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Practical statistical analysis of diffusion tensor images is considered, and we focus primarily on
methods that use metrics based on Euclidean distances between powers of diffusion tensors. First we
describe a family of anisotropy measures based on a scale invariant power-Euclidean metric, which are
useful for visualisation. Some properties of the measures are derived and practical considerations are
discussed, with some examples. Second we discuss weighted Procrustes methods for diffusion tensor
interpolation and smoothing, and we compare methods based on different metrics on a set of examples
as well as analytically. We establish a key relationship between the principal-square-root-Euclidean
metric and the size-and-shape Procrustes metric on the space of symmetric positive semi-definite
tensors. We explain, both analytically and by experiments, why the size-and-shape Procrustes metric
may be preferred in practical tasks of interpolation, extrapolation, and smoothing, especially when
observed tensors are degenerate or when a moderate degree of tensor swelling is desirable. Third we
introduce regularisation methodology, which is demonstrated to be useful for highlighting features of
prior interest and potentially for segmentation. Finally, we compare several metrics in a dataset of
human brain diffusion-weighted MRI, and point out similarities between several of the non-Euclidean
metrics but important differences with the commonly used Euclidean metric.
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1. Introduction

Diffusion tensor imaging (DTI) is an advanced magnetic resonance imaging (MRI) modal-
ity which provides a unique insight into tissue structure and organisation in vivo. DTI
has been applied to the study of brain diseases such as multiple sclerosis, schizophrenia,
and stroke [25], and white matter tractography [4] is a useful application of DTI for
investigating brain connectivity.
There has been substantial interest in the development of approaches for diffusion

tensor processing. For example, a regularisation scheme was proposed to process a ten-
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sor field using diffusion direction maps and diffusion anisotropy maps [10]. A k-means
algorithm with the Mahalanobis distance has been proposed for clustering tensors in
the thalamus [40]. The Euclidean metric was used in level set segmentation methods
[38, 45] for grouping tensor data of particular interest. However, the usual Euclidean
method may be unsatisfactory for diffusion tensors due to the non-Euclidean nature of
the diffusion tensor space. A potential drawback of using the Euclidean distance may
be a violation of the positive semi-definiteness, e.g. in the course of extrapolation [2].
Also, Euclidean averaging is prone to swelling, i.e. inflation of the tensor determinant.
To overcome this problem, several non-Euclidean approaches were developed. The affine-
invariant Riemannian [5, 14, 30] and log-Euclidean Riemannian [2] metrics have been
proposed for diffusion tensor smoothing and interpolation.
Procrustes analysis is another promising non-Euclidean approach to diffusion tensor

processing [11, 43]. The full Procrustes shape metric is also invariant under scaling of
the individual tensors, and the Procrustes metrics can deal with rank-deficient tensors
unlike the affine-invariant and log-Euclidean Riemannian metrics [11]. This is further
elaborated in the paper.
Thus, this paper focuses on weighted mean tensor processing using power-Euclidean

and Procrustes based distances. DTI and weighted tensor averaging are briefly reviewed,
and we also develop a family of anisotropy measures, which is useful for visualising
different aspects of structure in DT images. As already mentioned, it is of both theoretical
and practical interest to compare tensor processing methods based on different metrics.
For example, it is valuable to know that the Euclidean average preserves the trace and
hence the mean diffusivity (MD) [29], whereas the affine-invariant and log-Euclidean
Riemannian metrics instead preserve the determinant, and hence the geometric mean
diffusivity (GMD) [2]. We also compare in this paper various properties of our methods,
focusing on the (principal-)square-root-Euclidean member of the power-Euclidean family
of metrics and the Procrustes size-and-shape metric. While tensor processing methods
based on these metrics can sometimes give very similar or identical results, we attempt to
explain how the two metrics differ and what consequences their differences have for tensor
processing. In particular, we both prove analytically and show by simulation that the
two approaches can be radically different when used for processing of degenerate tensors.
Thereby, it is established that unlike its Euclidean sibling, the Procrustes averaging
preserves matrix ranks, i.e. dimension of diffusion.
More recently, it has been argued that a certain degree of swelling may be acceptable

to compensate for Johnson (Rician) noise, and that the above Riemannian methods may
therefore be biased in such scenarios [29]. We show here that the Procrustes metric and
the square-root-Euclidean metric reduce the Euclidean swelling effect less aggressively
than do the aforementioned Riemannian methods. This makes the Procrustes and square-
root-Euclidean methods interesting alternatives when some swelling may indeed need
to be allowed. A full comparison of the interpolated mean diffusivity under the two
Riemannian, Procrustes, and all power-Euclidean metrics is also presented analytically,
and illustrated empirically.
We also establish a key relationship between the Procrustes and square-root-Euclidean

metrics in the form of an analytic bound, which is also illustrated on synthetic examples.
We then also discuss a weighted regularisation model which incorporates smoothing

and a generalised regularisation that forces the tensor field to favour a prescribed diffusion
profile. The power-Euclidean and Procrustes metrics are again our main interest, and we
discuss properties of the different methods using synthetic examples and human brain
DT images.
We conclude by discussing several possible extensions and further applications of this

work, such as tensor valued kernel smoothing and non-parametric regression.
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Although the paper focuses on 3× 3 matrices, all our theoretical results also hold true
for the general n× n case, even when this is not explicitly stated below.

2. DTI and anisotropy

2.1 Diffusion tensor imaging

Diffusion MRI yields quantitative measures reflecting the directions of water diffusion in
white matter fibre tracts [35]. DTI assumes that a water molecule displacement x ∈ R

3

over a fixed time t in a voxel follows a zero-mean multivariate Gaussian distribution [1]
with covariance matrix 2Dt, whereD is the diffusion tensor, which is a symmetric positive
semi-definite matrix. We will write Ω≥0(n) for the set of n×n such matrices. Some of our
discussion will be restricted to symmetric positive definite matrices, and we will write
Ω>0(n) for the set of n × n such matrices; n = 3 is our main case here. The diffusion
tensor at each voxel can be estimated from diffusion MR images [6, 23, 24, 42]. The
eigensystem of the diffusion tensor plays an important role in DTI studies. Thus, the
MD of the voxel is defined as

MD(D) =
1

3
trD =

λ1 + λ2 + λ3
3

,

where λ1 ≥ λ2 ≥ λ3 ≥ 0 are the eigenvalues of D. Whenever λ1 > λ2, the principal
eigenvector is defined as the one corresponding to λ1 and is thought to be aligned with
the dominant fibre orientation at the voxel. In biological tissues there are barriers such as
cell walls and nerve fibres, and so it is easier for water molecules to diffuse along certain
preferred directions. The dominance of the preferred direction of water molecule diffusion
can be captured quantitatively using diffusion anisotropy measures [25, 39]. Fractional
anisotropy (FA) is the most popular such measure [22], defined below as the proportion
of the ‘magnitude’ of D that can be ascribed to anisotropic diffusion:

FA(D) =

√√√√3
[(
λ1 − λ̄

)2
+

(
λ2 − λ̄

)2
+

(
λ3 − λ̄

)2]

2
(
λ21 + λ22 + λ23

) =
sλ√
λ2
,

where λ̄ = MD(D) and λ2 =
∑3

i=1 λ
2
i /3, and sλ is the sample standard deviation of the

spectrum of D 6= 0, the zero tensor. FA ranges from 0 for complete isotropy to 1 for
linear anisotropy, and planar diffusion (λ1 = λ2 > λ3 = 0, i.e. oblate diffusion ellipsoid)
has FA(D) = 1/

√
2.

Procrustes anisotropy (PA) is an alternative anisotropy measure that has been pro-
posed based on the full Procrustes metric [11], and is defined as follows:

PA(D) =

√√√√√3

[(√
λ1 −

√
λ
)2

+
(√

λ2 −
√
λ
)2

+
(√

λ3 −
√
λ
)2

]

2 (λ1 + λ2 + λ3)
=
s√λ√
λ̄
, (1)

where
√
λ =

∑3
i=1

√
λi/3 and s√λ is the sample standard deviation of square roots of

the eigen values. Thus, PA(D) = FA(
√
D), where

√
D is the principal square root of D

(see more below). As in the case of FA, the range of PA is [0, 1] with 0, 1/
√
2, and 1

corresponding to extreme isotropy, planar diffusion, and full anisotropy, respectively.
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2.2 A family of anisotropy indices

The power-Euclidean metric was briefly introduced in [11], and for a 6= 0 (a < 0 is
meaningful for full rank tensors only) is given by

dA(D1,D2|a) =
1

|a| ‖ Da
1 −Da

2 ‖, (2)

where Da = EΛaET and EΛET is the spectral decomposition of D, and ‖A‖2 =
tr(ATA). As a → 0 the metric becomes the log-Euclidean metric dL(D1,D2) =
‖ log(D1)− log(D2) ‖, which requires D1 and D2 to be positive definite, i.e. ∈ Ω>0(3).
We introduce another distance called the scale invariant power metric for a 6= 0 given

by

dAS(D1,D2|a) =
1

|a|





0 if D1 = D2 = 0

1 if either D1 = 0 or D2 = 0

infβ∈R ‖ βDa
1 −

Da
2

‖Da
2‖ ‖ otherwise,

(3)

which involves scaling of a powered tensor to best match a unit size powered tensor.
Writing 〈D1,D2〉 for the inner product tr(DT

1 D2) and assuming neither Di equals 0,
dAS(D1,D2|a) = 1

|a|
√

| sin(∠(Da
1,D

a
2))|. The angle ∠(Da

1,D
a
2) is defined via its cosine

cos(∠(Da
1,D

a
2)) = 〈Da

1,D
a
2〉/(‖Da

1‖‖Da
2‖), which in the context of kernels [32] is known

as the alignment between Da
1 and Da

2.
The anisotropy measure based on the scale invariant power-Euclidean metric with

power a is a generalisation of FA given by

FA(Da) =

√√√√3
[(
λa1 − λa

)2
+

(
λa2 − λa

)2
+

(
λ3 − λa

)2]

2
(
λ2a1 + λ2a2 + λ2a3

) =
sλa√
λ2a

, (4)

where λa =
∑3

i=1 λ
a
i /3 [11] and sλa is the sample standard deviation of the a-th power

of the eigenvalues of D. Note that

FA(Da) = |a|
√

3

2
dAS (I3×3,D|a) .

We see that FA(D) and PA(D) are both members of FA(Da) with a = 1 and a = 1/2
respectively. Note that for any non-zero a, FA((cD)a) =FA(Da) for any constant c > 0,
i.e. all the members of this family of anisotropy maps are scale invariant. Perhaps less
obvious is the following result that for any fixed tensor D, the family is monotonically
increasing in a.

Theorem 2.1 For any non-zero symmetric semi-positive definite D, FA(Da) is an
increasing function of a, where a ∈ [0,∞).

For the proof, see Appendix A. Hence, we have

Corollary 2.1 PA(D) ≤FA(D) for any non-zero tensor D.
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Note that as a→ 0+, FA(Da) approximates a rank indicator function:

lim
a→0+

FA(Da) =





0 if rank(D) = 3

1/
√
2 if rank(D) = 2

1 if rank(D) = 1.

Also

lim
a→+∞

FA(Da) =





0 if λ1 = λ2 = λ3 > 0

1/
√
2 if λ1 = λ2 > λ3

1 if λ1 > λ2 ≥ λ3,

that is, any oblate tensor D in the limit flattens to a disk, whereas a general tensor
becomes linear.
We can also define log-Euclidean Anisotropy (LA) for full rank tensors (apart from

ones with λ1 = λ2 = λ3 = 1) as follows

LA(D) = FA(log(D)) =

√√√√√3
∑3

i=1

(
log(λi)− log(λ)

)2

2
∑3

i=1 (log(λi))
2 .

Note that LA(D) is not a member of the family (4), and FA(Da) does not converge to
LA(D) as a→ 0+. Hence the case of LA(D) is not covered by Theorem 2.1, and indeed,
for some tensors LA(D) ≤ FA(D) whereas for others LA(D) ≥ FA(D). Also, for any
non-zero a, LA(Da) = LA(D), and by varying a, it is possible to make FA(Da) smaller
or larger than LA(D). Note also that as λ3 → 0 (while λ1 and λ2 are bounded away
from 0 or vanish at slower rates), LA→ 1. At the same time, as λ1 → ∞ (while λ2 and
λ3 are bounded or grow at slower rates), LA→ 1 as well. Thus, in the limit LA does
not distinguish between planar diffusion and linear diffusion. Likewise, as λ1 = λ2 → ∞
(while λ3 is bounded or grows at a slower rate), LA→ 1/

√
2. Also, as λ2 = λ3 → 0 (while

λ1 is bounded away from 0 or vanishes at a slower rate), LA→ 1/
√
2 as well. Thus LA

in the limit does not distinguish between isotropic planar diffusion and linear diffusion
either. These observations might also explain why FA and other members of its family
(4) may be preferred in practice as elaborated in Section 2.3 below.
At the same time, for full rank tensors,

lim
a→0+

FA(Da)

a
=

√√√√1

2

3∑

i=1

(
log(λi)− log(λ)

)2
(5)

which is just the sample standard deviation of the spectrum of log(D), and is also
GA(D)/

√
2, where GA is the geodesic anisotropy [9].

