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Abstract  

 

 The Flooded Locations and Simulated Hydrographs (FLASH) project is a suite of tools that 

use weather radar-based rainfall estimates to force hydrologic models to predict flash floods in 

real-time.  However, early evaluation of FLASH tools in a series of simulated forecasting 

operations, it was believed that the data aggregation and visualization methods might have 

contributed to forecasting a large number of false alarms.  The present study addresses the 

question of how two alternative data aggregation and visualization methods affect signal 

detection of flash floods.  A sample of 30 participants viewed a series of stimuli created from 

FLASH images and were asked to judge whether or not they predicted significant or insignificant 

amounts of flash flooding.  Analyses revealed that choice of aggregation method did affect 

probability of detection.  Additional visual indicators such as geographic scale of the stimuli and 

threat level affected the odds of interpreting the model predictions correctly as well as congruence 

in responses between national and local scale model outputs. 
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1. Introduction 

In the field of weather forecasting, computational modelers are under pressure to provide 

actionable information to end users at increasingly local levels, pushing gridded forecasting 

systems to hyper-resolution scales (Wood et al., 2011; Beven et al., 2015).  Although the 

capability to predict weather phenomena at small scales continues to develop, operational 

technology often limits display capacity.  Large high-resolution displays have been shown to 

overcome data abstraction limits while enabling users to engage in exploratory data analysis 

(Lehmann et al., 2011).  However, current operational forecasting display systems are frequently 

based on the multi-screen desktop setup, and meteorological visualization environments are 

constrained to comparatively low resolution displays. 

1.1 The Flooded Locations and Simulated Hydrographs (FLASH) Project 

One such set of gridded forecasting products is the Flooded Locations and Simulated 

Hydrographs (FLASH) project.  FLASH is a suite of real-time tools that use weather radar-based 

rainfall estimates to force hydrologic models to predict flash floods.  The tools provide 

environmental information related to flash flood risk to professional forecasters, and the 

simulation models are designed to overcome several limitations of existing prediction systems 

(Gourley et al., 2016).  The grid underlying each FLASH product covers a spatial extent of the 

continental United States at a horizontal resolution of 1 km.  The hydrologic model calculates a 

return period, a measure of flash flood risk, for every cell within the grid.  In hydrologic terms, a 

return period is the average length of time for a certain threshold of flooding to be reached (Mays, 

2010).  Potential FLASH users include forecasters at both the national and regional scales in the 

United States, including, but not limited to, National Weather Service Weather Forecast Offices 

(WFOs), River Forecast Centers (RFCs), and national centers.  The tools are intended to assist 

forecasters to identify areas of dynamic flood risk across the country and, in turn, to predict 

specific threats. 
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When this work took place in 2013, the FLASH product suite was in development and 

experimental simulations were publicly displayed through a website.  The website’s visualization 

template was originally developed to display interactive data related to the National Mosaic and 

Multi-Sensor Quantitative Precipitation Estimates (NMQ) system (Zhang et al., 2011).  When 

applied to the FLASH return period visualization, the pre-existing algorithm aggregated grid cells 

as the user zoomed in and out.  At the finest scale, all grid cells were visible, but as a user zoomed 

out to the national map, an overview of the data presented aggregated sets of grid cells within 

each pixel.  However, a design challenge emerged at this stage: when showing the map of the 

entire continental United States, the website platform and some desktop-based display systems 

were not able to display each individual grid cell. 

The original website displayed an overview of multiple grid cells with an aggregation 

algorithm to sample the maximum value out of a collection of at least 112 grid cells contained 

within one pixel.  Predictions were displayed without any form of filtering first.  In practice, 

while the true predicted return period values were presented when a viewer zooms in to a local 

level, the national view displayed an aggregated overview of the data by displaying the maximum 

value.  An example of this phenomenon is shown in Figure 1.  At the national level, this resulted 

in an occlusion effect, where lower return period values were occluded by the maximum values. 

1.2 Motivation 

In July 2013, the Hydrometeorological Testbed at the Weather Prediction Center (HMT-

WPC) hosted the first Flash Flooding and Intense Rainfall (FFaIR) experiment (Barthold et al., 

2015).  The purpose of the experiment was to evaluate the utility of several experimental forecast 

models, including FLASH, with professional forecasters and weather researchers.  During the 

testbed, forecasters predicted heavy rainfall and flash flooding using the operational and 

experimental computational model outputs.  Throughout these activities, the researchers observed 

that the information visualization affected the forecasters’ ability to interpret the FLASH data.  

