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Abstract

In this paper we consider epidemic models of directly transmissible SIR (susceptible
→ infective→ recovered) and SEIR (with an additional latent class) infections in fully-
susceptible populations with a social structure, consisting either of households or of
households and workplaces. We review most reproduction numbers defined in the
literature for these models, including the basic reproduction number R0 introduced in
the companion paper of this, for which we provide a simpler, more elegant derivation.
Extending previous work, we provide a complete overview of the inequalities among
these reproduction numbers and resolve some open questions. Special focus is put on
the exponential-growth-associated reproduction number Rr, which is loosely defined as
the estimate of R0 based on the observed exponential growth of an emerging epidemic
obtained when the social structure is ignored. We show that for the vast majority of
the models considered in the literature Rr ≥ R0 when R0 ≥ 1 and Rr ≤ R0 when
R0 ≤ 1. We show that, in contrast to models without social structure, vaccination of a
fraction 1−1/R0 of the population, chosen uniformly at random, with a perfect vaccine
is usually insufficient to prevent large epidemics. In addition, we provide significantly
sharper bounds than the existing ones for bracketing the critical vaccination coverage
between two analytically tractable quantities, which we illustrate by means of extensive
numerical examples.

1 Introduction

The basic reproduction number R0 is arguably the most important epidemiological parame-
ter because of its clear biological interpretation and its properties: in the simplest epidemic
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models, where individuals are all identical, mix homogeneously, the population is large and
the initial number of infectives is small, (i) a large epidemic is possible if and only if R0 > 1
(threshold property), (ii) when R0 > 1, vaccinating a fraction 1−1/R0 of individuals chosen
uniformly at random – or, equivalently, isolating the same fraction of infected individuals
before they have the chance to transmit further – is sufficient to prevent a large outbreak
(critical vaccination coverage) and (iii) the fraction of the population infected by a large
epidemic depends only on R0. The definition of R0 is straightforward in single-type ho-
mogeneously mixing models and has been successfully extended to multitype models (see
Diekmann et al. [9], Chapter 7).

In our earlier paper, we showed how to extend the definition of R0 to many models with
a social structure, namely the households models and certain types of network-households
and households-workplaces models (Pellis et al. [22]). The extension proposed there aims at
preserving both the biological interpretation of R0 as the average number of cases a typical
individual generates early on in the epidemic and its threshold property. However, already
in the case of multitype populations the simple relationship between R0 and the epidemic
final size no longer holds. In this paper we show that, for models involving mixing in small
groups, also the simple relationship between R0 and the critical vaccination coverage breaks
down. In particular, we find that vaccinating a fraction 1−1/R0 of the population is generally
insufficient to prevent a major outbreak. This result stems from a series of inequalities which
extend the work done by Goldstein et al. [11], and leads to sharper bounds for the critical
vaccination coverage than previously available.

The definition of R0 given in [22] may be described briefly for an SIR (susceptible →
infective → recovered) epidemic in a closed population as follows. Consider the epidemic
graph (see [22], Section 1, and Section 2.1 of this paper), in which vertices correspond to
individuals in the population and for any ordered pair of distinct individuals, (i, i′) say, there
is a directed edge from i to i′ if and only if i, if infected, makes at least one infectious contact
with i′ (see Figure 1). Suppose that initially there is one infective and the remainder of
the population is susceptible. The initial infective is said to belong to generation 0 (say,
individual 0 in Figure 1). Any other individual, i say, becomes infected if and only if in the
epidemic graph there is a chain of directed edges from the initial infective to individual i,
and in that case the generation of i is defined to be the number of edges in the shortest such
chain. Thus, generation 1 consists of those individuals with whom the initial infective has at
least one infectious contact (individuals 1 and 2 in Figure 1), generation 2 consists of those
individuals that are contacted by at least one generation-1 infective but not by the initial
infective (individuals 4 and 5 in Figure 1) and so on. For k = 0, 1, · · · , let X

(N)
k denote the

the number of generation-k infectives, where N denotes the population size. Thus, in Figure
1, X

(6)
0 = 1, X

(6)
1 = 2, X

(6)
2 = 2, X

(6)
3 = 1 and X

(6)
k = 0 for k ≥ 4. Then R0 is defined by

R0 = lim
k→∞

lim
N→∞

(
E
[
X

(N)
k

])1/k

, (1)

i.e. by the limit, as the population size tends to infinity, of the asymptotic geometric growth
rate of the mean generation size [22].
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Figure 1: Example of epidemic graph in a population of size N = 6.

For single- and multi-type unstructured populations the value of R0 obtained using (1)
coincides with that obtained using the usual definition as “the expected number of secondary
cases produced by a typical infected individual during its entire infectious period in a popu-
lation consisting of susceptibles only” (see Heesterbeek and Dietz [14]). (Note that, for fixed
k, as N → ∞ the epidemic process converges to a Galton-Watson branching process, i.e.
we consider a linear approximation of the early phase of the epidemic.) However, unlike the
usual definition of R0, definition (1) extends naturally to models with small mixing groups,
such as the households and households-workplaces models. In Pellis et al. [22], R0 for these
two models was obtained by exploiting difference equations describing variables related to
the mean generation sizes. In the present paper, we show that R0 for these models may
be obtained more easily from the discrete-time Lotka-Euler equation (cf. Equation (5)) that
describes the asymptotic (Malthusian) geometric growth rate of the mean population size of
an associated branching process, which approximates the early phase of the epidemic.

Note that the construction of the epidemic graph, and therefore most of the work of [22]
and of this paper is based on the assumption that the behaviour of any infected individual can
be decided before the epidemic starts. This is a common assumption in epidemic modelling,
but it is quite a restrictive one. As noted by Pellis et al. [19], this condition is violated when
the infectious behaviour of an individual depends on the time when he/she is infected (for
example, if the number of other infectives at the time of infection matters or if a control
policy is implemented at a certain time) and, in multi-type populations, on the type of the
infector. Theoretically, (1) and all results in this paper require only that the epidemic admits
a description in terms of generations of infection, which seems biologically plausible for most
epidemic models. However, analytical progress is limited without invoking the assumption
above.

In Section 2 we study reproduction numbers for the households model in great detail: in
Sections 2.1 and 2.2, we introduce the households model and provide a simpler, more elegant
derivation of the basic reproduction number R0 than that presented in Pellis et al. [22];
we then review the vast majority of the reproduction numbers defined in the literature for
the households model in the remainder of Section 2 and we formulate our main results in
Theorems 1 and 2 in Section 3, where virtually all comparisons are carefully examined and
new, sharper bounds on the critical vaccination coverage are obtained. For ease of reference,
Table 1 collects all the households reproduction numbers with a reference to where they
are discussed, and Table 2 summarises known and novel results, again with appropriate
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references. In Sections 4 and 5 we define and compare reproduction numbers for models
with households and workspaces. Here we again provide a new and simpler derivation of R0

than in [22]. Reproduction numbers are collected in Table 3 and the inequalities among them
are reported in Theorem 3 and in the extension of Theorem 2 to the households-workplaces
model. Extensive numerical illustrations are presented in Section 6, while in Section 7 we
provide the proofs of the comparisons presented in Sections 3 and 5. Section 8 is devoted to
comments and conclusions. We summarise the main notation used in the paper in Table 4.

Table 1: Reproduction numbers for the households model (analogues of R0, R∗, RI , RV ,
RHI , R2, R̂HI and R̂2 are considered also for the network-households model).

Symbol Meaning Section

R0 Basic reproduction number (by default, based on rank generation
numbers)

2.2

R∗ Household reproduction number 2.3
RI Individual reproduction number 2.4
RHI Individual reproduction number 2.5

R̂HI , R̄HI Variants of RHI from [11] (R̄HI is not a threshold parameter) 2.5
R2 Individual reproduction number 2.6

R̂2 Variant of R2 from [7] 2.6
RV Perfect vaccine-associated reproduction number 2.7
RVL Leaky vaccine-associated reproduction number 2.7
Rr Exponential-growth-associated reproduction number 2.8

R̃r Variant of Rr 2.8
Rr

0 Basic reproduction number based on rank generation numbers 2.1, 3.1.3
Rg

0 Basic reproduction number based on true generation numbers 2.1, 3.1.3
RA, RB Generic reproduction numbers 3.1.3

4



Table 2: Existing, newly proved and conjectured inequalities.

Result for growing epidemics Reference

R∗ > RI ≥ RV ≥ R0 (≥ R2, conjecture) > RHI > 1 Thm 1 & App A
RI ≥ R2 > RHI > 1 Thm 1

R̂HI ≥ R̄HI (R̄HI not a threshold parameter) Eq A4.1 of [11]
RHI ≥ R̄HI App C

R̂HI ≥ RHI , but R̂HI and R0 cannot be ordered App C
Rr

0 ≥ Rg
0 Sec 3.1.3

R∗ > RVL ≥ RV ≥ R̄HI , but RVL and RI cannot be ordered Thm 1 of [11] & App B
R∗ ≥ Rr Thm 1 of [11]
Rr ≥ R0 in most commonly used models, but not in general Thm 2

Rr ≥ R̃r ≥ R0 in important special cases, but not in general Thm 2
Rr and RVL cannot be ordered App E
Rr and RV cannot be ordered Sec 6.2

Rr (or R̃r) and RI cannot be ordered Sec 6.1

Result for declining epidemics Reference

R∗ < RI ≤ R0 ≤ (conjecture)R2 < RHI < 1 Thm 1 & App A

R̂HI ≥ R̄HI Eq A4.1 of [11]
RHI ≥ R̄HI App C

R̄HI ≤ R̂HI ≤ RHI < 1, but R̄HI and R̂HI cannot be ordered with R0 App C
R∗ ≤ Rr Sec 3.2
Rr ≤ R0 in most commonly used models, but not in general Thm 2

Rr ≤ R̃r ≤ R0 in important special cases, but not in general Thm 2

Table 3: Reproduction numbers for the households-workplaces model.

Symbol Meaning Section

R0 Basic reproduction number (by default, based on rank generation
numbers)

4.2

R∗ Clump reproduction number 4.3
RH Household-household reproduction number 4.4
RW Workplace-workplace reproduction number 4.4
RI Individual reproduction number 4.5
RV Perfect vaccine-associated reproduction number 4.6
RVL Leaky vaccine-associated reproduction number 4.6
Rr Exponential-growth-associated reproduction number 4.7

R̃r Approximation of Rr 4.7
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Table 4: Main symbols used in the paper, with reference to their first occurrence.

Symbol Meaning Section

a(n) = µ
(n)
H /

(
1 + µ

(n)
H

)
(construction of RHI) 2.5

a = max
(
a(n) : n = 1, 2, · · · , nH

)
(construction of RHI) 2.5

b Mean number of secondary cases attributed to other sec-
ondary cases (construction of R2)

2.6

D C Complement of event D 7.1
EX Expectation with respect to random variable X 1
E Vaccine efficacy 2.7
EC Critical vaccine efficacy 2.7
gA(λ) Characteristic equation (discrete Lotka-Euler equation) de-

rived from MA defining reproduction number RA

Throughout

H,W Subscripts/superscripts referring to household or workplace Throughout
i, i′ Individuals’ indices 1

{I(t), t ≥ 0} Random infectivity profile 2.8
k Generation index 1
Lf Laplace transform of non-negative function f , i.e. Lf (θ) =∫∞

−∞ e−θf(x)dx
2.8

MX Moment-generating function of random variable X,
i.e. MX(θ) = E

[
e−θX

] 2.8

MA Mean matrix associated with reproduction number RA Throughout
n Household size index 2.1
nH Maximum household size 2.1
N Total population size 1
Nii′ Number of infectious contacts from i to i′ between the in-

fection and the recovery of i (Perhaps delete this one)
7.2

pC Critical vaccination coverage 2.7
r Real-time growth rate, i.e. Malthusian parameter for the

epidemic growth
2.8

RA Reproduction number associated with construction process
A

Throughout

Ti Time of infection of i 7.2
TE Duration of latency period in SEIR model 6.1
TI Duration of infectious period in SIR and SEIR models 2.8
WG Random variable describing the time of an infectious contact

between two individuals (since infection of the infector)
2.8

wG Probability density function of WG, also called generation-
time distribution

2.8
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W̃G Random variable describing the time of the first infectious
contact between two individuals (since infection of the in-
fector), assuming at least one occurs

2.8

Yk Number of infected cases in generation k of a (randomised)
Reed-Frost model

7.1

α Shape parameter of the gamma distribution 6.2
βH(t) Mean rate at which global infections emanate from a house-

hold
2.8

δ Rate of progressing from latent to infectious state in SEIR
model

6.1

γ Recovery rate for SIR and SEIR models when TI is expo-
nentially distributed; also, scale parameter of the gamma
distribution

2.8

λG Multiplicative coefficient affecting rate at which each infec-
tive makes infectious contacts in the population at large

2.8

λH Multiplicative coefficient affecting the rate at which each in-
fective makes infectious contacts to any specified susceptible
within household

2.8

µG Mean number of global contacts made by a typical infective 2.1
µH Mean size of a within-household epidemic 2.1
µk Mean number of cases in generation k of a within-household

epidemic (µ0 = 1 always)
2.1

µ
(n)
H , µ

(n)
k Mean size of a within-household epidemic, or of generation

k in such epidemic, in a household of size n
2.1

πn Probability that the household of an individual selected uni-
formly at random has size n (size-biased distribution)

2.1

1D Indicator function, with value 1 if D occurs and 0 otherwise 3.2
st

≤ Stochastically smaller 3.1.3
n

≤ Inequality, which is strict only if at least one household or
workplace has size larger than n and is an equality if all
households and workplaces have size ≤ n

7.1

D
= Equal in distribution App F

7



2 Households model and reproduction numbers

2.1 Model and generations of infections

In this section we outline the definition of the households model, giving sufficient detail so
that R0 can be calculated. The salient features for this purpose are that the population is
partitioned into households and that infectives make two types of infectious contacts, local
contacts with individuals in the same households and global contacts with individuals chosen
uniformly at random from the entire population. The expected number of global contacts
made by a typical infective during his/her infectious period is assumed to be µG and is the
same for all infectives. The precise detail of local transmission is not required in order to
define R0, as long as we can compute the generations of infection in the local epidemic (i.e.
in the within-household epidemic obtained if all global contacts are ignored). We show now
how this may be done.

Consider a local epidemic in a household of size n, with 1 initial infective, labelled 0, and
n− 1 initial susceptibles, labelled 1, 2, · · · , n− 1 (See Figure 1). For i = 0, 1, · · · , n− 1, con-
struct a list of whom individual i would attempt to infect in the household if i were to become
infected. Then construct a directed graph, G(n) say, with vertices labelled 0, 1, · · · , n − 1,
in which for any ordered pair of distinct vertices (i, i′), there is a directed edge from i to
i′ if and only if individual i′ is in individual i’s list of attempted infections. The initial
infective, i.e. individual 0, is said to have (household) generation 0. Those individuals who
are in individual 0’s list (i.e. individuals 1 and 2 in Figure 1) are said to have generation 1.
Those individuals who are not in generations 0 or 1 but who are in a generation-1 infective’s
list (i.e. individuals 4 and 5 in Figure 1) have generation 2, and so on. The set of people
ultimately infected by the epidemic comprises those individuals in G(n) that have a chain
of directed edges leading to them from individual 0, and the generation number of such an
infected individual, i say, is the length of the shortest chain joining 0 to i, where the length
of a chain is the number of edges in it. Following Ludwig [17], we call these generation
numbers rank generation numbers.

The rank generations of infectives may not correspond to real-time generations of infec-
tives. The latter may be obtained by augmenting the graph G(n), so that for each directed
edge, i→ i′ say, in G(n) there is a number tii′ giving the time elapsing between i’s infection
and time at which i first attempts to infect i′. Then the generation number of an individual,
i say, that is infected in the single-household epidemic is the number of directed edges in
the shortest chain joining 0 to i, where now the length of a chain is the sum of the tii′
of its directed edges. We call these generation numbers true generation numbers. As an
example, suppose for the epidemic graph of Figure 1 that t01 + t12 < t02, then the true
generation of individual 2 is 2, instead of 1, which is his/her rank generation. For ease of
exposition, unless stated explicitly otherwise, we assume rank generation numbers through-
out this paper. This is in line with the choice of the definition of R0 made in [22]. For
further clarification, when both generation constructions are considered, as in Section 3.1.3,
we refer to the rank-generation basic reproduction number by using Rr

0, as opposed to the

basic reproduction number R
g
0 which is obtained using the true generations. As explained
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in [22], the reasons for the above choice are both analytical tractability and the fact that
Rr

0 depends (in addition to the household structure) only on the distribution of the total
infectivity of an individual, and not on the particular shape of his/her infectivity profile (i.e.
the distribution of the random development of the infectivity of an individual after he/she
gets infected).

Consider a household of size n. For k = 0, 1, · · · , n − 1, let µ
(n)
k be the mean size of

generation k in the above single-household epidemic. Thus µ
(n)
0 = 1 and µ

(n)
H = µ

(n)
1 +

µ
(n)
2 + · · · + µ

(n)
n−1 is the mean size of the epidemic, not including the initial case. (Note

that µ
(1)
H = 0.) If the population contains households of different sizes then we need to take

appropriate averages of these quantities. Let nH denote the size of the largest household in
the population and, for n = 1, 2, · · · , nH , let pn denote the proportion of households in the
population that have size n. Then the probability that an individual chosen uniformly at
random from the population resides in a household of size n is given by

πn =
npn∑nH
j=1 jpj

(n = 1, 2, · · · , nH). (2)

Global contacts are made with individuals chosen uniformly at random from the population,
so the mean generation sizes of a typical single-household epidemic are given by

µk =

nH∑
n=k+1

πnµ
(n)
k (k = 0, 1, · · · , nH − 1). (3)

The mean size of a typical single-household epidemic, not including the initial infective, is
then given by

µH =

nH∑
n=1

πnµ
(n)
H =

nH−1∑
k=1

µk. (4)

In what follows we assume that µG > 0, otherwise the infection does not spread between
households, and that µH > 0 and nH ≥ 2, otherwise the model is homogeneously mixing.

2.2 The basic reproduction number R0

Consider the branching process that approximates the early spread of the epidemic, in which
each individual in the branching process represents an infected household and the time of
its birth is given by the global generation of the corresponding household primary case
in the epidemic process. (The global generation of an infective is its generation in the
epidemic in the population at large. A household primary case is the first infected individual
in the household and all other cases are called secondary.) See Figure 2 for a graphical
representation. A typical, non-initial individual in this branching process (i.e. a household)
reproduces only at ages 1, 2, · · · and its mean number of offspring at age k + 1 is νk, where
νk = µGµk (k = 0, 1, · · · , nH − 1) and νk = 0 otherwise. The asymptotic (Malthusian)
geometric growth rate of this branching process is given by the unique positive solution
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of the discrete-time Lotka-Euler equation
∑∞

k=0 νk/λ
k+1 = 1; see, for example, Haccou et

al. [12], Section 3.3.1, adapted to the discrete-time setting. The above branching process
may be augmented to include the local spread within each household, i.e. considering all
individuals in Figure 2. Assume, as in Figure 2, that all households live up to age nH , even
if local epidemics finish earlier. (Note that this assumption does not alter the asymptotic
geometric growth rate of the branching process.) Then, for k ≥ nH , the expected number of
households in global generation k of the branching process is

µG (xk−1 + xk−2 + · · ·+ xk−nH ) ,

where xk denotes the the expected number of individuals in global generation k of the
augmented process. Therefore, the asymptotic geometric growth rate of the total number
of infectives in the augmented process is the same as that of the branching process1, so the
basic reproduction number R0 for the above households model is given by the unique positive
root of the function

g0(λ) = 1−
nH−1∑
k=0

νk
λk+1

= 1− µG
nH−1∑
k=0

µk
λk+1

, (5)

yielding a simpler proof of Corollary 1 in [22]. For future reference, we note that

g0(λ) =

nH∑
n=1

πng
(n)
0 (λ),

where

g
(n)
0 (λ) = 1− µG

n−1∑
k=0

µ
(n)
k

λk+1
. (6)

In the above we assume that all infected individuals make the same expected number of
global contacts µG. This is the case for most households models that have appeared in the
literature. One exception is the network-households model of Ball et al. [6, 7], in which the
mean number of global contacts made by primary and secondary household infectives are µ̃G
and µG, respectively, where µ̃G and µG may be unequal. Pellis et al. [22] show that R0 for
the network-households model is given by the unique positive root of g0 but with ν0 = µ̃Gµ0

(all other νk remain unchanged).

2.3 The household reproduction number R∗

The most commonly used reproduction number for the households model is given by the mean
number of households infected by a typical infected household in an otherwise susceptible
population. It is usually denoted by R∗ and in our notation is given by

R∗ = µG(1 + µH) =

nH−1∑
k=0

νk. (7)

1A formal proof of this can easily be obtained using arguments similar to those in the proof of Lemma 3
of [2] (though note that the left-hand side of the second display after (3.15) should read An

nH
).
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0 1 2 3 

n-1 n n+1 n+2 n+3 n+4 n+5 

Household generations 

Global generations 

Figure 2: Graphical representation of the branching process construction used in the
derivation of R0, for a population of households of size 4. At global generation n, a specific
household (thick borders) is infected, i.e. a global infection generates its primary case
(black dot), who then starts a within-household epidemic driven by household infections
(normal arrows). Household and global generations then proceed at the same pace, with
both primary and secondary cases generating only new household primary cases through
global contacts (dashed arrows). Note that all households have lifespans of 4 generations
(the latest time, measured in generations, at which global contacts can be made given their
size), even if the within-household epidemics are shorter.

The popularity of R∗ stems largely from its ease of calculation and from the fact that, if
R∗ > 1, selecting a fraction 1− 1/R∗ of households uniformly at random and vaccinating all
their members is enough to prevent an epidemic.
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2.4 The individual reproduction number RI

Several authors have proposed individual-based reproduction numbers for the households
model. One approach (see, for example, Becker and Dietz [8] and Ball et al. [4]) is to
attribute all secondary cases in a household to the primary case, leading to the reproduction
number RI given by the dominant eigenvalue of the next-generation matrix

MI =

[
µG µH
µG 0

]
.