2.3 Practical comparisons of anisotropy measures

One motivation for considering anisotropy other than FA is to enhance visual experience
of the end user. In order to visualize the difference between FA and PA in a practical
example we can see in Figure 1 much better contrast in the bright areas (high anisotropy)
of the PA map compared to the FA map, and structure within the corpus callosum in
the zoomed insets is easier to visualize using PA.
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Figure 1. FA (a, a1) and PA (b, b1) maps; a and b are axial FA and PA maps; a1 and b1 are zoomed inset regions
in the yellow box.

More generally, using values of a larger than 1 can increase the contrast in low
anisotropy regions, while using values of a lower than 1, e.g. a = 0.5 as in PA, can
increase the contrast in high anisotropy regions. It may then appear as if some bright-
ness transformation of the [0, 1] image intensity (anisotropy) range could increase the
contrast within the bright structures of a1 to reveal the same amount of detail as in
b1. However, for a general pair of anisotropy maps (a, b > 0, a 6= b as in Theorem 2.1)
such as FA (a = 1) and PA (b = 0.5), there need not exist a brightness transformation
φ : [0, 1] → [0, 1] such that φ(FA(Da)) =FA(Db) for all tensors D. In fact, consider D1

with eigenvalues [1, 0.1, 0.01] and D2 with eigenvalues [1,≈ 0.1011, 0]. It is easy to see
that both tensors have the same FA value of ≈ 0.9486, but FA(D0.025

1 ) ≈ 0.0864 whereas
FA(D0.025

2 ) ≈ 0.7077, which would be impossible if φ as above existed. Therefore, com-
puting FA(Da) for a range of a values is important for providing the end user with the
flexibility of highlighting specific anisotropy ranges in real time and subsequently opti-
mising the end user’s visual perception of specific features of the DT image. (Note that
re-computing FA(Da) in real time for a range of a values is not an issue.)
To illustrate the possibility of contrast adjustment with the help of the FA(Da) family

of maps, Figure 2 presents FA(Da) maps of the following parametric family of tensors
D(t):

D(t) =







1 0 0

0 1 0

0 0 1− 2t


 if t ∈ [0, 1/2],



1 0 0

0 2− 2t 0

0 0 0


 if t ∈ (1/2, 1]

for a ∈ { 1
40 ,

1
10 ,

1
2 , 1, 2, 10, 40}. Note that FA(D(0)) = 0, FA(D(12 )) = 1√

2
, and

FA(D(1)) = 1, and for t ∈ [1/2, 1) D(t) corresponds to planar diffusion, i.e. rank(D(t)) =
2. The fact that FA does not distinguish between anisotropy of D1 (full rank) and D2

(rank-deficient) whereas PA and other members (with a < 1) do, is not surprising and
adds to our motivation to use other members along with FA. Indeed, as already discussed
in the context of Equation 1, PA is based on the full Procrustes metric, which, unlike
some other metrics, can deal with some rank-deficient situations. For more details of
comparing FA with PA, see [41].
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Figure 2. Members of the FA(Da) family of anisotropy maps are ordered as explained by Theorem 2.1 but
still meet at the points of full isotropy (FA(Da) = 0), planar diffusion (FA(Da) = 1/

√
2) and linear diffusion

(FA(Da) = 1). The isolated circles correspond to the tensor D1 with eigenvalues [1, 0.1, 0.01], which has the same
FA value of ≈ 0.9486 as D2 = D(t ≈ 0.1011) (intersecting the curves at FA= 0.9486), whereas the other anisotropy
measures (e.g. a = 1/2, 1/40) disagree notably for these tensors.

3. Comparing distances

3.1 Weighted generalised Procrustes mean

We are often interested in weighted mean tensor estimation, for example when inter-
polating or smoothing tensors. A brief description of the method was given in [44] but
here we supply more details and consider more applications and results. Given a suitable
distance function d, the weighted Fréchet mean [2, 16] of a sample of N diffusion tensors
D1,..., DN is defined by

Σ̂ = arg inf
Σ

N∑

i=1

wid
2(Di,Σ), (6)

where the weights wi satisfy 0 ≤ wi ≤ 1 and
∑N

i=1wi = 1, and in applications can be,
for example, a function of the Euclidean distance from the location of interest to the
sampling locations (e.g., voxels). Naturally, different choices of d(·) generally result in
different weighted mean diffusion tensors.
Procrustes analysis is a powerful shape analysis tool for matching configurations of

points as closely as possible using the similarity transformations (rotation, translation
and scaling) [12, 17]. In this study, a weighted Procrustes framework is proposed to
compute the weighted Fréchet mean tensor.
To ensure the symmetry and positive semi-definiteness of D, a reparameterisation

D = QQT is used [42], where Q is a general 3× 3 matrix. A Procrustes size-and-shape
metric [11] was introduced to match Q1 (from D1) and Q2 (from D2) under rotation and

7
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reflection while preserving scale. Thus, the Procrustes size-and-shape metric is defined
as

dS(D1,D2) = inf
R∈O(3)

‖ Q1 −Q2R ‖, (7)

where a 3 × 3 rotation and reflection matrix R ranges over O(3), the space of 3 × 3
orthogonal matrices. Note that dS in Equation (7) is well-defined as a metric on the
set of symmetric positive semi-definite matrices since QQT = PPT implies P = QR
for some R ∈ O(3) and the Frobenius (Euclidean) norm ‖ · ‖ is rotation and reflection
invariant.
Any orthogonal matrix R̂ that minimises the norm of the difference in Equation (7) is

given by R̂ = UVT, whereU,V ∈ O(3) are obtained from a singular value decomposition
QT

1 Q2 = V∆UT, with ∆ a diagonal 3× 3 matrix of singular values.
When a sample of N tensors is available, weighted generalised Procrustes analysis

(WGPA) can be used to find the weighted mean Σ̂ when d(·) = dS(·) is the size-and-

shape distance [11]. Specifically, WGPA computes Σ̂WGPA = Q̂WGPAQ̂
T
WGPA, with

Q̂WGPA =
∑N

i=1 wiQiR̂i, where the orthogonal matrices R̂i, i = 1, . . . , N minimise the
sum of weighted squared Euclidean norms given by

fWGPA(R1, ...,RN ) =

N∑

i=1

wi ‖ QiRi −
N∑

j=1

wjQjRj ‖2

=

N∑

i=1

wi ‖ (1− wi)QiRi −
∑

j 6=i

wjQjRj ‖2

=
N∑

i=1

wi(1− wi)
2 ‖ QiRi −

1

(1− wi)

∑

j 6=i

wjQjRj ‖2 . (8)

Note that Qi could be the Cholesky decomposition chol(Di) or the symmetric, i.e. prin-
cipal square root of Di or another choice such that Di = QiQ

T
i , since any two decom-

position matrices of the same tensor are related via an orthogonal transformation. We
prefer the symmetric square root not least because its uniqueness extends to degenerate
matrices. An iterative algorithm to minimise fWGPA was introduced in [44] and is used
here to produce experimental results in Section 6.2.
An extension of the method to a power Procrustes approach is where D = Q1/a, and

Q = Da is the symmetric a root. The algorithm proceeds exactly as above for an even
power of 1/a, where above we have used 1/a = 2.

3.2 Other tensor distances and their properties

The weighted tensor averaging can be applied to interpolate between two diffusion ten-
sors. Weighted averages of D1 and D2 corresponding to different metrics are listed in
Table 1. The weights are typically constrained by w1 + w2 = 1, enabling us to write
D(w) for D(1 − w,w). For interpolation, we additionally require wi ≥ 0, i = 1, 2,

but Table 1 does not make such assumptions. In the table, R̂ is the Procrustes min-
imiser of Equation (7), and transposition in the case of dH is not necessary given
the symmetry of the principal square root tensors. The definitions of the metrics
used in this table were summarised in [11]. Note that the Euclidean root distance

dH(D1,D2) =‖ D
1/2
1 −D

1/2
2 ‖= 2dA(D1,D2|0.5).

8
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Table 1. Weighted averages of D1 and D2 using different metrics.

Metric (notation) Weighted Average D(w1, w2)
Euclidean (dE) w1D1 + w2D2

log-Euclidean (dL) exp {w1 log(D1) +w2 log(D2)}
Affine-invariant Riemannian (dR) D

w1+w2
2

1

(
D

− 1

2

1 D2D
− 1

2

1

)w2

D
w1+w2

2

1

Cholesky (dC) [w1chol(D1) + w2chol(D2)]
[w1chol(D1) + w2chol(D2)]

T

Euclidean root (dH) (w1D
1/2
1 + w2D

1/2
2 )2

Procrustes size-and-shape (dS) (w1Q1 + w2Q2R̂)(w1Q1 + w2Q2R̂)T

All of the above interpolants D(w) satisfy d(D(w1),D(w2)) = |w1 −w2|d(D(0),D(1))
for all w1, w2 ∈ [0, 1], and in particular describe the shortest path between D1 and D2

with respect to their metrics. We will refer to curves {D(w), w ∈ I ⊃ [0, 1]} as geodesics
through D1 and D2; extrapolation corresponds to w outside [0, 1].
From their definitions, it is clear that dH(D1,D2) ≥ dS(D1,D2) for any tensors D1,

D2. Since we find these two metrics particularly useful, especially when dealing with
degenerate tensors, and often producing similar results in our studies, we want to un-
derstand their relationship better. To this effect, we establish the following theorem.

Theorem 3.1 Let D1,D2 ∈ Ω≥0(3). Then,
√
0.5dH(D1,D2) ≤ dS(D1,D2) ≤

dH(D1,D2). Moreover, if D1 6= D2, and D1 and D2 are of rank 1, then√
0.5dH(D1,D2) < dS(D1,D2) and dS(D1,D2)/dH(D1,D2) →

√
0.5 as d(D1,D2) → 0

in any metric d.

See Appendix B for the proofs of this and the following auxiliary result.

Proposition 3.1 Let Qi, i = 1, 2 be symmetric positive semi-definite n×n real matri-
ces. Then

min
R∈O(n)

‖Q1 −Q2R‖2 ≥ 0.5‖Q1 −Q2‖2. (9)

Thus, in the rank 1 case, the two metrics diverge the most as the two tensors become
indistinguishable. We also conjecture that in general, in order to approach the 1/

√
2

bound, the two tensors must become indistinguishable and simultaneously approach the
subspace of rank 1 tensors; see Appendix B for more details. Section 4.3.2 below gives
relevant supporting experiments.
Despite these seemingly rigid bounds, the two distances can lead to significantly dif-

ferent results when used to average degenerate tensors, as established in the following
proposition.

Proposition 3.2 Let rank(D1) = rank(D2) < 3. Then rank(D(w1, w2)) is constant for
all (general) w1, w2 ∈ R, where D(w1, w2) is as in the dS row of Table 1.

For the proof see Appendix C. The result generalises to degenerate tensors of higher
dimensions. It is straightforward to see that neither the root-Euclidean nor the Euclidean
averaging has this property, i.e. the rank of their weighted average tensor is generally
higher than the rank of the reference tensors D1 and D2 when the latter are degenerate.
Such jumps in rank can be thought of as an infinite extension of the swelling effect, and
hence may be undesirable in practice. We show consequences of these observations in
experiments in Section 4.3.2 below. We think that this is an important point in favour

9
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of using dS in practice when dealing with positive semi-definite tensors.
It is worth noting that the Euclidean, log-Euclidean Riemannian, and the power-

Euclidean metrics are all special cases of the following general type of metric

dg(D1,D1) =‖ g(D1)− g(D2) ‖ . (10)

Namely, let g be an injection from the non-negative real numbers R≥0 to the extended
real line R̄ = {−∞} ∪ R ∪ {+∞}. Consider the extension of g to the following matrix
function from Ω≥0(3) to the 3× 3 symmetric R̄-valued matrices:

g(D) = E



g(λ1) 0 0
0 g(λ2) 0
0 0 g(λ3)


ET ,

where EΛET is the spectral decomposition of D.
Thus, in the Euclidean case g(x) = x, in the log-Euclidean case g(x) = log(x), and in

the root-Euclidean case g(x) =
√
x.

We will refer to such metrics as Euclidean-based. In this case, the general weighted
Fréchet mean Equation (6) has a unique solution as shown below:

D(w1, w2) = argmin
D

{
w1d

2
g(D1,D) + w2d

2
g(D2,D)

}

D(w1, w2) = g−1(w1g(D1) + w2g(D2)), (11)

which unifies the respective entries in Table 1 above, and will be extended and exploited
further in the ensuing discussion.
We would also like to understand how various tensor interpolations behave and com-

pare in terms of the tensor size. For example, the swelling effect under the Euclidean
averaging has been frequently mentioned in the literature. Although this effect is indeed
straightforward, below we give its detailed mathematical explanation, which we have not
seen stated explicitly in DTI literature. Namely, writing DE(w1, w2) for the weighted
Euclidean average (with w1+w2 = 1, w1, w2 ≥ 0), the Minkowski Determinant Theorem
[26] with dimension n = 3 gives

|DE(w1, w2)|
1

3 ≥ w1|D1|
1

3 + w2|D2|
1

3 (12)

with the equality if and only if D2 = cD1 for some c ≥ 0. Thus, |DE(w1, w2)| ≥
min{|D1|, |D2|}, and if |D1| = |D2| but the tensors are distinct, the swelling is inevitable
as |DE(w1, w2)| > |D1| = |D2| for positive weights w1, w2. Since both the affine-invariant
and log-Euclidean Riemannian interpolations give |DL,R(w1, w2)| = |D1|w1 |D2|w2 [2], the
arithmetic-geometric mean inequality implies |DL,R(w1, w2)| ≤ |DE(w1, w2)| [26] for any
positive definite tensors D1 and D2 and for all (probability) weights w1, w2.
A simple but useful observation is that the root-Euclidean determinants |DH(w1, w2)|

are sandwiched between the Euclidean |DE(w1, w2)| and geometric, i.e. log-Euclidean
and affine-invariant Riemannian, ones |DL,R(w1, w2)|, as stated next.

