.4. Drug treatment

Injections of THC were given on Tuesdays and Fridays, and injec-
tions of the vehicle alone on Mondays and Thursdays; no injections
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ere given on Wednesdays, Saturdays or Sundays. Each rat was
ested five times with each dose of THC, the order of treatments
eing counterbalanced across animals according to a Latin square
esign. THC (�9-tetahydrocannabinol, obtained from Tocris Bio-
cience, Bristol, UK) was dissolved in a mixture of ethanol and
ween (1:1) and diluted with sterile water to give the desired con-
entration. It was injected intraperitoneally (2.5 ml kg−1; 25-gauge
eedle) 30 min before the start of the experimental session. The
oses of THC were selected on the basis of previous experience
f the effect of this drug on performance on the progressive-ratio
chedule (Olarte-Sánchez et al., 2012).

.5. Experimental procedure
The experiment consisted of two phases. First, while the rats
ere maintained at 80% of their free-feeding body weights (‘food-
eprived condition’), the effect of THC (0.3, 1 and 3 mg kg−1) was

ig. 1. Performance on the progressive-ratio schedule maintained by the sucrose-soluti
ree-feeding conditions (upper and lower rows). Ordinates, response rate; abscissae, respo
esponse rate, unfilled symbols overall response rate. The curves are best-fit functions de
l Processes 113 (2015) 122–131

tested. Then the rats were given free access to standard laboratory
chow (RM1 rodent diet: SDS Ltd., UK) in their home cages (‘free-
feeding condition’) while daily training under the progressive-ratio
schedule was continued.

2.6. Data analysis

Overall response rate (ROVERALL) was calculated for each ratio
by dividing the number of responses by the total time taken to
complete the ratio, including the post-reinforcement pause, mea-
sured from the end of the preceding reinforcer delivery until the
emission of the last response of the ratio (Bizo and Killeen, 1997).
The first ratio (a single response) and any ratios that had not been

completed at the end of the session were excluded from the anal-
ysis. Running rate (RRUN) was calculated by dividing the number
of responses by the ‘run-time’ (i.e. the time taken to complete the
ratio, excluding the post-reinforcement pause: Bizo et al., 2001).

on and corn oil reinforcers (left and right columns) under the food-deprived and
nse/reinforcer ratio, N. Points are group mean data: filled symbols indicate running
fined by Eqs. (2) and (3).
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Fig. 2. Parameters of the progressive-ratio model, and the breakpoint, for perfor-
mance maintained by the sucrose-solution (empty columns) and corn oil (filled
columns) reinforcers under the food-deprived (DEP) and free-feeding (FREE) condi-
tions. Columns show group mean values + SEM. Significant differences are denoted
by horizontal lines: differences between reinforcer types, *p < 0.05; differences
between deprivation conditions, #p < 0.05. T0 was greater for corn oil than for
sucrose under both deprivation conditions, and was greater under the food-deprived
condition than under the free-feeding condition for both reinforcer types. k was
greater under the free-feeding condition than under the food-deprived condition
for both reinforcer types, but did not differ significantly between reinforcer types.
a was greater under the food-deprived condition than under the free-feeding con-
dition for both reinforcer types, and was greater for corn oil than for sucrose only
under the food-deprived condition. The value of ı did not differ significantly between
C.M. Olarte-Sánchez et al. / Beha

ost-reinforcement pause duration was measured from the end of
he reinforcer delivery until the emission of the first response of
he following ratio.

The breakpoint was defined as the last ratio to be completed
efore 5 min elapsed without any responding, or, in cases where
his criterion was not met within the session, the highest completed
atio (Olarte-Sánchez et al., 2012).

The progressive-ratio model comprising Eqs. (2) and (3) was fit-
ed to the running and overall response rate data obtained from
ndividual rats, and estimates of the four parameters, T0, k, a and ı,

ere derived using the ‘Solver’ facility of Excel (Microsoft Corpora-
ion); goodness of the combined fit of Eqs. (2) and (3) to the overall
nd running response rate data was expressed as R2 (Bradshaw and
illeen 2012).