Forecasters commented that their flash flood predictions turned into false alarms more frequently 
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in the experiment than during typical operations, which they attributed to FLASH’s data 

aggregation algorithm.  Based on these subjective comments, the researchers hypothesized that 

changing the aggregation algorithm would affect the rate of false alarm forecasts.  In order to test 

this, the researchers created an alternative aggregation method which took the mean value of the 

grid cell predictions for a given subset (hereafter referred to as the “average-based aggregation 

algorithm”). 

The present study identified differences in terms of error rates when comparing 

maximum-based and average-based aggregation algorithms on the national-scale maps.  This 

work expands upon a preliminary error rate analysis presented by Argyle et al. (2015).  In 

addition, an analysis of response congruence was undertaken in order to determine the effects of 

the display condition on response accuracy across both levels of geographic scale (the national 

level and the zoomed-in, local level).  From a design perspective, congruent decisions between 

levels of geographic scale are highly desirable.  In FLASH, the national overview provides 

insight into environmental threats across the country to direct a forecaster’s attention to at-risk 

regions.  Likewise, a forecaster working at a local level may wish to examine a broader 

geographic region to determine potential future threats and broader environmental conditions.  As 

such, congruent judgments between levels indicate the degree of fidelity between the abstracted 

overview and the individual grid cell predictions.  

2.     Related Work 

Visualization design can have a great influence on decision making and performance in 

weather forecasting, which largely consists of detection and identification processes (Bowden et 

al., 2015).  Detection and identification occur rapidly and are governed by cognitive structures 

such as long term memory, working memory, schema, mental models, attention, feature 

identification, and monitoring, among others (Adams et al., 1995; Endsley, 1995, 2015; Hoffman, 

2015; Wickens, 2015).  In addition to these factors, success in weather forecasting has been 

attributed to the forecaster’s ability to acquire and maintain situation awareness (Quoetone et al., 
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2001).  As defined by Endsley (1995), situation awareness (SA) is the ability to perceive elements 

within a system, comprehend their significance, and project their meaning into the future in order 

to make a decision.  Underlying the SA construct are personal factors and cognitive mechanisms, 

including visual information processing, cue detection, working memory, goals, preconceptions, 

background knowledge, and system design (Adams et al., 1995; Endsley, 1995, 2015; Hoffman, 

2015). 

In practice, detection is a function of factors including top-down processes, expectations, 

and background knowledge, aligning with Level 1 of Endsley’s (1995) Model of SA, perception.  

Identification involves detecting an item and evaluating its fit into a categorical grouping, and it is 

also affected by experience and top-down processes (Endsley, 1995; Wickens and Carswell, 

1997).  Identification can be mapped to Level 2 of Endsley’s (1995) Model of SA, or 

comprehension.  While the third level of Endsley’s 1995 Model of SA, projection, was 

determined to be outside the scope of the present study, future work could extend the present 

study’s method from a detection and identification task to a projection task in which participants 

would have to choose whether or not a flash flood warning would be appropriate. 

Detection and identification tasks can also be framed within the family of cognitive 

integration processes.  Graph comprehension studies distinguish specific information extraction 

processes from information integration.  In the former, a user has a goal to search and find a 

specific attribute in a visualization; in the latter process, a user may combine multiple attributes 

from a visualization in order to comprehend broader meanings and trends in the data (Ratwani et 

al., 2008).  Due to the map-based format of many data sources used in weather forecasting, 

information integration is a fundamental activity for a forecaster to be able to develop SA.  In 

example, examining a FLASH return period value assigned to a single grid cell provides much 

less meaning than evaluating the overall trends and gradients over broader geographic scales.  

Information integration in graph comprehension has been viewed as iterative processes of pattern 

recognition and interpretation, in which features are detected and, ideally, understood; as graph 
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complexity increases, more iterations of the integration process are required (Ratwani et al., 

2008). 

In addition to situational and cognitive factors, the warning decision process is affected 

by factors such as forecaster experience and task-relevant knowledge, risk tolerance, perceptions 

and beliefs about environmental states, confidence, software issues, and spatial ability 

(Heinselman et al., 2012; Smallman and Hegarty, 2007).  Likewise, information format can 

impact forecaster performance.  Studying the effects of variable update frequency from phased-

array radar data, Bowden et al. (2015) observed that the probability of detection for detecting and 

identifying a severe hail or wind threat increased as update frequency increased.  Anchoring, or 

cognitive bias based on initial information received prior to making a decision, may also play a 

significant role in threat assessment in meteorological decision making.  Joslyn et al. (2011) 

observed that by providing upper bounds of uncertainty to forecast data, decision makers 

predicted a higher value than when provided with a lower estimate.  In relation to aggregated 

overviews, this suggests that a relationship may exist among anchoring, threat detection, and 

choice of aggregation algorithm. 