Proposition 3.3 Let w1, w2 be probability weights, and let D1 andD2 be n×n positive
definite symmetric matrices, and let DL,R(w1, w2), DH(w1, w2), and DE(w1, w2) be their
Riemannian (log-Euclidean or affine-invariant), root-Euclidean, and Euclidean weighted
averages, respectively, where w1, w2 ≥ 0. Then we have

|DL,R(w1, w2)| ≤ |DH(w1, w2)| ≤ |DE(w1, w2)|.

10
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See Appendix D for the proof of this proposition and the following corrolary and
proposition.

Corollary 3.1 Under the assumptions of Proposition 3.3 above, we also have

|DL(w1, w2)| ≤ |DS(w1, w2)|.

We establish next that in general |DS(w1, w2)| ≤ |DH(w1, w2)|, therefore

|DL,R(w1, w2)| ≤ |DS(w1, w2)| ≤ |DH(w1, w2)| ≤ |DE(w1, w2)|. (13)

Proposition 3.4 LetD1 andD2 be n×n symmetric positive semi-definite real matrices,
and let DS(w1, w2) and DH(w1, w2) be their Procrustes and root-Euclidean weighted
averages, respectively, where w1, w2 ≥ 0. Then

|DS(w1, w2)| ≤ |DH(w1, w2)|.

We will see below that when D1 and D2 commute, DS(w1, w2) = DH(w1, w2).
Our experiments in Sections 4.3.1 and 6.2 show further that |DH(w1, w2)| dominates
|DS(w1, w2)| by a relatively small margin only. This is not surprising given that compar-
ison of the traces, or MDs, reverses the inequality as established next.

Proposition 3.5 For all D1,D2 ∈ Ω>0(3), and for all probability weights w1, w2, we
have

trDR(w1, w2) ≤ trDL(w1, w2) ≤ trDH(w1, w2) ≤ trDS(w1, w2) ≤ trDE(w1, w2).

Moreover, the last two inequalities remain valid for all D1,D2 ∈ Ω≥0(3), and additionally
we have

trDS(w1, w2)− trDH(w1, w2) ≤ 0.5d2H(w2
1D1, w

2
2D2). (14)

See Appendix E for the proof. Even more is proved in [7], from which the following
Corollary follows immediately.

Corollary 3.2 For any D1,D2 ∈ Ω≥0(3), trDA(w1, w2|a) is an increasing function of
a ∈ (0,∞).
Also, for samples of N ≥ 2 tensors, we still have

trDL(w1, w2, . . . , wN ) ≤ trDA(w1, w2, . . . , wN |a) ≤ trDE(w1, w2, . . . , wN ),

for all a ∈ (0, 1), and in particular for a = 0.5, which corresponds to the square root-
Euclidean averaging.

Note that trDL(w1, w2) ≤ trDE(w1, w2) has been, at least implicitly, commonly ac-
knowledged in DTI literature (e.g. [2, 29]); trDR(w1, w2) ≤ trDL(w1, w2) has also been
mentioned (e.g. [2]). However, we have not seen the other inequalities stated explicitly
in the DTI literature.
We also point out that the power-Euclidean interpolants satisfy tr(DA(w1, w2|a)a) =

w1 tr(D
a
1)+w2 tr(D

a
2), so, for our main example of a = 0.5, tr(DH(w1, w2)

1

2 ) = w1 trQ1+

11
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w2 trQ2. Thus, if D1 and D2 have equal traces of their square roots, then this will be
preserved by the square root of the interpolant for all weights with w1 + w2 = 1.
Returning to the dominance of |DH(w1, w2)| over |DS(w1, w2)| (Proposition 3.4), and

in view of trDH(w1, w2) ≤ trDS(w1, w2), we note that the positivity of the difference
|DH(w1, w2)| − |DS(w1, w2)| cannot be explained by the first-order approximation.
All in all, the Procrustes and root-Euclidean methods may be a good compromise as

they do give some swelling (which is clear from Equation (12) with Di replaced by Qi),
but their swelling is less aggressive than that of the Euclidean method. This may be
helpful in view of [29] arguing that swelling may be desirable in certain scenarios.
Now, we consider a special situation of averaging an isotropic tensor with a general

tensor, which is also illustrated by experiments in Section 4.3.1. Since this means that
the reference tensors D1 and D2 commute, the log-Euclidean Riemannian and the affine-
invariant Riemannian averages will be identical [2], and we now show other implications
of this assumption.

Proposition 3.6 Assume that one of the tensors D1, D2 (as in Table 1) is isotropic;
without loss of generality, let it be D1, i.e. D1 = λI3×3 for some λ ≥ 0. Let dg be a
Euclidean-based metric. Let λ1, λ2, λ3 be eigenvalues of D2,

(1) The weighted average tensor D(w1, w2) is given by Equation (15) below. Subse-
quently, if g is increasing, then the orientation of D(w1, w2) is the same as the
orientation of D2 for all weights with w2 6= 0. In particular, if λ1 > λ2, i.e. D2 is
prolate (has a well-defined direction), then D(w1, w2) is also prolate and has the
same direction (provided w2 6= 0).

(2) The Procrustes averaging is identical to the root-Euclidean averaging, and D(w1, w2)
in this case is given by Equation (16) below.

(3) The (log-Euclidean or affine-invariant) Riemannian average tensorD(w1, w2) is given
by Equation (17) below.

(4) D(w1, w2) for the Euclidean averaging is given by Equation (18) below.
(5) The Euclidean, log-Euclidean, the affine-invariant Riemannian, root-Euclidean, and

the Procrustes interpolations all preserve the orientation of D2, provided w2 6= 0.

E

(
g−1((w1g(λ)+w2g(λ1)) 0 0

0 g−1((w1g(λ)+w2g(λ2)) 0
0 0 g−1((w1g(λ)+w2g(λ3))

)
ET , (15)

where EΛET is the spectral decomposition of D2 with eigenvalues λ1 ≥ λ2 ≥ λ3.

E
(
λw2

1I3×3 + w2
2Λ+ 2w1w2

√
λ
√
Λ
)
ET , (16)

E (λw1Λw2)ET , (17)

E (λw1I3×3 + w2Λ)ET . (18)

The proof of this proposition is straightforward and is given in Appendix F.
Clearly, the above results, including the equality of the root-Euclidean and Procrustes

averages, immediately generalise to any commuting tensors D1 and D2. However, it is
understood that in general, eigenvalues of only one of the two tensors can be ordered at
a time when generalising Equation (15) to Equation (19) below:

E

(
g−1((w1g(γ1)+w2g(λ1)) 0 0

0 g−1((w1g(γ2)+w2g(λ2)) 0
0 0 g−1((w1g(γ3)+w2g(λ3))

)
ET , (19)

12
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where γ1, γ2, γ3 are eigenvalues of D1. Thus, the direction of the average tensor may turn
out to be that of a non-principal eigenvector of D1 or D2.
Although we focus on interpolation, extrapolation outside the shortest path between

D1 and D2 is easily included by relaxing the non-negativity constraint on the weights
wi (see Section 4.3.2).
Finally, we note that other relevant metrics and more general measures of divergence

continue to be proposed for symmetric positive definite matrices. One such example is
the root Stein Divergence [34]

dStein(D1,D2) =

√
log det

[
1

2
(D1 +D2)

]
− 1

2
log det (D1D2), (20)

but we do not attempt to overview all such proposals in this paper.

4. Interpolation and smoothing

We now apply the above ideas and results on weighted averages to the tasks of interpo-
lation and smoothing.

4.1 Choice of weights

The choice of weights is application dependent. For example, wi could be a decreasing
function of the Euclidean distance from the location of interest to the sampling location
i. One simple choice for the weights is the inverse distance function given by

wi =
d−1
i

N∑
j=1

d−1
j

, i = 1, ..., N, (21)

where di is the Euclidean distance from the location (voxel) at which the weighted mean
is to be estimated, to the location (voxel) of ith tensor Di.
For more flexibility, the following exponential weight function is proposed and used in

this paper:

wi =
exp(−Ad2i ) +B

N∑
j=1

[exp(−Ad2j ) +B]

, i = 1, . . . , N, (22)

where A,B ≥ 0. The two parameter exponential weight family is flexible since it allows
us to adjust the wi depending on the application, as seen in Section 4.2 where we discuss
cross validation.
Given distances di, i = 1, 2, ..., N , some properties of exponential weight function are

listed below:

As A→ +∞ and B = 0,

wi →
{
1/k if i ∈ argmin{d1, d2, ..., dN},
0 otherwise ,

13
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where k is the size of the set argmin{d1, d2, ..., dN}. Under any of the following conditions,
the weight distribution becomes uniform, i.e. wi → 1/N : (a) A → +∞ and B 6= 0 is
fixed; (b) A→ 0 and B is fixed; (c) B → +∞ and A is fixed.

4.2 Cross-validation

To illustrate how parameters A and B in the weight function (22) can be chosen in
practice, and to also assess the weighted mean estimators, a cross-validation procedure
is carried out over a region of interest shown in Figure 3(a) and taken from the real
human brain data described in Section 6 below. Voxels V1,...,VK (K = 630 for this
example) shown in Figure 3(b) in black contain the validation tensors and remaining
voxels contain training tensors. All tensors D1,..., DK are initially estimated using a
Bayesian framework [42] and the resulting estimates are considered the ground truth for
the purposes of cross-validation. We re-estimate the tensor at voxel Vi, i = 1,...,K by
computing the weighted mean of its four first-order neighbours (i.e. tensors from two
horizontally and two vertically adjacent voxels). The spatial resolution in the horizontal
direction is twice that in the vertical direction, hence di in Equation (22) is taken to be 1
for horizontal neighbours and 2 for vertical neighbours, hence the weights are generally
unequal.
To compare the effects of using the Euclidean dE , log-Euclidean dL, root-Euclidean dH ,

and Procrustes dS distances in Equation (6), we compute the root mean square distance
(RMSD) between the re-estimated tensor Dcv

i and the original estimate Di, as shown
below:

RMSD(d) =

√√√√ 1

K

K∑

i=1

d(Di,Dcv
i )2,

where d can be any suitable metric, such as dE , dL, dH , and dS .

Figure 3. A two-dimensional region of interest; locations of validation tensors are shown in black (b) against the
background of FA map (a) of the same region (the remaining locations provide training tensors).

To choose parameters A and B (A > 0, B > 0) for the weight function (22), we con-
sider RMSD(dE), RMSD(dL), RMSD(dH), and RMSD(dS) simultaneously. A greedy
algorithm is used, starting from small positive values for weight parameters (A = 0.01

14
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and B = 0.01). We then first increase A in steps of 0.01 and calculate the RMSD val-
ues. If at least one RMSD value starts increasing, the previous value of A is retained
as optimal. Next, we increase B in steps of 0.01 and re-calculate all the RMSD values.
If at least one RMSD value starts increasing, the previous B value is declared optimal.
The optimal parameter setting for the example in Figure 3 is found to be A = 2 and
B = 0.01. We choose to optimise over A first since this parameter has a bigger impact
on the weights.
Table 2 shows RMSD(dE), RMSD(dL), RMSD(dH), and RMSD(dS). The weighted

Procrustes approach provides the smallest RMSD(dE), RMSD(dH), and RMSD(dS)
measures in this example, whereas the weighted root-Euclidean method provides the
smallest RMSD(dE) and RMSD(dL) and RMSD(dS) measures. Thus, in this example,
the two methods perform best in general, although their performances are very similar.

Table 2. Measures of the cross-validation results with different methods.

Euclidean log-Euclidean Euclidean root Procrustes
RMSD(dE) 0.00005 0.00006 0.00005 0.00005
RMSD(dL) 0.32601 0.31696 0.29664 0.29881
RMSD(dH) 0.00101 0.00094 0.00093 0.00092
RMSD(dS) 0.00082 0.00081 0.00077 0.00077

4.3 Interpolation and extrapolation

In Sections 4.3.1 and 4.3.2 below we consider the simplest case of interpolation and
extrapolation of two tensors, respectively, using the main metrics of interest. Then, in
Section 4.3.3 we briefly illustrate the lack of invariance of the Cholesky interpolation to
orthogonal changes of coordinates, and therefore its lack of practical application in DTI.
This is followed by Section 4.3.4 with experiments on interpolation of four tensors.