It is easily verified that RI is given by the unique solution in (0,∞) of gI(λ) = 0, where

gI(λ) = 1− µG
λ
− µHµG

λ2
. (8)

2.5 The individual reproduction number RHI

Goldstein et al. [11] consider an individual reproduction number, which they denote by RHI ,
and which represents “the expected number of secondary cases caused by an average individ-
ual from an average infected household, including those outside and inside the household”
(see also Trapman [26]). Suppose first that all households have the same size. Then, in an
“average” household epidemic, there are µH secondary cases caused by µH + 1 infectives,
leading to

RHI = µG +
µH

1 + µH
. (9)

Goldstein et al. [11] also consider an extension of (9) to variable household sizes2, defined
by

R̄HI = µG +

nH∑
n=1

πn

(
µ

(n)
H

1 + µ
(n)
H

)
. (10)

However, R̄HI given by (10) is not necessarily a threshold parameter. For this reason, Gold-
stein et al. [11] proposed another extension of (9), defined by3

R̂HI = µG +
µH

1 + µH
, (11)

with µH as in (4), which is a threshold parameter. The advantages and disadvantages of R̄HI

and R̂HI are discussed in [11]. The problem with R̄HI is that it is not generally a threshold
parameter. The problem with R̂HI is that (unlike R̄HI) there exist household structures for
which R̂HI does not satisfy the general orderings of reproduction numbers proved in [11].
We renamed the original definitions because we now introduce a new definition of RHI for
populations of unequally sized households, which overcomes both these shortcomings and
coincides with both R̄HI and R̂HI when all households have the same size.

2In [11], this extension is also denoted by RHI .
3In [11], this is denoted by R′HI .
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Returning to the setting where all households have the same size, note that (9) assumes
that each household member produces on average a = µH/(1 + µH) secondary cases within
the household, so the mean generation sizes are given by ηk = ak (k = 0, 1, · · · ) and, cf. (5),
RHI (= µG + a) is given by the unique root in (a,∞) of the function

gHI(λ) = 1− µG
∞∑
k=0

ηk
λk+1

= 1− µG
λ− a

. (12)

Using this approach, if the households are not all the same size, then the mean generation

sizes are given by ηk =
∑nH

n=1 πn
(
a(n)
)k

(i = 0, 1, · · · ), where a(n) = µ
(n)
H /(1 + µ

(n)
H ) for

(n = 1, 2, · · · , nH), which leads to the reproduction number RHI given by the unique root in
(a,∞), where now a = max(a(n) : n = 1, 2, · · · , nH), of the function

gHI(λ) = 1− µG
∞∑
k=0

ηk
λk+1

= 1− µG
nH∑
n=1

πn
λ− a(n)

(λ > a). (13)

2.6 The individual reproduction number R2

A disadvantage of RI is that every secondary case in a household is attributed to the pri-
mary case whereas in practice some should normally be attributed to other secondary cases.
Suppose that all households have the same size, which is at least two. Ball et al. [7] consider
a modification of RI in which MI is replaced by

M2 =

[
µG µ1

µG b

]
,

where b = 1 − µ1/µH . Thus every secondary case produces on average b further secondary
cases, with the value of b being chosen so that the within-household spread yields the correct
expected final size, i.e. so that µH = µ1(1 + b+ b2 + · · · ) = µ1/(1− b). Note that R2 satisfies
ĝ2(R2) = 0, where

ĝ2(λ) = 1− µG + b

λ
+
µG(b− µ1)

λ2
. (14)

At the end of the proof of Theorem 1 (see Section 7.3) we show that b < µ1. It then follows
that R2 is given by the unique root of ĝ2 in (0,∞).

Observe that the above assumes that the mean generation sizes are given by υ0 = 1 and
υk = µ1b

k−1 (k = 1, 2, · · · ). It follows that R2 is given by the unique root in (b,∞) of the
function

g2(λ) = 1− µG
∞∑
k=0

υk
λk+1

= 1− µG
λ

(
1 +

µ1

λ− b

)
. (15)

(It is easily verified that ĝ2(λ) =
(
1− b

λ

)
g2(λ).)

If the households are not all the same size, we can define the mean generation sizes

as υ0 = 1 and υk =
∑nH

n=2 πnµ
(n)
1

(
b(n)
)k−1

(k = 1, 2, · · · ), where b(n) = 1 − µ
(n)
1 /µ

(n)
H for
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(n = 2, 3, · · · , nH). The reproduction number R2 is then given, to be the unique root in
(b,∞) of the function

g2(λ) = 1− µG
∞∑
k=0

υk
λk+1

= 1− µG
λ

(
1 +

nH∑
n=2

πn
µ

(n)
1

λ− b(n)

)
, (16)

where b is now given by b = max(b(n) : n = 2, 3, · · · , nH). Note that (16) reduces to (15)
when all households have the same size.

This extension of R2 to unequal household sizes differs from that in [7], where R2 is
defined to be the dominant eigenvalue of M2 above, with µ1 and µH as in (3) and (4). We
denote the latter by R̂2, as it is similar in spirit to R̂HI . We do not consider it further.

2.7 The perfect and leaky vaccine-associated reproduction num-
bers RV and RVL

Goldstein et al. [11] consider two vaccine-associated reproduction numbers, RV and RVL,
corresponding to perfect and leaky vaccines, respectively. Suppose that the epidemic is above
threshold, i.e. R∗ > 1, and individuals are selected uniformly at random and vaccinated with
a perfect (i.e. 100% effective) vaccine. Let pC be the proportion of the population that has
to be vaccinated to reduce R∗ to 1. Then

RV = 1/(1− pC). (17)

Thus RV is defined in such a way that the critical vaccination coverage is given by 1−1/RV ,
paralleling the usual formula for a homogeneously mixing epidemic, where, if R0 > 1, the
critical vaccination coverage is 1 − 1/R0. Goldstein et al. [11] also introduce in Section 7.2
of their paper a reproduction number RVA, which approximates RV . In our notation, RVA is
obtained by multiplying both µH and µG by (1 − p) in (7), finding the critical vaccination
coverage pC that reduces R∗ to 1, and then using (17) to obtain an approximation RVA

to RV . It is easily checked that RVA = RI (see the proof in Section 7.1 of RI ≥ RV in
Theorem 1(b)4).

A leaky vaccine with efficacy E , is one which multiplies a vaccinee’s susceptibility to
a disease by a factor 1 − E but has no effect on a vaccinee’s infectivity if he/she becomes
infected. More specifically, each time any infective attempts to infect a vaccinated susceptible
individual that individual is infected independently with probability 1 − E . Suppose that
R∗ > 1 and the entire population is vaccinated with a leaky vaccine. Then

RVL = 1/(1− EC), (18)

where EC is the efficacy required to reduce R∗ to 1.
The above definitions of RV and RVL assume that R∗ > 1. Goldstein et al. [11] did not

define RV and RVL when R∗ ≤ 1. In that case we define RV = RVL = 1, since a major
outbreak cannot occur even if nobody is vaccinated.

4Note though that there is a small misprint in the formula for RVA at the foot of page 19 of [11]
(
√

4(f − 1)/RG should be replaced by
√

1 + 4(f − 1)/RG).
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2.8 The exponential-growth-associated reproduction number Rr

A final reproductive number considered in [11] is the exponential-growth-associated repro-
duction number Rr, whose definition requires a more detailed description of the transmission
model. Goldstein et al. [11] consider a households models in which infectives have indepen-
dent and identically distributed infectivity profiles. A typical infectivity profile, I(t) (t ≥ 0),
is the realisation of a stochastic process; conditional upon its infectivity profile, an infectious
individual, t time units after being infected, makes global contacts at overall rate µGI(t) and

contacts any given susceptible in his/her household at rate λ
(n)
H I(t), where n is the size of

his/her household5. All infectious contacts, whether of the same or different type (i.e. local
or global) are independent of each other. For t ≥ 0, let wG(t) = E[I(t)] and note that, since
µG is the mean number of global contacts made by a typical infective,

∫∞
0
wG(t)dt = 1. Thus

wG may be interpreted as the probability density function of a random variable, WG say,
describing an infectious contact interval (see e.g. [11] and [23]).

Suppose first that λ
(n)
H = 0 for all n, so the epidemic is homogeneously mixing, with basic

reproduction number R0 = µG and real-time growth rate r given by the implicit solution of
the Lotka-Euler equation ∫ ∞

0

µGwG(t)e−rtdt = 1. (19)

Thus, R0 = (MWG
(r))−1 , where MWG

(θ) =
∫∞

0
e−θtwG(t)dt is the moment-generating

function of WG. (Throughout the paper, for a random variable X we denote its moment-
generating function by MX(θ) = E

[
e−θX

]
.) This provides a method of estimating R0 from

data on an emerging epidemic, when information on WG and the exponential growth rate
r are available, assuming a homogeneous mixing model (see Nowak et al. [18], Lloyd [16],
Wallinga and Lipsitch [27] and Roberts and Heesterbeek [24]).

The exponential-growth-associated reproduction number Rr in [11] is given by

Rr =
1

MWG
(r)

, (20)

where r is the real-time growth rate of the households model. Thus, in the above inferential
setting, Rr is the estimate one obtains of R0 if the household structure of the population is
ignored.

To calculate Rr, it is necessary to calculate first the real-time growth rate r of the
households model, which generally is far from straightforward. For t > 0, let βH(t) denote
the mean rate at which global contacts emanate from a typical single-household epidemic t
time units after the household was infected. Similarly to (19), the real-time growth rate r is
now given by the unique real solution of the Lotka-Euler equation

LβH (r) = 1, (21)

where LβH (r) =
∫∞

0
βH(t)e−rtdt. Note that LβH (r) is the Laplace transform of the house-

hold infectivity profile; hereafter, we denote by Lf (θ) the Laplace transform of a function

5The notation has been changed to fit more closely that of our paper.
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f calculated in θ ∈ (−∞,∞)6. The difficulty in calculating r from (21) is that LβH (r) is
generally not mathematically tractable unless the disease dynamics are Markovian. Conse-
quently, Fraser [10] introduced an approximation, further explored in Pellis et al. [21], which
essentially assumes that cases are attributed to generations according to the rank-based
process and real infection intervals (not only infectious contact intervals) are independent
realisations of the random variable WG (see Pellis et al. [23] for an extensive discussion).
With this approximation, the time elapsing from the initial infection of the household to the
infection of a typical household generation-k infective is given by the sum of k independent
copies of WG, so LβH (r) ≈ L(0)

βH
(r), where

L(0)
βH

(r) = µGMWG
(r)

{
1 +

nH−1∑
k=1

µk (MWG
(r))k

}
. (22)

Substituting this approximation into (21), using (20) and recalling that µ0 = 1, yields

µG

nH−1∑
k=0

µk
Rk+1
r

= 1,

so, recalling (5), g0(Rr) = 0. Thus, using Fraser’s approximation leads to Rr being given by
R0.

A second approximation to Rr is perhaps most easily introduced by considering the
infectivity profile given by

I(t) =

{
1 if 0 ≤ t ≤ TI ,
0 if t > TI ,

(23)

where TI ∼ Exp(1). (For γ > 0, Exp(γ) denotes an exponential distribution having rate
γ, and hence mean γ−1.) Thus, for t ≥ 0, we have wG(t) = E[I(t)] = P(TI ≥ t) = e−t,

so WG ∼ Exp(1). Suppose that λ
(n)
H = λH for all n. Let the random variable W̃G describe

the time of the first local infectious contact from a given infective to a given susceptible in
the same household, conditional upon there being at least one such contact. The infective
contacts the susceptible at rate λH and recovers independently at rate 1, so the time until
the first event (contact of the susceptible or recovery of the infective) has an Exp(1 + λH)
distribution. Moreover, whether or not this event is a recovery is independent of its time.
Thus W̃G ∼ Exp(1 + λH). Note that W̃G has a different distribution from WG, so another

(and usually improved) approximation is LβH (r) ≈ L̃βH (r), where

L̃βH (r) = µGMWG
(r)

{
1 +

nH−1∑
k=1

µk

(
MW̃G

(r)
)k}

. (24)

6For ease of notation we give the domain as (−∞,∞) but, as all the functions we consider are non-
negative, we note that the domain usually takes the form (θf ,∞), where θf depends on the function f , as
the integral is infinite for θ ≤ θf .
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Note that the first MWG
(r) in (22) is not replaced by MW̃G

(r) since it corresponds to a
global contact (recall that, asymptotically, an infective makes at most one global contact to

any given susceptible). The random variable W̃G can be defined in a similar fashion for any
arbitrary but specified infectivity profile (see [23] for numerous explicit examples). Using
this approximation, the real-time growth rate r is approximated by r̃, where r̃ is the unique
real solution of

L̃βH (r) = 1, (25)

which leads to Rr being approximated by the reproduction number

R̃r =
1

MWG
(r̃)

. (26)

The above example shows that if λH varies with household size n then so does the
distribution of W̃G. In that case, (24) becomes

L̃βH (r) = µGMWG
(r)

{
1 +

nH∑
n=2

πn

n−1∑
k=1

µ
(n)
k

(
M

W̃
(n)
G

(r)
)k}

, (27)

where W̃
(n)
G is a random variable distributed as W̃G when the household size is n, and R̃ is

then obtained as before.
Observe that the approximation LβH (r) ≈ L̃βH (r) is exact if nH ≤ 2, so in that case

Rr = R̃r.

3 Comparisons of households model reproduction num-

bers

We distinguish between an epidemic in which R∗ > 1 and one in which R∗ < 1; we call the
former growing (following Goldstein et al. [11]) and the latter declining. As stated before,
we assume implicitly that nH ≥ 2, µH > 0 and µG > 0. We also assume that if nH ≥ 3,
then µ1 6= µH . Thus we exclude the highly locally infectious case studied by Becker and
Dietz [8], in which the initial infective in a household necessarily infects all other susceptible
household members. We comment on this case after Theorems 1 and 2.

3.1 Comparisons not involving Rr

3.1.1 Main theorem

The following theorem is proved in Section 7.1.

Theorem 1

(a) R∗ = 1 ⇐⇒ RI = 1 ⇐⇒ R0 = 1 ⇐⇒ R2 = 0 ⇐⇒ RHI = 1 =⇒ RV = 1.
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(b) In a growing epidemic,

R∗ > RI ≥ RV ≥ R0 > RHI > 1 and RI ≥ R2 > RHI > 1,

and in a declining epidemic

R∗ < RI ≤ R0 < RHI < 1 and RI ≤ R2 < RHI < 1.

The inequalities RI ≥ RV , RI ≥ R2, RI ≤ R0 and RI ≤ R2 are strict if and only if
nH > 2. The inequality RV ≥ R0 is strict if and only if nH > 3.

Remark 1 We conjecture that, in addition to Theorem 1(b), R0 ≥ R2 in a growing epidemic
and R0 ≤ R2 in a declining epidemic, with strict inequalities if and only if nH > 2, so
that Theorem 1(b) should take the form R∗ > RI ≥ RV ≥ R0 ≥ R2 > RHI > 1 and
R∗ < RI ≤ R0 ≤ R2 < RHI < 1 in the two cases, respectively. Although we have yet to find
a complete proof, the conjecture is supported by extensive numerical results. We discuss it
further in Appendix A, where it is proved for nH ≤ 3.

Remark 2 If the epidemic is highly locally infectious then µ1 = µH and it is readily seen
that part (a) of Theorem 1 still holds, R∗ > RI = RV = R0 = R2 > RHI > 1 in a growing
epidemic and R∗ < RI = R0 = R2 < RHI < 1 in a declining epidemic.

A key finding of Goldstein et al. [11] is that, for a growing epidemic, R∗ ≥ RV ≥ R̄HI ,
thus enabling upper and lower bounds to be obtained for the critical vaccination coverage
when individuals are vaccinated uniformly at random with a perfect vaccine (note, though,
that R̄HI is not a threshold parameter and can be smaller than 1 even in a growing epidemic).
Note that Theorem 1 implies that RI is a sharper upper bound than R∗ for RV and R0 is a
sharper lower bound than RHI (which coincides with R̄HI when all households have the same
size and, as shown below, is greater than or equal to R̄HI in a growing epidemic). Goldstein
et al. [11] show that R∗ ≥ RVL ≥ RV for a growing epidemic. We show in Appendix B that
RVL and RI cannot in general be ordered.

In Appendix C we investigate the possible ordering of variants of RHI . Concerning the
reproduction numbers R̄HI and R̂HI , Goldstein et al. [11] prove that7 R̄HI ≤ R̂HI always
holds (see their Proposition A4.1) and we show that R̄HI ≤ RHI . So we conclude that, by
virtue of Theorem 1(b), in a growing epidemic,

R0 > RHI ≥ R̄HI .

(but note that even in a growing epidemic R̄HI might or might not be greater than 1).
However, in a declining epidemic, R0 and R̄HI cannot be ordered in general. Finally, we also
construct an example to show that no general order exists between R0 and R̂HI (either in a
growing or a declining epidemic).

7In our notation.
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One may argue that our generalisation of RHI to populations with unequal household
sizes is more natural than R̄HI . Unlike R̄HI , it is a threshold parameter and, unlike R̂HI , it
can always be ordered with R0. Moreover, for a growing epidemic, RHI is a sharper lower
bound than R̄HI for R0, and hence also for RV (see Theorem 1). In a similar vein, our
generalisation of R2 to populations with unequal household sizes seems more natural than
that in [7].

3.1.2 Network-households model

We now consider briefly relations among reproduction numbers for the network-households
model, for which the calculation of R0 is outlined at the end of Section 2.2. Analogues of
R∗, RI , RV , RHI and R2 are easily obtained. Omitting the details, R∗ = µ̃G + µGµH , RI is
the unique root in (0,∞) of gNHI (λ), where

gNHI (λ) = 1− µ̃G
λ
− µHµG

λ2
,

RV is defined in the usual way via the (perfect vaccine) critical vaccination coverage, RHI is
the unique root in (a,∞) of gNHHI (λ), where (cf. (13))

gNHHI (λ) = 1− µ̃G
λ
− µG

λ

nH∑
n=2

πn
a(n)

λ− a(n)
(λ > a),

and R2 is the unique root in (b,∞) of gNH2 (λ), where (cf. (16))

gNH2 (λ) = 1− µ̃G
λ
− µG

λ

nH∑
n=2

πn
µ

(n)
1

λ− b(n)
(λ > b).

With the above definitions, Theorem 1 holds also for the network-households model; the
proof is essentially the same as for the households model and hence omitted.

Analogues of R̂HI and R̂2 can also be defined. On average, a fraction 1/(1 + µH) of
infectives are household primary cases, who each make a mean of µ̃G global contacts, and a
fraction µH/(1 + µH) of infectives are household secondary cases, who each make a mean of
µG global contacts. Arguing as in the derivation of (11) then leads to

R̂HI =
µ̃G + µH(1 + µG)

1 + µH
,

but note that R̂HI does not necessarily equal RHI when all households have the same size.
Arguing as in the derivation of (14) yields that R̂2 is the largest positive root of ĝNH2 (λ),
where

ĝNH2 (λ) = 1− b+ µ̃G
λ

+
bµ̃G − µ1µG

λ2
.

The reproductions numbers R̂2 and R2 do coincide when all households have the same size.
Comparisons involving R0, R̂2 and R̂HI are more involved and are not considered here.
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3.1.3 Generational view of comparisons

For the households model, the reproduction numbers R0, R∗, RI , RHI and R2 can all be
obtained by viewing local epidemics on an appropriate generation basis, with any such
reproduction number, RA say, being given by the unique positive root of the function gA
defined by

gA(λ) = 1− µG
∞∑
k=0

µAk
λk+1

, (28)

where µA0 , µ
A
1 , · · · are the mean generation sizes associated with RA, averaged with respect

to the size-biased household size distribution (πn) = (πn : n = 1, 2, · · · , nH). The mean
generations sizes associated with R0, RHI and R2 have been described previously and lead
to (5), (13) and (16), respectively. For R∗, they are given by µ∗0 = 1 + µH and µ∗k = 0
(k = 1, 2, · · · ), so g∗(λ) = 1− µG 1+µH

λ
, whence R∗ is given by (7). For RI they are given by

µI0 = 1, µI1 = µH and µIk = 0 (k = 2, 3, · · · ), leading to (8).
Observe that, for each A,

∑∞
k=0 µ

A
k = 1 + µH , so we can define a random variable XA

having probability mass function P(XA = k) = µAk /(1 + µH) (k = 0, 1, · · · ), whose interpre-
tation is the household-generation (associated with RA) of an an infective chosen uniformly
at random from all infectives in a household with size chosen according to the size-biased
distribution (πn). Moreover, RA is then given by the unique solution in (0,∞) of the equation

E
[
λ−(XA+1)

]
=

1

µG(1 + µH)
. (29)

Now, for x ≥ 0, λ−x is increasing in x if λ < 1 and decreasing if λ > 1. Thus, if for two

reproduction numbers, RA and RB say, XA
st

≤ XB (XA stochastically smaller than XB,
i.e. P(XA ≤ x) ≥ P(XB ≤ x) for all x ∈ R) then it follows that RA ≥ RB in a growing
epidemic and RA ≤ RB in a declining epidemic.

The above observation provides an intuitive explanation for all of the comparisons in
Theorem 1 (except those involving RV ) and also for the conjecture concerning R0 and R2.
Indeed, the comparisons in Theorem 1 can be proved by showing stochastic ordering of the
associated XAs, though this approach is generally no easier and sometimes harder than the
proofs in Section 7.1.

The above approach provides a simple proof of comparisons of Rr
0 and R

g
0 , where Rr

0

and R
g
0 denote the values of R0 obtained using rank and true generations, respectively

(see Section 2.1). Suppose first that all households have size n. Let µr
0, µ

r
1, · · · , µr

n−1 and

µ
g
0 , µ

g
1 , · · · , µ

g
n−1 denote the mean rank and mean true generation sizes, respectively, and

let Xr and Xg denote the corresponding induced generation random variables. Consider
a realisation of the augmented version of the random graph G(n) defined in Section 2.1. If
n ≤ 2 then the rank and true generation numbers coincide for all infectives. Suppose that
n ≥ 3 and for any infective, i say, let ri and gi denote its rank and true generation numbers,
respectively. Then ri ≤ gi, since ri is the number of edges in the shortest chain joining the
initial infective 0 to i. However, if there is a chain joining 0 to i having strictly more edges
than ri but strictly less total time than any such chain of length ri then gi > ri. It follows
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that, for n ≥ 3,
∑k

j=0 µ
r
j ≥

∑k
j=0 µ

g
j (k = 0, 1, · · · , n − 1), which implies that Xr st

≤ Xg.
Taking expectations with respect to the size-biased household size distribution (πn) shows
that the same result holds for populations with unequal household sizes, provided nH ≥ 3.
Hence in a growing epidemic Rr

0 ≥ R
g
0 , whilst in a declining epidemic Rr

0 ≤ R
g
0 .