One challenge in designing geospatial visualizations is that of reducing selection 

occlusion, particularly in aggregated overviews of data (Shrestha et al., 2014).  Overviews permit 

users to view the data in order to see the big picture, often as a summary view or as a zoomed out 

view of the dataset.  Zooming functions allow users to focus on particular points or subsets of the 

data in order to identify specific information attributes (Shneiderman, 1996).  Visualization 

systems have varied in their approaches to providing aggregated overview of spatial data, and 

applications have included semantic zooming through an aggregated information space (Bederson 

et al., 1996), spatial visualizations of movement (Andrienko and Andrienko, 2011), hierarchical 

system representations (Elmqvist and Fekete, 2010; Lehmann et al., 2011), and power generation 

systems visualizations (Overbye and Weber, 2000). 
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In addition to conveying patterns in the data to users, overviews may also have utility 

during search-based activities.  Information foraging theory proposes that humans seek 

information that is both salient and suited to their goals (Pirolli and Card, 1999).  Using cognitive 

task analysis to assess the sensemaking process, Pirolli and Card (2005) found that expert 

intelligence analysts engaged in cycles of foraging, sensemaking, and reality/policy assessment.  

In the foraging loop, analysts gathered information sources and tried to make inferences from the 

data.  The theory describes such information as having “scent” that directs the decision maker’s 

attention towards particular aspects of the data during the foraging loop (Pirolli and Card, 1999).  

In an extension of IFT to foraging on websites, Fu and Pirolli (2007) confirmed that the scent-

based foraging model described user interactions with the web-based information sources.  

Aggregation in overviews may provide scent to direct a user’s attention towards salient points in 

the dataset, directing users to areas of the display that merit deeper inspection. 

In order to develop overviews that adequately represent their underlying dataset, 

Elmqvist and Fekete (2010) recommend following the principles of visual summary and fidelity.  

The principle of visual summary states that the visual properties of the data aggregate should be 

representative of the individual data point members.  However, certain aggregation methods can 

lead to loss of fidelity and misinterpretations of the visualization.  Inadequacies of aggregation 

methods based on averages relate to the user’s loss of knowledge about the variance within the 

aggregate (Elmqvist and Fekete, 2010).  It is possible that interactive overviews may help to 

overcome fidelity loss.  Additional design challenges for weather forecasting displays include 

improving visual discriminability (Dobson, 1979; Wickens and Carswell, 1997), highlighting 

meaningful information clusters to facilitate integration (Ratwani et al., 2008), and structuring the 

information landscape in a way that assists the user to achieve their goals in a hierarchical needs-

based order (Hoffman and Woods, 2005; Trafton and Hoffman, 2007). 

3. Method 

3.1 Hypotheses 
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Forecaster comments from the 2013 FFaIR experiment led the researchers to hypothesize 

that an algorithm displaying the average of sampled grid cells (henceforth called the average-

based display) would produce different task performance than the maximum-based display.  In 

the Signal Detection Theory analysis, it was hypothesized that the maximum-based display would 

increase false alarm rates (i.e. the event was forecast but not observed) and hit rates (i.e. the event 

was correctly forecast and observed) over the average-based display.  Due to the inherent priority 

given to visualizing the higher end of the color scale as well as the larger areal coverage of 

represented regions, it was thought that the maximum-based display would draw attention to 

severe events more rapidly than the average-based display would. 

Furthermore, the display algorithms were compared against the principles of visual 

summary and fidelity.  Here, it was assumed that a congruent judgment of an overview and its 

corresponding zoomed-in view of individual grid cells indicated high fidelity between the two 

views.  In light of this, it was hypothesized that the average-based display would be associated 

with lesser congruence between views due to its flattening of the underlying variability. 

3.2 Experimental Design 

As a between-subjects independent variable, the aggregation algorithm differed across 

two levels: participants viewed visualizations created with either the maximum-based aggregation 

method or the average-based method.  During the study, the stimuli were also presented on two 

levels: as a national overview on a map of the continental United States, and as a more finely-

detailed regional map, zoomed in to an area of interest.  However, it is important to note that 

while the national overviews used by the two participant groups varied by aggregation algorithm, 

the local images that participants viewed were identical between groups.    The purpose of 

viewing identical local images was to identify whether any bias occurred in detection based on 

which level of national image a participant viewed first.  This task also served to assess 

congruence in decision making between national and local views.  