4.3.1 Interpolation of two diffusion tensors

We illustrate the observations of Proposition 3.6 and also investigate more general paths
obtained with the metrics listed in Table 1. Specifically, we choose two reference tensors
D(0) and D(1) and then interpolate between them by sampling N −1 additional tensors
along the shortest path as follows:

D(wi) = argmin
D

[
(1− wi)d

2(D(0),D) + wid
2(D(1),D)

]
, (23)

resulting in the total of N + 1 tensors with weights wi = i/N , i = 0, 1, . . . , N . The
settings of D(0) and D(1) for each experiment are as follows:

Experiment I:

D(0) =
(
4 0 0
0 4 0
0 0 4

)
, D(1) =

(
8.50 7.50 0
7.50 8.50 0
0 0 4

)
=

( 1√
2
0 − 1√

2
1√
2
0 1√

2

0 1 0

)(
16 0 0
0 4 0
0 0 1

)( 1√
2
0 − 1√

2
1√
2
0 1√

2

0 1 0

)T

.
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Experiment II:

D(0) =
(
5.50 4.50 0
4.50 5.50 0
0 0 1

)
=

( 1√
2
0 − 1√

2
1√
2
0 1√

2

0 1 0

)(
10 0 0
0 1 0
0 0 1

)( 1√
2
0 − 1√

2
1√
2
0 1√

2

0 1 0

)T

,

D(1) =
(

4.72 −11.46 0
−11.46 36.28 0

0 0 4

)
=

(
sin(−0.1π) 0 cos(1.1π)
cos(−0.1π) 0 sin(1.1π)

0 1 0

)(
40 0 0
0 4 0
0 0 1

)(
sin(−0.1π) 0 cos(1.1π)
cos(−0.1π) 0 sin(1.1π)

0 1 0

)T

.

To help us compare the effects of using the different metrics on the size, orientation, and
shape of the interpolated tensor D(wi), we measure its volume (determinant |D(wi)|)
and perimeter (trD(wi)), angle φ(wi) of relative orientation, and fractional (FA) and
Procrustes (PA) anisotropies. The angle φ(wi) is the (non-obtuse) angle between the
direction (principal eigenvector pv(wi)) of D(wi) and the direction (principal eigenvector
pv(1)) of D(1):

φ(wi) = arcsin(‖ pv(1)× pv(wi) ‖)× 180◦/π, i = 0, . . . , N. (24)

Experiment I, where D(0) is isotropic, illustrates the observations of Proposition 3.6.
Since D(0) has no orientation, φ(0) is undefined in this case and will be replaced by
lim φ(w) as w → 0.
The left pane of Figure 4 shows six geodesic paths in Experiment I with N = 8.

Unlike D(0), D(1) is strongly anisotropic in this experiment, and the two tensors
have the same volume. The right pane displays the above measures of size, orienta-
tion, and shape, using N = 20 for higher accuracy. The well-known swelling effect
of the Euclidean interpolation is clearly seen from the plot of the GMD given by the
cubic root of the determinant of D(wi). Further, in the case of Procrustes interpola-
tion (which is identical here to the root-Euclidean interpolation), Equation (16) gives

D(wi) = E
(
4(1− wi)

2I3×3 +w2
iΛ+ 4wi(1 −wi)

√
Λ
)
ET .

Since D(1) is prolate (in the direction pv(1)), so is each interpolant D(wi), i.e. pv(wi)
aligns with pv(1) and φi = 0◦ for all i = 1, 2, . . . , 20, for all but the Cholesky interpolation
(the Cholesky method cannot be expressed in terms of matrix functions defined via the
spectral decomposition) as promised by item (5) of Proposition 3.6.
In the case of the log-Euclidean interpolation (which is identical here to the affine-

invariant Riemannian interpolation), Equation (17) gives D(wi) = E
(
41−wiΛwi

)
ET .

With the Cholesky metric (dC) the angle φ(wi) decreases gradually from about 15.5◦

(φ(w1 = 0.05)) to 0◦ (φ(w20 = 1)) along the geodesic path. It is worth recalling that
the Cholesky metric is problematic in practice due to its lack of invariance to orthogonal
transformations.
Since the log-Euclidean and affine-invariant Riemannian methods provide the same

monotonic geometric interpolation of determinants (even when their geodesics are oth-
erwise distinct) |D(w)| = |D(0)|1−w |D(1)|w, |D(0)| = |D(1)| implies that these meth-
ods preserve the volume and subsequently GMD along their geodesic [2], whereas the
other methods result in some swelling. The Euclidean averaging instead gives monotonic
linear interpolation of traces trD(w) = (1 − w) trD(0) + w trD(1) (which, provided
trD(0) = trD(1), preserves the trace and subsequently the MD) [29]. The GMD and
MD plots also illustrate the dominance of the arithmetic mean over the geometric mean,
as well as the general inequality (13) and Proposition 3.5, respectively.
FA and PA values are all very similar for all the four distinct geodesics, and they

are nearly identical for the Cholesky interpolation and the root-Euclidean/Procrustes
interpolation. Although all of the four distinct FA (PA) graphs are very similar, the
Euclidean interpolants are more anisotropic than the root-Euclidean/Procrustes inter-
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polants, which in turn dominate the non-Euclidean Riemannian interpolants. The same
ordering holds for the PA graphs, whose differences are even less noticeable in this exam-
ple. Note that this ordering is not general, and, for example, increasing λ (the eigenvalue
of D(0)) to 6 reverses this order, and setting λ = 5 makes the distinct FA (PA) curves
cross (not shown). Note also that for the non-Euclidean Riemannian interpolants we have
FA(D(w)) =FA(Λw); in particular, PA(D(1)) =FA(D(0.5)) for this geodesic.
Thus, the root-Euclidean/Procrustes geodesic disturbs the shape slightly more than

does the log-Euclidean and affine-invariant Riemannian geodesic, but still notably less
compared with the Euclidean geodesic.
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Figure 4. Experiment I: geodesic paths between two tensors of the same volume (red). Tensor D(0) (left) is
fully isotropic and tensor D(1) (right) is strongly anisotropic. The geodesic paths are obtained with dE(�), dL(�),
dR(�), dC(�), dH (�) and dS(�). As explained by Proposition 3.6, dH and dS yield the same results here; likewise,
the results from using dL and dR are the same in this case [2]. (φ(0) is undefined and replaced by limφ(w) as
w → 0). The GMD and MD of the different interpolants compare according to Inequality (13) and Proposition 3.5,
respectively. The non-Euclidean Riemannian interpolants satisfy FA(D(w)) =FA(Λw) in this example, implying
PA(D(1)) =FA(D(0.5)) for this geodesic.

In Experiment II, tensors D(0) and D(1) are neither orthogonal nor collinear, and are
of different shapes and sizes. Figure 5 shows six distinct geodesic paths between D(0)
and D(1). The Euclidean metric again suffers significant swelling. The geometric (log-
Euclidean and affine-invariant Riemannian) interpolation of the determinants (|D(w)| =
|D1|1−w|D9|w) yields the lowest volume evolution among the considered methods. The
Cholesky interpolation gives slightly larger volumes. The Procrustes determinant (GMD)
curve is uniformly and notably above these three, and it is dominated, albeit less notably,
by the root-Euclidean determinants.
The Cholesky path has a significant cusp (nearly 90◦) in the orientation in this ex-

ample. The Euclidean orientational angle curve is everywhere dominated by the others
except for the affine-invariant Riemannian one, which it crosses on approach to D(1).
Orientational angle curves of the non-Euclidean methods intersect non-trivially; the log-
Euclidean and affine-invariant Riemannian curves tend to dominate the root-Euclidean
and to a lesser extent the Procrustes orientation curves. The log-Euclidean and affine-
invariant Riemannian orientation curves clearly reveal a sigmoidal shape, which is more
pronounced in the affine-invariant case.
In terms of anisotropy (FA and PA maps), the affine-invariant Riemannian interpola-

tion is most variable after the Cholesky interpolation. The log-Euclidean, root-Euclidean,
and the Euclidean interpolations are all structurally similar, and the Procrustes interpo-
lation is the least variable of the six.
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In summary, the Procrustes size-and-shape metric and to a lesser extent the Euclidean
root metric offer overall least variable interpolations of the size, orientation and shape.
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Figure 5. Geodesic paths in Experiment II between two general reference tensors D(0) (left, red) and D(1) (right,
red) with general (i.e. non-collinear non-orthogonal) orientation, different shape and size. The geodesic paths are
obtained with dE(�), dL(�), dR(�), dC(�), dH (�) and dS(�). The Geometric and Arithmetic Mean Diffusivities of the
different interpolants compare according to Inequality (13) and Proposition 3.5, respectively. PA helps resolving
ambiguity of FA at w = 0.25 where FA of the Euclidean and affine-invariant interpolants coincide, but their PA
values do not. There is no general ordering of anisotropies apart from the log-Euclidean interpolants dominating
the affine-invariant ones [2].

From the examples discussed above, and several more in [41] and other related studies
(e.g. [2]), it does seem that the Euclidean metric may be very problematic, especially
due to the swelling of the determinant (apart from situations where a certain degree of
swelling may help compensate for a previously suffered shrinkage [29]).
That the Cholesky metric should never be used in the standard DTI setting due to

its lack of orthogonal invariance is illustrated in Section 4.3.3 below, and the above
experiments also highlighted other potential issues with this metric. The log-Euclidean
and affine-invariant Riemannian metrics generally give similar geodesic paths [2], and
have a small advantage in Experiment I. The Procrustes size-and-shape and Euclidean
root metrics offer similar interpolated tensors, and they are preferable in Experiment II.

4.3.2 Rank deficiency and extrapolation

The log-Euclidean and affine-invariant Riemannian metrics, as well as the root Stein
Divergence (20) all give infinite distances between any positive definite tensor and any
degenerate tensor. Furthermore, such metrics are undefined if both the tensors are rank-
deficient. Therefore, when working with rank-deficient tensors, the root-Euclidean and
Procrustes metrics may be advantageous. Generally, dH(D1,D2) and dS(D1,D2) give
similar results, however, their (relative) disagreement tends to its supremum (dH/dS =√
2) when the tensors become indistinguishable and simultaneously approach the rank 1

subspace; see also Theorem 3.1 above.
The potential advantage of the Procrustes size-and-shape metric when extrapolating

towards rank-deficient tensors has been noted in [31] in the infinite dimensional case of
covariance operators. Similarl to the geodesic through two covariance operators defined
in [31], geodesics through two diffusion tensors with the Euclidean root metric and the
Procrustes metric are given by DH(w) = DH(1 − w,w) and DS(w) = DS(1 − w,w)
from the respective rows of Table 1, where the weights are no longer constrained to be
non-negative, i.e. w ∈ R.
The following example shows geodesic paths through two planar (i.e. rank 2) diffusion
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tensors, using dH and dS , and illustrating Proposition 3.2. The reference tensors are
defined as follows

D(0) =




1 0 0
0 1 0
0 0 0


 , D(1) = V




2 0 0
0 1 0
0 0 0


VT , with V =




−0.5441 0.7040 0.4565
0.8391 0.4565 0.2960

0 −0.5440 0.8391


 .

The angle between the principal planes of these tensors is about 33◦, and the (2D)
shapes of the tensors are also different: FA(D(0)) = 1/

√
2 ≈ 0.7071 (2D isotropy), and

FA(D(1)) = 0.7746. Figure 6 shows dH(D(0),DH (w)) and dS(D(0),DH (w)) against
w ∈ [0, 5]; the dH/

√
2 ≤ dS ≤ dH bounds are also illustrated. The difference between

dH and dS along the Euclidean root geodesic is hardly noticeable for w > 3, whereas in
the case of the Procrustes size-and-shape geodesic the distances disagree more noticeably
over the entire (0, 5] range. Figure 7 shows the minimum eigenvalue λ1, determinant,

Figure 6. The Procrustes size-and-shape dS and the Euclidean root dH distances from D(0) to the averaged
(interpolated or extrapolated) tensor D(w) along the Euclidean root geodesic (left) and the Procrustes size-and-
shape geodesic (right).

and FA of DH(w) and DS(w) versus w ∈ (0, 5). The Euclidean root geodesic yields
positive, albeit very small, λ1’s already in the course of interpolation (w ∈ (0, 1)). This
would imply emergence of 3D diffusion from 2D diffusion, which may be hard to jus-
tify from the viewpoint of physics. The minimal eigenvalue grows very rapidly in the
course of extrapolation (w > 1). A similar behaviour is observed with the determinant
|DH(w)|, even though it appears to be nearly zero for w ∈ (1, 2], before a steep take-off
over w > 3. As explained in Proposition 3.2, the Procrustes geodesic does not suffer
from this problem, i.e., it does not require full rank (3D) tensors to either interpolate or
extrapolate through rank 2 tensors, which makes its action more realistic. Figure 8 shows
the product λ1(w) × λ2(w) of the two largest eigenvalues, which exhibits the growth of
the effective volume (area) of DS(w) in its principal non-degenerate plane; the Euclidean
extrapolation in this Figure appears misleadingly regular while in reality it goes out of
space Ω≥0(3) (λ3(w) < 0 for w > 1).
FA along the root-Euclidean path changes significantly, especially in the course of

extrapolation (w > 1) where it falls rapidly (the full rank extrapolation tensor loses
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its shape). FA of the Procrustes interpolations and extrapolations varies little, always
remaining within the [1/

√
2, 1) range of the planar diffusion. For larger w values, i.e

w > 5, FA(DH (w)) may also be observed (not shown in the figure) to behave non-
monotonically, yet never rising back to the 1/

√
2 level of the planar diffusion. In summary,

Figure 7. Minimum eigenvalue λ3 (left), determinant (middle), and FA (right) of DS(w) (dotted line) and DH (w)
(solid line) versus the (interpolation [0, 1] and extrapolation (1, 5]) weight w.

both DH(w) and DS(w) expand in the course of extrapolation beyond D2 (w > 1),
eventually becoming increasingly isotropic. However, DS(w) confines its expansion to its
principal plane (|DS(w)| = 0 while λS1(w)× λS2(w) grows). DH(w), on the other hand,
does not have this (λ3(w) = 0) constraint and expands in the entire 3D space.
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Figure 8. Product of the two largest eigenvalues of DS(w) (dotted line), DH (w) (solid line), and DE(w) (dash
line) versus the (interpolation [0, 1] and extrapolation (1, 5]) weight w.