The model was fitted to the data obtained from each rat in the
ast ten sessions in which no active treatment was administered
nder the food-deprived and free-feeding conditions, and esti-
ates of the four parameters were derived. These estimates were

nalysed by separate two-factor analyses of variance with rein-
orcer type as a between-groups factor and deprivation condition as
within-subject factor, followed, in the case of a significant interac-

ion, by post hoc comparisons of the two groups within conditions,
nd the two conditions within groups, using Student’s t-test.

The model was also fitted to the data obtained from each rat in
he sessions in which injections of THC or its vehicle were admin-
stered, and estimates of the four parameters were derived. These
stimates were analysed by separate one-factor analyses of vari-
nce with treatment condition as a within-subject factor, followed,
n the case of a significant effect of treatment, by comparison of each
ose of THC with the vehicle-alone treatment using Dunnett’s test.
he effect sizes revealed by the analyses of variance were expressed
s partial �2 (�2

p).
The same statistical methods as were used to analyse parame-

ers of the model were also used to analyse the breakpoints.
In addition to the results of the present experiment, the same

nalytical methods were used to re-analyse the data reported by
larte-Sánchez et al. (2012) on the effect of THC on performance
aintained by a progressive-ratio schedule of food-pellet rein-

orcement. These data were obtained from 12 female Wistar rats
aintained under the same conditions, trained under the same

rogressive-ratio schedule, and tested with the same doses of THC
s those used in the present experiment. A significance criterion of
< 0.05 (two-tailed) was adopted in all statistical analyses.

. Results

.1. Comparison of performance maintained by sucrose and corn
il reinforcers

Fig. 1 shows the mean response rate data from the two groups
n sessions in which no drug treatment was administered under
he food-deprived and free-feeding conditions. In both groups
nd under both conditions, running response rate declined mono-
onically towards zero, whereas overall response rate rose to

peak before declining towards zero. Under the food-deprived
ondition, the peak of the overall response rate function was
ower and the slope of the declining phase shallower in the
orn oil-reinforced group than in the sucrose-reinforced group.
n both groups response rates declined more steeply under the
ree-feeding condition than under the food-deprived condition.
he progressive-ratio model provided a good description of the

roup mean overall and running response rate data obtained from
oth groups (sucrose-reinforced group: R2 = 0.995 [food-deprived],
.994 [free-feeding]; corn oil-reinforced group: R2 = 0.983 [food-
eprived], 0.988 [free-feeding]).
reinforcer types or deprivation conditions. The breakpoint was higher under the
food-deprived condition than under the free-feeding condition for both reinforcer
types.

Fig. 2 shows the mean (+SEM) estimates of the parameters
of the model derived from the individual rats in the two groups
under the two deprivation conditions. The data from one rat in the
corn oil-reinforced group which did not respond reliably under the
free-feeding condition were omitted, leaving 11 rats in the corn oil-
reinforced group and 12 in the sucrose-reinforced group. Analysis
of variance of the values of T0 showed significant main effects of
reinforcer type [F(1,21) = 9.1, p < 0.01, �2

p = 0.32] and deprivation
2
condition [F(1,21) = 9.6, p < 0.01, � p = 0.30], reflecting the higher

values of this parameter obtained under the food-deprived than the
free-feeding condition, and the lower values seen in the sucrose-
reinforced group compared to the corn oil-reinforced group; the
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Table 2
Corn oil reinforcer: effects of THC on the parameters of the progressive-ratio model,
and the breakpoint, in rats maintained under the food-deprived condition (group
mean values ± SEM).

Parameter Vehicle THC 0.3 mg kg−1 THC 1 mg kg−1 THC 3 mg kg−1

T0, s 5.63 ± 1.33 5.62 ± 1.29 6.14 ± 1.56 6.35 ± 1.56
k 0.63 ± 0.09 0.62 ± 0.09 0.58 ± 0.1 0.56 ± 0.1
a, s 70.2 ± 17.7 73 ± 19.7 64.3 ± 18 67.7 ± 18.6
ı, s 0.44 ± 0.15 0.47 ± 0.12 0.37 ± 0.12 0.45 ± 0.15
ig. 3. Effect of THC 0.3, 1 and 3 mg kg−1 on performance on the progressive-ratio sc
rdinates, response rate; abscissae, response/reinforcer ratio, N. Points are group m

ate. The curves are best-fit functions defined by Eqs. (2) and (3).