3.3 Task Materials 
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A series of forty image sequences was created by taking screen captures of the FLASH 

visualization.  Each sequence consisted of one image of a FLASH model output visualized at a 

national overview level, and a second image of the same date and time, spatially focused to 

display a local, county- or state-level view of the flood event.  Within each national overview 

stimulus, a white selection box indicated the region of interest.  In each stimuli, the FLASH 

model plotted a return period value, measured in years and coded into a numerical color scale, for 

every grid cell in the map of the United States.  The scale ranged from 0 to 200 years and plotted 

predicted values against four primary colors (gradients of green, yellow, red, and purple, in 

ascending order) and two secondary colors (black for 0-value predictions and grey for cells with 

missing data).  An example of two image sequences, one in the average-based aggregation 

condition and the other in the maximum-based aggregation condition, is shown in Figure 2. 

The stimuli were selected based on flash flooding events that occurred between April and 

July 2013 and were reported in the National Climatic Data Center Storm Events Database 

(National Climatic Data Center, 2014).  When selecting the events from the database, the 

researcher categorized events into “severe” and “not severe” flash flooding.  Unlike the Fujita 

scale, which estimates tornado scale, there is not yet a standardized metric for flash flooding 

severity.  The research team used financial damages as a proxy for flood impact and arbitrarily 

defined severe flash flooding to be those that caused $500,000 or more of property and crop 

damage (n = 20, μ = $10.38M; σ = $22.82M).  Events that were placed in the “not severe” 

category had less than $500,000 of property and crop damage (n = 20, μ = $38.75K; σ = 

$84.59K).  During the tasks, geographic background knowledge was of some benefit to 

participants, although there was not necessarily a correlation between population density and high 

property damage.  In future work, alternative proxy variables for flood impact should be 

examined. 
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In addition to the stimuli, the task materials included a training document which 

explained FLASH return period interpretation.  The document contained examples of the 

visualization and described the modeling framework. 

3.4 Procedure 

Initially, participants received instruction about the study’s purpose and tasks.  After 

completing the informed consent process, participants read an excerpt from the FLASH training 

manual that explained how to interpret the FLASH visualization.  This training document used 

pictorial examples to demonstrate appropriate interpretation of the FLASH return period color 

scale mapping.  Participants were given the opportunity to ask questions about FLASH, how to 

interpret the display, and what the study would involve. 

Once they felt comfortable with the FLASH interface, participants answered several 

demographic questions (age, gender, and academic classification).  Following this, participants 

viewed the forty image sequences in a randomized order.  In each sequence, the first image 

showed an event in FLASH on the national overview.  The goal was to detect a signal (a high 

property damage threat) from the noise (a low damage threat).  The distinction was based on the 

predicted return period values and the corresponding colors indicated in the scale.  Participants 

were asked, “Based on the information that is modeled in this image, would you expect for this 

event to produce flash flooding with severe levels of property damage? (>$500,000).”  

Participants were instructed to base their judgments on their meteorological experience, any 

geographic knowledge they may have had, and their expectations based on predicted return 

period values.  With this in mind, participants reviewed the image, and then pressed “y” for yes or 

“n” for no after making their decision.  The following image was always a representation of the 

same weather event, but visualized at the local scale.  The participants answered the same 

question about severity based on the new presentation.  When participants finished with the final 

pair, they were debriefed. 

3.5 Equipment 
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Images were randomly presented to participants using PsychoPy, an open-source 

software that allows researchers to present stimuli and collect response data from participants 

(Peirce, 2007).  Each evaluation was conducted on an Asus A53U laptop with a 15-inch screen; 

each image was displayed at a size of 869x680 pixels.  While professional forecasters often work 

with desktop systems, the laptop was able to present the stimuli at a similar resolution. 

3.6 Participants 

Thirty participants (19 male, 11 female) took part in the study.  Participants were between 

the ages of 21-41 years old, with a mean age of 25.0 years and a median of 23 years.  As the 

FLASH system was in development at the time of the study and thus not widely available to non-

research personnel, participants had little to no experience using the FLASH return period 

visualization.  However, in order to ensure that participants had relevant experience with 

interpreting environmental visualizations, participants were required to have more than one year 

of experience in meteorology.  Participants were recruited from the student and post-doctoral 

population at the University of Oklahoma.  Eligible individuals were either seeking a degree in 

meteorology or already possessed one. 