3.2 Comparisons involving Rr

Although Rr and R0 cannot in general be ordered (see Appendix D), Theorem 2 below
(proved in Section 7.2) shows that, for the most commonly-studied models in the literature,
in a growing epidemic Rr ≥ R0 and in a declining epidemic Rr ≤ R0. For this purpose,
it is convenient to consider two broad classes of models. The first class contains those
models for which I(t) = JwG(t) for all t ≥ 0, for which the shape of the infectivity profile
is not random, but the magnitude J is. (Recalling that

∫∞
0
wG(t)dt = 1, we have that

J =
∫∞

0
I(t)dt and E[J ] = 1.) Another class assumes that the duration of the infectious

period is random but, conditioned on an individual being still infectious t time units after
being infected, the infectivity is non-random, i.e., I(t) = f(t)1(TI > t) for t ≥ 0, where f(t)
is a deterministic function and TI is a random variable denoting the infectious period, which
satisfy

∫∞
0
f(t)P(TI > t)dt = 1. (Throughout the paper, for an event, D say, 1(D) denotes

its indicator function; i.e. 1(D) = 1 if the event D occurs and 1(D) = 0 if D does not occur.
Thus, in the present setting, I(t) = f(t) if t < TI and I(t) = 0 if t ≥ TI . ) Note that the
standard stochastic SIR model (Andersson and Britton [1], Chapter 2) is in this class (f(t)
is constant). A non-random time-varying infectivity profile, i.e. I(t) = wG(t) for all t ≥ 0 is
a special case of both classes.

Theorem 2 (a) For all choices of infectivity profile I(t) (t ≥ 0),

Rr = 1 ⇐⇒ R̃r = 1 ⇐⇒ R0 = 1.

(b) If I(t) = Jw(t) (t ≥ 0), where J is a non-negative random variable, then in a growing
epidemic,

Rr ≥ R0 > 1,

and in a declining epidemic,
Rr ≤ R0 < 1.

(c) If I(t) = f(t)1(TI > t) (t ≥ 0), where f(t) is a deterministic function and TI a
non-negative random variable, then in a growing epidemic,

Rr ≥ R̃r ≥ R0 > 1,

and in a declining epidemic,
Rr ≤ R̃r ≤ R0 < 1.

The above results still hold if a latent period independent of the remainder of the infectivity
profile is added.
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Remark 3 Note that for Reed-Frost type models (i.e. models in which the latent period is
constant and the infectious period is reduced to a single point in time, cf. Bailey [2], Section

14.2, and Diekmann et al. [9], Section 3.2.1), the approximation LβH (r) ≈ L(0)
βH

(r) (see (22))
is exact, as all infectious intervals equal the constant latent period, so R0 = Rr. Thus, it is
not generally possible to obtain strict inequalities in Theorem 2(b). However, if wG(t) is a
proper density function, i.e. wG(t) < ∞ for all t ≥ 0, then the inequalities are strict (recall

that we have assumed that not all households have size 1). As noted in Section 2.8, Rr = R̃r

if nH ≤ 2. See Remark 6 after the proof of Theorem 2 in Section 7.2 for further details.

Remark 4 The proof of Theorem 2 also suggests how to construct the counterexample pre-
sented in Appendix D, which gives a model (not belonging to either of the classes considered
in Theorem 2) for which Rr < R0 in a growing epidemic.

Remark 5 Suppose that all secondary infections take place as soon as the primary individual
in a household is infected. Then βH(t) = (1 + µH)µGwG(t) = R∗wG(t) (t ≥ 0). Hence,
LβH (r) = R∗MWG

(r) and it follows from (20) and (21) that Rr = R∗. This happens in the

highly locally infectious limit λ
(n)
H → ∞ (n = 2, 3, · · · ), provided WG has mass arbitrarily

close to zero, i.e. provided inf{t > 0 : wG(t) > 0} = 0.

For a growing epidemic, Goldstein et al. [11] prove that R∗ ≥ Rr. They also note that in
most numerical simulations RVL ≥ Rr ≥ RV , though they show that the second inequality
can be violated if the latent period is very large and they do not have a proof for the first
inequality. The first inequality held in all of their numerical simulations but the question
whether or not the result holds in general was left open. In Appendix E we show that Rr

and RVL cannot in general be ordered. In their numerical simulations for a households SEIR
model with exponentially distributed infectious and latent periods, Goldstein et al. [11] noted
that Rr can be less than RV when the mean latent period is very long and, in Appendix
B of their paper, they give a mathematical explanation of that observation. However, their
proof assumes a constant latent period and does not hold for the model with exponentially
distributed latent periods. This is discussed further in Appendix F; see also the numerical
example in Section 6.1.

Finally, although Goldstein et al. [11] consider only the growing epidemic case, it is easy
to see (from (6.2.2) and Lemma 6.2.1 of their paper) that the same argument they use to
prove R∗ ≥ Rr leads, in a declining epidemic, to R∗ ≤ Rr.

4 Households-workplaces model and reproduction num-

bers

4.1 Model and generations of infections

In this model each individual belongs to a household and to a workplace, and infectives make
three types of contacts: global contacts, with individuals chosen uniformly at random from
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the entire population; household contacts, with individuals in the infective’s own household;
and workplace contacts, with individuals in the infective’s own workplace. In order to
make branching process approximations for the early stages of the epidemic, and thus define
threshold parameters, it is necessary to assume that, as the population size tends to infinity,
the only short cycles of local contacts (see below) that can occur with non-zero probability
are either within the same household or within the same workplace, which implies that a
household and a workplace cannot share more than one person; see Ball and Neal [5] and
Pellis et al. [20, 22] for further detail.

The mean number of global contacts made by a typical infective is µG. Household and
workplace contacts are called local contacts. As with the households model, we do not specify
the full detail of local infection transmission, but we do assume that the spread within a
household and the spread within a workplace can each be described in terms of generations
of infection. Let nH and nW denote respectively the sizes of the largest household and the
largest workplace in the population. Then, for ` = 0, 1, · · · , nH − 1, let µH` be the mean
size of the `th generation in a typical single-household epidemic with 1 primary case and,
for `′ = 0, 1, · · · , nW − 1, define µW`′ similarly for a typical single-workplace epidemic. By
a typical single-household (workplace) epidemic we mean one in which the primary case is
obtained by choosing an individual uniformly at random from the entire population, so µH`
is household size-biased, as at (3), and µW`′ is size-biased using the workplace size-biased
distribution corresponding to (2). We also assume that the sizes of any given individual’s
household and workplace are asymptotically independent as the population size tends to
infinity.

Let µH = µH1 +µH2 + · · ·+µHnH−1 be the mean size of a typical single-household epidemic,
not including the primary case, and define µW similarly for a typical single-workplace epi-
demic. We assume that µH > 0 and µW > 0, and that the population contains households
and workplaces of size at least two. If any of these conditions fails to hold then the model
effectively reduces to the households model. For simplicity we assume that µG > 0. We
comment on the case µG = 0 at the end of Section 5.

4.2 The basic reproduction number R0

The basic reproduction number R0 for the households-workplaces model may be obtained
by considering the following 3-type branching process, which approximates the process of
infectives in the epidemic model. The three types of individual in the branching process
are double-primary cases (type 1), household-primary cases (type 2) and workplace-primary
cases (type 3), which correspond to cases who are infected by a global contact, a work-
place contact and a household contact, respectively. In the branching process, the mother
of a double-primary case is the person who infected it in the epidemic process, the mother
of a household-primary case is the primary case in the corresponding single-workplace epi-
demic and the mother of a workplace-primary case is the primary case in the corresponding
single-household epidemic. Time in the branching process corresponds to generation num-
ber in the epidemic at large. Thus, in the branching process, a typical double-primary case
spawns on average µG double-primary cases at age 1, µW`′ household-primary cases at age `′
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(`′ = 1, 2, · · · , nW − 1) and µH` workplace-primary cases at age ` (` = 1, 2, · · · , nH − 1); a
typical household-primary case spawns on average µG double-primary cases at age 1 and µH`
workplace-primary cases at age ` (` = 1, 2, · · · , nH − 1); and a typical workplace-primary
case spawns on average µG double-primary cases at age 1 and µW`′ household-primary cases
at age `′ (`′ = 1, 2, · · · , nW −1). The total number of individuals at time k in this branching
process corresponds to the total number of infectives in global generation k in the epidemic
process, so R0 is given by the asymptotic geometric growth rate of this branching process.

It is convenient to introduce the following notation for future reference. For d, d′ = 1, 2, 3

and k = 0, 1, · · · , let ν
(dd′)
k be the mean number of type-d′ individuals spawned by a typical

type-d individual at age k + 1 and, for λ ∈ (0,∞), let νdd′(λ) =
∑∞

k=0 ν
(dd′)
k /λk+1. By the

theory of multi-type general branching processes (see, for example, Haccou et al. [12], Section
3.3.2, and Jagers [15]), the asymptotic geometric growth rate of the branching process, and
hence also R0, is given by the value of λ such that the dominant eigenvalue of the matrix

A(HW )(λ) = [νdd′(λ)] =



µG
λ

nW−1∑
`′=1

µW`′

λ`′

nH−1∑
`=1

µH`
λ`

µG
λ

0

nH−1∑
`=1

µH`
λ`

µG
λ

nW−1∑
`′=1

µW`′

λ`′
0


(30)

is 1. Letting A = µG/λ, B =
∑nW−1

`′=1 µW`′ /λ
`′ and C =

∑nH−1
`=1 µH` /λ

`, the characteristic
polynomial of A(HW )(λ) is

f(x) = x3 − Ax2 − (AB + AC +BC)x− ABC, (31)

which has a unique positive root. Thus, since the matrix A(HW )(λ) is non-negative, its
dominant eigenvalue is 1 if and only if f(1) = 0.

Now

f(1) = 0 ⇐⇒ ABC + AB + AC +BC + A− 1 = 0

⇐⇒ A(B + 1)(C + 1) +BC − 1 = 0.

Further,

BC =

(
nH−1∑
`=1

µH`
λ`

)(
nW−1∑
`′=1

µW`′

λ`′

)
=

nH+nW−3∑
k=1

 min(k,nH−1)∑
`=max(1,k−nW+2)

µH` µ
W
k+1−`

λk+1
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and, recalling that µH0 = µW0 = 1,

A(B + 1)(C + 1) =
µG
λ

(
nH−1∑
`=0

µH`
λ`

)(
nW−1∑
`′=0

µW`′

λ`′

)

= µG

nH+nW−2∑
k=0

 min(k,nH−1)∑
`=max(0,k−nW+1)

µH` µ
W
k−`

λk+1

 .

Thus, the dominant eigenvalue of A(HW )(λ) is 1 if and only if g
(HW )
0 (λ) = 0, where

g
(HW )
0 (λ) = 1−

nH+nW−2∑
k=0

ck
λk+1

, (32)

with c0 = µG and, for k = 1, 2, · · · , nH + nW − 2,

ck = µG

min(k,nH−1)∑
`=max(0,k−nW+1)

µH` µ
W
k−` +

min(k,nH−1)∑
`=max(1,k−nW+2)

µH` µ
W
k+1−`, (33)

where the second sum in (33) is zero when k = nH + nW − 2.

It follows that R0 is given by the unique positive root of g
(HW )
0 , giving a new (and simpler)

proof of Pellis et al. [22], Corollary 2.

4.3 The clump reproduction number R∗

The first reproduction number proposed for the households-workplaces model was the re-
production number for the proliferation of local infectious clumps, denoted by R∗; see Ball
and Neal [5]. A local infectious clump is the set of individuals infected by chains of local
infections (i.e. through households and workplaces) from a typical single initial infective in
an otherwise fully susceptible population. In the early stages of an epidemic, initiated by
few infectives in a large population, such clumps (which are initiated by global contacts)
intersect with small probability, unless the local epidemic is itself supercritical. The clump
reproduction number R∗ is the expected number of clumps generated by a typical clump and
is given by

R∗ =

{ µG(1+µH)(1+µW )
1−µHµW

if µHµW < 1,

∞ otherwise.
(34)

Note that setting µW = 0 in (34) yields (7); when µW = 0, the model reduces to the
households model and a typical local infectious clump becomes the set of people infected in
a typical single-household epidemic.
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4.4 The household-household and workplace-workplace reproduc-
tion numbers RH and RW

The clump reproduction number R∗ has a number of disadvantages, as pointed out by Pellis
et al. [20]. In particular, it can be infinite and the time for a clump to form increases as
µHµW tends to 1 and becomes comparable with the time of the entire epidemic. Thus a
household-to-household reproduction number RH , defined as the expected number of house-
holds infected by a typical infected household in an otherwise totally susceptible population,
was introduced in [20]. A household may be infected either globally (i.e. via a global contact)
or locally (i.e. via a contact within a workplace). It follows (see [20] for details) that RH is
the largest eigenvalue of the household next-generation matrix

MH =

[
µG(1 + µH) µW (1 + µH)
µG(1 + µH) µHµW

]
, (35)

whence RH is given by the unique solution in (0,∞) of gH(λ) = 0, where

gH(λ) = 1− µG + µGµH + µHµW
λ

− µGµW (1 + µH)

λ2
. (36)

A workplace-to-workplace reproduction number RW can be defined in a similar fashion.

4.5 The individual reproduction number RI

An individual-based reproduction number RI can also be defined (see Pellis et al. [20],
supplementary material), as for the households model, by attributing all secondary cases in
a household or workplace to the corresponding primary case, leading to the next-generation
matrix

M
(HW )
I =

 µG µH µW
µG 0 µW
µG µH 0

 .
Calculating the characteristic polynomial of M

(HW )
I shows that RI is given by the unique

solution in (0,∞) of g
(HW )
I (λ) = 0, where

g
(HW )
I (λ) = 1− µG

λ
− µGµH + µGµW + µHµW

λ2
− µGµHµW

λ3
. (37)

4.6 The perfect and leaky vaccine-associated reproduction num-
bers RV and RVL

The perfect and leaky vaccine-associated reproduction numbers, RV and RVL, can be defined
in an analogous fashion as for the households model at (17) and (18), respectively, though
we consider only the former in the comparisons in Section 3.1.
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4.7 The exponential-growth-associated reproduction number Rr

An exponential-growth-associated reproduction number Rr can be defined in a similar vein
as for the households model as follows. Consider the 3-type branching process used in
Section 4.2 to derive R0, but run in real time rather than in generations. Let r be the
Malthusian parameter (real-time growth rate) of this branching process. Then Rr is defined
as at (20) for the households model.

To determine Rr, a more-detailed description of the households-workplaces model is re-
quired, which we now give. As in the households model, suppose that infectives have in-
dependent infectivity profiles, each distributed as I(t) (t ≥ 0). Again I(t) is normalised
so that E

[∫∞
0
I(t)dt

]
= 1. If an infective has infectivity profile I(t) (t ≥ 0), then t time

units after infection he/she makes global infectious contacts at overall rate µGI(t), infectious

contacts to any given member of his/her household at rate λ
(n)
H I(t) and to any given member

of his/her workplace at rate λ
(n′)
W I(t), where n and n′ are the sizes of the infective’s house-

hold and workplace, respectively. As previously, let wG(t) = E[I(t)] (t ≥ 0) and recall that
wG is the probability density function of a random variable WG having moment-generating
function MWG

(θ).
Consider a typical single-household epidemic with one initial infective, who becomes

infected at time t = 0. For t ≥ 0, let ξH(t) be the rate at which new infections occur
in that single-household epidemic at time t. Define ξW (t) (t ≥ 0) similarly for a typical
single-workplace epidemic.

Recall the 3-type real-time branching process introduced in Section 4.2. For t ≥ 0, let
M(t) = [mdd′(t)], where mdd′(t) is the mean rate at which a type-d individual having age t
spawns type-d′ individuals (d, d′ = 1, 2, 3). Then

M(t) =

 µGwG(t) ξW (t) ξH(t)
µGwG(t) 0 ξH(t)
µGwG(t) ξW (t) 0

 .
For r ∈ (−∞,∞), let LM(r) =

∫∞
0
M(t)e−θtdt, where the integration is elementwise.

Then the real-time growth rate r is given by the unique real value of r such that the dominant
eigenvalue of LM(r) is one.

Observe that the matrix LM(r) has the same structure of non-zero elements as the matrix
A(HW )(λ) defined at (30). The same argument as used in Section 4.2 shows that r is the
unique real solution of the equation

µGMWG
(r)(LξH (r) + 1)(LξW (r) + 1) + LξH (r)LξW (r) = 1. (38)

Pellis et al. [21] determine the real-time growth rate of the households-workplaces model
by using a two-type branching process having mean offspring matrix MH (used at (35) to
define RH) but again run in real time, which of course gives the same result. We use the
above 3-type branching process to facilitate comparison of Rr with R0.

Similar to the households model, the difficulty in using (38) to calculate r is that gen-
erally there is no tractable expression for LξH (r) or LξW (r). However, we can use similar
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approximations to those used in Section 2.8 for the households model. First, it is easily
verified that using the approximations (cf. (22)) LξH (r) ≈ L(0)

ξH
(r) and LξW (r) ≈ L(0)

ξW
(r),

where

L(0)
ξH

(r) =

nH−1∑
`=1

µH` (MWG
(r))` (39)

and

L(0)
ξW

(r) =

nW−1∑
`′=1

µW`′ (MWG
(r))`

′
, (40)

leads to Rr being given by R0.
Second, for n = 2, 3, · · · , nH , let W̃

(n,H)
G be a random variable describing the time of the

first within-household contact from one specified individual to another specified individual in

a household of size n and, for n′ = 2, 3, · · · , nW , define W̃
(n′,W )
G analogously for a workplace

contact. Also, for n = 1, 2, · · · , nH , let πHn be the (size-biased) probability an individual
chosen uniformly at random from the population resides in a household of size n and, for
n′ = 1, 2, · · · , nW , let πWn be the corresponding workplace size-biased probability. Then

(cf. (24) and (27)), we have LξH (r) ≈ L̃ξH (r) and LξW (r) ≈ L̃ξW (r), where

L̃ξH (r) =

nH∑
n=2

πHn

n−1∑
`=1

µ
(n,H)
`

(
M

W̃
(n,H)
G

(r)
)`

(41)

and

L̃ξW (r) =

nW∑
n′=2

πWn′

n−1∑
`′=1

µ
(n′,W )
`′

(
M

W̃
(n′,W )
G

(r)
)`′

, (42)

and µ
(n,H)
` and µ

(n′,W )
`′ denote the mean size of generation ` in a single size-n household

epidemic and generation `′ in a single size-n′ workplace epidemic, respectively. Substituting
the approximations (41) and (42) into (38) and solving for r yields an approximation, r̃ say,

to the growth rate of the households-workplaces model. The reproduction number R̃r is then
defined as at (26) for the households model.

Note that if λ
(n)
H and λ

(n′)
W are independent of household size n and workplace size n′,

respectively, then, in an obvious notation, (41) and (42) simplify to

L̃ξH (r) =

nH−1∑
`=1

µH`

(
MW̃H

G
(r)
)`

and L̃ξW (r) =

nW−1∑
`′=1

µW`′
(
MW̃W

G
(r)
)`′

. (43)

The approximations LβH (r) ≈ L̃βH (r) and LβW (r) ≈ L̃βW (r) are exact if max(nH , nW ) ≤ 2,

so in that case Rr = R̃r.

28



5 Comparisons of household-workplaces model repro-

duction numbers

As stated at the end of Section 4.1, we assume that µG, µH and µW are all strictly positive,
and that min(nH , nW ) ≥ 2. By interchanging households and workplaces, RW and RH relate
in a similar fashion to the other reproduction numbers, so we do not consider RW in the
comparisons. As with the households model, an epidemic is called growing if R∗ > 1 and
declining if R∗ < 1.

The following theorem is proved in Section 7.3.

Theorem 3 (a) R∗ = 1 ⇐⇒ RH = 1 ⇐⇒ RI = 1 ⇐⇒ R0 = 1 =⇒ RV = 1.

(b) In a growing epidemic,

R∗ > RH > RI ≥ RV ≥ R0 > 1,

and in a declining epidemic

R∗ < RH < RI ≤ R0 < 1.

The inequalities RI ≥ RV and RI ≤ R0 are strict if and only if max(nH , nW ) > 2. The
inequality RV ≥ R0 is strict if and only if max(nH , nW ) > 3.

(c) Theorem 2 holds also for the households-workplaces model.

The main practical use of Theorem 3 is that, as for the households model, RI ≥ RV ≥ R0

for a growing epidemic. Thus, with a perfect vaccine, if individuals are selected for vacci-
nation uniformly at random then the critical vaccination coverage pC , assuming a growing
epidemic, satisfies

1− 1/R0 ≤ pC ≤ 1−RI .

Finally, consider the case µG = 0. The reproduction numbers R0, RH , RW , RI , Rr and
R̃r can all be defined essentially as before but note, for example, that the branching process
underlying R0 is now 2-type, rather than 3-type, since double-primary cases no longer occur
(apart from in global generation 0, i.e. the initial infectives in the epidemic at large). The
reproduction number R∗ = 0, since clumps no longer reproduce, though (cf. Section 4.4) a
clump may be infinite in size. It is easily seen that Theorem 3, with R∗ removed, continues
to hold when µG = 0, as does the generalisation of Theorem 2 to the households-workplaces
model.

6 Numerical illustrations

In this section we present some numerical examples which illustrate the inequalities between
reproduction numbers considered in the paper. Most of these reproduction numbers are fairly
straightforward to compute for a wide range of modelling assumptions. This is not the case
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for the exponential-growth-associated reproduction number Rr, which generally cannot be
computed explicitly. A notable exception is if the underlying epidemic model is Markovian
and therefore most of our numerical examples are for such models. The main practical
interest in these illustrations is how well the various reproduction numbers approximate the
perfect-vaccine-associated reproduction number RV .