nteraction was not statistically significant [F < 1]. In the case of
, there was a significant main effect of deprivation condition
F(1,21) = 47.9, p < 0.001; �2

p = 0.69], reflecting higher values of
his parameter seen under the free-feeding condition than under
he food-deprived condition; there was no significant main effect
f group [F < 1] and no significant interaction [F(1,21) = 2.1, NS,
2

p = 0.16]. In the case of a, there were significant main effects of
oth reinforcer type [F(1,21) = 19.5, p < 0.001, �2

p = 0.69] and depri-
ation condition [F(1,21) = 6.5, p < 0.05, �2

p = 0.24], and a significant
nteraction effect [F(1,21) = 9.1, p < 0.05; �2

p = 0.30]. Multiple com-
arisons revealed that the free-feeding condition was associated
ith a reduction of the value of a, compared to the food-deprived

ondition, in the case of both reinforcer types. Under the food-
eprived condition, the value of a was greater for corn oil than
or sucrose; however, under the free-feeding condition, there was
o significant difference between the values of a for the two rein-

orcers. In the case of ı, analysis of variance revealed no significant
ain effect of either reinforcer type [F(1,21) = 4.1, NS, �2

p = 0.16] or
eprivation condition [F < 1], and no significant interaction [F < 1].

Also shown in Fig. 2 are the breakpoint data. Analysis of vari-
nce showed a significant main effect of deprivation condition
F(1,21) = 23.8, p < 0.001, �2

p = 0.52], reflecting the higher break-
oints obtained under the food-deprived condition than under the
ree-feeding condition in the case of both the sucrose and the corn
il reinforcer. There was no significant main effect of reinforcer type
F < 1] and no significant interaction [F < 1].

.2. Effect of THC on performance under the progressive-ratio
chedule

.2.1. Sucrose-reinforced group
Fig. 3 shows the group mean response rate data and Table 1
hows the mean ± SEM values of the parameters of the model
erived from the individual rats. There was no significant effect
f THC on the value of T0 [F(3,33) = 1.9, NS, �2

p = 0.15] or k
F(3,33) = 1.4, NS, �2

p = 0.11]. There was a significant effect of treat-

able 1
ucrose reinforcer: effects of THC on the parameters of the progressive-ratio model,
nd the breakpoint, in rats maintained under the food-deprived condition (group
ean values ± SEM).

Parameter Vehicle THC 0.3 mg kg−1 THC 1 mg kg−1 THC 3 mg kg−1

T0, s 3.33 ± 0.29 3.72 ± 0.65 2.62 ± 0.68 3.19 ± 0.34
k 0.51 ± 0.03 0.53 ± 0.04 0.54 ± 0.04 0.48 ± 0.05
a, s 23.4 ± 5.4 24.4 ± 5.4 31.1 ± 5.6a 30.2 ± 7.4a

ı, s 0.21 ± 0.02 0.2 ± 0.03 0.25 ± 0.03 0.24 ± 0.02
R2 0.94 ± 0.01 0.9 ± 0.03 0.91 ± 0.02 0.92 ± 0.02
Breakpoint 163.3 ± 38.8 170.5 ± 38.8 176.3 ± 43.1 157.1 ± 31.6

a Significantly different from vehicle control condition, P < 0.05.
R2 0.88 ± 0.03 0.86 ± 0.04 0.84 ± 0.04 0.81 ± 0.05
Breakpoint 173.7 ± 46.5 166.4 ± 46.7 177.3 ± 48 152.4 ± 38.7

ment on a [F(3,33) = 2.9, p < 0.05, �2
p = 0.21]; the linear contrast

effect was significant [F(1,11) = 6.7, p < 0.05, �2
p = 0.38]. Multiple

comparisons showed that the value of a was significantly increased
by THC 1 and 3 mg kg−1 compared to the vehicle-alone treatment,
reflecting the somewhat shallower slopes of the descending limbs
of the response rate functions obtained with these doses (Fig. 3).
THC had no significant effect on the value of ı [F(3,33) = 1.7, NS,
�2

p = 0.14]. There was no significant effect of THC on the breakpoint
[F(3,33) = 1.4, NS, �2

p = 0.12].