3.7 Measures 

 Using a Signal Detection Theory framework, error rates were calculated from the 

response data from the detection task (McNicol, 2005).  In traditional explanations of error rate 

analysis in weather forecasting, signal detection metrics are based on comparisons between the 

predictions and the actual outcomes.  For example, a hit would occur when a flash flood was 

forecast and then actually occurred.  A false alarm refers to an event in which a flash flood was 

forecast but then did not occur.  Translated into the present study’s framework, in which all 

stimuli visualized confirmed flash floods associated with reports, the explanation of error rates is 

instead based on correct identification of property damage level for NWS-verified flash floods. 

 The measure associated with the congruence analysis was frequency based.  Judgment 

congruence occurred when a participant’s national level stimuli judgment aligned with the 
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associated local level stimuli judgment.  Decision making was examined in terms of judgments 

that were congruent and correct, congruent but incorrect, and incongruent. 

4.  Results 

4.1 Error Rates, Sensitivity, and Bias 

After collecting the participants’ responses, the error rates in terms of the Signal 

Detection Theory framework were calculated for the severity judgment associated with the 

average-based and maximum-based display styles and for the national and local images.  A 

sensitivity and bias analysis reflected that aggregation method influenced errors in the detection 

task.  The sensitivity index (d') scores for the average-based display and maximum-based display 

were 0.88 (SD = 0.35) and 1.00 (SD = 0.35), respectively, t(27.99) = 0.91, p = 0.37.  This 

indicated that there was no detectable difference between the discriminability of a severe flood 

signal between the two display types.  A significant difference was also found in the biases 

associated with the two display algorithms, t(15.53), p < 0.01: for the maximum-based display 

algorithm, a liberal bias of -0.74 was found (M = -0.74, SD = 0.97), and a conservative bias of 

0.24 was found for the average-based display algorithm (M = 0.24, SD = 0.23).  This can be 

interpreted to mean that participants in the maximum-based display condition were more likely to 

conclude that any stimulus contained a significant flood, while the participants in the average-

based display condition were more likely to say a stimulus did not. 

In further support of the sensitivity analysis, the error rate data were compared using t-

tests, which showed a significant difference between the display methods.  Participants using the 

maximum display produced a higher hit rate (M = 0.81, SD = 0.13) than those using average 

display (M = 0.57, SD = 0.12), t(27.75) = 5.38, p < 0.001.  However, the average display 

minimized the false alarm rate (M = 0.25, SD = 0.08) when compared to the maximum display (M 

= 0.50, SD = 0.19), t(18.95) = 4.63, p < 0.001.  A summary of the results is shown in Table 1.  
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Table 1. Error rate comparison between display types 

 Hit Rate False Alarm Rate 

Average-based 0.57 0.25 

Maximum-based 0.81 0.50 

p-value <0.001 <0.001 

 

4.2 Effect of Display Design on Congruent Decisions 

 Congruent decisions were deemed either congruent-correct (a “yes/yes” response to an 

image sequence that represented a high damage level flood or a “no/no” response to an image 

sequence that represented an low damage level flood), congruent-incorrect (a “no/no” response to 

an image sequence that represented a high impact level flood or a “yes/yes” response to an image 

sequence that represented an low impact level flood), or incongruent (a “yes/no” or “no/yes” 

response, which by definition was always partially correct).  Counts of congruent and incongruent 

decisions by display condition are shown in Tables 2 and 3. 

A Chi-squared test of decision counts against display condition revealed a significant 

difference between the maximum-based aggregation algorithm and the average-based algorithm 

for judgment congruence.  However, these differences were observed when assessing judgment 

congruence in relation to threat level.  When judging images representing low property damage 

events, participants in the average display condition produced more congruent judgments (hits on 

both images within a given image sequence) than participants in the maximum display condition, 

χ2 (2, N = 600) = 31.16, p < 0.0001.  Conversely, when judging an image representing a high 

property damage event, participants in the maximum-based display condition produced more 

congruent hits and fewer congruent misses than those in the average-based display condition, χ2 

(2, N = 585) = 36.15, p < 0.0001. 
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Table 2. Counts of congruent and incongruent decisions by display condition for high-level 

property damage events 

 Threat Level: High Property Damage Events  

 Hit/Hit Miss/Miss 
Hit/Miss or 

Miss/Hit 
Row Totals 

Average-based 99 (33.0%) 84 (28.0%) 117 (39.0%) 
300 

(100.0%) 

Maximum-based 148 (52.0%) 40 (14.0%) 97 (34.0%) 
285 

(100.0%) 

p-value < 0.0001  

 

 

Table 3. Counts of congruent and incongruent decisions by display condition for low-level 

property damage events 

 