6.1 Markov SIR and SEIR households models

We consider the model introduced by Ball et al. [4], Section 3.1, specialised to exponential
infectious periods. Thus we assume that all households have common size n, that the total
population size is N and that the infectious period of an infective has an exponential distri-
bution having mean one. (The unit of time may be chosen to be the mean of the infectious
period.) During his/her infectious period, a given infective makes global contact with any
given susceptible in the population at the points of a homogeneous Poisson process having
rate µG/N and, additionally, local contacts with any given susceptible in his/her household
at the points of a homogeneous Poisson process having rate λH . All the Poisson processes
describing infectious contacts (whether or not either or both of the individuals involved are
the same) and all the infectious periods are assumed to be independent. There is no latent
period, so a susceptible becomes an infective as soon as he/she is contacted by an infective.
Denote this epidemic model by E H(n, µG, λH).

We now describe briefly the calculation of the various reproduction numbers for this
model. The mean generation sizes µ

(n)
1 , µ

(n)
2 , · · · , µ(n)

n−1 for a single size-n household epidemic
may be computed using the method described by Pellis et al. [22], Appendix A, thus enabling
R0 to be calculated. The reproduction numbers R∗, RI , R2 and RHI are then easily calculated,
since µ

(n)
H = µ

(n)
1 + µ

(n)
2 + · · · + µ

(n)
n−1. Alternatively, µ

(n)
H may be computed more directly

using Ball [3], equations (2.25) and (2.26).
The perfect-vaccine-associated reproduction number RV is computed as follows. Suppose

that a fraction p of the population is vaccinated, with individuals selected for vaccination
uniformly at random from the population. After vaccination, the probability that a global
contact is successful (i.e. is with an unvaccinated individual) is 1−p, so the mean number of
global contacts made by an infective is (1− p)µG. If a global contact is successful then the
number of other unvaccinated individuals in the globally contacted individual’s household
follows a binomial distribution, whence the expected number of households infected by a
typical infected household in an otherwise uninfected population, RV

∗ (p) say, is given by

RV
∗ (p) = (1− p)µG

(
1 +

n−1∑
j=1

(
n− 1

j

)
(1− p)jpn−1−jµ

(j+1)
H

)
.

The corresponding critical vaccination coverage pC is found by solving RV
∗ (p) = 1 numerically

and RV then follows using (17). The leaky-vaccine-associated reproduction number RVL may
be computed by noting that if the entire population is vaccinated with a leaky vaccine having
efficacy E then after vaccination the model behaves as E H(n, (1 − E)µG, (1 − E)λH), so a
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post-vaccination reproduction number, RVL
∗ (E) say, is easily calculated. The critical efficacy

EC is found by solving RVL
∗ (E) = 1 numerically and RVL is then given by (18).

Turning to the exponential-growth-associated reproduction number Rr and its approxi-
mation R̃r, the real-time growth rate r for the Markov SIR households model E H(n, µG, λH)
may be computed using the matrix method described in Pellis et al. [21], Section 4.2. The
infectivity profile of a typical infective in E H(n, µG, λH) is given by (23), with TI ∼ Exp(1).
Hence, WG ∼ Exp(1), so MWG

(θ) = (1 + θ)−1 (θ > −1) and, recalling (20), Rr = 1 + r. As

explained just after (23), W̃G ∼ Exp(1 + λH), so MW̃G
(θ) = 1+λH

1+λH+θ
(θ > −(1 + λH)). It

follows that R̃r = 1 + r̃, where r̃ solves (25).
Figures 3 to 5 show the various reproduction numbers as functions of the within-household

infection rate λH for various combinations of household size n and overall global infection rate
µG. The parameters and format are the same as in Figure 1 of Goldstein et al. [11], though
the range of values for λH is reduced. Note that in this model all of the reproduction numbers,
except Rr and R̃r, are invariant to the introduction of a latent period into the model. Figure 3
compares all of the reproduction numbers except RVL, Rr and R̃r. Observe that they are
all ordered in accordance with Theorem 1(b) and that the conjectured comparison between
R0 and R2 is also satisfied. Moreover, RI = R0 = R2 (= RV in a growing epidemic) when
n = 2, as expected. In particular, R0 ≤ RV ≤ RI in a growing epidemic. Note that generally,
in a growing epidemic, R∗ is appreciably greater than RI and is a poor approximation to
RV . (Recall, though, that in the present setting, when all households have the same size,
R∗ gives the correct critical vaccination coverage if households are either fully vaccinated or
fully unvaccinated.) Also, in a growing epidemic, RHI is generally a noticeably worse lower
bound to RV than R2. Indeed R2 and R0 are very close and, as is the case in most of the
figures, R0 is very close to RV . Note that less knowledge of the epidemic model is required
to compute R2 than to compute R0.

Figure 4 compares the reproduction numbers RI , RVL, RV , R0 and R2. Recall that, in our
notation, Goldstein et al. [11] proved that, in a growing epidemic, R̄HI ≤ RV ≤ RVL ≤ R∗
so, using Theorem 1(b), R0 ≤ RV ≤ RVL, as is clearly seen in Figure 4. Note that although
RI and RVL cannot be ordered in general (see the graphs when n = 8 and µG = 10), RVL is
generally appreciably larger than RI , unless the within-household infection rate is small.

Figure 5 compares the exponential-growth-associated reproduction number Rr and its
variant R̃r with RI , RV and R0. Goldstein et al. [11] noted that in most plausible parameter
regions Rr ≥ RV and this is seen in Figure 5. However, Rr is usually an appreciably coarser
upper bound than RI for RV , though, as seen from the graphs when n = 8 and µG = 10, it
is not possible to order Rr and RI in general. As a particular case of Theorem 2(c), for the

Markov SIR model, in all growing epidemics R0 ≤ R̃r ≤ Rr and, for n = 2, Rr = R̃r since
W̃G gives the correct infection interval for local infection between the primary and secondary
case in a household. Also note that, when n = 2, Rr = RVL. This is proved in Appendix E,
where it is shown that Rr and RVL cannot in general be ordered.

We now add a latent period to the above model. Specifically we assume that infectives
have independent latent periods, each distributed as Exp(δ), so the mean latent period is
δ−1. The latent periods are also independent of all the other random quantities used to
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Figure 3: Reproduction numbers R∗, RI , RV , R0, R2 and RHI for the Markov SIR
households model E H(n, µG, λH).

define the model. Thus the model is now a Markov SEIR households epidemic model and
is identical to one used by Goldstein et al. [11] in their numerical illustrations. As noted
previously, the introduction of a latent period changes only the reproduction numbers Rr

and R̃r.
Denote the above model by E H(n, µG, λH , δ). Goldstein et al. [11] determined the real-

time growth rate r for E H(n, µG, λH , δ) by linearising a system of differential equations that
describe the evolution of the relative numbers of households in different states (when the
total population size N is large), where the state of a household is given by the number of
infected, latent and susceptible individuals it contains, and determining the corresponding
largest eigenvalue. We determine r by extending the matrix method in Pellis et al. [21],
Section 4.2, to incorporate a latent period. The infectivity profile of a typical infective in
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Figure 4: Reproduction numbers RI , RVL, RV , R0 and R2 for the Markov SIR households
model E H(n, µG, λH).

E H(n, µG, λH , δ) is given by

I(t) =

{
1 if TE ≤ t ≤ TE + TI ,
0 otherwise ,

where TE ∼ Exp(δ) and TI ∼ Exp(1) are independent random variables giving the latent
and infectious periods of a typical infective. It is then readily verified that

MWG
(θ) =

δ

(δ + θ)(1 + θ)
(θ > −min(1, δ)).

Note that WG = Ψ0 +TE, where Ψ0 is the infectious contact interval for E H(n, µG, λH), and

33



0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1

1.2

1.4

1.6

1.8

10

10.5

11

11.5

12

12.5

13

0.5

1

1.5

2

2.5

1

1.5

2

2.5

3

3.5

10

12

14

16

18

20

0 1 2 3 4 5
0.5

1

1.5

2

2.5

3

3.5

4

0 1 2 3 4 5
1

2

3

4

5

6

R
ep

ro
d
u
ct
io
n
n
u
m
b
er
s

Within-household infection rate λL

a) n = 2 µG = 0.6 b) n = 2 µG = 1 c) n = 2 µG = 10

d) n = 4 µG = 0.6 e) n = 4 µG = 1 f ) n = 4 µG = 10

g) n = 8 µG = 0.6 h) n = 8 µG = 1 i) n = 8 µG = 10

0 1 2 3 4 5
10

15

20

25

30

 

 
Rr

R̃r

RI

RV

R0

Figure 5: Reproduction numbers Rr, R̃r, RI , RV and R0 for the Markov SIR households
model E H(n, µG, λH).

Ψ0 and TE are independent. Further, in an obvious notation, W̃G = Φ0 + TE, whence

MW̃G
(θ) =

δ

δ + θ

1 + λH
1 + λH + θ

(θ > −min(1 + λH , δ)).

Thus, given r, both Rr and R̃r are easily calculated.
Figure 6 shows the exponential-growth-associated reproduction numbers Rr and R̃r, and

also RI , RVL, RV and R0, as functions of the mean latent period δ−1. For the case n = 2,
Rr = R̃r, as with the SIR model, and R0 = RV = RI , agreeing with Theorem 1(b). Further,

R̃r 6= R0, since WG and W̃G have different distributions. Note that Rr is decreasing in δ−1

and converges to R0 as δ−1 → ∞. When n = 3, a similar picture emerges except that
R0 = RV < RI and Rr > R̃r, though both Rr and R̃r converge to R0 (= RV ) as δ−1 → ∞.
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Observe that neither Rr nor R̃r can be ordered with RI . The main differences between the
cases n = 3 and n = 4 is that when n = 4, R0 < RV and the exponential-growth-associated
reproduction numbers Rr and R̃r tend to different limits as δ−1 →∞, though the discrepancy
is difficult to see as R0 and RV are very close. It is much clearer in the case when n = 8.
Observe that R̃r → R0 as δ−1 →∞, whilst Rr converges to a limit lying strictly between R0

and RV . The fact that Rr < RV for very long latent periods when n ≥ 4 is noted in Goldstein
et al. [11], though the proof in Appendix B of that paper, which in our terminology shows
that Rr → R0 as the latent periods become infinitely long, does not hold for the Markov
SEIR households model. This is explored further in Appendix F, where it is proved that for
the Markov SEIR households model, in the limit as δ−1 → ∞, if the maximum household
size nH ≤ 3 then Rr = R̃r = R0 (= RV ), whilst if nH ≥ 4 then Rr > R̃r = R0. Further,
when nH = 4, we show that RV > Rr > R0, though we do not have a proof for nH ≥ 5.
Although such long latent periods do not occur in real-life infections, we let the mean latent
period δ−1 in Figures 6 and 9 run up to 104 times the mean infectious period to illustrate
the limiting behaviour of the reproduction numbers as δ−1 →∞.

6.2 Households model with non-random infectivity profile

We now assume that the infectivity profile of an individual is non-random. Specifically,
following Fraser [10] and Goldstein et al. [11], we assume that the infectious contact interval
WG follows a gamma distribution, with parameters α > 0 and γ > 0. Thus I(t) = wG(t)
(t ≥ 0), where

wG(t) =
γαtα−1e−γt

Γ(α)
(44)

and Γ(α) =
∫∞

0
tα−1e−tdt is the gamma function. Similar to Section 2.8, we assume that, t

time units after he/she was infected, an infectious individual makes global contacts at overall
rate µGwG(t) and, additionally, he/she contacts any given susceptible in his/her household at
rate λHwG(t). Thus, since

∫∞
0
wG(t)dt = 1, a given infective infects locally other members

of its household independently, each with probability p = 1 − e−λH . It follows that the
mean generation sizes µ

(n)
1 , µ

(n)
2 , · · · , µ(n)

n−1 for a single size-n household epidemic coincide
with those of a Reed-Frost model with escape probability q = 1 − p and hence may be
computed using the algorithm in Appendix A of Pellis et al. [22]. This enables all of the

reproduction numbers, except for Rr and R̃r, to be computed in a similar fashion as for the
Markov SIR model. (Again µ

(n)
H may be computed more directly using Ball [3], Equations

(2.25) and (2.26).) Note that, except for Rr and R̃r, all of the reproduction numbers are
independent of the parameters (α, γ) of the gamma distribution that describes the infectivity
profile; indeed they are independent of the infectivity profile, provided it is non-random.

To calculate Rr, the real-time growth rate r is required, for which we are not aware of any
exact method of calculation. Goldstein et al. [11] used stochastic simulations, involving an
approximate discrete-time model having a small time step, to estimate the mean infectivity
profile βH(t) (t ≥ 0) of a single-household epidemic. We use a simulation method, based on
a Sellke [25] construction and described in Appendix G, to estimate the Laplace transform
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Figure 6: Reproduction numbers Rr, R̃r, RVL, RI , RV and R0 for the Markov SEIR
households model E H(n, µG, λH , δ).

LβH (θ) of βH(t), whence r is obtained by solving LβH (r) = 1 numerically. The reproduction

number Rr then follows, using (20) with MWG
(r) =

(
γ
γ+r

)α
. In the present model there is

no closed-form expression for MW̃G
(θ), so we do not consider R̃r.

For brevity we present results only for the case when all households are of size 8 and
µG = 1. In Figure 7a, the reproduction numbers R∗, RI , RV , R0, R2 and RHI are plotted
against the within-household infection probability p. These reproduction numbers satisfy
RHI < R0 < RV < RI < R∗ and RHI < R2 < RI , as predicted by Theorem 1(b), and the
conjecture R2 < R0. As p → 1, so λH → ∞, the mean generation sizes become µ1 = 7 and
µk = 0 (k = 2, 3, · · · , 7), and the corresponding limiting values of the reproduction numbers
are easily obtained. Note that unless p is small, i.e. unless there is very little enhanced
spread of infection within households, R∗ is a coarse upper bound for RV and RHI is a coarse
lower bound. Further, R0 is a good approximation to RV across the full range of values for
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with a non-random infectivity profile; and b) reproduction numbers RI , RV , R0, R2 and Rr

(with σ2 = 1, 0.1 and 0.01) for a households model with a non-random infectivity profile
which follows a gamma distribution with mean 1.
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p, though it is an underestimate.
Figure 7b shows the reproduction numbers R2, R0, RV , RI and Rr as functions of p. Note

that Rr depends on the parameters of the gamma distribution describing the non-random
infectivity profile. When WG has probability density function given by (44), E[WG] = α

γ
and

σ2 = Var(WG) = α
γ2

. In Figure 7b, we assume that E[WG] = 1, so α = γ, and show Rr

when σ2 = 1 (α = 1), σ2 = 0.1 (α = 10) and σ2 = 0.01 (α = 100). Each graph for Rr is
estimated from 10, 000 simulations of the corresponding single-household epidemic. Observe
that, for fixed p, the exponential-growth-associated reproduction number Rr is a decreasing
function of σ2. As σ2 decreases to 0 the epidemic model becomes more and more like a
Reed-Frost type model, for which Rr = R0. The accuracy of Rr as an approximation to RV

depends on both the variance of the infectious contact interval W and on how infectious the
disease is within households. Generally, the approximation is good when p is small, since
then there is little spread within households, and improves as σ2 decreases. Normally, Rr

overestimates RV but when the infectious contact interval is highly peaked it may be a slight
underestimate, as is illustrated in the graph when σ2 = 0.01.

6.3 Markov SIR and SEIR households-workplaces models

The Markov SIR households model described in Section 6.1 is readily generalised to incor-
porate workplaces. For simplicity, we assume that all households have common size nH and
all workplaces have common size nW . During his/her infectious period, which is distributed
as Exp(1), a typical infective makes global contacts at overall rate µG, infects any given
susceptible in his/her household at rate λH and any susceptible in his/her workplace at rate
λW . The mean generation sizes for within-household and within-workplace epidemics may
be evaluated using the methods described for the Markov SIR households model, so, apart
from Rr and R̃r, the reproduction numbers are readily computed.

To compute the exponential-growth-associated reproduction number Rr, consider first a
single-household epidemic and let S(t) and I(t) be respectively the numbers of susceptible
and infectives at time t. Then, at time t, new infections occur in this household at rate
λHS(t)I(t), so, in the notation of Section 4.7, ξH(t) = λHE[S(t)I(t)] (t ≥ 0). Hence

LξH (θ) =

∫ ∞
0

λHE[S(t)I(t)]e−θtdt,

which can be evaluated numerically using the matrix method described in Pellis et al. [21],
Section 4.3. The Laplace transform LξW (θ) may be computed similarly. The real-time growth
rate r may be computed by solving (38) numerically (recall that MWG

(θ) = (1 + θ)−1) and
Rr is then given by Rr = 1 + r. Note that, in the notation of (43) MW̃H

G
(r) = 1+λH

1+λH+r
and

MW̃W
G

(r) = 1+λW
1+λW+r

, thus enabling r̃ to be computed, whence R̃r = 1 + r̃.

Figure 8 is for a model in which nH = 5 and nW = 15. Figure 8a shows graphs of the
reproduction numbers RH , RW , RI , RV and R0 against λH when µG = 0.1 and λW = 0.5. For
these parameter values, RH and RW are distinct, though their difference is small and both
are useless as approximations to RV (R∗, not shown as it is so large, is even worse). This is
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Figure 8: a) Reproduction numbers RH , RW , RI , RV and R0 and b) reproduction numbers

Rr, R̃r, RI , RV and R0 for a Markov SIR households-workplaces model.

because of the large within-workplace epidemic sizes. Note that the reproduction numbers
satisfy the inequalities proved in Theorem 3(b). In Figure 8b, the reproduction numbers

Rr, R̃r, RI , RV and R0 are plotted against λH when µG = 0.5 and λW = 0.1. Observe that
R0 < R̃r < Rr for λH > 0, in accordance with Theorem 3(c), and that neither Rr nor R̃r

can be ordered with RI . Unless λH is small, Rr is not a good approximation to RV . Note
that in Figure 8, R0 is a close approximation to RV for all values of λH .

Finally, we consider the Markov SEIR version of the above model, which incorporates a
latent period having an Exp(δ) distribution. Again, apart from Rr and R̃r, the reproduction
numbers are unchanged by the inclusion of a latent period. The method described above for
computing the real-time growth rate r is easily extended to the present model. Note that
MWG

(θ) is the same as in the above Markov SEIR households model,MW̃H
G

(θ) = δ
δ+θ

1+λH
1+λH+θ

(θ > −min(1 + λH , δ)) and MW̃W
G

(θ) = δ
δ+θ

1+λW
1+λW+θ

(θ > −min(1 + λW , δ)), thus enabling

Rr and R̃r to be computed.
Figure 9a shows the dependence of the reproduction numbers Rr, R̃r, RI , RV and R0 on

the mean latent period δ−1 when nH = nW = 3, µG = 0.5, λH = 0.5 and λW = 0.4. Note
that RV = R0 < RI , as predicted by Theorem 3(b), and that both Rr and R̃r converge down
to R0 as δ−1 → ∞. Figure 9b shows the same reproduction numbers when nH = 4 and
nW = 15. The values of µG and λH are as before and λW is now 0.1, in view of the larger
workplace size. Now, R0 < RV < RI , again as predicted by Theorem 3(b), and R̃r → R0

as δ−1 → ∞, whereas Rr tends to a limit lying strictly between R0 and RV . The limiting
case when δ−1 →∞ is analysed in Appendix F, where similar results as for the households
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Figure 9: Reproduction numbers Rr, R̃r, RI , RV and R0 for a Markov SEIR
households-workplaces model.

model are proved. Note that in Figure 9b, RI is appreciably greater than Rr, owing in part
to the effect of large workplaces.

7 Proofs

We define sign(x) to be −1, 0 and 1, for x < 0, x = 0 and x > 0, respectively.

7.1 Proof of Theorem 1

To shorten the exposition of the proof, we use the notation
n

≥ to denote that there is equality
if the population contains no household with size strictly larger than n and the inequality
is strict if the population contains households with size strictly larger than n. With this
notation, the statement of Theorem 1 is as follows.

Theorem 1

(a) R∗ = 1 ⇐⇒ RI = 1 ⇐⇒ R0 = 1 ⇐⇒ R2 = 0 ⇐⇒ RHI = 1 =⇒ RV = 1.

(b) In a growing epidemic,

R∗ > RI

2

≥ RV

3

≥ R0 > RHI > 1 and RI

2

≥ R2 > RHI > 1,
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and in a declining epidemic

R∗ < RI

2

≤ R0 < RHI < 1 and RI

2

≤ R2 < RHI < 1.

Proof. We first prove (a). Note from (5) and (8) that

g0(1) = gI(1) = 1− µG(1 + µH).

Recalling (13), note that 1− a(n) = 1/(1 + µ
(n)
H ) (n = 1, 2, · · · , nH), so

gHI(1) = 1− µG
∑
n=1

nHπn(1 + µ
(n)
H ) = 1− µG(1 + µH).

Similarly, recalling (16), 1− b(n) = µ
(n)
1 /µ

(n)
H (n = 2, 3, · · · , nH), so

g2(1) = 1− µG
∑
n=2

nHπn(1 + µ
(n)
H ) = 1− µG(1 + µH).

Recall that R∗ = µG(1 +µH). Now g0 and gI are strictly increasing on (0,∞), gHI is strictly
increasing on (a,∞) and g2 is strictly increasing on (b,∞), so

sign(g0(1)) = sign(gI(1)) = sign(gHI(1)) = sign(g2(1)) = sign(1−R∗),

since R0, RI , RHI and R2 are the unique roots of g0, gI , gHI and g2, respectively. Thus

R∗ = 1 ⇐⇒ RI = 1 ⇐⇒ R0 = 1 ⇐⇒ RHI = 1 ⇐⇒ R2 = 1,

as required. By definition, RV = 1 if R∗ = 1.
To prove (b), we first note that the above argument shows that the reproductions numbers

R∗, RI , R0, RHI and R2 are all strictly greater than 1 in a growing epidemic and strictly
smaller than 1 in a declining epidemic. We consider now each of the comparisons in turn.

(i) R∗ and RI .

Suppose that R∗ > 1. From (8),

gI(R∗) = 1− µG
R∗
− µHµG

R2
∗

> 1− µG
R∗
− µHµG

R∗
= 0,

since R∗ = µG(1 + µH). Thus RI < R∗, since gI is increasing in (0,∞) and RI is the
unique root of gI in (0,∞). A similar argument shows that R∗ < RI when R∗ < 1.