3.2.2. Corn oil-reinforced group
Fig. 4 shows the group mean response rate data and Table 2

shows the mean ± SEM values of the parameters of the model
derived from the individual rats. THC had no significant effect on
any of the parameters of the model [T0: F < 1; k: F(3,33) = 1.5, NS,
�2

p = 0.12; a: F < 1; ı: F < 1], or on the breakpoint [F(3,33) = 2.9, NS,
�2

p = 0.22].

3.2.3. Food pellet-reinforced group (re-analysis of data reported
by Olarte-Sánchez et al., 2012)

Fig. 5 shows the group mean response rate data and Table 3

shows the mean ± SEM values of the parameters of the model
derived from the individual rats. THC had no significant effect on
any of the parameters of the model [T0: F(3,33) = 1.5, NS, �2

p = 0.12;

Table 3
Food-pellet reinforcer: Effects of THC on the parameters of the progressive-ratio
model, and the breakpoint, in rats maintained under the food-deprived condition
(group mean values ± SEM).

Parameter Vehicle THC 0.3 mg kg−1 THC 1 mg kg−1 THC 3 mg kg−1

T0, s 4.81 ± 0.94 5.92 ± 1.2 6.14 ± 1.17 4.5 ± 0.56
k 0.5 ± 0.06 0.51 ± 0.06 0.44 ± 0.05 0.51 ± 0.07
a, s 28.1 ± 4.8 26.8 ± 4.9 26.2 ± 5.4 26.5 ± 5.1
ı, s 0.23 ± 0.03 0.2 ± 0.02 0.2 ± 0.02 0.23 ± 0.02
R2 0.96 ± 0.01 0.93 ± 0.02 0.94 ± 0.01 0.93 ± 0.02
Breakpoint 127.4 ± 18.2 126.1 ± 19.6 134 ± 19.9 127.4 ± 17.5
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Fig. 4. Effect of THC 0.3, 1 and 3 mg kg−1 on performance on the progressive-ratio schedule maintained by the corn oil reinforcer under the food-deprived condition. Ordinates,
response rate; abscissae, response/reinforcer ratio, N. Points are group mean data: filled symbols indicate running response rate, unfilled symbols overall response rate. The
curves are best-fit functions defined by Eqs. (2) and (3).
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the form of the relation between the level of deprivation and rein-
forcer value. Further analysis based on systematic manipulation of
deprivation conditions is needed to address this issue.

1 This nomenclature differs from that used by Herrnstein (1970). Rmax and KH are
algebraically identical to Herrnstein’s (1970) k and ro; however, unlike Herrnstein’s
parameters, Rmax and KH are theoretically neutral. Rmax expresses the maximum
ig. 5. Effect of THC 0.3, 1 and 3 mg kg−1 on performance on the progressive-rat
re-analysis of data reported by Olarte-Sánchez et al., 2012), Ordinates, response r
ndicate running response rate, unfilled symbols overall response rate. The curves a

: F(3,33) = 1.8, NS, �2
p = 0.14; a: F < 1; ı: F(3,33) = 1.3, NS, �2

p = 0.10],
r on the breakpoint [F < 1].

. Discussion

In agreement with previous findings (Bezzina et al., 2015;
larte-Sánchez et al., 2013; Valencia-Torres et al., 2014 also ear-

ier data re-analysed by Bradshaw and Killeen, 2012), the present
esults indicate that operant behaviour maintained by progressive-
atio schedules is well described by the mathematical model of
erformance on this schedule (see Section 1). The results also
rovide new information about the sensitivity of the four param-
ters of the model to schedule manipulations and acute treatment
ith THC, a putative orexigenic drug.

.1. Effect of deprivation level

The values of a were substantially reduced when the rats were
ested under the free-feeding condition, compared to the values
btained under the food-deprived condition, indicating a reduction
f the incentive values of both reinforcers when home cage feeding
as not restricted.