 Threat Level: Low Property Damage Events  

 Hit/Hit Miss/Miss 
Hit/Miss or 

Miss/Hit 
Row Totals 

Average-based 204 (68.0%) 48 (16.0%) 48 (16.0%) 
300 

(100.0%) 

Maximum-based 139 (46.3%) 66 (22.0%) 95 (31.7%) 
300 

(100.0%) 

p-value < 0.0001 
 

 

4.3 Did visual attributes affect the likelihood of a correct response? 

The previous findings suggest that display condition and threat level did impact decision 

accuracy under certain conditions.  Following the signal detection analysis, we hypothesized that 

an additional factor, visual distraction, may have affected participant judgments.  Prior work has 

suggested that task-irrelevant features on geospatial displays may negatively impact task 

performance (Hegarty et al., 2012).  Although participants were instructed to judge only the area 

within the white selection box on each stimulus, many of the stimuli contained visually 

distracting imagery of flood predictions outside the box.  Each stimulus received a code to 

designate the amount of visual distraction as determined by the areal coverage of the grid cells 
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containing non-zero return period values.  The new explanatory variable, areal size (s), was 

created with two levels: small and large.  An example of a small-scale stimulus and a large-scale 

stimulus are shown in Figure 3 and Figure 4, respectively. 

Due to the binary nature of participant responses to the threat detection task (0 = incorrect 

threat identification, 1 = correct threat identification), a logistic regression was chosen as the 

appropriate method to determine the relationship between display type, threat level, and areal 

size.  Tests of the resulting model revealed that the full model containing all interactions were 

significant, suggesting that areal size, threat level, and display type influenced the likelihood of 

correctly identifying a flash flood threat, χ2 (7, N = 1185) = 190.80, p < 0.001.   This finding 

supports the earlier decision bias finding and provides further evidence that visual aspects of the 

stimuli affected the likelihood of correctly interpreting a threat.   The odds ratio for the size 

variable is 0.011 (with a 95% confidence interval of 0.003 – 0.032); this is interpreted to mean 

that the odds of a participant giving a correct response to a stimulus that contained a large-scale 

event were 0.0110 times the odds of giving a correct response when viewing a stimulus that 

contained a small-scale event.  In reverse, the odds of a participant correctly judging a small-scale 

event were approximately 90.909 times the odds of correctly judging a large-scale image.  

Likewise, the odds of a participant correctly judging a stimulus image that contained a significant 

threat of property damage were 0.145 times the odds of correctly judging an image with 

insignificant levels of property damage (with a 95% confidence interval of 0.089 – 0.230).  

Finally, the odds of a participant correctly judging a stimulus when visualized with the 

maximum-based display algorithm were 0.293 times the odds of correctly judging a stimulus 

displayed with the average-based algorithm. 
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5. Discussion 

The results show that the choice of data aggregation method did affect user errors.  

Furthermore, the analysis supported the hypothesis that the maximum-based display algorithm 

would produce a higher hit rate and false alarm rate than the average-based display algorithm.  

The logistic regression analysis revealed that while display condition affected task performance, 

participants were more accurate when judging representations of events in the low property 

damage category and when they had small areal coverage on the map. When evaluating the 

likelihood of producing a correct response at the local-level stimuli, the logistic regression 

analysis also showed that correctness on a national-level stimulus was a significant predictor on 

producing a correct response for the corresponding local-level stimulus.  Likewise, congruence 

improved for low damage events when paired with the average-based display, whereas the 

maximum-based display appeared to improve congruence for high damage events.  In 

combination, these findings suggest that choice of data aggregation technique can affect decision 

bias and error types. 

5.1 Data Aggregation in Visual Decision Aids 

The analysis of congruence by threat level and display condition suggested that the 

average-based display algorithm was indeed not the ideal aggregation technique.  When 

visualizing a significant threat, the average-based display led to a divergence in judgments 

between the national- and local-scale stimuli.  Congruent decisions increased under the average-

based display condition only when the stimulus represented an event with a low property damage 

 

𝑙𝑜𝑔𝑖𝑡(𝑝(𝑥)) = log (
𝑝(𝑥)

1 − 𝑝(𝑥)
)

= 1.87 − 4.51𝑥𝑠𝑖𝑧𝑒 − 1.93𝑥𝑡ℎ𝑟𝑒𝑎𝑡 − 1.23𝑥𝑑𝑖𝑠𝑝𝑙𝑎𝑦
+ 5.33𝑥𝑠𝑖𝑧𝑒𝑥𝑡ℎ𝑟𝑒𝑎𝑡 + 2.86𝑥𝑠𝑖𝑧𝑒𝑥𝑑𝑖𝑠𝑝𝑙𝑎𝑦
+ 2.48𝑥𝑡ℎ𝑟𝑒𝑎𝑡𝑥𝑑𝑖𝑠𝑝𝑙𝑎𝑦 − 3.15𝑥𝑠𝑖𝑧𝑒𝑥𝑡ℎ𝑟𝑒𝑎𝑡𝑥𝑑𝑖𝑠𝑝𝑙𝑎𝑦 