Hence, although the choice between which metrics to use is application dependent and
generally there may be not much difference between the log-Euclidean and affine-invariant
Riemannian, Procrustes and root-Euclidean metrics, it appears that the Procrustes size-
and-shape metric is a good choice and is widely applicable, even in rank-deficient or near
rank-deficient cases.

20



September 28, 2015 Journal of Applied Statistics AcceptedManuscript

4.3.3 Interpolation under simultaneous rotation

It is known [11] that all of the metrics considered in this paper, except dC , are invariant
to orthogonal transformations of the underlying 3D space, i.e. d(UD1U

T,UD2U
T) =

d(D1,D2) for all U ∈ O(3). This is very important in practice as any method for diffusion
tensor processing must be independent of the choice of the reference frame [2]. Below
we include a set of simple orthogonal change of frame experiments to demonstrate this
issue.
Consider two mutually orthogonal tensors D(0) and D(1) with the same eigenvalues

(40, 2, 1). Since the largest eigenvalue is much greater than the other two, D(0) and D(1)
are nearly linear (and their principal eigenvectors are orthogonal); the corresponding
ellipsoids are placed at the left and right top corners, respectively, of each of the six
plots of Figure 9. Next, we simulate five orthogonal changes of the reference frame by
rotating it by 15

◦
, 30

◦
, 45

◦
, 60

◦
, and 75

◦
in the plane of view, so that the corresponding

representations of UD(w)UT with w = 0 and w = 1 are placed (top down) in the left
and right most columns (red), respectively, of each of the six plots of Figure 9. Each plot
corresponds to one of the aforementioned metrics, and samples along the geodesic paths
(rows) for each reference frame and each metric are defined according to Equation (23)
with N = 8.
It can be seen, e.g. by looking at the middle ellipsoids of the top and bottom rows of

the boxed plot, that the Cholesky geodesic paths are not invariant under the orthogonal
transformations of the reference frame. Namely, the shape and size (determinant) of
the interpolated tensor differ across the transformed geodesic paths. Although if viewed
individually outside the change of frame context each of these Cholesky paths appears
to be very reasonable, the lack of invariance renders the method unreliable in practice.
The other metrics, as expected, give invariant geodesic paths, which are also included in
this figure for the sake of completeness of the demonstration.

Figure 9. Geodesic paths under simultaneous rotation of reference tensors (red) with different metrics. The
boxed example demonstrates the violation of the invariance to orthogonal changes of coordinates in the case of
the Cholesky method.
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4.3.4 Interpolation of four tensors

The next experiment is to interpolate in a 2-dimensional region. Specifically, we mesh the
region with a regular 5 × 5 grid, and place four synthetic tensors D1,1, D1,5, D5,1,D5,5

at the corners of the grid. At each of the 21 remaining nodes (i, j), a weighted average
of these four tensors is computed according to Equation (6) and using the exponential
weight function (22) with A = 2 and B = 0.01 (Section 4.2) and the Euclidean distances
between the nodes of the grid in the definition of the weight function. Figure 10 shows
results of the interpolations using the Euclidean, Procrustes and log-Euclidean metrics.
At the top left corner, the diffusion tensor is isotropic (spherical) and of a small volume.
Tensors at the other three corners are anisotropic with different volumes and orientations.
The interpolated tensors from the Euclidean results have large volumes. Interpreting the
Euclidean interpolation is also problematic in terms of the orientation and shape. The
log-Euclidean interpolation tends to produce significantly smaller tensors. The Procrustes
metric appears to provide a reasonable interpolation of the tensor volume, orientation
and anisotropy.

Figure 10. Interpolation of four tensors at the corners of a grid. Left: Euclidean interpolation (dE). Middle:
Procrustes interpolation (dS). Right: log-Euclidean interpolation (dL). FA is used for the colouring of the tensors.

5. Tensor regularisation

In the following, we develop a weighted regularisation model which incorporates the
smoothness of local diffusion and regularisation by imitation of a prescribed diffusion
behaviour. Specifically, the Procrustes size-and-shape metric is adapted in the regulari-
sation model.

5.1 Weighted regularisation model

Consider a sample of diffusion tensors D1, . . . ,DN from a noisy tensor field containing
N voxels with coordinates xi ∈ Z

3, i = 1, . . . , N . Now suppose we wish to regularise this
tensor field. We propose a weighted regularisation model, which is defined by minimising
the following function with respect to Σj ∈ Ω>0(3), j = 1, . . . , N ,

f(Σ1,Σ2, . . . ,ΣN ) =

N∑

j=1

N∑

i=1

wijd
p
1(Di,Σj) + λ

N∑

j=1

dq2(Π,Σj)
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=
N∑

j=1

[
N∑

i=1

wijd
p
1(Di,Σj) + λdq2(Π,Σj)

]
. (25)

Here the weights wij can be again obtained via some decreasing function of the Euclidean
distance between xi and xj (see Section 4.1), p, q ≥ 0, and λ is a regularisation parameter
(λ > 0), and Π is a reference tensor, representing the prescribed diffusion behaviour.
Users can either define their own reference tensor with the expected diffusion profile or
choose a representative tensor from the tensor field as a reference tensor. For a simple
example, by employing a multiple of the identity tensor as the reference tensor we can
regularise the tensor field to be both more isotropic and less variable in intensity. Note
that d1 and d2 are general, i.e. can be non-Euclidean and need not be the same. When
appropriate, Ω>0(3) can be replaced by Ω≥0(3).
The proposed regularisation model (25) simultaneously smooths each tensor Di,

i = 1, ..., N , by averaging it with its neighbours (endogenous regularisation) and also
makes Di where i = 1, ..., N imitate the reference tensor (exogenous regularisation).
The flexibility of having a reference tensor can be exploited to introduce additional in-
formation about the expected diffusion profile in the given region, or to highlight, and
eventually segment, local structures. Allowing the end user to modify Π, e.g. by varying
its spectrum and the Euler angles of the eigenvectors, in real time in a visualisation
session might help pick up otherwise unnoticed details.
It is clear that each Σ̂j, j = 1, 2, . . . , N , of the solution to the weighted regularisation

model (25) must minimise

N∑

i=1

wijd
p
1(Di,Σ) + λdq2(Π,Σ).

Therefore,

Σ̂j = arg inf
Σ∈Ω>0(3)

N∑

i=1

wid
p
1(Di,Σ) + λ′dq2(Π,Σ), (26)

where wi = wij/(w1j + w2j + · · ·+ wNj + λ) and λ′ = λ/(w1j + w2j + · · ·+ wNj + λ).
Consider first the case where d1 = d2 is a Euclidean-based metric dg (Equation (10)).

In this case, Equation (11) for N = 2 generalises and gives a unique solution Σ̂j =

g−1(Q̂j) to this model, where

Q̂j =

∑N
i=1 wijg(Di) + λg(Π)

∑N
i=1wij + λ

. (27)

For example, if g(D) = 1
aD

a, then Σ̂j = aQ̂
1/a
j . If g(D) = log(D), then Σ̂j = exp{Q̂j}.

Thus, using identical Euclidean-based metrics for the weighted regularisation is straight-
forward. Note that the Cholesky method also admits the same closed form solution
(Equation (27)) even though g in that case is not defined in terms of the special decom-
position.
Note also that p = 2 and q = 0 gives the weighted Fréchet mean, if q = 0 we have a type

of M-estimator [12, 21]. If p = 1 and q = 0 we have an L1-type regularisation where we
have the geometric median [15] instead of the mean. If p = 2 and q = 2 this gives a type of
ridge-regression [19, (3.43)]. Indeed, while the penalty term in ridge regression represents
the square of the Euclidean distance to the origin, our generalized penalty term uses the
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square of the general distance d2 to the general reference tensor Π. Note also that our
formulation is primarily concerned with the multiple output case [19, Section 3.7], i.e. N
would usually be more than one and a single regularisation parameter λ would be used
with each of the N penalty terms. If p = 2 and q = 1 then we have a type of least absolute
shrinkage and selection operator (LASSO) [19, (3.52)], i.e. replacing the L1 distance to
the origin by the general d2 distance to the general reference tensor Π. Similarly to how
ridge regression and LASSO can be viewed as Bayes estimates [19, p.72], we can also
embed our generalized tensor regularisation in the Bayesian framework. In the cases of the
Euclidean-based metrics the connection with ridge regression and LASSO is particularly
appropriate, and so, for example, the least angle regression (LARS) algorithm can be
used for fast implementation [13] of the LASSO. At the same time, the flexibility of the
choice of d2 can also be seen as a generalization of the grouped LASSO method [19,
Section 3.8.4].
Note that non-Euclidean distances generally require more computations. In particular,

calculation of the log-Euclidean, affine-invariant Riemannian and Euclidean root and
other Euclidean based distances dg requires the spectral decomposition. The Cholesky
distance requires the Cholesky decomposition. When computing weighted averages
(Equation (6)), any Euclidean-based averaging as well as the Cholesky method have
the closed form solution (Equation (27)) and therefore all such metrics require the same
amount of computations in terms of g and g−1. The affine-invariant Riemannian aver-
aging and Procrustes-based averaging can be significantly more costly as they require
iterative numerical optimisations, see [30] and [44] respectively.

5.2 Weighted Procrustes regularisation

Now consider the special case that (p, q) = (2, 2) and d1 = d2 = dS where dS is the Pro-
crustes size-and-shape metric (7). Then, the weighted Procrustes regularisation objective
function is given by

fWPS(Σ1,Σ2, . . . ,ΣN ) =

N∑

j=1

N∑

i=1

wijd
2
S(Di,Σj) + λ

N∑

j=1

d2S(Π,Σj)

Using Equation (26), the solution is given by

Σ̂j = arg min
Σ∈Ω≥0(3)

N∑

i=1

wid
2
S(Di,Σj) + λ′d2S(Π,Σj) = arg min

Σ∈Ω≥0(3)

N+1∑

i=1

wid
2
S(Di,Σ),

where DN+1 = Π and wN+1 = λ′, j = 1, 2, . . . , N , and wi’s and λ′ also depend on

j. As pointed out in Section 3.1, the solution (Σ̂1, Σ̂2, . . . , Σ̂N ) can be computed using
the Weighted Generalised Procrustes Algorithm [44], which is also used in the following
experiments.

6. Experiments using real human brain data

The diffusion-weighted MR data are from a healthy human brain. The data were acquired
using a 3T Phillips Achieva clinical imaging system, using a spin-echo echo-planar imag-
ing sequence with the Uniform 32 DTI diffusion weighting gradient scheme [33] applied
with a weighting factor b = 1000 s/mm2. In total, 52 interleaved contiguous transaxial
slices were acquired throughout the subject’s head in a 112x112 matrix (interpolated to
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224x224) with an acquisition voxel size of 1x1x2mm3. The diffusion tensor field has been
computed using a Bayesian estimation framework [42].

6.1 Application to tensor regularisation and segmentation

The weighted Procrustes regularisation method proposed in Section 5.2 above is applied
to help with the segmentation of two prominent white matter structures, the corpus
callosum and cingulum, using real DTI data. The role of the regularisation term here
may be reminiscent of template matching in computer vision. Figure 11 illustrates the
process and the results. The original FA map of the region of interest is shown in pane
a. Panes b and d highlight the corpus callosum with λ = 0.6 and 1.5 respectively. The
reference tensor to be matched is taken to beΠ1 =[0.0022, 0, 0; 0, 0.0004, 0; 0, 0, 0.0004]1,
which is highly anisotropic and oriented along the main diffusion direction in the corpus
callosum. The weights are set again with A = 2 and B = 0.01 in the weighting function
(22). As λ increases, the influence of the template, or probing, tensor becomes stronger
and so the FA map becomes brighter since the probing tensor is strongly anisotropic here.
While this also results in the overall loss of contrast, the contrast between the brightest
corpus callosum and the now relatively homogeneous and darker background should still
be sufficient for a simple thresholding to finish the task. Panes c and e highlight the
cingulum with the reference tensor Π2 =[0. 0003, 0, 0; 0, 0.0015, 0; 0, 0, 0.0002], which is
also anisotropic and oriented in the direction of diffusion in the cingulum. When λ = 1.5,
the cingulum appears to be easily segmentable from the background.