It has, of course, been known for many years that food depriva-
ion enhances the efficacy of food reinforcers (Clark, 1958; Hillman
t al., 1953; Horenstein, 1951; Skinner, 1936). However, although

ost current theories of schedule-controlled behaviour (e.g.
errnstein, 1970; Killeen, 1994) assume that deprivation enhances

einforcer value, the exact form of this relationship remains
nknown. Herrnstein’s (1970) response-strength equation defines
edule maintained by food-pellet reinforcer under the food-deprivation condition
bscissae, response/reinforcer ratio, N. Points are group mean data: filled symbols
t-fit functions defined by Eqs. (2) and (3).

a hyperbolic relation between response rate, R, and reinforcement
rate, r, thus:

R = Rmax × r

KH + r
(4)

where Rmax and KH are free parameters.1 Herrnstein (1970, 1974)
interpreted KH (r0 in his notation) as the rate of extraneous
(unobserved) reinforcement, expressed in units of the reference
(food) reinforcer. According to this interpretation, the finding that
an increase in the severity of food deprivation causes a reduction
of the value of KH for food-reinforced responding (Bradshaw et al.,
1983; Heyman and Monaghan, 1987) implies that deprivation
enhances the efficacy or value of food reinforcers. Killeen’s (1994)
MPR theory also assumes that deprivation level is a determinant
of reinforcer value, where value (a) is defined as the duration of
behavioural activation induced by a single reinforcer. The present
finding of a reduction of a following a reduction of the severity
of food deprivation is clearly in accord with this assumption.
However, it is important to emphasise that neither Herrnstein’s
(1970) nor Killeen’s (1994) theory makes specific predictions about
reponse rate and KH the reinforcement rate corresponding to Rmax/2 (Bradshaw et al.,
1976; Shah et al., 1991; for discussion, see McDowell, 2013). In most experimental
applications of Eq. (4), R has been taken to refer to ROVERALL (see text for further dis-
cussion). It should be noted that the term k in Eq. (1) is not related to the parameter
of the same name in Herrnstein’s (1970) model.
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The value of ı did not differ between the food-deprived and
ree-feeding conditions, suggesting that the deprivation condition
id not affect the motor aspects of performance. However the two
arameters expressing the linear waiting principle, T0 and k, did
iffer between the two conditions, the value of T0 being smaller
nd that of k larger under the food-deprived condition than under
he free-feeding condition. There do not appear to have been any
ystematic investigations of the sensitivity of the linear waiting
unction to the level of food deprivation; this may be an issue
orth pursuing in future experiments, using procedures such as the

esponse-initiated delay schedule which reveal linear waiting more
irectly than the progressive-ratio schedule (Wynne and Staddon,
988 see Staddon, 2014, for review).

The finding that the food-deprived condition was associ-
ted with higher breakpoints than the free-feeding condition is
onsistent with many earlier observations of performance on
rogressive-ratio schedules (Ferguson and Paule, 1997; Hodos,
961; Hodos and Kalman, 1963; Jenks and Higgs, 2010; Rusted et al.,
998; Skjoldager et al., 1993). This effect has generally been inter-
reted in terms of a motivation-enhancing effect of deprivation.
hilst the present finding that the value of a was higher under the
ore severe deprivation condition is consistent with this interpre-

ation, it should be noted that, unlike a, the breakpoint is sensitive
o ‘non-motivational’ manipulations such as the response require-

ent and the ratio step size (Arnold and Roberts, 1997; Skoljdager
t al., 1993; Covarrubias and Aparacio, 2008), and therefore does
ot constitute a specific index of motivation or incentive value (see
ection 1).

.2. Comparison of sucrose and corn oil reinforcers

As reported previously (Olarte-Sánchez et al., 2013), the value
f a was higher for 25 �l of corn oil than for 50 �l of 0.6 M sucrose
n the food-deprived condition. Olarte-Sánchez et al. (2013) noted
hat although corn oil was evidently more efficacious than 0.6 M
ucrose on a volume-for-volume basis, sucrose was the more effi-
acious reinforcer on a calorie-for-calorie basis. Interestingly, under
he free-feeding condition, the values of a derived for the two
einforcers did not differ significantly from one another. This sug-
ests that the relationship between deprivation level and reinforcer
alue may differ between different types of reinforcer.