    (1) 
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level.  Fidelity between the aggregated view and the local view under these conditions may be an 

artifact of variability in the data.  When a threat is minimal, the variability in the individual data 

points is sometimes smaller than the variability among grid cell values for a significant threat, and 

thus the value produced by the average-based algorithm to represent the data aggregate at the 

national level more closely represents the individual members within the collection.  While it is 

debatable whether or not a correct congruent response is more desirable than an incorrect 

congruent response, the results show that the display condition did affect fidelity. 

With regard to incorporating data aggregation into visualization design, Elmqvist and 

Fekete (2010) recommend keeping the principles of visual summary and fidelity in mind.  

Visualizations of aggregated data ought to represent the underlying individual data points 

accurately and consistently.  The present study’s findings suggest that the average-based 

sampling display algorithm led to participants making significantly more congruent decisions 

than the maximum-based sampling display algorithm.  This would indicate that the average 

sampling display algorithm provided a stronger representation between the aggregated, national 

view and the individual data points visualized in the local view.  However, several visualization 

studies have discussed the poor ability of an average-based aggregation method to satisfy the 

fidelity principle.  However, Elmqvist and Fekete (2010) point to a caution given by Andrienko 

and Andrienko (2006); they warn against using average-based aggregation methods due to the 

nature of averages flattening out variation.  In the words of Andrienko and Andrienko (2006): 

“the mean weight of a fruit in a basket filled with apricots and one watermelon is… not a very 

useful aggregate characteristic.”  

 Visual qualities of the stimuli shed light upon the connection between design and 

individual task performance.  Examination of maps most often identified correctly and incorrectly 

showed that participants tended to correctly identify maps that represented the extremes of the 

stimuli (either huge swaths of floods or none at all) but had more difficulty when the maps were 

somewhere in the middle.  The logistic regression analysis confirmed the significance of the areal 
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size factor within the stimuli.  Misidentification of stimuli was observed in both display 

conditions when the stimuli sets had striking differences in visual representation between the 

national and local levels.  For example, one stimulus contained an event that looked like a very 

small storm when visualized with the national-level average-based algorithm, but after zooming 

closer, the image actually had a very severe gradient—an indicator of flash flooding that 

participants were trained to seek.  Participants often judged the national image to be insignificant, 

but changed their minds after viewing the local level.  The liberal decision bias associated with 

the maximum-based aggregation algorithm supports the findings of Joslyn et al. (2011), who 

observed that providing an upper bound of forecast uncertainty led to overestimated forecasts.  

Joslyn et al. (2011) posited that the upper bound information provided an anchor which biased 

decision makers; in the current work, it is likely that the liberal bias exhibited by participants in 

the maximum-based condition could also be explained through this concept. 

5.2 “Crying Wolf” in Weather Forecasting    

Although the FLASH tools are intended for use by a population of professional 

forecasters and not members of the general public, aggregation methods used to create overviews 

influence false alarm rates and, in turn, may lead to unnecessary warnings and the “cry-wolf” 

effect.  In the weather domain, the cry-wolf effect refers to the phenomenon wherein end-users of 

a weather warning fail to respond adequately after a series of false alarms, decreasing their 

likelihood of responding appropriately to a future true threat (LeClerc and Joslyn, 2015).  In 

response to the concern that certain display algorithms may promote the cry-wolf effect, one must 

remember that selecting an appropriate response criterion is a function of signal probability and 

the costs of correct and incorrect responses (Wickens and Carswell, 1997).  Thus, it is important 

to consider the cost/benefit relationship associated with response accuracy in weather forecasting.  

In weather forecasting, response criteria for warning on a severe threat are not only shaped by 

individual information processing of uncertain information, but also by governmental policy.  As 

discussed by Doswell (2004), from a policy perspective, false alarms are often preferred over 
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misses, which are traditionally held in unfavorable regard.  Whereas false alarms incur costs from 

allocating emergency response resources and may also add to a cry-wolf effect in the long run, 

total failure to predict a true severe weather threat can lead to significant damage and even human 

fatalities when protective actions are not taken.  Though the present study focused on a 

dichotomous choice (significant versus insignificant flooding as reflected through property 

damage), an extension of the work could include probabilistic forecasting.  If a shift in response 

criterion is not a viable policy option, empirical evidence is available that suggests probabilistic 

risk estimates attached to severe weather warnings may reduce the cry-wolf effect (LeClerc and 

Joslyn, 2015). 