6.2 Comparing metrics for smoothing and interpolation

Next, we apply the weighted tensor averaging with the Euclidean, log-Euclidean, Pro-
crustes and Euclidean root metrics to interpolate and smooth a tensor field within a
region of interest (ROI). Figure 12 shows FA maps of three adjacent axial slices from the
original diffusion tensor data and zoomed 36× 71 insets. This 36× 71× 3 ROI contains
a part of the cingulum and a part of the corpus callosum.
As before, we compare the Euclidean, Procrustes, log-Euclidean and Euclidean root

approaches. First we interpolate the 36× 71× 3 region of the original tensor field at two
equally spaced locations between each pair of original tensors. Each interpolation tensor
is then the weighted average of its six nearest (i.e. from the first-order 3D neighbourhood)
original tensors. As discussed in Section 4.1, we use A = 2 and B = 0.01 in the weight
function (22).
The resulting 106 × 211 × 7 field is then smoothed by applying the 3× 3 × 3 (second

order 3D neighbourhood) moving average with equal weights (w = 1/27). This simple
combination of interpolation and smoothing was chosen as a compromise between sim-
plicity and computational efficiency of the procedure on the one hand, and perceptual
appeal of the resulting images, on the other.
We then also calculate at each voxel of the resulting field arithmetic (MD) and geomet-

ric (GMD, i.e. 3
√

|D|) mean diffusivity, anisotropy measures FA and PA, and principal
directions.
Table 3 summarises the mean GMD, MD, FA, and PA over the tensor field pro-

cessed with the four methods. The Euclidean processing results in notably larger tensors,
whereas the log-Euclidean approach gives the smallest tensors, with the Procrustes and
root-Euclidean results in between. Although Inequality (13) and Proposition 3.5 concern

1The reference tensor is already on the real scale that is determined by the b-value of 1000 s/mm2.
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Figure 11. Tensor field preprocessing with a view towards segmentation of the corpus callosum (b,d) and cingulum
(c,e).

Figure 12. FA maps of 224 × 224 original axial slices (top) and corresponding 36 × 71 zoomed insets (bottom)
with white matter tracts from the cingulum (cg) and corpus callosum (cc).
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the interpolation of two tensors only and the present composition of interpolation and
smoothing involves two distinct sets of locations with more than two tensors each, the
same orderings are also observed at most locations and for the ROI averages. It is also
expected [2] that the mean FA of the log-Euclidean method is higher than that of the
Euclidean method. PA, on the other hand, is seen to be able to reverse this comparison in
our processing, although by a small margin. The Procrustes and Euclidean root methods
have similar averages, as expected.

Table 3. Averaged GMD, MD, FA, and PA under the different processing methods.

Euclidean log-Euclidean Euclidean Root Procrustes
GMD×10−4 9.4887 8.7383 9.0704 9.0687
MD×10−4 10.2081 9.4262 9.7217 9.7223

FA 0.3834 0.3868 0.3749 0.3755
PA 0.2145 0.2143 0.2065 0.2069

We also compare local variation of each of the four procedures. Specifically, for each of
the above tensor characteristics, and also for the tensor orientation, we calculate within
each (overlapping) 3× 3× 3 neighbourhood with centre at (x, y, z) the root mean square
deviation δ from the value at the centre. Thus, for example, at each interior voxel (x, y, z)
this variation measure for MD is given by

δMD(x, y, z) =

√√√√ 1
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1∑

i=−1

1∑

i=−1

1∑

i=−1

(MD(x, y, z) −MD(x+ i, y + j, z + k))2,

and for the tensor orientation, the differences are replaced by the angles φ (in degrees)
between each tensor in the neighbourhood and the tensor at the centre. The (density)
histograms of the logarithms of the resulting angular variations, or dispersions, are shown
in Figure 13. Note the distinct separations of the major modes in each of the three non-
Euclidean cases. We believe that the larger mode, separated from the smaller one at
about 1.25 ≈ log(3.5◦), is due to the smoothing across heterogeneous fibre structures,
which is inevitable given the simplicity of our non-adaptive approach. The Euclidean
method does not allow us to see this separation.
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Figure 13. Histograms of the logarithms of the local angular dispersions.
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Table 4 averages local variations of each characteristic and for each method over ROI.
Thus, the Euclidean method consistently gives a higher mean. The least mean variations
in orientation and size are observed with the log-Euclidean processing, although the
respective results from the Procrustes and square-root-Euclidean methods results are
very similar. At the same time, the Procrustes and square-root-Euclidean methods result
in lower mean variations of anisotropy. Overall, the three non-Euclidean methods appear
to produce more spatially homogeneous results as compared to the Euclidean method.

Table 4. Local variations δ(x, y, z) averaged over ROI.

Euclidean log-Euclidean Euclidean Root Procrustes
δ̄φ 12.0113◦ 8.3890◦ 8.5486◦ 8.5360◦

δ̄GMD × 10−4 1.2817 0.8051 0.8301 0.8303
δ̄MD × 10−4 1.1464 0.7257 0.7458 0.7457

δ̄FA 0.0767 0.0539 0.0536 0.0535
δ̄PA 0.0483 0.0341 0.0334 0.0334

Figure 14 shows colour-coded orientation maps (with brightness scaled by FA) of three
adjacent original diffusion tensor images and interpolations between those. Recall that
the orientation of the diffusion tensor models the main fibre orientation at a given lo-
cation. Some differences in fibre orientations are pointed out. For example, in column 1
the red region (pointed out by grey arrows) is the left lower part of the corpus callosum.
The Euclidean approach has more horizontally oriented tensors in this region compared
with the other methods. In column 6, we have the feature that the corpus callosum ap-
pears disconnected (clearly separated from the middle, as pointed out by yellow arrows)
in the Euclidean map. The non-Euclidean methods, on the other hand, deliver a seem-
ingly smoother transition from the original Slice 2 with the corpus callosum appearing
connected to Slice 3 with the corpus callosum appearing disconnected.
Figure 15 shows angular deviations between tensor orientations obtained using different

approaches, which are from the slice of smoothed interpolants in column 2 of Figure 14.
For example, φEL is the smaller angle between the orientations of tensors processed with
the Euclidean and log-Euclidean methods. It is clear from the φEL, φEH and φES maps
that the Euclidean tensor tends to be oriented notably differently from the non-Euclidean
ones. Mainly these large deviations occur at the gap between the corpus callosum and
the cingulum. The Procrustes and the Euclidean root approaches are again similar.
Figure 16 shows greyscale diffusion tensor volume (|D(x, y, z)|) maps. The Euclidean

approach gives notably larger tensors. For example, in columns 1 and 2 the bright region
marked by yellow arrows from the Euclidean approach is significantly larger than in the
respective maps from the non-Euclidean methods. Also in column 1, the bright region
marked by a green arrow is also larger in the the Euclidean map.
Figure 17 contrasts the approaches by the tensor volume using the more convenient

scale of the decadic logarithm. For example, log10(|DE |/|DL|) contrasts the Euclidean
and the log-Euclidean results. The Euclidean approach gives significantly larger tensors
at the boundary of the corpus callosum. In particular, the contrast between the Eu-
clidean and the log-Euclidean results peaks at at the arches of the corpus callosum. The
root-Euclidean volumes are only negligibly larger than the Procrustes volumes, which is
expected.
Figure 18 shows MD maps from the different approaches. The log-Euclidean approach

generally tends to have lower MD values, and especially at regions pointed out by the
green and yellow arrows. From Figure 19, it is clear that MD values from the Euclidean
approach are generally higher and in particular at the boundary of the corpus callosum
(red and yellow regions). MD values from the Euclidean method are slightly lower than
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Figure 14. Orientation maps. First row: orientation maps from three adjacent original diffusion tensor images.
Rows 2 to 5 are orientation maps from the processed diffusion tensor images using the Euclidean, log-Euclidean,
Procrustes and Euclidean root methods. Columns 2, 3, 5 and 6 are from interpolation images. Differences are
pointed out using arrows. Comparisons between orientation maps in the blue box are displayed in Figure 15.

Figure 15. Deviations in orientation. φEL, φEH , φES , φLH , φLS and φHS are the angular deviations between the
Euclidean and log-Euclidean, the Euclidean and Euclidean root, the Euclidean and Procrustes, the log-Euclidean
and Euclidean root, the log-Euclidean and the Procrustes, the Euclidean root and Procrustes results, respectively.

the others in the middle part of the corpus callosum (dark blue). The log-Euclidean
tensors have notably lower MD values at the boundary of the corpus callosum than
both the Euclidean root and Procrustes tensors. The Procrustes and Euclidean root
approaches are very similar in MD, although the former do tend to be higher that the
latter as suggested by Proposition 3.5.
Figure 20 shows PA maps from the four methods. At the boundary of the corpus

callosum in the first and second column in the figure, the log-Euclidean, Procrustes and
Euclidean root approaches have higher PA values than the Euclidean method, as the
latter is known to lower anisotropy in interpolation. For the same reason, in the sixth
and seventh columns the corpus callosum appears totally disconnected in the middle of
the Euclidean maps. The other maps show some activity there. The PA contrast maps
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Figure 16. Volume maps. First row: The three original adjacent slices. Rows 2 to 5 are from the processed diffusion
tensor images using the Euclidean, log-Euclidean, Procrustes and Euclidean root methods. Columns 2, 3, 5 and 6
are the interpolated slices. Differences are pointed out using arrows. Contrasts between the boxed (in blue) results
processed by the different methods are further displayed in Figure 17.

of Figure 21 show how at the lateral boundaries of the corpus callosum (the blue arches)
the Euclidean tensors tend to be significantly more isotropic than the non-Euclidean
ones. This comparison reverses at the top and bottom boundaries (red horseshoes), in
particular closer to the gap between the corpus callosum and the cingulum. The log-
Euclidean approach has higher PA values at the left and right boundaries of the corpus
callosum. The Procrustes and the Euclidean root results are similar as usual. It may be
possible to gain more insight into these comparisons by using the alternative approach
of the absolute value tensor of differences, as proposed in [2].
To summarise, the Euclidean method tends to give notably larger tensors and more

variable (locally) processed fields. The non-Euclidean methods are similar regarding the
size and orientation. There are some small differences between all of the non-Euclidean
methods, and the Procrustes and Euclidean root methods are very similar overall in these
examples. Comparisons of all the four methods are in line with the theoretical rankings
of Inequality (13) and Proposition 3.5.

7. Conclusion and discussion

In this paper, we have considered non-Euclidean statistical methods for diffusion tensor
regularisation, interpolation and visualisation. A family of anisotropy indices has been
proposed using the scale invariant power-Euclidean metric, which are useful for visualisa-
tion. We have also considered the weighted tensor averaging using non-Euclidean metrics,
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Figure 17. Comparisons of tensor volumes on the decadic logarithmic scale. As expected, the highest contrast
is observed from log

10
(|DE |) − log

10
(|DL|) of the Euclidean and log-Euclidean Riemannian methods. Contrasts

log
10
(|DH |)− log

10
(|DL|) and log

10
(|DS |)− log

10
(|DL|) between the square root method and the log-Euclidean

method, and between the Procrustes method and the log-Euclidean method, respectively, are notably lower.
While the square root tensors are bigger than or equal to the Procrustes tensors, their differences log10(|DH |)−
log10(|DS |) appear negligible on the common scale.

Figure 18. MD maps. First row: MD maps from three adjacent original diffusion tensor images. Rows 2 to 5 are
MD maps from the processed diffusion tensor images using the Euclidean, log-Euclidean, Procrustes and Euclidean
root methods. Columns 2, 3, 5 and 6 correspond to interpolated slices. Differences are pointed out using arrows.

including the Procrustes size-and-shape, log-Euclidean and affine-invariant Riemannian,
Cholesky and Euclidean root metrics. We have also discussed how to use these non-
Euclidean methods for diffusion tensor smoothing and interpolation. Then a weighted
regularisation model has been developed, which combines smoothing and regularisation
by matching a prescribed diffusion behaviour. Finally, we have compared several metrics
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Figure 19. MD contrasts. Although some negative values do arise, the vast majority of the contrasts are consistent
with Proposition 3.5. As in the case of the volume contrasts, the Procrustes and root-Euclidean results are nearly
the same, hence their differences are negligible on the common scale (even though the Procrustes MD values do
tend to be higher than the corresponding root-Euclidean MD values).