The values of ı did not differ significantly between the sucrose
nd corn oil reinforcers. However, as previously reported by Olarte-
ánchez et al. (2013), the parameters expressing the minimum
ost-reinforcement pause (T0) did differ significantly between the
wo reinforcers, possibly reflecting the occurrence of more pro-
racted post-prandial orofacial grooming following ingestion of the

ore viscous reinforcer (see also Bradshaw and Killeen, 2012).
The inclusion of separate parameters to represent response time

nd post-reinforcement pausing is a feature of the new progressive-
atio model not shared by earlier models derived from MPR, for
xample the model of performance on fixed-ratio schedules:

OVERALL = �

ı
− N

a
(5)

here � is a parameter representing the coupling of responses to
einforcers and a and ı have the same meanings as in Eq. (2) (Killeen,
994). This equation, which has been applied extensively to per-
ormance on progressive-ratio schedules (Bezzina et al., 2008a,b;
ovarrubias and Aparicio, 2008; den Boon et al., 2012; Ho et al.,
003; Kheramin et al., 2005; Killeen et al., 2009; Olarte-Sánchez

t al., 2012; Rickard et al., 2009; Zhang et al., 2005a,b), defines the
aximum response rate as 1/ı and makes no allowance for the

nclusion of the post-reinforcement pause in the overall response
ate. Incorporation of the linear waiting parameters in the new
l Processes 113 (2015) 122–131

model provides a basis for estimating ı without contaminating it
with post-reinforcement pausing.

The present results may have some bearing on an ongoing con-
troversy about the sensitivity of the asymptotic response rate in
Eq. (4) (Rmax) to reinforcer manipulations. According to Herrnstein
(1970, 1974), this parameter (k according to his nomenclature)
represents the totality of behaviour, expressed in units of the ref-
erence response. At very high rates of reinforcement, the reference
response swamps all other behaviours, causing the rate of mea-
sured operant responding to approach its maximum value, Rmax.
Reinforcer-related variables such as the magnitude or type of rein-
forcer are assumed to affect the rate of operant responding entirely
via changes in the value of KH, and are not expected to influence
Rmax (Herrnstein, 1974). Evidence related to this prediction has
been inconsistent, some workers reporting uniform values of Rmax

across different sizes and types of reinforcer (Bradshaw et al., 1981;
Heyman and Monaghan, 1987, 1994; Petry and Heyman, 1994), and
others reporting systematic effects of these variables on the value
of Rmax (Belke, 1998; Bradshaw et al., 1978; Dallery et al., 2000;
Harper and McLean, 1992; McDowell and Dallery, 1999; Shah et al.,
1991). Recent work on the fine structure of responding on variable-
interval schedules suggests a way of resolving this difficulty. It has
become increasingly evident that overall response rate on these
schedules reflects several factors, including the minimum time
needed to execute a response, pausing between responses, paus-
ing between bouts of responses, and post-reinforcement pausing
(Brackney et al., 2011; Cheung et al., 2012; Killeen et al., 2002; Shull,
2004, 2005; Shull et al., 2004; Smith et al., 2014). All these factors
are potentially confounded in the overall response rate (Cheung
et al., 2012), and hence in any unitary index of response capac-
ity derived solely from ROVERALL, such as Rmax in Eq. (4), and ı as
defined by Eq. (5). Although caution is needed in generalizing find-
ings across different schedules, the successful decomposition of the
determinants of maximum response rate in the new progressive-
ratio model into response time (ı) and post-reinforcement pause
time (T0, k) suggests that a similar decomposition of Rmax may
be in order. Furthermore, the present finding that T0 but not ı
was affected by the quality of the reinforcer raises the possibil-
ity that the effects of reinforcer quality on recovered values of
Rmax in some previous experiments with variable-interval sched-
ules (Belke, 1998; Bradshaw et al., 1978; Dallery et al., 2000; Shah
et al., 1991) may reflect differences in post-reinforcement pausing
rather than differences in response time. If this is the case, then
fitting Eq. (4) to RRUN rather than ROVERALL should reduce the effect
of reinforcer quality on Rmax.