(ii) RI and RV

Suppose that RI > 1 and a fraction p of the population is vaccinated with a perfect
vaccine. Then µG is reduced to µG(p) = (1 − p)µG and µH is reduced to µH(p), for
which we now obtain a simple upper bound. Consider the epidemic graph G(n) defined
in Section 2.1. For i = 1, 2, · · · , n − 1, let χ

(n)
i denote the event that individual i
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becomes infected in the single household epidemic (i.e. if in G(n) there is a chain of

directed edges from 0 to i) and let (χ
(n)
i )C denote its complement. Then the mean

size of the single household epidemic (not including the primary case) is given by

µ
(n)
H =

∑n−1
i=1 P(χ

(n)
i ). Now keep the same realisation of G(n), vaccinate each initial

susceptible independently with probability p, and hence obtain a realisation of the
single-household epidemic with vaccination. For i = 1, 2, · · · , n − 1, let χ

(n)
i (p) be

the event that individual i is infected by the epidemic in the vaccinated population
and let (χ

(n)
i (p))C be its complement. Clearly, for p > 0, if χ

(n)
i (p) occurs, then so

does χ
(n)
i and i is not vaccinated. Hence, if p > 0, P(χ

(n)
i (p))

2

≤ (1 − p)P(χ
(n)
i ), since

vaccination is independent of G(n). (Note that χ
(2)
1 (p) occurs if and only if χ

(2)
1 occurs

and 1 is not vaccinated, so P(χ
(2)
1 (p)) = (1− p)P(χ

(2)
1 ). However, for n > 2, given that

individual 1 is not vaccinated, it does not necessarily follow that he/she is infected
in the vaccinated epidemic if he/she is infected in the unvaccinated epidemic, since
all chains from from individual 0 to individual 1 may still be broken by vaccination.)

This inequality implies, in obvious notation, that µ
(n)
H (p)

2

≤ (1 − p)µ
(n)
H , and taking

expectations with respect to the size-biased household size distribution (πn) then gives

µH(p)
2

≤ (1− p)µH . Let RI(p) denote the post-vaccination version of RI . Then, as at
(8), RI(p) is the unique solution of gI,p(λ) = 0 in (0,∞), where

gI,p(λ) = 1− µG(p)

λ
− µH(p)µG(p)

λ2
.

Now, for RI > 1 and p > 0,

gI,p((1− p)RI) = 1− µG(p)

(1− p)RI

− µH(p)µG(p)

(1− p)2R2
I

2

≥ 1− µG
RI

− µHµG
R2
I

= 0,

by the definition of RI . It follows that RI(p)
2

≤ (1 − p)RI and, in particular, if

p = 1−R−1
I then RI(p)

2

≤ 1. Hence, pC
2

≤ 1−R−1
I and, using (17), RV

2

≤ RI .

(iii) RV and R0

Suppose that R0 > 1 and a fraction p of the population is vaccinated with a perfect
vaccine. Then, cf. (5), the post-vaccination basic reproduction number, R0(p) say, is
given by the unique solution in (0,∞) of g0,p(λ) = 0, where

g0,p(λ) = 1−
nH−1∑
k=0

νk(p)

λk+1
,

with νk(p) = µk(p)µG(p). Here, µG(p) = (1 − p)µG (as above) and, for k = 0, 1, · · · ,
µk(p) is the post-vaccination mean size of the kth generation in a typical single-
household epidemic with one initial infective (who is not vaccinated, so µ0(p) = 1). We
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now obtain a lower bound for µk(p) (k = 1, 2, · · · ). Consider again the epidemic graph

G(n). For k, i = 1, 2, · · · , n− 1, let χ
(n)
k,i be the event that individual i is a generation-k

infective and let (χ
(n)
k,i )
C be its complement. Then the mean size of the kth generation

is given by µ
(n)
k =

∑n−1
i=1 P(χ

(n)
k,i ). Now construct a realisation of the post-vaccination

single-household epidemic as above, and define µ
(n)
k (p) and χ

(n)
k,i (p) in the obvious fash-

ion. Then, fix generation k and suppose that individual i is a generation-k infective
in the unvaccinated epidemic. Then χ

(n)
k,i occurs and in G(n) there exists at least one

chain of directed arcs of length k from the initial infective to individual i, and there is
no shorter such chain connecting those individuals. Fix such a path of length k. If all
k members of that path avoid vaccination, which happens with probability (1− p)k in-

dependently of G(n), then χ
(n)
k,i (p) occurs. Therefore, P(χ

(n)
k,i (p)|χ

(n)
k,i ) ≥ (1− p)k, whence

P(χ
(n)
k,i (p)) = P(χ

(n)
k,i )P(χ

(n)
k,i (p)|χ

(n)
k,i ) + P((χ

(n)
k,i )
C)P(χ

(n)
k,i (p)|(χ

(n)
k,i )
C)

≥ P(χ
(n)
k,i )(1− p)

k,

which implies that µ
(n)
k (p) ≥ (1−p)kµ(n)

k and hence that µk(p) ≥ (1−p)kµk. Note that

for households of size n ≤ 3, µ
(n)
k (p) = (1− p)kµk (k = 0, 1, · · · , n− 1), since there can

be at most one chain of length k linking an individual to the initial susceptible, but
for n ≥ 4 and p > 0 the inequality µ

(n)
k (p) ≥ (1− p)kµ(n)

k is strict for at least one k, as
two or more chains may link an individual to the initial infective.

Clearly RV = 1 if R0 = 1. Suppose that R0 > 1 and let p′C = 1−R−1
0 . Then,

g0,p′C
(1) = 1−

nH−1∑
k=0

νk(p
′
C)

3

≤ 1−
nH−1∑
k=0

(1− p′C)k+1µGµk = 1−
nH−1∑
k=0

νk

Rk+1
0

= 0,

as R0 satisfies (5). Hence, R0(p′C)
3

≥ 1, since R0(p′C) is the unique positive solution of

g0,p′C
(λ) = 0. Thus pC

3

≥ 1−R−1
0 and, recalling (17), RV

3

≥ R0.

(iv) R0 and RI

For a growing epidemic, we know that both R0 and RI are strictly greater than 1,

and we have proved above that RI

2

≥ RV

3

≥ R0, so we need consider only a declining

epidemic. If RI < 1, then it follows from (8) and (5) that g0(RI)
2

≤ gI(RI) = 0, whence

R0

2

≥ RI .

(v) R0 and RHI .

Let h0(λ) = gHI(λ)−g0(λ). We show that, for λ > a, sign(h0(λ)) = sign(λ−1). It then
follows that in a growing epidemic R0 > RHI and in a declining epidemic R0 < RHI ,
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since g0 and gHI are each strictly increasing on their respective domains. Note that,
since g0(λ) =

∑nH
n=1 πng

(n)
0 (λ) and gHI(λ) =

∑nH
n=1 πng

(n)
HI (λ), it is sufficient to show, for

each n = 2, 3, · · · , nH , that sign(h0(λ)) = sign(λ−1) when all the households have size

n. (It is easily verified that g
(1)
0 (λ) = g

(1)
HI (λ) = 1 − µG/λ, so households of size 1 do

not contribute to h0(λ).) Thus we now assume that all households have size n, where
n ≥ 2. To ease the exposition, we suppress the explicit dependence on n.

It follows directly from (5) and (12) that

h0(λ) =
µG
λ− a

{[
n−1∑
k=0

µk(λ− a)

λk+1

]
− 1

}

=
µG

λ(λ− a)

{[
n−1∑
k=1

µk − aµk−1

λk−1

]
− aµn−1

λn

}
= − µG

λ(λ− a)
f(λ−1), (45)

where f is the polynomial of degree n− 1 given by f(x) =
∑n−1

k=0 ckx
k, with

ck = aµk − µk+1 for k = 0, 1, · · · , n− 2 and cn−1 = aµn−1.

Now f(1) = a
∑n−1

k=0 µk −
∑n−1

k=1 µk = a(1 + µH)− µH = 0, so

f(x) = (x− 1)f̃(x), (46)

where f̃(x) is a polynomial of degree n− 2, say

f̃(x) =
n−2∑
k=0

c̃kx
k. (47)

Substituting (47) into (46) yields, after equating coefficients of powers of x, that, for
k = 0, 1, · · · , n− 2,

c̃k =
n−1∑
j=k+1

cj = a
n−1∑
j=k+1

µj −
n−1∑
j=k+2

µj, (48)

where the final sum is zero if k = n− 2.

Let n0 = max(k : µk > 0) and note that n0 ≥ 1, since otherwise µH = 0. Then
c̃n0−1 = aµn0 > 0 and c̃k = 0 for k ≥ n0. Thus, to complete the proof we show that
c̃k ≥ 0 (k = 0, 1, · · · , n0 − 2), since then (45), (46) and (47) imply that

sign(h0(λ)) = sign(λ− 1).

Recall that a =
∑n−1

j=1 µj/(1 +
∑n−1

j=1 µj), which on substituting into (48) shows that,
for i = 0, 1, · · · , n− 3, c̃i > 0 if and only if

n−1∑
j=k+2

µj < µk+1

n−1∑
j=1

µj. (49)
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To prove (49), construct a realisation of a single-household epidemic using the epi-
demic graph G(n). Let Y0, Y1, · · · , Yn−1 denote the sizes of the successive generations
of infectives. Then, for k = 0, 1, · · · , n0 − 2,

n−1∑
j=k+2

µj = E

[
n−1∑
j=k+2

Yj

]

= E

[
E

[
n−1∑
j=k+2

Yj|Y0, Y1, · · · , Yk+1

]]
≤ E[Yk+1E[Υk+1|Y0, Y1, · · · , Yk+1]], (50)

where Υk+1 is the total number of infectives in generations k+ 2, k+ 3, · · · , n− 1 that
are descended from (i.e. in the epidemic graph have chain of directed edges from) a
typical generation-(k+ 1) infective. Note that an infective in generation j > k+ 1 may
be descended from more than one generation-(i+ 1) infective, hence the inequality in
(50). Further, Υk+1|Y0, Y1, · · · , Yk+1 is distributed as the total number of infectives, Υ
say, in generations 1, 2, · · · , n − 2 − k of a single-household epidemic with initially 1
infective and n − (Y0 + Y1 + · · · + Yk+1) susceptibles. Now Υ is stochastically strictly
less than the total number of infectives in generations 1, 2, · · · , n − 2 − k of such an
epidemic with initially 1 infective and n− 1 susceptibles, so

E[Υk+1|Y0, Y1, · · · , Yk+1] <
n−2−k∑
j=1

µj,

and (50) yields

n−1∑
j=k+2

µj < E

[
Yk+1

n−2−k∑
j=1

µj

]
= µk+1

(
n−2−k∑
j=1

µj

)
≤ µk+1

n−1∑
j=1

µj, (51)

proving (49).

(vi) RI and R2.

Let hI(λ) = g2(λ)− gI(λ). From (8) and (4),

gI(λ) = 1− µG
λ

(
1 +

∑nH
n=2 πn

µ
(n)
H

λ

)
, whence, recalling (16),

hI(λ) =
µG
λ

nH∑
n=2

πn

(
µ

(n)
H

λ
− µ

(n)
1

λ− b(n)

)

= µG
λ− 1

λ2

nH∑
n=2

πn
µ

(n)
H − µ

(n)
1

λ− b(n)
,
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since b(n) = 1−
(
µ

(n)
1 /µ

(n)
H

)
. Now µ

(2)
H = µ

(2)
1 so, if nH = 2, then hI(λ) ≡ 0 and RI = R2.

If nH > 2, then sign(hI(λ)) = sign(λ − 1) for λ > b = max
(
b(2), b(3), · · · , b(nH)

)
, since

µH > µ1, and, similar to the comparison of R0 and RHI , it follows that in a growing
epidemic RI > R2 and in a declining epidemic RI < R2.

(vii) R2 and RHI .

Let h2(λ) = gHI(λ) − g2(λ). As in the proof of the comparison of R0 and RHI , it
is sufficient to assume that all households have size n, where n ≥ 2, and show that
sign(h2(λ)) = sign(λ − 1) for λ > max(a, b). Equations (12) and (15) imply that, for
λ > max(a, b),

h2(λ) = µG

[
1

λ
+

µ1

λ(λ− b)
− 1

λ− a

]
=

µG
λ(λ− a)(λ− b)

[λ(µ1 − a)− a(µ1 − b)] . (52)

It follows from (12) and (15) that gHI(1) = g2(1) = 1 − R∗, so h2(1) = 0, whence
µ1− a = a(µ1− b). (The latter is easily checked directly using the definitions of a and
b.) Setting i = 0 in (49), recalling that a =

∑n−1
k=1 µk/(1 +

∑n−1
k=1 µk) and rearranging

shows that µ1 > a. (Note that this implies b < µ1, as claimed after (14).) Substituting
µ1−a = a(µ1−b) into (52) then shows that, for λ > max(a, b)), sign(h2(λ) = sign(λ−1),
which completes the proof.

2

7.2 Proof of Theorem 2

In this subsection we prove Theorem 2, which we restate here.

Theorem 2 (a) For all choices of infectivity profile I(t) (t ≥ 0),

Rr = 1 ⇐⇒ R̃r = 1 ⇐⇒ R0 = 1.

(b) If I(t) = JwG(t) (t ≥ 0), where J is a non-negative random variable, then in a growing
epidemic,

Rr ≥ R0 > 1,

and in a declining epidemic,
Rr ≤ R0 < 1.

(c) If I(t) = f(t)1(TI > t) (t ≥ 0), where f(t) is a deterministic function and TI a
non-negative random variable, then in a growing epidemic,

Rr ≥ R̃r ≥ R0 > 1,
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and in a declining epidemic,
Rr ≤ R̃r ≤ R0 < 1.

The above results still hold if a latent period independent of the remainder of the infectivity
profile is added.

Proof. To prove part (a) of Theorem 2, note that

LβH (0) = L̃βH (0) = L(0)
βH

(0) = µG(1 + µH) = R∗. (53)

Let r, r̃ and r(0) be the unique real solutions of

LβH (θ) = 1, L̃βH (θ) = 1 and L(0)
βH

(θ) = 1, (54)

respectively. Then,

Rr =
1

MWG
(r)

, R̃r =
1

MWG
(r̃)

and R0 =
1

MWG
(r(0))

. (55)

The functions LβH (θ), L̃βH (θ) and L(0)
βH

(θ) are each strictly decreasing in θ, so (53) implies
that

sign(r) = sign(r̃) = sign(r(0)) = sign(R∗ − 1),

so, since MWG
(θ) is strictly decreasing in θ and MWG

(0) = 1,

sign(Rr − 1) = sign(R̃r − 1) = sign(R0 − 1) = sign(R∗ − 1).

This proves part (a) and shows also that Rr, R̃r, R0 and R∗ are all strictly greater than 1 in
a growing epidemic and strictly less than 1 in a declining epidemic.

For ease of presentation, we assume first that all households have the same size n and we
drop the explicit dependence of λ

(n)
H on n. We further assume n ≥ 2 in order to avoid trivial

cases. We outline at the end of the proof how it extends to variable household sizes.
Consider a local epidemic started by a single initial infective. Label the individuals

0, 1, · · · , n− 1, with individual 0 being the initial infective in the household. Construct the
augmented random graph derived from G(n) as described in Section 2.1. For future reference
we refer to this augmented graph as G̃(n). Recall that tii′ denotes the time of this first contact
(since i’s infection) to i′; we refer to tii′ as the real infection interval for i to infect i′. For
i = 1, 2, · · · , n − 1, if individual i is infected by the local epidemic, then his/her time of
infection, denoted by Ti, is given by the minimum of the sums of the real infection intervals
between every pair of linked individuals along all directed paths from the initial infective to
i; if i is not infected by the local epidemic then we set Ti = ∞. We set T0 = 0. This fully
specifies the real-time construction of the epidemic.

The overall expected household infectivity profile βH(t) can be decomposed as
∑n−1

i=0 βH,i(t),
where βH,i(t) = µG E [Ii(t− Ti)] is the contribution from individual i and Ii(t) is his/her
infectivity profile (with Ii(t) = 0 if t < 0). Now,

∫∞
0
e−θtIi(t − Ti)dt = e−θTi

∫∞
0
e−θtIi(t)dt
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for Ti <∞, while the integral is 0 for Ti =∞. Therefore, noting that Ti and {Ii(t) : t ≥ 0}
are independent, we have

LβH (θ) =

∫ ∞
0

βH(t)e−θtdt =
n−1∑
i=0

∫ ∞
0

βH,i(t)e
−θtdt

=
n−1∑
i=0

E
[
e−θTi

] ∫ ∞
0

µG E[Ii(t)]e−θtdt

= µGMWG
(θ)

n−1∑
i=0

E
[
e−θTi

]
, (56)

since
∫∞

0
E[Ii(t)]e−θtdt =MWG

(θ). Let χk(i) be the event that individual i is in generation
k (i, k = 0, 1, · · ·n− 1). Then,

n−1∑
i=1

E[e−θTi ] =
n−1∑
i=1

n−1∑
k=1

P(χk(i))E[e−θTi |χk(i)] =
n−1∑
k=1

µk E[e−θT1|χk(1)], (57)

since E[e−θTi |χk(i)] is independent of i and µk =
∑n−1

i=1 P(χk(i)). Hence, using (56), and
recalling that T0 = 0,

LβH (θ) = µGMWG
(θ)

{
1 +

n−1∑
k=1

µk E[e−θT1 |χk(1)]

}
. (58)

Suppose that an individual, i say, is in household generation k. Then there exists at
least one path of length k, and no shorter path, from the initial case in the household to
i. Consider one such path and relabel the individuals so that the successive individuals in
that path are 0, 1, · · · , k, so our given individual now has label k. Let T̂k =

∑k−1
i′=0 ti′,i′+1 and

observe that, since T̂k is defined using the “length” of a specific path and Tk is the minimum
length over a collection of possible paths, we have

Tk ≤ T̂k. (59)

Consider case (b) of Theorem 2, in which I(t) = JwG(t) (t ≥ 0), where J is a non-negative
random variable. In this case the augmented random graph G̃(n) may be constructed by
independently for each individual, i say, first sampling Ji according to J and then, conditional
on Ji, letting Nii′ (i′ 6= i) be independent Poisson random variables having mean Ji. The
random variable Nii′ gives the number of infectious contacts individual i makes towards
individual i′. If Nii′ > 0 then the times of these contacts, relative to i’s time of infection

are given by w
(ii′)
G (1), w

(ii′)
G (2), · · · , w(ii′)

G (Nii′), which are mutually independent realisations
of the random variable WG. Suppose that i makes infectious contact with i′, so Nii′ > 0.

Then tii′ = min
(
w

(ii′)
G (1), w

(ii′)
G (2), · · · , w(ii′)

G (Nii′)
)

and, in particular, tii′ ≤ w
(ii′)
G (1). Since
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w
(ii′)
G (m) (i 6= i′,m = 1, 2, · · · , Nii′) are mutually independent it follows that

T̂k
st

≤
k−1∑
l=0

Ψl, (60)

where Ψ0,Ψ1, · · · ,Ψk−1 are independent and identically distributed copies of WG. Thus, if
θ > 0, then (58), (59) and (60) imply that

LβH (θ) ≥ µGMWG
(θ)

{
1 +

n−1∑
k=1

µkMWG
(θ)k

}
= L(0)

βH
(θ), (61)

where L(0)
βH

is defined at (22), with the opposite inequality holding if θ < 0.
Suppose that the epidemic is growing, so R∗ > 1. Then, (61) states that, for θ > 0,

LβH (θ) ≥ L(0)
βH

(θ),

so, since LβH (θ) and L(0)
βH

(θ) are strictly decreasing in θ and LβH (0) = L(0)
βH

(0) = R∗ it

follows that 0 < r(0) ≤ r, whence, sinceMWG
(θ) is strictly decreasing in θ, (55) implies that

Rr ≥ R0 > 1. A similar argument shows that Rr ≤ R0 < 1 in a declining epidemic.
Turn now to case (c) of Theorem 2, in which I(t) = f(t)1(TI > t) (t ≥ 0), where f(t)

is a deterministic function and TI a non-negative random variable. For m = 0, 1, · · · , n− 1,
let the random variable Φm be distributed as the time of the first infectious contact between
two given individuals (say from i to i′), given that there is at least one such contact and
that i does not contact m other given individuals. Note that the condition that i does not
contact 0 other given individuals is necessarily satisfied, so Φ0 has the same distribution as
the random variable W̃G defined in Section 2.8.

Observe that if we know that an individual is in household generation k, then there exists
at least one path of length k, and no shorter path, from the initial case in the household
to that individual. If we know one path of length k and we condition on knowing all edges
in the epidemic generating graph in the household, not starting at one of the individuals in
that path, then we know that a contact is made from an individual to the next individual in
the path and some other contacts are not made (namely contacts which would lead to paths
of shorter length than k, e.g. a contact from an individual to an individual more than one
place further along the path). We call the latter contacts “forbidden” (see Figure 10).