5.3 Limitations 

 Several factors limit the impact of this study’s results.  As evidenced by the possible 

design biases, participant judgments may have been misled by map appearances.  Like many 

weather forecasting decision aids, FLASH is a simulated model and not a mapping of verified 

observations.  However, to analyze the display, we showed participants FLASH maps where 

flooding was confirmed after the fact and then asked participants to judge whether or not they 

would have expected high-impact flash flooding.  Therefore, participant judgments can only be as 

accurate as the model outputs.   While we attempted to filter out FLASH outcomes of flooding 

events that did not appear to be accurate representations, as with any simulated model, a degree of 

error between the model and reality is to be expected. 

 In addition to modeling errors, some participants may have had difficulty gauging flash 

flooding severity.  Participants were instructed to produce a yes or no judgment on whether or not 

they believed each of the displayed models could contain a severe flash flood.  The definition of 

severe flash flooding as corresponding to greater than $500,000 worth of property damage was 

chosen arbitrarily in lieu of any other metric.  A limitation of using property damage as a measure 

of severity is that it is difficult to estimate without a general knowledge about geographic 

features; for example, when unfamiliar with a certain region of the United States, participants 
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occasionally asked whether or not there were any sizeable cities impacted.  Although we 

encouraged participants to use any background knowledge they might have of weather 

forecasting, we also encouraged them to make a decision ultimately based on how the FLASH 

stimuli appeared.  In this regard, we tested the capability of the visualization to convey threat 

information and essentially tried to minimize the need for extensive meteorological or geographic 

knowledge.  It is still possible that considering property damage level increased mental workload 

in some participants, but it is not apparent from the time-based results. 

 Finally, in the experimental design, a sample size issue may limit the generalizability of 

the logistic regression.  In the original design, the variable of geographic scale was not included, 

but was assigned after the error rate analysis.  Thus, sample sizes were uneven between the levels 

of the geographic scale. 

6. Conclusions 

 

The results of the present study reveal a significant difference between data aggregation 

display methods in terms of error types and decision bias, but not in terms of task completion 

time.  Though the original hypothesis was that the average-based display would lead to an 

increase in response time over the maximum-based display, this outcome was not observed.  

Furthermore, the display condition did appear to affect congruence in decisions between the 

levels of geographic scale.   

Design recommendations based on these results for future weather information displays 

must rely on the risk management values of the system designers.  While the maximum-based 

display style maximized hits, it also produced many more false alarms than the average-based 

display.  In weather forecasting, false alarms can consume valuable time that forecasters could 

use to analyze true threats.  However, while the average-based display style produced fewer false 

alarms, participants were much more likely to miss an event; this could also result in critical 

consequences. 
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In the case of a flash flooding prediction system such as FLASH, the recommendation 

from these results would be to use the maximum-based display algorithm.  Flash flooding is by 

nature a rapidly occurring event that can have life-threatening consequences if not predicted with 

enough lead-time. For such a system, having a design that promotes more hits, even at the 

expense of producing false alarms, would ensure that forecasters’ attentions would be drawn to 

severe events in a timely manner.  Future systems could incorporate user-configurable or 

automated elements.  As the average-based algorithm improved congruence between the national 

abstraction and the local view for low damage level events, there may be utility in automating the 

choice of aggregation algorithm based on meteorological activity. 

Whereas the present study focused on perception and comprehension, a real-time 

evaluation of the display methods could help to identify connections between display design and 

a forecaster’s ability to develop SA in a dynamic manner.  Additionally, future work could 

address limitations of the present study.  While participants all had some background in 

meteorology and forecasting, few had specifically studied flash flood forecasting.  A similar 

study to the present work, but run with a sample of professional flood forecasters may supplement 

the present study by identifying the effects of expertise on signal detection. 
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Figures 

  

Figure 1. The national map (on left) visualized with the original maximum-based aggregation 

algorithm and the associated zoomed-in local view (on right) 

 

 

Figure 2. An example stimulus sequence, visualized with the maximum-based aggregation 

algorithm (on upper left) and the average-based aggregation algorithm (on upper right) 
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Figure 3. National-scale stimulus where size = small, threat level = insignificant (< $500,000) 

 

Figure 4. National-scale stimulus where size = large, threat level = significant (> $500,000) 

 
 