It should be noted that the progressive-ratio model does not take
into account the possible contributions of the length of response
bouts and the rate of bout initiation to RRUN. Any such contribu-
tion would presumably be absorbed by the recovered value of ı,
which would therefore need to be further decomposed if the role
of response bouts is to be isolated from that of response time (see
Brackney et al., 2011). Further work is needed to establish whether
the bout-and-pause pattern that characterises variable-interval
performance is also a feature of progressive-ratio responding. The
present findings offer indirect evidence that this may not be the
case, since deprivation level and reinforcer quality did not affect ı,
whereas such reinforcer-related variables are known to affect bout
initiation rate in variable-interval schedules (Brackney et al., 2011;
Shull, 2004, 2011; Shull et al., 2004).

There was no significant difference between the breakpoints
seen with sucrose and corn oil. This contrasts with the substan-
tial difference between the values of a associated with the two

reinforcers. However, in a previous study employing identical rein-
forcers to those used in the present experiment, Olarte-Sánchez
et al. (2013) observed higher breakpoints with the corn oil than
with the sucrose reinforcer. The reason for this discrepancy is not
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lear, although, as noted by Rickard et al. (2009), the influence of
otivational manipulations on the breakpoint may be less reliable

han their effects on a when, as in the present experiment, overall
esponse rates are also affected.

.3. Effects of THC

It is well known that THC and other CB1 receptor agonists,
ncluding the endocannabinoids anandamide and 2-arachidonoyl
lycerol (2-AG), can induce hyperphagia in rats and mice (Brown
t al., 1977; Gluck and Ferraro, 1974; Hao et al., 2000; Higgs et al.,
003, 2005; Kirkham and Williams, 2001; Koch, 2001; Williams
nd Kirkham, 1999). This effect is especially pronounced in the
ase of sweet and fatty foods (DiPatrizio and Simansky, 2008; Foltin
t al., 1988; Higgs et al., 2003, 2005; Jones and Kirkham, 2012; Koch,
001; Shinohara et al., 2009; Sofia and Knobloch, 1976; Ward and
ykstra, 2005), leading to the suggestion that CB1 receptors may
lay an important role in determining the incentive values of sapid
oodstuffs (Arnone et al., 1997; Higgs et al., 2003, 2005; Simiand
t al., 1998; Wakley and Rassmussen, 2009; Williams and Kirkham,
002a). The ability of CB1 receptor agonists to increase and antag-
nists to reduce the breakpoint in progressive-ratio schedules has
een cited in support of this suggestion (Hernandez and Cheer,
012; Higgs et al., 2005; Jones and Kirkham, 2012; Maccioni et al.,
008; Rasmussen and Huskinson, 2008; Solinas and Goldberg,
005; Wakley and Rasmussen, 2009; Ward and Dykstra, 2005).

The progressive-ratio model is well suited to examine the effects
f drugs on the incentive value of reinforcers because it allows sep-
rate quantification of motivational and motor processes, which
re often confounded in univariate indices such as the breakpoint
Bezzina et al., 2015). The present results are consistent with the
roposal that CB1 receptors may be involved in determining the

ncentive values of palatable foods, since acute treatment with THC
esulted in a selective increase in the value of a for sucrose, none
f the other parameters of the progressive-ratio model being sig-
ificantly affected. As discussed above, a selective increase in the
alue of a is uniquely indicative of an increase in the incentive value
f the reinforcer rather than an impairment of motor performance
Bradshaw and Killeen, 2012). In the present experiment, the break-
oint was not significantly affected by THC, suggesting that this

ndex may be less sensitive to THC than the parameter a.
A somewhat unexpected finding of this experiment was that

HC’s effect on a occurred only in the case of performance main-
ained by the sucrose reinforcer, no effect being apparent in the case
f performance maintained by either corn oil (present results) or
ood pellets (re-analysis of results obtained by Olarte-Sánchez et al.,
012). The food pellets used by Olarte-Sánchez et al. (2012) (Test-
iet 5TUM 45 mg pellets) have a low sugar content, the total mono-
nd disaccharide content amounting to approximately 2.3 mg per
ellet (calculated from datasheet: TestDiet, 2011). Taking the rel-
tive sweetness of the various sugar constituents into account
Schallenberger, 1993), the sucrose equivalent of a single 45 mg
TUM pellet is approximately 1.7 mg, compared to 10.27 mg in
he case of the sucrose reinforcer used in this experiment (0.6 M,
0 �l). Taken together, therefore, these results suggest that while
B1 receptor stimulation may enhance the reinforcing value of
weet foods, it may have relatively little effect on the value of other
oodstuffs.