Suppose that an individual, i say, is in household generation k. Select a path of length
k from the initial case to individual i and, as above, relabel the individuals so that the
successive individuals in that path are 0, 1, · · · , k. Denote the configuration, in the epidemic
graph, of all edges not emanating from any node in the path plus all those in the path
itself by Ξ (the solid arrows in Figure 10) and let m(i′) = m(i′,Ξ), (i′ = 0, 1, · · · , k − 1) be
the number of forbidden contacts from individual i′ under configuration Ξ. (In Figure 10,
m(0) = 3, m(1) = 1 and m(2) = 0.) Recall that T̂k is the time it takes for individual k
to be infected along this path. Then, as contacts emanating from different individuals are
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0

1 2

45

3

Figure 10: Epidemic graph, with relevant contacts represented by solid arrows. We
consider the path from 0 to 3 (via 1 and 2). The forbidden contacts, which would make the
path from 0 to 3 shorter are represented by dashed arrows. In this Figure, there are 3
forbidden contacts emanating from individual 0 and 1 from individual 1.

independent,

E
[
e−θT̂k

]
= EΞ

[
k−1∏
i′=0

E
[
e−θΦm(i′)|Ξ

]]
, θ ∈ (−∞,∞). (62)

(The notation EΞ denotes that the expectation is with respect to the distribution of Ξ. Since
the path of length k is fixed, the randomness in Ξ is contained in the distribution of edges
in the epidemic graph that emanate from nodes not in the path.) We now show that

Φm

st

≤ W̃G for all m = 1, 2, · · · , n− 1. (63)

For m = 0, 1, · · · , n−1, let Dm be the event that there is at least one contact between two
given individuals (say i and i′) and m other specified individuals are not contacted by i. Let
D be the event that there is at least one contact between two given individuals, so D = D0.
Note that the probability of Dm depends on the infectious profile Ii (= {Ii(t) : t ≥ 0}). By
the definition of conditional expectation and noting that P(Dm) = EI [1(Dm)], we have that,
for m = 0, 1, · · · , n− 1,

P(Φm ≤ t) = EI

[
1(Dm)

∫ t
0

e−
∫ s
0 λHI(x)dxI(s)ds∫∞

0
e−

∫ s
0 λHI(x)dxI(s)ds

]
/EI [1(Dm)] (t ≥ 0). (64)

Making the substitution u(t) =
∫ t

0
I(x)dx we obtain∫ t

0

e−
∫ s
0 λHI(x)dxI(s)ds =

∫ t

0

e−λHu(s) du(s)

ds
ds = 1− e−λHu(t) = 1− e−λH

∫ t
0 I(s)ds

and similarly
∫∞

0
e−

∫ s
0 λHI(x)dxI(s)ds = 1− e−λH

∫∞
0 I(s)ds. Furthermore, Dm ⊆ D and

P(Dm|
∫ ∞

0

I(s)ds) = e−mλH
∫∞
0 I(s)ds.
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Combining these observations yields that, for m = 0, 1, · · · , n− 1, (64) can be rewritten as

P(Φm ≤ t) =
EI|D

[
e−mλH

∫∞
0 I(s)ds 1−e−λH

∫ t
0 I(s)ds

1−e−λH
∫∞
0 I(s)ds |D

]
EI|D[e−mλH

∫∞
0 I(s)ds|D]

(t ≥ 0). (65)

(The notation EI|D denotes that the expectation is with respect to the distribution of the
infectivity profile I = {I(t) : t ≥ 0} of an infective given that that infective makes at least

one contact with a given individual.) The distribution function of W̃G may be obtained by

setting m = 0 in (65). Hence, Φm

st

≤ W̃G if and only if, for all t > 0,

EI|D

[
e−mλH

∫∞
0 I(s)ds 1− e−λH

∫ t
0 I(s)ds

1− e−λH
∫∞
0 I(s)ds

|D

]

≥ EI|D
[
e−mλH

∫∞
0 I(s)ds|D

]
EI|D

[
1− e−λH

∫ t
0 I(s)ds

1− e−λH
∫∞
0 I(s)ds

|D

]
. (66)

Recall Chebychev’s ‘other’ inequality (also referred to as Harris’ inequality) (Hardy [13],
p. 168), which states that if f1(x) and f2(x) are both increasing or both decreasing functions
and X is a random variable, then

E[f1(X)f2(X)] ≥ E[f1(X)]E[f2(X)]. (67)

From the proof of this inequality it follows immediately that the inequality is strict if both
f1(X) and f2(X) have strictly positive variance, which is the case if (i) both functions are
strictly increasing or both functions are strictly decreasing and (ii) Var(X) > 0. We now
apply Chebychev’s ‘other’ inequality to conditional expectations. In case (c) of Theorem 2,

for t ∈ (0,∞] we have
∫ t

0
I(s)ds =

∫ min(TI ,t)

0
f(s)ds and we observe that both

f1(x) = e−mλH
∫ x
0 I(s)ds

and

f2(x) =
1− e−λH

∫min(x,t)
0 I(s)ds

1− e−λH
∫ x
0 I(s)ds

= 1(x < t) + 1(x ≥ t)
1− e−λH

∫ t
0 I(s)ds

1− e−λH
∫ x
0 I(s)ds

are decreasing in x. Thus by (66) and (67) we have Φm

st

≤ W̃G.
It follows from (63) that MΦm(r) ≥ MW̃G

(r) if r > 0 and MΦm(r) ≤MW̃G
(r) if r < 0.

It then follows using (58), (59) and (62) that, if r > 0, then

LβH (r) ≥ µGMWG
(r)

{
1 +

n−1∑
k=1

µkMW̃G
(r)k

}
= L̃βH (r), (68)

where L̃βH is defined at (24), with the opposite inequality holding if r < 0. Arguing as

for case (b) above, shows that Rr ≥ R̃r > 1 in a growing epidemic and Rr ≤ R̃r < 1 in a
declining epidemic.
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To compare R̃r and R0, we need to show that

MW̃G
(θ) ≥MWG

(θ) if θ > 0 and MW̃G
(θ) ≤MWG

(θ) if θ < 0. (69)

Recall from Section 2.8 thatMWG
(θ) =

∫∞
0

e−θtE[I(t)]dt. From the definition of W̃G we see
that

P(W̃G ≤ t) =
EI
[∫ t

0
e−

∫ s
0 λHI(x)dxλHI(s)ds

]
EI
[∫∞

0
e−

∫ s
0 λHI(x)dxλHI(s)ds

] , t ≥ 0. (70)

After first differentiating (70) to obtain the density of W̃G, we obtain (using the dominated
convergence theorem for a fully rigorous argument) that

MW̃G
(θ) =

∫∞
0

e−θtEI
[
e−

∫ t
0 λHI(x)dxI(t)

]
dt

EI
[∫∞

0
e−

∫ s
0 λHI(x)dxI(s)ds

] , θ ∈ (−∞,∞).

Now using that I(t) = f(t)1(TI > t) for some random variable TI gives that for all real θ,
MWG

(θ) =
∫∞

0
e−θtf(t)P[TI > t]dt and

MW̃G
(θ) =

∫∞
0

e−θtETI
[
e−

∫ t
0 λHf(x)dxf(t)1(TI > t)

]
dt

ETI
[∫∞

0
e−

∫ s
0 λHf(x)dxf(s)1(TI > s)ds

]
=

∫∞
0

e−θte−
∫ t
0 λHf(x)dxf(t)P[TI > t]dt∫∞

0
e−

∫ s
0 λHf(x)dxf(s)P[TI > s]ds

.

Note that f(t)P[TI > t] = E[I(t)] = wG(t), which is the density of WG. Using this definition
of WG, we obtain that

MWG
(θ) = E

[
e−θWG

]
and MW̃G

(θ) =
E
[
e−θWGe−

∫WG
0 λHf(x)dx

]
E
[
e−

∫WG
0 λHf(x)dx

] .

For θ > 0, the inequality MW̃G
(θ) ≥ MWG

(θ) now follows from applying Chebychev’s

‘other’ inequality (inequality (67)) to the functions f1(x) = e−θx and f2(x) = e−
∫ x
0 λHf(s)ds.

The result for θ < 0 is proved in the same way, using f1(x) = −e−θx instead. It follows using

(22) and (24) that L̃βH (θ) ≥ L(0)
βH

(θ) if θ > 0 and L̃βH (θ) ≤ L(0)
βH

(θ) if θ < 0, which implies

that R̃r ≥ R0 in a growing epidemic and R̃r ≤ R0 in a declining epidemic.
Note that in case (b) of Theorem 2 (i.e. when I(t) = JwG(t), with J random and wG(t)

(t ≥ 0) non-random), Φm

st

≤ W̃G does not necessarily hold, because conditioning on the
absence of some edges leads to relatively low realisations of J , which implies fewer infectious
contacts even if there is at least one contact between given individuals, which in turn implies
later first contacts. So, here we cannot conclude that, for example, Rr ≥ R̃r in a growing
epidemic.
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Note that in the variable household size setting (58) becomes

LβH (θ) = µGMWG
(θ)

{
1 +

nH∑
n=2

πn

n−1∑
k=1

µ
(n)
k E[e−θT

(n)
1 |χk(1)]

}
, (71)

where T
(n)
1 is the time that individual 1 is infected in a local epidemic in a household

having size n. The expectations are conditioned on individual 1 being in generation k. The
arguments leading to (60) show that

E[e−θT
(n)
1 |χk(1)] ≥ [MWG

(θ)]k for θ > 0, (72)

and
E[e−θT

(n)
1 |χk(1)] ≤ [MWG

(θ)]k for θ < 0. (73)

It then follows using (3) that, if θ > 0, inequality (61) holds, with the opposite inequality
holding if θ < 0. Case (b) of Theorem 2 now follows as before.

Turning to case (c), recall that if λ
(n)
H varies with n then so does the distribution of W̃

(n)
G .

In that case recall that W̃
(n)
G is a random variable distributed as W̃G for a size-n household

and, for m = 0, 1, · · ·n−1, let Φ
(n)
m be a random variable distributed as Φm, again for a

size-n household. (Note that, cf. (71), the distribution of WG is determined purely by the
distribution of the infectivity profile {I(t) : t ≥ 0} and hence it is independent of household

size n.) Arguing as before shows that Φ
(n)
m

st

≤ WG (n = 2, 3, · · · , nH ;m = 0, 1, · · · , n−1) and
using obvious extensions of (59) and (62) to the variable household size setting it follows

from (71) that, if r > 0, then (68) holds with L̃βH (r) defined at (27), and if r < 0, then

LβH (r) ≤ L̃βH (r). As in the case when all households have the same size, this implies that

Rr ≥ R̃r > 1 in a growing epidemic and Rr ≤ R̃r < 1 in a declining epidemic. Finally
the previous argument shows that for n = 2, 3, · · ·nH , M

W̃
(n)
G

(θ) ≥ MWG
(θ) if θ > 0 and

M
W̃

(n)
G

(θ) ≤ MWG
(θ) if θ < 0. The comparison between R̃r and R0 then follows on noting

that L(0)
βH

(r) is obtained by replacing M
W̃

(n)
G

(r) by MWG
(r) in equation (27).

2

Remark 6 Note that if wG(t) is a proper density function, i.e. wG(t) <∞ for all t ≥ 0, then
the inequality in (61) is strict, so in that case the inequalities in Theorem 2(b) are strict.
Note that for the infectivity profile considered in Theorem 2(c), the random variable WG

necessarily has a proper density function, so the application of Chebychev’s other inequality
leads to strict inequalities in (69). Thus, in this case, we have R̃r > R0 in a growing epidemic

and R̃r < R0 in a declining epidemic.
We have already observed that LβH (θ) = L̃βH (θ) and therefore R̃r = Rr for nH ≤ 2, since

there is only one possible path from the initial infective to the other individual in a household
of size 2. In households of size 3, it depends on the distribution of TI , whether the (real) time
needed for the epidemic to traverse an infection path of length 2 might be shorter than the
time needed to traverse an infection path of length 1. If this is impossible, then R̃r = Rr for
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nH = 3, otherwise R̃r 6= Rr unless they are both one. In households of size 4 or larger, it is
possible that there are two disjoint paths of length 2 from the initial infective in the household
to an individual in generation 2, so in this case, LβH (θ) = L̃βH (θ), for all θ ∈ (−∞,∞), if

and only if Var(W̃G) = 0. Thus, for nH ≥ 4, unless they are both one, R̃r = Rr if and only

if Var(W̃G) = 0.

7.3 Proof of Theorem 3

Where relevant, we now use the notation
n

≥ to denote that the inequality is strict if and only
if max(nH , nW ) > n, so the statement of Theorem 3 is as follows.

Theorem 3 (a) R∗ = 1 ⇐⇒ RH = 1 ⇐⇒ RI = 1 ⇐⇒ R0 = 1 =⇒ RV = 1.

(b) In a growing epidemic,

R∗ > RH > RI

2

≥ RV

3

≥ R0 > 1,

and in a declining epidemic

R∗ < RH < RI

2

≤ R0 < 1.

(c) Theorem 2 holds also for the households-workplaces model.

Proof. We first prove (a). Let

fHW (µG, µH , µW ) = µG(1 + µH)(1 + µW ) + µHµW , (74)

and note from (34) that R∗ = 1 if and only if fHW (µG, µH , µW ) = 1. Observe from (36) and

(37) that gH(1) = g
(HW )
I (1) = 1− fHW (µG, µH , µW ), so R∗ = 1 ⇐⇒ RH = 1 ⇐⇒ RI = 1.

Turning to R0, note that

µHµW =

(
nH−1∑
`=1

µH`

)(
nW−1∑
`′=1

µW`′

)
=

nH+nW−3∑
k=1

 min(k,nH−1)∑
`=max(1,k−nW+2)

µH` µ
W
k+1−`


and

(1 + µH)(1 + µW ) =

(
nH−1∑
`=0

µH`

)(
nW−1∑
`′=0

µW`′

)

=

nH+nW−2∑
k=0

 min(k,nH−1)∑
`=max(0,k−nW+1)

µH` µ
W
k−`

 .
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Thus

fHW (µG, µH , µW ) =

nH+nW−2∑
k=0

ck, (75)

where ck is defined in (33) (c0 = µG) and, using (32), g
(HW )
0 (1) = 1 − fHW (µG, µH , µW ).

Hence, R0 = 1 ⇐⇒ R∗ = 1. By definition, RV = 1 if R∗ = 1.
To prove (b), we first note that (34) and (74) imply that

sign(R∗ − 1) = sign(fHW (µG, µH , µW )− 1). (76)

Thus, since the functions gH , g
(HW )
I and g

(HW )
0 are all strictly increasing on (0,∞), it follows

that the reproduction numbers R∗, RH , RI and R0 are all strictly greater than 1 in a growing
epidemic and all strictly smaller than 1 in a declining epidemic. We consider now each of
the comparisons in turn.

(i) R∗ and RH .

Suppose that R∗ > 1. Clearly, R∗ > RH if R∗ = ∞, so suppose that R∗ < ∞. An
elementary calculation shows that

gH(R∗) =
µH

µG(1 + µH)2
(fHW (µG, µH , µW )− 1) ,

whence, using (76), gH(R∗) > 0. It follows that RH < R∗, since gH is strictly increasing
on (0,∞) and gH(RH) = 0. A similar argument shows that RH > R∗ if R∗ < 1.

(ii) RH and RI

Elementary algebra gives

g
(HW )
I (λ)− gH(λ) = (λ− 1)

[
µH(µG + µW )

λ2
+
µGµHµW

λ3

]
,

so, for λ > 0,

sign
(
g

(HW )
I (λ)− gH(λ)

)
= sign(λ− 1). (77)

Recall that RH and RI are the unique roots in (0,∞) of gH and g
(HW )
I , respectively.

Suppose that RH > 1. Then, since gH(RH) = 0, (77) implies that g
(HW )
I (RH) > 0,

whence RI < RH , since g
(HW )
I (RI) = 0 and g

(HW )
I is increasing on (0,∞). A similar

argument shows that RI > RH if RH < 1.

(iii) RI and RV

Suppose that RI>1 and a fraction p of individuals is vaccinated with a perfect vaccine.
Then, as in the households model, µG, µH and µW are reduced to µG(p), µH(p) and
µW (p), respectively, where

µG(p) = (1− p)µG, µH(p)
2

≤ (1− p)µH and µW (p)
2

≤ (1− p)µW ,
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and RI is reduced to RI(p), which is given by the unique solution of g
(HW )
I,p (λ) = 0 in

(0,∞), where

g
(HW )
I,p (λ) =1− µG(p)

λ
− µG(p)µH(p) + µG(p)µW (p) + µH(p)µW (p)

λ2

− µG(p)µH(p)µW (p)

λ3
.

Suppose that p > 0. Then, the above inequalities imply that

g
(HW )
I,p ((1− p)RI)

2

≥ 1− µG
RI

− µGµH + µGµW + µHµW
R2
I

− µGµHµW
R3
I

= 0,

since g
(HW )
I (RI) = 0. Hence, since g

(HW )
I,p (RI(p)) = 0 and g

(HW )
I,p is strictly increasing

on (0,∞), RI(p)
2

≤ (1 − p)RI . In particular, RI(1 − R−1
I )

2

≤ 1, whence pC
2

≤ 1 − R−1
I

and, using (17), RV

2

≤ RI .

(iv) RV and R0

Recall that R0 is given by the unique root in (0,∞) of g
(HW )
0 defined at (32). Suppose

that R0 > 1 and a fraction p of the population is vaccinated with a perfect vaccine.
Then the post-vaccination basic reproduction number, R0(p) say, is given by the unique

root in (0,∞) of the function g
(HW )
0,p defined by

g
(HW )
0,p (λ) = 1−

nH+nW−2∑
k=0

ck(p)

λk
,

where c0(p) = µG(p) and, for k = 1, 2, · · · , nH + nW − 2,

ck(p) = µG(p)

 min(k,nH−1)∑
`=max(0,k−nW+1)

µH` (p)µWk−`(p)


+

min(k,nH−1)∑
`=max(1,k−nW+2)

µH` (p)µWk+1−`(p),

µG(p) = (1 − p)µG, and, for ` = 0, 1, · · · , µH` (p) (respectively µW` (p)) is the post-
vaccination mean size of the `th generation in a typical single-household (respectively
single-workplace) epidemic with one (unvaccinated) initial infective; the second sum in
the expression for ck(p) is zero when k = nH + nW − 2.

As in the proof of Theorem 1,

µH` (p)≥(1−p)`µH` (` = 0, 1, · · · , nH−1) and µW`′ (p)≥(1−p)`′µW`′ (`′ = 0, 1, · · · , nW−1),
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whence ck(p)≥(1 − p)k+1ck (k = 1, 2, · · · , nH + nW − 2). Moreover, these inequalities
are all equalities if max(nH , nW ) ≤ 3, otherwise at least one of them is strict. Arguing

exactly as in the proof of Theorem 1 shows that RV

3

≥ R0.

(v) RI and R0

We need to consider only a declining epidemic, since for a growing epidemic comparison
of RI and R0 follows from (iii) and (iv) above. It is convenient to express (74) and (75)
as

µG + µGµH + µGµW + µGµHµW + µHµW =

nH+nW−2∑
k=0

ck. (78)

Note that c0 = µG and that, in (78), the contributions to µGµHµW come from elements
of the sums in c2, c3, · · · , cnH+nW−2 (and not c1). Thus, we may write

µGµH + µGµW + µHµW =

nH+nW−2∑
k=1

c
(1)
k and µGµHµW =

nH+nW−2∑
k=2

c
(2)
k ,

where c
(1)
1 = c1 and, for k=2, 3, · · · , nH + nW − 2, ck = c

(1)
k + c

(2)
k with both c

(1)
k and

c
(2)
k being positive. Now, from (32),

g
(HW )
0 (λ) = 1− µG

λ
−

nH+nW−2∑
k=1

c
(1)
k

λk+1
−

nH+nW−2∑
k=2

c
(2)
k

λk+1
.

Suppose that RI < 1. Then,

g
(HW )
0 (RI) = 1− µG

RI

−
nH+nW−2∑

k=1

c
(1)
k

Rk+1
I

−
nH+nW−2∑

k=2

c
(2)
k

Rk+1
I

≤ 1− µG
RI

− 1

R2
I

nH+nW−2∑
k=1

c
(1)
k −

1

R3
I

nH+nW−2∑
k=2

c
(2)
k (79)

= 1− µG
RI

− µGµH + µGµW + µHµW
R2
I

− µGµHµW
R3
I

= g
(HW )
I (RI)

= 0,

by the definition of RI . Hence, R0 ≥ RI , since g
(HW )
0 (R0) = 0 and g

(HW )
0 is increasing

on (0,∞). If nH = nW = 2 then c1 = µGµH + µGµW + µHµW and c2 = µGµHµW ,

whence g
(HW )
0 = g

(HW )
I and R0 = RI . If nH > 2 or nW > 2 then it is readily seen

using (33) that c
(2)
3 > 0, as nH + nW − 2 ≥ 3, which implies that the inequality (79) is

strict, whence R0

2

≥ RI .
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Finally, we prove (c). For θ ∈ (−∞,∞), let

FHW (θ) = µGMWG
(θ)(LξH (θ) + 1)(LξW (θ) + 1) + LξH (θ)LξW (θ),

and define F̃HW (θ) and F
(0)
HW (θ) similarly, using L̃ξH (θ) and L̃ξW (θ) (recall (41) and (42))

for F̃HW (θ), and L(0)
ξH

(θ) and L(0)
ξW

(θ) (recall (39) and (40)) for F
(0)
HW (θ). Then, recalling (38),

the real-time growth rate r, and its approximations r̃ and r(0) under the two approximate
models, are given by the unique real solutions of

FHW (r) = 1, F̃HW (r̃) = 1 and F
(0)
HW (r(0)) = 1. (80)

Note that MWG
(0)=1, LξH (0)= L̃ξH (0)=L(0)

ξH
(0)=µH and LξW (0)= L̃ξW (0)=L(0)

ξW
(0)=µW ,

so, recalling (74),

FHW (0) = F̃HW (0) = F
(0)
HW (0) = fHW (µG, µH , µW ).

Thus, using part (a) and its proof,

R0 = 1 ⇐⇒ R∗ = 1 ⇐⇒ fHW (µG, µH , µW ) = 1

⇐⇒ FHW (0) = F̃HW (0) = F
(0)
HW (0) = 1.

Hence, using (80),
R∗ = 1 ⇐⇒ r = r̃ = r(0) = 0,

and part (a) of Theorem 2 holds for the households-workplaces model, since MWG
(0) = 1.

Turning to part (b) of Theorem 2, applied to the households-workplaces model, suppose
first that all households have size n. Then an analogous argument to the derivation of (58)
yields, using the same notation,

LξH (θ) =
n−1∑
i=1

E
[
e−θTi

]
=

n−1∑
k=1

µHk E[e−θT1|χk(1)].

Arguing as for the households model then gives that LξH (θ) ≥ L(0)
ξH

(θ) if θ > 0, while if

θ < 0, then LξH (θ) ≤ L(0)
ξH

(θ) , and further that these inequalities hold also in the unequal

household size setting, which, together with analogous inequalities for LξW (θ) and L(0)
ξW

(θ),

imply that FHW (θ) ≥ F
(0)
HW (θ) if θ > 0 and FHW (θ) ≤ F

(0)
HW (θ) if θ < 0. Using (80), it follows

that 0 < r(0) ≤ r in a growing epidemic and r ≤ r(0) < 0 in a declining epidemic. Part (b) of
Theorem 2 now follows for the households-workplaces model, sinceMWG

(θ) strictly decreases
with θ. The proof of part (c) of Theorem 2 for the households-workplaces model is omitted
since it exploits arguments used in the corresponding proof for the households model in
exactly the same way as is done above for part (b). 2
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8 Conclusions

In this paper, we focus on an SIR model for a directly transmissible infection spreading
in a fully susceptible population, socially structured into households, or households and
workplaces. However, most of our results extend readily to SEIR models. We collect together
most of the reproduction numbers that have been defined in the literature (see Tables 1 and
3) and we show how they relate to each other. Particular emphasis is placed on the basic
reproduction number R0, for which we provide a simpler and more elegant method for its
calculation than that introduced in the companion paper of this [22]. Extending the work
of Goldstein et al. [11], we add other reproduction numbers (namely R̂2, RI and R0) to the
ones they already discuss, and we provide new definitions for the reproduction numbers RHI

and R2 in a way that is more satisfactory when households have variable size: see (13) and
(16), respectively.