Figure 20. PA maps.

and the corresponding weighted averages, and have established several key analytic re-
sults concerning properties of these objects. Those have also been illustrated in simulation
studies and on a real dataset from a human brain diffusion-weighted MRI scan.
We have presented several applications of non-Euclidean weighted averaging methods

for diffusion tensor processing. How to process images with a level of optimality is a
central question in many computer vision applications. For diffusion tensor smoothing,
the main difficulty lies in the ability to predict how much smoothing needs to be applied
at various locations. This is generally difficult, even when the brain atlas is available
for guidance. It is therefore interesting to investigate algorithms which could modify the
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Figure 21. PA contrasts.

weights of individual voxels.
A concrete example could be Ω>0(n)-valued kernel-based regression with, say, the

Gaussian kernel defined via a distance d1 on some set M of input, or predictor, vari-
ables ψ, where M may or may not be Ω>0(n). Clearly, this is more general than DTI
as symmetric positive semi-definite matrices occur in various other contexts, such as co-
variance descriptors in computer vision and even graph Laplacians. Hence, we write Ω>0

in short, understanding that degenerate matrices may also be included. (Indeed, all the
key results we have given in this paper for 3 × 3 tensors, remain valid in general.) The
idea is then to generalise the weighted tensor averaging (Equation (6)) in the spirit of
the Nadaraya-Watson regression to predict a tensor valued response Σ corresponding to
the input variable ψ:

Σ̂(ψ) = arg inf
Σ∈Ω>0

N∑

i=1

exp{−γd21(ψi, ψ)}d22(Di,Σ),

So, in effect {ψi,Di}, i = 1, 2, .., N , is the training (observed) dataset, and ψi’s are
observed feature values. A simple special case is when M = R

3, so that ψ is simply the
set of coordinates of locations where matrix-valued observations Di’s are collected, d1 can
then be the Euclidean distance (as used in this paper), unless M is a different manifold,
such as a sphere (in geosciences). In that case, we get a generalised tensor-valued kernel
Nadaraya-Watson-smoothed Kriging prediction at location ψ. An important point has
been made recently [20] that in order for the above exponential kernel to be positive-
definite for all γ > 0 (as required to guarantee the usual kernel properties used in
statistical and machine learning), d21 must be representable by an inner product on some
inner product space. Certainly, the Euclidean distance satisfies this condition. Also, if we
take our input variable ψ to be tensor valued, then all the Euclidean based metrics on
Ω>0 also satisfy this condition. The Procrustes size-and-shape metric dS appears to not
satisfy this condition. At least, if we use the natural representation of Di by its principal
square root Qi, the trace of the ∆ matrix of the singular values of Q1Q2 would have to
be an inner product, which it is not (although it is a norm). Nonetheless, dS is still a
good choice for d2, as shown in this paper. All in all, the ready to use machinery of kernel
regression then becomes available to address issues such as adapting γ to a specific task.
The weighted averaging methods described in this work then gain a new perspective as
the weights wi ∝ exp{−γd21(ψi, ψ)} are now defined in a principled manner, which may
not have been clear from the function (22).
If applied to DTI, this framework would still need to be fine tuned to respect var-

ious structures. We could start with some large region of interest and then alternate
iteratively between the following phases. First, segment the region into more or less
homogeneous subregions, which will, however, generally be irregular. Some standard
classification tool can be used for this, especially since it has recently been shown that
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essentially all statistical and machine learning methods, such as discriminant analysis
and clustering, also work well with tensor valued data using positive-definite kernels,
such as the exponential one above. Homogeneity within putative subregions will then be
growing. These classification/segmentation can actually be “soft”, i.e. we would not be
drawing any definitive boundaries, but rather be estimating class-conditional probabili-
ties. Then we would do smoothing separately within each of the subregions, incorporating
these probabilities into the weights. So, the voxels that have higher probability of being
part of the currently chosen subregion will be contributing more. In the beginning we
could allow our segmentation algorithm to have many distinct segments/subregions and
very peaked distributions of the weights within each. That is, we would start with very
little smoothing. Once the smoothed values are computed, we would rerun the segmen-
tation algorithm, and so on, gradually causing the segmentation to be increasingly more
conservative in terms of the number of distinct subregions. We might even allow for
disconnected segments/subregions, which could be important to prevent oversmoothing
of structure. Ideally we would like to be able to smooth distinct fibre bundles indepen-
dently of one another, or, at least, to be able to smooth a segment of a major fibre tract
preserving its boundaries.
The weighted regularisation framework proposed in Section 5 is very general. Presently,

we have considered the special case with the power parameters p = q = 2 and the
Procrustes size-and-shape metric being used for both d1 and d2. It would be interesting
to vary the parameters in the weighted regularisation model. For example, when p = 2
and q = 2, we have a generalised type of ridge-regression model. When p = 2 and q = 1,
the method gives a generalised type of LASSO [36], and so on. To develop an efficient and
more automated method for choosing the regularisation parameter λ is also of interest.
There is a special challenge to process tensor fields containing multiple diffusion pro-

files, especially when more than one distinct profile is observed at a single voxel (crossing
fibres, etc). For example, to interpolate a pair of tensors at one voxel with a pair of
tensors at another voxel is a basic and difficult problem. An intuitive idea is to find the
optimal matches between two pairs, i.e. to match each tensor at the first voxel with a
tensor at the second voxel. Then, the processing can be carried out between matched
tensors. Other, more object-oriented, approaches may also be found not requiring explicit
matching of individual tensors. Also, when more angular directions are available such as
in HARDI data [37] more flexible models than diffusion tensors can be explored, which
also present more challenges for non-Euclidean statistical analysis.
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Appendix A. Proof of Theorem 2.1 (See page 4)

Theorem 2.1 For any non-zero symmetric semi-positive definite D, FA(Da) is an
increasing function of a, where a ∈ [0,∞).

Proof. Let a, b ≥ 0 be such that a < b. We need to show that

3∑
i=1

(λai − λa)2

3∑
i=1

λ2ai

≤

3∑
i=1

(λbi − λb)2

3∑
i=1

λ2bi

, which is equivalent to [λb]2λ2a ≤ [λa]2λ2b. (A1)

Let q = 2b−a
b , p = 2b−a

b−a , so that 1
q + 1

p = 1, p ≥ 1, q ≥ 1, then write λbi = λs+t
i ,

i ∈ {1, 2, 3} where s = a
q = ab

2b−a , t =
2b
p = 2b(b−a)

2b−a .

Apply Hölder’s inequality [28] with gi = λsi , fi = λti, i = 1, 2, 3,

3∑

i=1

|gifi| ≤ [

3∑

i=1

gqi ]
1/q[

3∑

i=1

fpi ]
1/p

to obtain

λb ≤ [λa]
b

2b−a [λ2b]
b−a

2b−a

=⇒ [λb]2 ≤ [λa]
2b

2b−a [λ2b]
2b−2a

2b−a . (A2)

Next, take q′ = 2b−a
2b−2a , p

′ = 2b−a
a , note that p′, q′ ≥ 1, 1

q′ +
1
p′ = 1. Then write λ2ai = λs

′+t′

i ,

and take s′ = a
q′ =

2a(b−a)
2b−a , t′ = 2b

p′ = 2ab
2b−a . Again, let g

′
i = λs

′

i , f
′
i = λt

′

i , i = 1, 2, 3, and
apply Hölder’s inequality to get

λ2a = λs
′+t′ ≤ [λa]

2(b−a)

2b−a [λ2b]
a

2b−a . (A3)

Finally, multiply both sides of Inequality (A2) by respective sides of Inequality (A3) to
obtain Inequality (A1). �

Appendix B. Proof of Theorem 3.1 (See page 9)

Theorem 3.1 Let D1,D2 ∈ Ω≥0(3). Then,
√
0.5dH(D1,D2) ≤ dS(D1,D2) ≤

dH(D1,D2). Moreover, if D1 6= D2, and D1 and D2 are of rank 1, then√
0.5dH(D1,D2) < dS(D1,D2) and dS(D1,D2)/dH(D1,D2) →

√
0.5 as d(D1,D2) → 0

in any metric d.

Proof. The
√
0.5dH(D1,D2) ≤ dS(D1,D2) inequality actually holds for any dimension

and follows immediately from Proposition 3.1.
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Proposition 3.1 Let Qi, i = 1, 2 be symmetric positive semi-definite n×n real matri-
ces. Then

min
R∈O(n)

‖Q1 −Q2R‖2 ≥ 0.5‖Q1 −Q2‖2. (9)

Proof. It is proved in [8] that for any unitarily invariant matrix norm ‖ · ‖ and for any
positive semi-definite n × n matrices A and B, we have the following version of the
arithmetic-geometric mean inequality:

‖AB‖ ≤
∥∥∥∥∥

(
A+B

2

)2
∥∥∥∥∥ . (B1)

Now, minR∈O(3) ‖Q1 −Q2R‖2 can be seen [18, p.30] to be equal to

‖Q1‖2 + ‖Q2‖2 − 2 tr (∆), (B2)

where ∆ is the matrix of the singular values of Q1Q2, i.e. from the singular value
decomposition Q1Q2 = V∆UT with U,V ∈ O(n). Note that tr (∆) is the Schatten
p = 1, or the trace norm (also known as the nuclear norm or Ky Fan n norm), of
Q1Q2. Let us denote this norm by ‖ Q1Q2 ‖1. Since this norm is also unitarily invariant,
Inequality B1 applies to give

‖ Q1Q2 ‖1 ≤
∥∥∥∥∥

(
Q1 +Q2

2

)2
∥∥∥∥∥
1

. (B3)

Now, since Qi’s are symmetric positive semi-definite, then so is
(
Q1+Q2

2

)2
. In this case,

the trace norm

∥∥∥∥
(
Q1+Q2

2

)2
∥∥∥∥
1

coincides with tr

[(
Q1+Q2

2

)2
]
. Therefore,

min
R∈O(3)

‖Q1 −Q2R‖2 ≥ ‖Q1‖2 + ‖Q2‖2 − 2 tr

[(
Q1 +Q2

2

)2
]
=

tr
(
0.5Q2

1 + 0.5Q2
2 −Q1Q2

)
=

0.5‖Q1 −Q2‖2.

�

To prove the remaining result, it suffices to consider

D1 =



1 0 0
0 0 0
0 0 0


 , D2 = V



λ 0 0
0 0 0
0 0 0


VT, for all V ∈ O(3) and for all λ > 0.

Thus, the first column of V, i.e. the principal eigenvector of D2, parameterises an
arbitrary direction, and the remaining two vectors (columns 2 and 3 ofV) are an arbitrary
orthonormal basis of the zero rank subspace. (As both the distances scale the same under
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D 7→ cD (c > 0), there is no need to consider non-unitary parameters in both D1 andD2,

hence general λ appears in D2 only.) Note that Q1 = D1, and Q2 = V



√
λ 0 0
0 0 0
0 0 0


VT.

To compute dS(D1,D2), note that in the singular value decomposition of Q1Q2, the

matrix∆ of singular values is given as



√
λ|v11| 0 0
0 0 0
0 0 0


. With |v11| replaced by x, x ∈ [0, 1],

Equation (B2) then yields

d2S(D1,D2) = 1 + λ− 2
√
λx. (B4)

Similarly, to get d2H(D1,D2), note that

‖Q1 −Q2‖2 = ‖Q1‖2 + ‖Q2‖2 − 2 tr (Q1Q2) = 1 + λ− 2
√
λx2. (B5)

Let b stand for 1+λ
2
√
λ
. Note that b ≥ 1 for all λ > 0. Then we have

d2S(D1,D2)

d2H(D1,D2)
=

b− x

b− x2
,

which, for any x ∈ [0, 1] is a non-decreasing function of b, b ≥ 1. Since the tensors are
assumed to be distinct, the case of b = x = 1 is disregarded. We also disregard the case
of x = 1 and b > 1 since it gives dS(D1,D2) = dH(D1,D2). Therefore, for any x ∈ [0, 1),
we have

d2S(D1,D2)

d2H(D1,D2)
≥ 1− x

1− x2
=

1

1 + x
.

Since infx∈[0,1)
1

1+x = limx→1
1

1+x = 1/2, we get the claimed (strict) bound

d2H(D1,D2)/2 < d2S(D1,D2), and we also get that d2
S
(D1,D2)

d2
H
(D1,D2)

→ 0.5+ as λ → 1 and

x → 1−, which is equivalent to dH(D1,D2) → 0 (and dS(D1,D2) → 0 and D2 → D1

component-wise). �

Therefore, in the rank 1 case, the two metrics diverge the most as the two tensors
become indistinguishable. We also conjecture that in general, in order to approach the
1/2 bound, the two tensors must become indistinguishable and simultaneously approach
the subspace of rank 1 tensors. For example, if D2 is general (and D1 is still as in the
proof of the Theorem), then we have

d2S(D1,D2) = 1 + trace(D2)− 2
√
λ1v

2
11 + λ2v

2
12 + λ3v

2
13 (B6)

d2H(D1,D2) = 1 + trace(D2)− 2(
√
λ1v

2
11 +

√
λ2v

2
12 +

√
λ3v

2
13), (B7)

which become Equations (B4) and (B5) respectively as λ2, λ3 → 0 (and λ1 = λ).

Appendix C. Proof of Proposition 3.2 (See page 9)

Proposition 3.2 Let rank(D1) = rank(D2) < 3. Then rank(D(w1, w2)) is constant for
all (general) w1, w2 ∈ R, where D(w1, w2) is as in the dS row of Table 1.
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Proof. The result is immediately verified in the rank 1 case. Indeed, without loss of
generality, assume the coordinate frame of D1, i.e.

D1 =



λ 0 0
0 0 0
0 0 0


 , D2 = V



γ 0 0
0 0 0
0 0 0


VT, for some V ∈ O(3) and for some λ, γ > 0.