It is well established that CB1 receptor agonists can enhance the
nrestricted intake of both fatty and sweet foodstuffs (DiPatrizio
nd Simansky, 2008; Koch, 2001); however, less is known about
he effects of these drugs on operant behaviour maintained by

weet and fatty reinforcers. Indeed, most previous studies of the
ffect of these drugs on performance on progressive-ratio sched-
les used either sucrose or sweetened food pellets as the reinforcer
Hernandez and Cheer, 2012; Higgs et al., 2005; Jones and Kirkham,
l Processes 113 (2015) 122–131 129

2012; Solinas and Goldberg, 2005; Wakley and Rasmussen, 2009).
However, the present results are consistent with a report by Ward
and Dykstra (2005) that CB1 receptor agonists and antagonists had
more pronounced effects on responding maintained by a sweet
reinforcer than on responding maintained by corn oil.

The present findings and those of Ward and Dykstra (2005) raise
the possibility that the ‘incentive-enhancing’ effect of CB1 receptor
agonists may not be entirely attributable to an involvement of these
receptors in a general ‘reward system’ (DeLuca et al., 2012; Panagis
et al., 2014). There is evidence that CB1 receptors are linked to glu-
tamatergic neurotransmission in the mesocortical/ventral striatal
circuit that is believed to regulate the efficacy of divers reinforcers
including food, opiates and psychostimulants (Bellocchio et al.,
2010). However, CB1 receptors are also present in the taste buds,
and stimulation of these receptors selectively enhances the sen-
sation of sweetness (Yoshida et al., 2013; Yoshida and Ninomiya,
2010). The possibility that stimulation of this peripheral receptor
population may underlie the selective effect of THC on the incentive
value of sucrose may merit further investigation.

5. Conclusions

In agreement with previous findings (see above), the results of
this experiment indicate that the progressive-ratio model provides
a good description of performance on this schedule. The model’s
four parameters proffer a means of classifying and quantifying the
effects of behavioural interventions and drugs on performance. The
sensitivity of the ‘specific activation’ parameter, a, to the level of
food deprivation and the quality and quantity of reinforcers lends
support to the proposal that this parameter is a valid metric of
incentive value (Bradshaw and Killeen, 2012; Reilly, 2003). More-
over, the lack of effect of these ‘motivational’ interventions on the
‘response time’ parameter, ı, encourages confidence in the utility
of this parameter as a measure of ‘motor capacity’ (Killeen, 1994;
Bradshaw and Killeen, 2012). An important feature of the model
is the decomposition of maximum response rate, allowing post-
reinforcement pausing to be treated separately from purely motor
constraints on responding. This has enabled the intuitively reason-
able attribution of the relatively low maximum overall response
rate seen with the more viscous reinforcer (corn oil) to post-
prandial behaviours such as orofacial grooming, rather than to
motor incapacity (Olarte-Sánchez et al., 2013).

The progressive-ratio model was derived to account for perfor-
mance on one particular schedule. It is therefore not a competitor
of equations with more general applicability, such as Herrnstein’s
(1970) response-strength equation. Nevertheless, the benefits
derived from decomposing the maximum response rate in the
progressive-ratio model suggests that a similar manoeuvre may
be in order in the case of Herrnstein’s (1970) equation (Bradshaw,
1994). It is suggested that this may help to resolve the ongoing con-
troversy about the sensitivity (or otherwise) of Rmax to motivational
manipulations (Heyman and Monaghan, 1987; McDowell, 2013).

Finally, the effect of THC seen in this experiment suggests that
this drug may preferentially enhance the incentive value of sweet
tasting reinforcers (Ward and Dykstra, 2005). The possibility that
this may reflect an effect of THC on peripheral taste receptors needs
further investigation.
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