We extend the inequalities discussed in Goldstein et al. [11] (Table 2) and, by doing so,
we provide significantly sharper bounds for the vaccine-associated reproduction number RV

than previously available, a result that holds consistently also for the network-households
and households-workplaces models.

More precisely, Goldstein et al. [11] proved that R∗, Rr , RV , RVL and (if all households
have the same size) R̄HI share the same threshold at 1 and R∗ ≥ RVL ≥ RV ≥ R̄HI in a
growing epidemic. They noted also that in most cases Rr fits into the inequalities as

R∗ ≥ RVL ≥ Rr ≥ RV ≥ R̄HI .

Although Rr may sometimes represent a practically useful upper bound for RV , which is
usually the quantity of interest for public health purposes, it can be excessively large at
times (e.g. see Figure 5) and it requires knowledge of the generation-time distribution wG.
In general, RVL cannot be computed easily from the model parameters, so this leaves R∗
and R̄HI as the only generally valid, time-independent and easy-to-calculate (from the basic
model parameters) bounds for RV , but R∗ is often excessively large and R̄HI is not a threshold
parameter when households are not all of the same size.

Although a proof is still to be found, we conjecture that R0 ≥ R2 in a growing epidemic,
with the opposite inequality holding in a declining epidemic. Assuming this to be true, we
have that, in a growing epidemic

R∗ ≥ RI ≥ RV ≥ R0 ≥ R2 ≥ RHI > 1

and, in a declining epidemic,

R∗ ≤ RI ≤ R0 ≤ R2 ≤ RHI < 1.

Note that, even if the conjecture about R2 does not hold, RI and R0 provide sharper
bounds for RV than R∗ and RHI . Moreover, the numerical illustrations in Section 6 demon-
strate that the improvement can be appreciable. This provides useful information for brack-
eting the critical vaccination coverage within an interval which does not depend on the fine
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details of the person-to-person contact process and is therefore robust to poor estimates of
complex model components, such as the generation-time distribution.

Turning to the spread in real-time, Rr cannot always be related with R0, although for
virtually all models considered in the literature (including the standard SIR model and
models with a deterministic time-varying infectivity profile) we have Rr ≥ R0 in a growing
epidemic. Further, we have shown that Rr and RVL cannot be ordered in general. A further
reproduction number R̃r has also been introduced, which in the case of the standard SIR
model (and extensions to non-constant infection rates), approximates R0 better than Rr.

Other models with a different social structure have also been studied. These models all
share the same qualitative construction of R0 as presented in our previous paper [22]. As
far as the network-households model is concerned, the relationships between R∗, RI , RV and
R0 are the same as in the households model, although inequalities involving R0, R2 and RHI

are more complex. Also, for the model with households and workplaces, the relationships
between R∗, RI , RV and R0 are the same, with the additional presence of the household and
workplace reproduction numbers as in Theorem 3.

Although our results stress how RV is bracketed between RI and R0, we still believe that
each of the reproduction numbers discussed have their own merit: R∗ carries a simple inter-
pretation, is easiest to calculate, and in the households model gives the critical vaccination
coverage when whole households are vaccinated uniformly at random; RV and RVL are im-
portant for practical reasons; Rr is useful as r can generally be estimated in new epidemics;
R0 represents a fundamental concept in epidemic models; R2 is usually very close to R0, but
requires less knowledge about the epidemic model to be computed (in addition to µG, only
µ1 and the mean size of within-household epidemics) and might be easier to estimate from
households studies, especially when within-household generations quickly overlap; and RHI

requires even less knowledge than R2, but is a coarser bound for RV . For the households-
workplaces model, in addition to the simple construction of R∗ and the bounds that RI and
R0 provide for RV , RH still carries a simple interpretation, unlike R0 is always finite and is
informative about the control effort required when vaccination target entire households [20].

Finally, much effort has been placed in studying the properties of Rr, in particular in
relationship with R0. As already mentioned above, it is not possible to order them in
general, although in most of the models commonly considered in the literature Rr ≥ R0 in a
growing epidemic (see Theorem 2). However, on a more speculative but practically relevant
note, consider the case of a non-random infectivity profile wG(t) and assume that wG is
unimodal, with small variance and mean significantly larger than 0. Then, if instead of the
true generations we deal with the computationally much more tractable rank generations
(approximating process Tk by T̂k in Section 7.2, c.f. equation (59)) the errors involved are
small because generations do not easily overlap, in particular for realistically small household
sizes. Furthermore, if we approximate the relative time at which real infections are made with
that at which infections contacts are made (approximating T̂k by

∑k−1
m=0 Ψm, c.f. equation

(60)), the errors are also minor, because repeated infectious contacts between the same pair of
individuals are likely to be all gathered around the mode of wG. Therefore, the quantitative
values of Rr and R0 are very similar to each other, thus suggesting that R0, the individual
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generation time distribution wG and the real-time growth rate r are approximately related
as in the case of simple homogeneously mixing models. Given that many infections lead
to infectivity profiles of the type described above (e.g. influenza and SARS), this intuitive
argument increases confidence in the estimates of R0 obtained in the literature using models
that ignore the household structure.
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A Comparison of R0 and R2

In this appendix we discuss the conjecture concerning the comparison of R0 and R2. Recall
that R0 is given by the unique root in (0,∞) of the function g0 defined at (5) and R2

is given by the unique root in (b,∞) of the function g2 defined at (16). Recall also that

g0(λ) =
∑nH

n=1 πng
(n)
0 (λ) and g2(λ) =

∑nH
n=1 πng

(n)
2 (λ), where g

(n)
0 and g

(n)
2 are defined at (6)

and (15), respectively.

Observe that g
(n)
0 = g

(n)
2 for n = 1, 2, so R0 = R2 if nH ≤ 2. We aim to show that if

n ≥ 3 then sign(g
(n)
2 (λ)− g(n)

0 (λ)) = sign(λ− 1) for all λ > b(n). This implies that if nH ≥ 3
then sign(g2(λ) − g0(λ)) = sign(λ − 1) for all λ > b. It would then follow, as in the proof
of the comparison between R0 and RHI in Theorem 1, that if R0 > 1 then R0 > R2 and if
R0 < 1 then R0 < R2.

We now fix n ≥ 3 and suppose that all households have size n, so g
(n)
0 = g0 and g

(n)
2 = g2.
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Then, for any λ > b = 1− µ1/µH ,

g2(λ)− g0(λ) = µG

[
n−1∑
k=1

µk
λk+1

− µ1

λ(λ− b)

]

=
µG
λ− b

[
n−1∑
k=1

(λ− b)µk
λk+1

− µ1

λ

]

=
µG
λ− b

[
n−1∑
k=2

µk
λk
− b

n−1∑
k=1

µk
λk+1

]
=

µG
λ2(λ− b)

fn(λ−1), (81)

where fn is the polynomial of degree n−2 given by fn(x) =
∑n−2

j=0 cjx
j, with cj = µj+2−bµj+1

(j = 0, 1, · · · , n− 3) and cn−2 = −bµn−1. Note that fn(1) = 0. Thus, as at (46),

fn(x) = (x− 1)f̃n(x), (82)

where

f̃n(x) =
n−3∑
j=0

c̃jx
j, (83)

with c̃j =
∑n−2

l=j+1 cl (j = 0, 1, · · · , n− 3). Thus,

c̃j =
n−1∑
l=j+3

µl − b
n−1∑
l=j+2

µl (j = 0, 1, · · · , n− 4)

and c̃n−3 = −bµn−1. It follows from (81) and (83) that sign(g2(λ) − g0(λ)) = sign(λ − 1) if
c̃j ≤ 0 (j = 0, 1, · · · , n− 3) and at least one of these inequalities is strict.
Now c̃n−3 = −bµn−1 < 08, so a sufficient condition for sign(g2(λ)− g0(λ)) = sign(λ− 1), and
hence for the conjectured comparisons between R0 and R2, is that∑n−1

l=j+3 µl∑n−1
l=j+2 µl

≤ b (j = 0, 1, · · · , n− 4)

or equivalently that

1

µj

n−1∑
l=j+1

µl ≤
1

µ1

n−1∑
l=2

µl (j = 2, 3, · · · , n− 2). (84)

When n = 3, the condition (84) is vacuous, so the conjectured comparison between R0

and R2 holds when nH = 3. We do not have a proof that (84) holds in general.

8This assumes that µn−1 > 0, which is the case for most models studied in the literature. If µn−1 = 0
then the ensuing discussion may be modified in the obvious fashion.
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Suppose that household generation sizes are the same as for a Reed-Frost model, as is the
case when individuals have a non-random infectivity profile. Let p be the probability that
a given infective infects a given susceptible household member. Suppose that n = 4. The
mean generation sizes are obtained easily using probabilities of different chains of infection
(see e.g. Bailey [2], Table 14.3) and are given by

µ1 = 3p, µ2 = 3p2(1− p)(2− p2) and µ3 = 6p3(1− p)3.

Thus,
µ3

µ2

=
2p(1− p)2

2− p2
and

µ2 + µ3

µ1

= p(1− p)(2− p2 + 2p(1− p)2),

whence, for p ∈ [0, 1],

µ3

µ2

≤ µ2 + µ3

µ1

⇐⇒ 2(1− p)
2− p2

≤ 2− p2 + 2p(1− p)2

⇐⇒ 2 + 6p(1− p)2 − 4p3 + 5p4 − 2p5 ≥ 0.

Let ϕ(p) = 4p3−5p4+2p5. Then ϕ′(p) = 2p2(1+5(1−p)2) ≥ 0, so 0 ≤ ϕ(p) ≤ 1 for p ∈ [0, 1],
whence µ3

µ2
≤ µ2+µ3

µ1
and (84) holds for n = 4, proving the conjectured comparison between

R0 and R2 in this case. The expressions for the mean generation sizes become increasing
unwieldy as n increases. However, numerical investigation using the recursive method for
computing the mean generation sizes described in Appendix A of Pellis et al. [22] did not find
any violation of (84) for n = 5, 6, · · · , 20 and p = 0.001, 0.002, · · · , 0.999, suggesting that
the conjectured comparison between R0 and R2 holds generally for the Reed-Frost model.
A similar investigation for the Markov model in which a typical infective contacts any given
household member at rate λH during an infectious period that has an Exp(1) distribution did
not find any violation of (84) for n = 4, 5, · · · , 20 and λH = 0.01, 0.02, · · · , 10.00, suggesting
that the comparison between R0 and R2 holds generally for this model too.

B Comparison of RI and RVL

In this appendix we give an example which demonstrates that, for the households model,
the reproduction numbers RI and RVL cannot in general be ordered. We consider an SIR
epidemic among a population of households, all of which have size 3. The infectious period
is assumed to be constant and equal to one. The individual to individual local infection
rate is λH . Suppose that the entire population is vaccinated with a leaky vaccine having
efficacy E and let RI(E) denote the post-vaccination version of RI . Then RI(E) is the largest
eigenvalue of

MI(E) =

[
µG(E) µH(E)
µG(E) 0

]
,

where µG(E) = (1 − E)µG and µH(E) is the mean size of a single-household epidemic, with
one initial infective and two initial susceptibles, both of whom are vaccinated. We assume
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throughout this appendix that RI > 1. By considering the characteristic polynomial of
MI(E) and arguing as for the comparison of RI and RV in the proof of Theorem 1, it is
readily seen that sign(RVL −RI) = sign(µH(E)− (1− E)µH), with E = 1−R−1

I .
The definition of the leaky vaccine action implies that µH(E) is given by mean size of the

single-household epidemic with λH replaced by λH(1−E). Direct calculation shows that for
the present population

µH(E) = 2− 4e−2λH(1−E) + 2e−3λH(1−E).

Thus, if we let x = 1− E , then

sign(µH(E)− (1− E)µH) = sign(u1(x)− u2(x)),

where
u1(x) = 2− 4e−2λHx + 2e−3λHx and u2(x) = x(2− 4e−2λH + 2e−3λH ).

Now
u′1(x) = 8λHe−2λHx − 6λHe−3λHx and u′2(x) = 2− 4e−2λH + 2e−3λH ,

so, since u1(0) = u2(0) = 0, u1(x) − u2(x) > 0 (respectively < 0) for all sufficiently small
x > 0 if v(λH) > 0 (respectively < 0), where

v(λH) = 2λH − 2 + 4e−2λH − 2e−3λH .

Further,
v′(λH) = 2− 8e−2λH + 6e−3λH and v′′(λH) = 16e−2λH − 18e−3λH .

Thus sign(v′′(λH)) = sign(λH − log(9/8)) and elementary calculus shows that v(λH) = 0 has
a unique solution, λ∗H say, in (0,∞) and that

sign(v(λH)) = sign(λH − λ∗H) for λH ∈ (0,∞).

(Numerical calculation shows that λ∗H≈0.4219.) It follows that if λH ∈(0, λ∗H) then u1(x) <
u2(x) for all sufficiently small x > 0, whilst if λH ∈ (λ∗H ,∞) then u1(x) > u2(x) for all
sufficiently small x > 0. Recall that x = 1− E , where E = 1− R−1

I , so x = R−1
I . Also, note

that RI increases with µG for fixed λH . Hence, if λH ∈ (0, λ∗H), then there exists µ∗G > 0 such
that RI > RVL for all µG > µ∗G, whilst if λH ∈ (λ∗H ,∞), then there exists µ†G > 0 such that
RI < RVL for all µG > µ†G. Thus the reproduction numbers RI and RVL cannot in general
be ordered.

C Comparisons between R0, RHI, R̂HI and R̄HI

In this appendix, we discuss the orderings of the individual reproduction numbersR0, RHI , R̂HI

and R̄HI .
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Recall from Section 2.5 that a(n) = µ
(n)
H /(1 + µ

(n)
H ) and that RHI is the unique positive

solution of gHI (defined at (13)) in (a,∞), with a = max
(
a(n), n = 1, 2, · · ·nH

)
. Further,

with â = µH/(1 + µH), it follows from (10) that R̂HI is the unique root in (â,∞) of

ĝHI(λ) = 1− µG
λ− â

(λ > â),

and, with ā =
∑nH

n=1 πna
(n), it follows from (11) that R̄HI is the unique root in (ā,∞) of

ḡHI(λ) = 1− µG
λ− ā

(λ > ā).

First, we compare RHI and R̄HI . For fixed λ > 0, define the function f̄λ by

f̄λ(x) = 1− µG
λ− x

(x < λ).

Now f̄ ′′λ (x) = −2µG(λ− x)−3 < 0 for x < λ, so f̄λ is concave and by Jensen’s inequality,

gHI(λ) =

nH∑
n=1

πnf̄λ(a
(n)) ≤ f̄λ(ā) = ḡHI(λ) (λ > a),

whence R̄HI ≤ RHI always, with equality only if µ
(n)
H is constant for all n with πn > 0. (Note

that, as µ
(1)
H = 0, if π1 > 0 this condition is satisfied only in the trivial cases where nH = 1

or there is no transmission within the household.) In particular, in a growing epidemic,
Theorem 1(b) leads to

R0 > RHI ≥ R̄HI ,

but note that R̄HI , which is not a threshold parameter, might be smaller than 1 while the
other two are larger than 1. Exploiting this fact, we now prove that the inequality between
R0 and R̄HI is not necessarily reversed in a declining epidemic. Suppose that nH = 2 and
further that π1 > 0, π2 > 0 and µ

(2)
H > µ

(1)
H = 0. Then, there exists µG > 0 such that

R̄HI < RHI = R0 = 1. Now, R̄HI , RHI and R0 all depend continuously on µG, so reducing µG
slightly gives a declining epidemic for which R̄HI < R0. However, for a common household
size, R̄HI = RHI and Theorem 1(b) implies that R̄HI > R0 in a declining epidemic. Thus, in
general, R̄HI and R0 cannot be ordered in a declining epidemic.

Now we compare RHI and R̂HI . First, note that

gHI(λ) = 1− µG
nH∑
n=1

πn
λ− a(n)

= 1− µG
nH∑
n=1

πn
1

λ− µ
(n)
H

1+µ
(n)
H

= 1− µG
nH∑
n=1

πn
1 + µ

(n)
H

λ+ (λ− 1)µ
(n)
H

.
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For fixed λ > 0, define the function f̂λ by

f̂λ(x) =
1 + x

λ+ (λ− 1)x
(x 6= λ/(1− λ)),

so f̂ ′′λ (x) = −2(λ − 1)/(λ + (λ − 1)x)3. Thus, if λ > 1 then f̂λ is strictly concave on [0,∞)
so, using Jensen’s inequality,

gHI(λ) = 1− µG
nH∑
n=1

πnf̂λ(µ
(n)
H )

≥ 1− µGf̂λ(µH) = ĝHI(λ),

and it follows that RHI ≤ R̂HI in a growing epidemic.
Suppose that λ < 1. Then f̂λ is strictly convex on [ 0, λ/(1− λ) ). Recall from (13) that

gHI(λ) is defined for λ > a = max
(
a(n) : n = 1, 2, · · · , nH

)
, where a(n) = µ

(n)
H /

(
1 + µ

(n)
H

)
.

Thus, for each n, µ
(n)
H < λ/(1 − λ) and applying Jensen’s inequality as above yields that

gHI(λ) ≤ ĝHI(λ) (λ > a). It follows that RHI ≥ R̂HI in a declining epidemic. These

inequalities are strict except again in the case when µ
(n)
H is constant for all n with πn > 0.

Finally, we give an example which demonstrates that the reproduction numbers R0 and
R̂HI cannot in general be ordered if the population contains households of different sizes.
We use notation analogous to that in the comparison between R0 and RHI in the proof
of Theorem 1. Suppose that the population contains only households of sizes 1 and 3, so
π3 = 1 − π1. Then µ0 = 1, µ1 = π3µ

(3)
1 and µ2 = π3µ

(3)
2 , so, using (11), R̂HI = µG + â, with

â = π3(µ
(3)
1 + µ

(3)
2 )/(1 + π3(µ

(3)
1 + µ

(3)
2 )). Let ĥ0(λ) = ĝHI(λ) − g0(λ). Then, arguing as in

(45) to (48), shows that

ĥ0(λ) = − µG
λ(λ− â)

(λ−1 − 1)f̃(λ−1)

=
µG(λ− 1)

λ2(λ− â)
f̃(λ−1), (85)

where
f̃(x) = â(µ1 + µ2)− µ2 + âµ2x. (86)

(In the notation of (48), it is easily shown that c̃0 = â(µ1 + µ2) − µ2 and c̃1 = âµ2.)
Substituting the above expressions for µ1, µ2 and â into (86) yields that, for x > 0,

f̃(x) < 0 ⇐⇒ µ
(3)
2 >

π3(µ
(3)
1 + µ

(3)
2 )

1 + π3(µ
(3))
1 + µ

(3)
2 )

[
µ

(3)
1 + µ

(3)
2 (1 + x)

]
. (87)

Thus, for any x > 0, f̃(x) < 0 for all sufficiently small π3 ∈ (0, 1).
Recall that R0 is the unique root in (0,∞) of g0. Suppose that R0 > 1. Then, since

g0(R0) = 0, it follows from (85) and (87) that, if π3 ∈ (0, 1) is sufficiently small, then
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ĝHI(R0) < 0, whence R̂HI > R0. A similar argument shows that, if R0 < 1 and π3 ∈ (0, 1) is
sufficiently small, then R̂HI < R0. Note that these inequalities are again the reverse of those
proved for RHI , and hence of those for the situation when all households have the same size,
in which RHI , R̂HI and RHI coincide. Thus, R0 and R̂HI cannot in general be ordered.

D Random infectivity profile

The proof of Theorem 2 in Section 7.2 already reveals that in order to show that Rr ≥ R0

(respectively Rr ≤ R0) does not generally hold in growing (respectively declining) epidemics,

we should look for a model in which Φm is not stochastically smaller than W̃G. In particular
this is the case if an individual with a large total infectivity makes its contacts relatively
early after infection, while a an individual with a small total infectivity makes its contacts,
long after infection. Here we provide a simple example in a household of size n = 3. As
before the individuals are denoted by i = 0 (the initial infective in the household), i = 1 and
i = 2 (the initial susceptibles).

Consider a random infectivity profile which either has its complete mass κa at time ta or
it has its complete mass κb at time tb, both with probability 1/2. Thus, for x > 0,∫ x

0

I(t)dt =

{
κa1(x ≥ ta) with probability 1/2

κb1(x ≥ tb) with probability 1/2
. (88)

Here all parameters are non-negative. We assume further that

(κa − κb)(ta − tb) < 0. (89)

Note that κa + κb = 2, since the infectivity profile necessarily satisfies
∫∞

0
E[I(t)]dt = 1.

Furthermore, from the definition of WG, we have that

MWG
(r) =

κae
−rta + κbe

−rtb

2
=
κae

−rta + κbe
−rtb

κa + κb
. (90)

Define pa = 1−e−λHκa and pb = 1−e−λHκb , and note that an infective individual that has
total infectivity κa (respectively κb) infects each susceptible independently with probability
pa (respectively pb) and all infections occur at time ta (respectively tb). Hence,

MW̃G
(r) =

pae
−rta + pbe

−rtb

pa + pb
. (91)

Straightforward algebra gives

MWG
(r)−MW̃G

(r) =
(pbκa − paκb)(e−rta − e−rtb)

2(pa + pb)
. (92)

Furthermore, since for λH , r > 0, the function (1 − e−rλHx)/x is decreasing for x > 0, and
pbκa − paκb > 0 if and only if pb/κb > pa/κa, we obtain that pbκa − paκb > 0 if and only if
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κa > κb. Combining this with (89) we obtain that MWG
(r) −MW̃G

(r) > 0 for r > 0. If

R∗ > 1, this implies that R0 > R̃r (cf. the end of the proof of Theorem 2(b)), while if R∗ < 1

(and therefore r < 0), then R0 < R̃r.