It is easy to see that D(w1, w2) = QQT, where

Q =
[
w1

√
λI3×3 + w2

√
γV

]


1 0 0
0 0 0
0 0 0


 ,

hence rank(D(w1, w2)) = 1 (except for the special case when the two tensors have the
same orientation and λw1 = −w2γ, making the average the zero tensor).
Consider now the rank 2 case, namely:

D1 =



λ1 0 0
0 λ2 0
0 0 0


 , D2 = V



γ1 0 0
0 γ2 0
0 0 0


VT, for some V ∈ O(3) and for some λ1 ≥ λ2 > 0,

and for some γ2 ≥ γ2 > 0. Using the symmetric square roots Qi = D
1

2

i , i = 1, 2, note
that

Q1Q2 =



v11

√
λ1γ1 v12

√
λ1γ2 0

v21
√
λ2γ1 v22

√
λ2γ2 0

0 0 0


VT =



a11 a12 0
a21 a22 0
0 0 1






σ1 0 0
0 σ2 0
0 0 0






b11 b12 0
b21 b22 0
0 0 1


VT,

where we have used the 2× 2 singular value decomposition

(
a11 a12
a21 a22

)(
σ1 0
0 σ2

)(
b11 b12
b21 b22

)
=

(
v11

√
λ1γ1 v12

√
λ1γ2

v21
√
λ2γ1 v22

√
λ2γ2

)
.

Therefore, R̂ = V



b11 b21 0
b12 b22 0
0 0 1






a11 a21 0
a12 a22 0
0 0 1


 = V



c11 c12 0
c21 c22 0
0 0 1


, where cij = aj1b1i+aj2b2i,

i, j = 1, 2. Thus, D(w1, w2) = QQT, where Q is given by

w1



√
λ1 0 0
0

√
λ2 0

0 0 0


+ w2V



√
γ1 0 0
0

√
γ2 0

0 0 0






c11 c12 0
c21 c22 0
0 0 1






w1

√
λ1 + w2

(
v11c11

√
γ1 + v12c21

√
γ2
)

w2

(
v11c12

√
γ1 + v12c22

√
γ2
)

0
w2

(
v21c11

√
γ1 + v22c21

√
γ2
)

w1

√
λ2 +w2

(
v21c12

√
γ1 + v22c22

√
γ2
)
0

w2

(
v31c11

√
γ1 + v32c21

√
γ2
)

w2

(
v31c12

√
γ1 + v32c22

√
γ2
)

0


 .

Thus, rank(D(w1, w2)) ≤ 2 for any w1, w2 ∈ R, and for a general setting of D1, D2, and
w1, w2 this rank is exactly two. �
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Appendix D. Proofs of Proposition 3.3, Corollary 3.1, and Proposition 3.4
(See pages 10–11)

Proposition 3.3 Let w1, w2 be probability weights, and let D1 andD2 be n×n positive
definite symmetric matrices, and let DL,R(w1, w2), DH(w1, w2), and DE(w1, w2) be their
Riemannian (log-Euclidean or affine-invariant), root-Euclidean, and Euclidean weighted
averages, respectively, where w1, w2 ≥ 0. Then we have

|DL,R(w1, w2)| ≤ |DH(w1, w2)| ≤ |DE(w1, w2)|.

Proof. Using the same Minkowski Determinant Theorem [26] (see also Equation (12)),
followed by the arithmetic-geometric mean inequality, we obtain

|w1Q1 + w2Q2|
1

n ≥ w1|Q1|
1

n + w2|Q2|
1

n ≥ |Q1|
w1
n |Q2|

w2
n .

Therefore, |w1Q1 + w2Q2| ≥ |Q1|w1 |Q2|w2 and subsequently |DL(w1, w2)| ≤
|DH(w1, w2)|.
To prove the other side of the double inequality, note that according to the Löwner–

Heinz Theorem [27], the matrix square function g(Q) = Q2 is operator convex on the set
of symmetric square matrices. Therefore, DH(w1, w2) ≤ DE(w1, w2) (in the sense that
the difference DE(w1, w2)−DH(w1, w2) is semi-positive definite). Hence, |DH(w1, w2)| ≤
|DE(w1, w2)|, as claimed. �

Corollary 3.1 Under the assumptions of Proposition 3.3 above, we also have

|DL(w1, w2)| ≤ |DS(w1, w2)|.

Proof. First note that when using the (principal) square root decomposition, we have

R̂ ∈ SO(3), therefore the proof of |DL(w1, w2)| ≤ |DH(w1, w2)| from the Proposition

applies with Q2 replaced by Q2R̂, which does not affect the determinant. �

Proposition 3.4 LetD1 andD2 be n×n symmetric positive semi-definite real matrices,
and let DS(w1, w2) and DH(w1, w2) be their Procrustes and root-Euclidean weighted
averages, respectively, where w1, w2 ≥ 0. Then

|DS(w1, w2)| ≤ |DH(w1, w2)|.

Proof. Without loss of generality assume w1 = w2 = 1 and write QS for Q1 +Q2R̂ and
QH for Q1 + Q2. Indeed, the weight wi can be absorbed in the matrix Qi, since this
does not affect R̂. By the Minkowski Determinant Theorem, |QS | ≥ 0. Therefore, since
|QS | =

√
|DS | and |QH | =

√
|DH |, it suffices to show that |QS| ≤ |QH |.

Below we give a complete proof for the 2 × 2 case, which is straightforward but does
not easily extend to larger matrices. A general proof is given in [3] and uses the theory
of majorization. Specifically, it establishes |In×n + A#B| ≥ |In×n + A1/2B1/2|, where
A#B stands for the affine-invariant Riemannian average (w1 = w2 = 0.5) of positive
definite symmetric matrices A and B. With A = D−1

1 and B = D2, the above inequality
yields |Q1QS| ≤ |Q1QH | for (strictly) positive definite Q1, which finally extends to the
boundary of the cone Ω≥0(n) by continuity of the determinant map.
Expressing the determinants via traces in the 2× 2 case, and recalling that ∆ stands

39



September 28, 2015 Journal of Applied Statistics AcceptedManuscript

for the matrix of the singular values of Q1Q2, we obtain

|QH | − |QS| =
1

2

{
tr2 (QH)− tr2 (QS) + tr

(
Q2

S

)
− tr

(
Q2

H

)}

1

2

{[
tr (Q1 +Q2)− tr

(
Q1 +Q2R̂

)] [
tr (Q1 +Q2) + tr

(
Q1 +Q2R̂

)]
+

tr
[
Q2

1 +Q2R̂Q1 +Q1Q2R̂+Q2R̂Q2R̂−Q2
1 −Q1Q2 −Q2Q1 −Q2

2

]}

1

2

{[
trQ2 − tr

(
Q2R̂

)] [
2 trQ1 + trQ2 + tr

(
Q2R̂

)]
+

tr [2∆− 2Q1Q2] + tr

[(
Q2R̂

)2
]}

.

Noticing that

(trQ2)
2 − tr

(
Q2

2

)
= 2|Q2| = 2|Q2R̂| =

[
tr
(
Q2R̂

)]2
− tr

[(
Q2R̂

)2
]
,

we therefore have

|QH | − |QS| = trQ1

[
trQ2 − tr

(
Q2R̂

)]
+ tr [∆−Q1Q2] ≥ 0,

since for any orthonormal matrix R and trQ ≥ tr (QR) for any positive semi-definite
matrix Q, and since tr∆ ≥ tr (Q1Q2). �

Appendix E. Proof of Proposition 3.5 (See page 11)

Proposition 3.5 For all D1,D2 ∈ Ω>0(3), and for all probability weights w1, w2, we
have

trDR(w1, w2) ≤ trDL(w1, w2) ≤ trDH(w1, w2) ≤ trDS(w1, w2) ≤ trDE(w1, w2).

Moreover, the last two inequalities remain valid for all D1,D2 ∈ Ω≥0(3), and additionally
we have

trDS(w1, w2)− trDH(w1, w2) ≤ 0.5d2H(w2
1D1, w

2
2D2). (14)

Proof. Assume D1,D2 ∈ Ω≥0(3). Consider a type of Pythagoras’ Theorem:

(w1Q1 + w2Q2R)(w1Q1 + w2Q2R)T + (w1Q1 −w2Q2R)(w1Q1 − w2Q2R)T =

2(w2
1D1 + w2

2D2), (E1)

which holds for all weights and all orthonormal matrices R, in particular for probability
weights and for R = R̂ and R = I3×3. Note that it is the same R̂ that gives dS(D1,D2)
and dS(w

2
1D1, w

2
2D2) according to Equation (7) of the main manuscript. Instantiating

Equation (E1) with those two choices of R and applying the trace operator, we arrive at

trDS(w1, w2) + d2S(w
2
1D1, w

2
2D2) = trDH(w1, w2) + d2H(w2

1D1, w
2
2D2).
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Since d2H(w2
1D1, w

2
2D2) ≥ d2S(w

2
1D1, w

2
2D2), we thereby obtain the middle inequality

trDS(w1, w2) ≥ trDH(w1, w2). Theorem 3.1 gives us more information regarding this
comparison, in particular 0.5d2H (w2

1D1, w
2D2) ≤ d2S(w

2
1D1, w

2D2), which gives Inequality
(14).
Next, we prove that trDS(w1, w2) ≤ trDE(w1, w2). To see that, note first that

trDS(w1, w2) = w2
1 trD1 + 2w1w2 tr∆ + w2

2 trD2, where ∆ is the matrix of singular
values of Q1Q2. Using Inequality (B3) then gives

trDS(w1, w2) ≤ w2
1 trD1 + 2w1w2 tr

(
Q1 +Q2

2

)2

+ w2
2 trD2.

Using the fact that tr (Q1Q2 +Q2Q1) ≤ tr
(
Q2

1 +Q2
2

)
, we get

trDS(w1, w2) ≤ (w2
1 + w1w2) trD1 + (w2

2 + w1w2) trD2 = trDE(w1, w2).

Finally (restricting D1 and D2 to be in Ω>0(3)), we quote [7, Corollary 2], which in
our notation writes as:

‖DR(w1, w2) ‖ ≤ ‖DL(w1, w2)‖ ≤ ‖DA(w1, w2|a)‖, (E2)

whereDA(w1, w2|a) is the tensor averaged using the power-Euclidean metric dA(·, ·|a) for
any a > 0, and ‖ · ‖ is any unitarily invariant matrix norm. Thus, with a = 0.5, and the
trace norm (see proof of Proposition 3.1), we obtain trDR(w1, w2) ≤ trDL(w1, w2) ≤
trDH(w1, w2). �

Appendix F. Proof of Proposition 3.6 (See page 12)

Proposition 3.6 Assume that one of the tensors D1, D2 (as in Table 1) is isotropic;
without loss of generality, let it be D1, i.e. D1 = λI3×3 for some λ ≥ 0. Let dg be a
Euclidean-based metric. Let λ1, λ2, λ3 be eigenvalues of D2,

(1) The weighted average tensor D(w1, w2) is given by Equation (15) below. Subse-
quently, if g is increasing, then the orientation of D(w1, w2) is the same as the
orientation of D2 for all weights with w2 6= 0. In particular, if λ1 > λ2, i.e. D2 is
prolate (has a well-defined direction), then D(w1, w2) is also prolate and has the
same direction (provided w2 6= 0).

(2) The Procrustes averaging is identical to the root-Euclidean averaging, and D(w1, w2)
in this case is given by Equation (16) below.

(3) The (log-Euclidean or affine-invariant) Riemannian average tensorD(w1, w2) is given
by Equation (17) below.

(4) D(w1, w2) for the Euclidean averaging is given by Equation (18) below.
(5) The Euclidean, log-Euclidean, the affine-invariant Riemannian, root-Euclidean, and

the Procrustes interpolations all preserve the orientation of D2, provided w2 6= 0.

E

(
g−1((w1g(λ)+w2g(λ1)) 0 0

0 g−1((w1g(λ)+w2g(λ2)) 0
0 0 g−1((w1g(λ)+w2g(λ3))

)
ET , (15)

where EΛET is the spectral decomposition of D2 with eigenvalues λ1 ≥ λ2 ≥ λ3.
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E
(
λw2

1I3×3 + w2
2Λ+ 2w1w2

√
λ
√
Λ
)
ET , (16)

E (λw1Λw2)ET , (17)

E (λw1I3×3 + w2Λ)ET . (18)

Proof. Equations (16), (17), and (18) are all straightforward instantiations of Equation
(11) of the main manuscript. If g is increasing and w2 6= 0, then D(w1, w2) preserves the
ordering of the eigenvalues of D2, thus preserving the orientation of D2.
To see that the Procrustes weighted averaging is identical to the root-Euclidean

weighted averaging, note that the matrix R̂ in the definition of dS(D1,D2) becomes
I3×3 (and therefore dS(D1,D2) = dH(D1,D2)).
Since all of the functions g (g(x) = x, g(x) = log(x), g(x) =

√
x) involved in the

definitions of the considered Euclidean-based weighted averages are increasing, these
weighted averages preserve the orientation of D2 (given w2 6= 0). Since the Procrustes
and the affine-invariant Riemannian averages in this case coincide with the respective
Euclidean-based averages, they also preserve the orientation of D2. �
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