If we prove further that under the given conditions R̃r > Rr in growing epidemics and
R̃r < Rr in declining epidemics, then we have constructed the desired counter example.
Therefore, in what follows, we only compare the constructions from which R̃r and Rr are
deduced. In particular, we have to compare LβH (θ) and L̃βH (θ), through which r̃ and r are

defined by (54). In turn, r̃ and r are used to define R̃r and Rr by (55).
Recall that Rr = 1/MWG

(r), where r is the unique real value of θ which solves the first

equation in (54), and R̃r = 1/MWG
(r̃), where r̃ is the unique real value of θ which solves

the second equation in (54). Thus, cf. (58) and (24), we need to compare the pair of times
(T1, T2) with the pair of times (

∑k1−1
l=0 Φl,1,

∑k2−1
l=0 Φl,2), where k1 and k2 are the generation

numbers of individual 1 and 2, while the Φl,1s and Φl,2s are independent random variables

all distributed as W̃G. Note that we assume that individual 0 is infected at time 0. For ease
of reference, define (T̃0, T̃1, T̃2) = (0,

∑k1−1
l=0 Φl,1,

∑k2−1
l=0 Φl,2). We now compare

2∑
i=0

E
[
e−rTi

]
= E

[
e−rT0 + e−rT1 + e−rT2

]
(93)

and
2∑
i=0

E
[
e−rT̃i

]
= E

[
e−rT̃0 + e−rT̃1 + e−rT̃2

]
(94)

Since T0 = T̃0 we only have to compare

ζ(r) = E
[
e−rT1 + e−rT2

]
and ζ̃(r) = E

[
e−rT̃1 + e−rT̃2

]
. (95)

After some algebra, we obtain

ζ(r) =
(
pae
−rta + pbe

−rtb
)(

1 +
pa(1− pa)e−rta + pb(1− pb)e−rtb

2

)
. (96)

In order to compute ζ̃(r), we compute explicitly the average number of cases in each
generation, viz.

µ1 = pa + pb, (97)

µ2 = (pa + pb)(pa(1− pa) + pb(1− pb))/2. (98)

From the definition of ζ̃(r) and from (91) we deduce

ζ̃(r) = µ1MW̃G
(r) + µ2

(
MW̃G

(r)
)2

. (99)
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Straightforward but lengthy algebra shows that

ζ(r)− ζ̃(r) =
papb (pae

−rta + pbe
−rtb)

2(pa + pb)
(pb − pa)

(
e−rta − e−rtb

)
, (100)

from which we conclude that ζ(r) < ζ̃(r), and therefore Rr < R̃r, when

(pb − pa)
(
e−rta − e−rtb

)
< 0,

which we assumed for growing epidemics in (89) since pa is increasing in κa. This completes
the counter example for growing epidemics.

If R∗ < 1 (i.e. r < 0), the same counter example in this case leads to Rr ≥ R̃r > R0,
showing that also in a declining epidemic R0 and Rr cannot be ordered in general.

E Comparison of Rr and RVL

In this appendix we give examples which demonstrate that, for the households model, Rr

and RVL cannot in general be ordered. We consider an SIR epidemic among a population
of households, all of which have size 2. The infectious periods of infectives are independent,
each distributed according to a random variable TI having mean 1 and moment-generating
function MTI (θ) = E[e−θTI ]. Whilst infectious, the initial infective in a household contacts
locally his/her other household member at the points of a Poisson process having rate λH .

Note that, since
∫∞

0
P(TI ≥ t)dt = E[TI ] = 1, the mean infectivity profile of an infective

is wG(t) = P(TI ≥ t) (t ≥ 0), whence

MWG
(θ) = (1−MTI (θ))/θ.

Consider a single household epidemic, label the initial infective 0 and the other household
member 1. Let TI denote individual 0’s infectious period and X denote the time of the first
local infectious contact of individual 1 by individual 0. Thus, X ∼ Exp(λH) and 0 infects 1
locally if and only if X < TI . Hence, the probability that 0 infects 1 locally is

ETI [P(X < I)] = ETI [1− e−λHTI ] = 1−MWG
(λH),

which is also the household mean generation size µ1. Note that, in the notation of Section 2.8,
W̃G is distributed as (X|X < TI), whence

MW̃G
(θ) =

λH
λH + θ

1−MWG
(λH + θ)

1−MWG
(λH)

.

Further, since all households have size 2, LβH (r) = L̃βH (r) (see the observation at the end of
Section 2.8) and, using (25), the real-time growth rate r is the unique solution of F (r) = 1,
where

F (r) = µGMWG
(r)
(

1 + µ1MW̃G
(r)
)
,
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which, using the above expressions for µ1 and MW̃G
(θ), may be written as

F (r) = µGMWG
(r) (1 + λHMWG

(λH + r)) . (101)

Suppose that r > 0, so Rr > 1, and that the entire population is vaccinated with a leaky
vaccine having efficacy E = 1 − R−1

r . Then, recalling (20), 1 − E = MWG
(r). Hence, after

vaccination, µG becomesMWG
(r)µG and λH becomesMWG

(r)λH , so, using (101), the post-
vaccination real-time growth rate, rE say, is given by the unique real solution of FE(rE) = 1,
where

FE(rE) = µGMWG
(r)MWG

(rE) [1 +MWG
(r)λHMWG

(MWG
(r)λH + rE)] .

Now,
FE(0) = µGMWG

(r) [1 +MWG
(r)λHMWG

(MWG
(r)λH)] ,

so, since F (r) = 1, it follows from (101) that

sign(FE(0)− 1) = sign(G(λH , r)),

where
G(λH , r) =MWG

(r)MWG
(MWG

(r)λH)−MWG
(λH + r).

Note that (i) if G(λH , r) = 0 then rE = 0, so the post-vaccination epidemic is critical and
RVL = Rr; (ii) if G(λH , r) > 0 then rE > 0, so the post-vaccination epidemic is supercritical
and RVL > Rr; and (iii) if G(λH , r) < 0 then rE < 0, so the post-vaccination epidemic is
subcritical and RVL < Rr.

Suppose that TI ∼ Exp(1). Then MWG
(θ) = (1 + θ)−1 and G(λH , r) = 0, whence

RVL = Rr, as noted in Section 6.1.
Suppose that TI has probability density function fTI (t) = 2te−2t (t ≥ 0), i.e. TI follows a

gamma distribution with parameters α = γ = 2 (see (44)). Then MTI (r) =
(

2
2+r

)2
, whence

MWG
(r) = 4+r

(2+r)2
. Lengthy algebra then yields that

G(λH , r) =
λHr [(4 + r)2λH + (2 + r)2(8 + r)]

[(2 + λH + r) (2(2 + r)2 + λH(4 + r))]2
> 0,

since r > 0 and λH > 0. Thus, RVL > Rr.
Suppose instead that TI has probability density function

fTI (t) =
1

3
e−

2
3
t + e−2t (t ≥ 0),

so TI is an equally weighted mixture of Exp(2
3
) and Exp(2). Then

MTI (r) =
1

2 + 3r
+

1

2 + r
and MWG

(r) =
1

2

(
3

2 + 3r
+

1

2 + r

)
.
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Lengthy algebra now yields that

G(λH , r) = −λHr(3r + 8) [3(4 + 3r)λH + (2 + 3r)(6 + 3r)]

H(λH , r) (2 + λH + r) (2 + 3(λH + r))
,

where

H(λH , r) = [2(2 + r)(2 + 3r) + λH(4 + 3r)] [2(2 + r)(2 + 3r) + 3λH(4 + 3r)] .

Hence G(λH , r) < 0, since r > 0 and λH > 0, so now RVL < Rr. Thus Rr and RVL cannot
in general be ordered.

It is difficult to make general statements since there is no simple expression for G(λH , r).
However, note that in the above examples, RVL > Rr when the infectious period distribution
is less variable than an exponential distribution and RVL < Rr when it is more variable.

F Infinitely long latent periods

We consider first a Markov SEIR households epidemic model, in which the latent and in-
fectious periods follow exponential distributions with rates δ and 1, respectively, and whilst
infectious a typical infective makes global contacts at overall rate µG and contacts any given
susceptible in his/her household at rate λH . We study the limit of Rr as δ−1 → ∞, so the
latent periods become infinitely long with all other parameters held fixed, and compare that
limit with R0 and RV , which are both independent of δ. We restrict attention to a growing
epidemic, i.e. when R0 > 1.

For fixed δ, we may linearly rescale time by setting t′ = δt so that in the rescaled process
the latent period is exponentially distributed with mean one. In the limit as δ−1 → ∞,
in the rescaled process the infectious period of an infective is reduced to a single point in
time. Note that the exponential-growth associated reproduction number Rr and the mean
generation sizes µ1, µ2, · · · , µnH−1 are each invariant to this rescaling (µ1, µ2, · · · , µnH−1 are
also invariant to δ). A similar rescaling is used in the proof of Lemma B.3.1 in Goldstein et
al. [11] but the argument presented there assumes a constant latent period and hence does
not apply to the Markov SEIR model.

Consider the limit of the rescaled process as δ−1 → ∞. In this process any infective
makes all of his/her infectious contacts at the same time, i.e. at the end of his/her latent
period, and the latent periods of distinct infectives are independent Exp(1) random variables.
It follows that the infectious contact interval WG ∼ Exp(1), whence MWG

(r) = (1 + r)−1.
Suppose that all households have size n and that n ≤ 3. Then in the epidemic graph G(n)

(see Section 2.1), for k = 1, 2, if an individual, i say, belongs to rank generation k, there
is precisely one chain of directed edges from the initial infective to individual i that has
length k. It follows that the real-time growth rate r satisfies L(0)

βH
(r) = 1, where L(0)

βH
(r) is

defined at (22). Note also that for this limiting process W̃G
D
= WG, where

D
= denotes equal in

distribution. It then follows that, for the limiting process, Rr = R̃r = R0. This conclusion
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holds also in the case of unequal household sizes, provided the maximum household size nH
is at most 3.

Suppose now that all households have size n = 4. Then in the epidemic graph G(n), when
k = 1, 3, it is still true that for any individual, i say, belonging to rank generation k, there is
precisely one chain of directed edges from the initial infective to individual i that has length
k, but when k = 2 that is no longer the case. Recall that the individuals in G(4) are labelled
0, 1, 2, 3, where 0 is the initial infective. Suppose that individual 0 contacts individuals 1 and
2, but not individual 3, and that both individuals 1 and 2 contact individual 3. Thus there
are two distinct paths of length 2 from individual 0 to individual 3. For i = 0, 1, 2, 3, let T

(i)
E

be the latent period of individual i (in the limiting rescaled process), so T
(i)
E ∼ Exp(1). Then

individuals 1 and 2 are both infected at time T
(0)
E and, for i = 1, 2, individual i attempts

to infect individual 3 at time T
(0)
E + T

(i)
E , so individual 3 is infected at time T

(0)
E + T ′E,

where T ′E = min(T
(1)
E , T

(2)
E ). Note that T

(0)
E and T ′E are independent, and T ′E ∼ Exp(2), so

MT ′E
(r) = 2/(2 + r).

Let the mean generation sizes µ0, µ1, µ2 and µ3 be defined as previously but now write
µ2 = µ21 + µ22, where, µ2j is the mean number of generation 2 infectives that have precisely
j paths of length 2 from the initial infective to them. Then,

LβH (r) = µGMWG
(r)
[

1 + µ1MWG
(r) + µ21(MWG

(r))2

+ µ22MWG
(r)MT ′E

(r) + µ3(MWG
(r))3

]
. (102)

Now MT ′E
(θ) ≥ MWG

(θ), for θ > 0, whence r > r(0), where r(0) solves L(0)
βH

(r) = 1, and

it follows that Rr > R0. Again, R̃r = R0, since W̃G
D
= WG. Similar arguments show that

Rr > R̃r = R0 for any population with nH ≥ 4.
We now compare Rr with RV . Recall from Theorem 1 that R0 = RV when nH ≤ 3,

whence Rr = RV . Thus suppose that all households have size 4 and that a fraction 1−R−1
r

of the population is vaccinated with a perfect vaccine. Then, using (20), the probability
that a given individual is not vaccinated is R−1

r = MWG
(r). Hence, after vaccination, µG

is reduced to µVG = MWG
(r)µG and, for k = 1, 3, µk is reduced to µVk = (MWG

(r))kµk,
as prior to vaccination any individual in generation 1 or 3 has precisely one chain of the
appropriate length linking them to the initial infective. Consider the situation described
above, in which, prior to vaccination, individual 0 contacts individuals 1 and 2, but not
individual 3, and that both individuals 1 and 2 contact individual 3. Individual 3 still has
two chains linking them to the initial infective after vaccination if and only if individuals 1, 2
and 3 are not vaccinated, which happens with probability (MWG

(r))3. (Note that individual
0 is assumed to be unvaccinated, as µG is reduced to µVG.) Thus, µV22 = (MWG

(r))3µ22.
In the above situation, individual 3 has precisely one chain linking them to individual 0
after vaccination if and only if individual 3 and exactly one of individuals 1 and 2 are
not vaccinated, which occurs with probability 2(MWG

(r))2(1 −MWG
(r)). It follows that

µV21 = (MWG
(r))2µ21 + 2(MWG

(r))2(1−MWG
(r))µ22. Hence, after vaccination, the growth
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rate, rV say, satisfies LVβH (rV ) = 1, where

LVβH (rV ) = µGMWG
(rV )

[
1 + µV1MWG

(rV ) + µV21(MWG
(rV ))2

+ µV22MWG
(rV )MT ′E

(rV ) + µ3(MWG
(rV ))3

]
.

Now MWG
(0) =MT ′E

(0) = 1 and LβH (r) = 1, so

LVβH (0) = µVG(1 + µV1 + µV21 + µV22 + µV3 )

= µGMWG
(r)
[

1 + µ1MWG
(r) + µ21(MWG

(r))2

+ µ22

(
2(MWG

(r))2 − (MWG
(r))3

)
+ µ3(MWG

(r))3
]

= L
β
(1)
H

(r) + µG(MWG
(r))2µ22

[
2MWG

(r)− (MWG
(r))2 −MT ′E

(r)
]

= 1 + µG(MWG
(r))2µ22

r

(1 + r)2(2 + r)

> 1, (103)

since r > 0. Hence rV > 0, since LVβH is a decreasing function and LVβH (rV ) = 1. Thus
vaccinating a fraction 1−R−1

r of the population is insufficient to prevent a major outbreak,
so Rr < RV . Numerical evidence suggests that the same conclusion holds whenever nH ≥ 4.
However, analytical progress is more difficult when nH > 4 since then in the limiting rescaled
process it is no longer the case that an individual’s rank and true generations necessarily
coincide.

Consider now the households-workplaces version of the above Markov SEIR model. Thus,
whilst infectious, a typical infective makes global contacts at overall rate µG, contacts any
given susceptible in his/her household at rate λH and any given susceptible in his/her work-
place at rate λW . We use the same rescaling as in the households model and study the
limit of the rescaled process as δ−1 → ∞. As previously, we restrict attention to a growing
epidemic. Then, as at (38), the real-time growth rate r is given by the unique real solution
of F (r) = 1, where

F (r) = µGMWG
(r)(LβH (r) + 1)(LβW (r) + 1) + LβH (r)LβW (r),

andMWG
(r) = (1 + r)−1. The same arguments as used for the households model yield that,

for r ≥ 0,

LβH (r)
3

≥ L
β
(2)
H

(r) = L
β
(3)
H

(r) and LβW (r)
3

≥ L
β
(2)
W

(r) = L
β
(3)
W

(r),

whence

Rr

3

≥ R̃r = R0. (104)

Turn now to the comparison of Rr and RV . From Theorem 3 and (104), Rr = RV when
nH ≤ 3 and nW ≤ 3. Suppose that nH = nW = 4 and that a fraction 1−R−1

r (= 1−MWG
(r),
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where r is the real-time growth rate without vaccination) of the population is vaccinated
with a perfect vaccine. Prior to vaccination,

LβH (r) = µH1 MWG
(r) + µH21(MWG

(r))2 + µH22MWG
(r)MT ′E

(r) + µH3 (MWG
(r))3,

where µH1 , µ
H
21, µ

H
22 and µH3 are the mean generation sizes for a typical single-household epi-

demic (µH2 is decomposed into µH21 + µH22 as above (102)), and LβW (r) is given by the same
formula with µH1 , µ

H
21, µ

H
22 and µH3 replaced by µW1 , µ

W
21 , µ

W
22 and µW3 , respectively. After vacci-

nation, the real-time growth rate, rV say, is given by the unique real solution of F V (rV ) = 1,
where

F V (rV ) = µVGMWG
(rV )(LVβH (rV ) + 1)(LVβW (rV ) + 1) + LVβH (rV )LVβW (rV ),

where µVG =MWG
(r)µG and, for example,

LVβH (rV ) =µHV1 MWG
(rV ) + µHV21 (MWG

(rV ))2 + µHV22 MWG
(rV )MT ′E

(rV )

+ µHV3 (MWG
(rV ))3,

with

µHV1 = MWG
(r)µH1 ,

µHV21 = (MWG
(r))2

(
µH21 + 2(1−MWG

(r))µH21

)
,

µHV22 = (MWG
(r))3µH22,

µHV3 = (MWG
(r))3µH3 .

Now,

LVβH (0) = µHV1 + µHV21 + µHV22 + µHV3

=MWG
(r)µH1 + (MWG

(r))2µH21 + (MWG
(r))2(2−MWG

(r))µH22

+ (MWG
(r))3µH3

= LβH (r) +MWG
(r)
[
2MWG

(r)− (MWG
(r))2 −MT ′E

(r)
]
µH22

> LβH (r)

(cf. (103)) and, similarly, LVβW (0) > LVβW (r). It follows that F V (0) > F (r) = 1. Thus
rV > 0, since F V is a decreasing function, whence Rr < RV . It is easily seen that the same
conclusion holds if nH = 4 and nW ≤ 3 or nW = 4 and nH ≤ 3. We conjecture that it also
holds whenever max(nH , nW ) ≥ 4.

G Estimating r for households model with non-random

infectivity profile

In this appendix we describe the simulation-based method used in Section 6.2 for determining
the real-time growth rate for a households model with a non-random infectivity profile I(t) =
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wG(t) (t ≥ 0), where
∫∞

0
wG(t)dt = 1. For ease of exposition, we assume that all households

have the same size n. The extension to unequal household sizes is straightforward. Recall
that t time units after he/she was infected, an infectious individual makes global contacts
at overall rate µGwG(t) and, additionally, he/she contacts any given susceptible in his/her
household at rate λHwG(t), where we have suppressed the dependence of λH on n. For ease
of exposition, we assume that all households have the same size n. Our aim is to estimate the
Laplace transform LβH (θ) =

∫∞
0
βH(t)e−θtdt of the global infectivity profile of a household.

Consider nsim independent simulations of a single-household epidemic, with initially one
infective and n−1 susceptibles, under the above disease dynamics. For s = 1, 2, · · · , nsim, let
Ts,0 = 0, Zs denote the size of the sth simulated epidemic, not counting the initial infective,
and Ts,1, Ts,2, · · · , Ts,Zs denote the corresponding infection times, assuming that the epidemic
starts at time t = 0. Then the average global infectivity profile of the nsim epidemics is

β̂nsimH (t) =
1

nsim
µG

nsim∑
s=1

Zs∑
i=0

wG(t− Ts,i) (t ≥ 0),

where wG(t) = 0 if t < 0, whence an unbiased estimator of LβH (θ) is

L̂nsimβH
(θ) =

1

nsim
µG

nsim∑
s=1

Zs∑
i=0

e−θTs,iMWG
(θ) (θ > θ0),

where θ0 = inf{θ : MWG
(θ) < ∞}. The real-time growth rate is estimated by solving

L̂nsimβH
(r) = 1 numerically, yielding r̂nsim say. Application of the strong law of large numbers

yields that, for any θ > θ0, L̂nsimβH
(θ) → LβH (θ) almost surely as nsim → ∞. This may be

strengthened to (c.f. the Glivenko-Cantelli theorem) maxθ>θ1 |L̂
nsim
βH

(θ)−LβH (θ)| → 0 almost
surely as nsim →∞, for any θ1 > θ0. It follows that r̂nsim → r almost surely as nsim →∞.

Suppressing the suffix s, to simulate the size Z and the corresponding infection times
T1, T2, · · · , Tn−1 of a single-household epidemic we use the following generalisation of the
construction of Sellke [25]. Label the individuals in the household 0, 1, · · · , n − 1, where
individual 0 is the initial infective. Let Q1, Q2, · · · , Qn−1 be independent and identically
distributed Exp(λH) random variables. The random variable Qi denotes individual i’s
critical exposure to infection. Let Q(1) ≤ Q(2) ≤ · · · ≤ Q(n−1) be the random variables
Q1, Q2, · · · , Qn−1 arranged in increasing order, i.e. the order statistics of Q1, Q2, · · · , Qn−1.
Note that, exploiting the lack-of-memory property of the exponential distribution, the ran-
dom variables Q(1), Q(2) − Q(1), Q(3) − Q(2), · · · , Q(n−1) − Q(n−2) are mutually independent,
Q(1) ∼ Exp ((n− 1)λH) and Q(i) −Q(i−1) ∼ Exp ((n− i)λH) (i = 2, 3, · · · , n− 1).

The epidemic is constructed as follows. The initial infective becomes infected at time
T0 = 0. For t ≥ 0, at time t, each individual accumulates exposure to infection from the initial
infective at rate wG(t). For i = 1, 2, · · · , n − 1, individual i becomes infected if and when
his/her accumulated exposure to infection reaches Qi. Thus if Q(1) > 1 then no susceptible
is infected in the epidemic (recall that

∫∞
0
wG(t)dt = 1). Suppose that Q(1) < 1 (note

that P(Q(1) = 1) = 0 since Q(1) is a continuous random variable). Then the first infection
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takes place at time T1 given by
∫ T1

0
wG(t)dt = Q(1). For t > T1, at time t, each remaining

susceptible accumulates exposure to infection at rate wG(t) from the initial infective and at
rate wG(t−T1) from the individual who was infected at time T1. Thus, if Q(2) > 2, there is no
further spread of infection, whilst if Q(2) < 2 the next infection occurs at time T2 satisfying∫ T2

0
wG(t) +wG(t− T1)dt = Q(2). The construction of the epidemic continues in the obvious

fashion. It is readily seen that Z = min(z : Q(z+1) > z + 1) and, for i = 1, 2, · · · , Z, the ith
infection time Ti is given implicitly by

i−1∑
j=0

∫ Ti

Tj

wG(t− Tj)dt = Q(i).

Note that for the example in Section 6.2 the infections times are easily simulated using
MATLAB since the substitution t′ = γt converts

∫ Ti
Tj
wG(t−Tj)dt into an incomplete gamma

function.
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