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Abstract In this work we present a pedagogical tumour growth example,
in which we apply calibration and validation techniques to an uncertain,
Gompertzian model of tumour spheroid growth. The key contribution of
this article is the discussion and application of these methods (that are not
commonly employed in the field of cancer modelling) in the context of a simple
model, whose deterministic analogue is widely known within the community.
In the course of the example we calibrate the model against experimental data
that is subject to measurement errors, and then validate the resulting uncertain
model predictions. We then analyse the sensitivity of the model predictions
to the underlying measurement model. Finally, we propose an elementary
learning approach for tuning a threshold parameter in the validation procedure
in order to maximize predictive accuracy of our validated model.
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1 Introduction

The treatment of cancer represents a significant challenge in modern
healthcare, and has given cause for the development of numerous mathematical
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and computational models of tumour growth and invasion over many decades.
As our level of scientific understanding increases and we have access to
ever greater computational power, we are able to create increasingly realistic
mathematical models of biological phenomena and to compute numerical
approximations of model solutions with greater accuracy. It is therefore natural
to consider the transfer of mathematical and computational models from a
purely theoretical, informative, or qualitative setting to the clinic, as a possible
means of guiding patient therapy via prediction (Savage 2012; Gammon 2012;
Yankeelov et al. 2013). However, if we wish to make clinically relevant, patient-
specific predictions, it is of vital importance that these predictions are made
in a safe and reliable manner.

Output from computational models differs from physical observations for
a multitude of reasons. For instance, as parameter values are often inferred
from experimental data, there is uncertainty associated with their values,
and often solutions to systems of equations are subject to numerical errors
associated with their discretization. Perhaps most fundamentally, however,
mathematical models are abstractions of reality, necessarily simplifying or
omitting phenomena and, as such, even exact solutions obtained from precise
data may yield non-physical results. In order for computational model outputs
to be viewed as sufficiently reliable for safety-critical applications, such as
predictive treatment planning, any parametric or structural uncertainties
must be quantified, as well as any inaccuracies resulting from numerical
approximation.

There has been much recent work from the engineering and physical
sciences communities surrounding the development of techniques for assessing
the credibility of quantitative computational model predictions in safety
critical applications. This field is often referred to as verification, validation
and uncertainty quantification (VVUQ), and provides a formalism, techniques
and best practices for assessing the reliability of complex model predictions
(Oberkampf et al. 2004; Oden et al. 2010a,b; NRC 2012; Oberkampf and Roy
2010; Roache 2009). The growing importance of VVUQ in engineering and the
physical sciences is highlighted by the extensive guidelines and standards for
verification and validation in solid mechanics, fluid dynamics, and heat transfer
produced by the American Society of Mechanical Engineers (ASME 2006,
2009, 2012). Furthermore, the US National Research Council (NRC) recently
published an extensive report on VVUQ (NRC 2012) which, in addition to
providing an extensive review of the literature with informative examples,
highlights the importance of training young scientists in VVUQ as a field
of importance in the 215 century. The primary purpose of this article is to
serve as a pedagogical tool for members of the (continuum mechanics) cancer
modelling community, introducing a range of concepts and techniques from
the field of VVUQ for a simple and familiar biological example, in a manner
similar to that adopted in Aguilar et al. (2015); Allmaras et al. (2013).

Following the terminology set out in NRC (2012), we refer here to
verification as “the process of determining how accurately a computer program
correctly solves the equations set out in the mathematical model”, validation
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as “the process of determining the degree to which a model is an accurate
representation of the real world from the perspective of the real world uses
of the model”, and uncertainty quantification as “the process of quantifying
uncertainties associated with model calculation of true physical quantities of
interest”. Furthermore, we refer here to calibration as the process of inferring
the values of model parameters from indirect measurements. In the context of
predictions of tumour growth and invasion, these techniques provide us with
a means of quantifying the robustness of our calibrated model predictions
against empirical data, subject to measurement errors, and deficiencies in our
biological understanding (manifested in an inherently incorrect description due
to our mathematical model).

The application of validation and uncertainty quantification techniques
in the mathematical modelling of solid tumour growth is currently limited.
In Hawkins-Daarud et al. (2013) the authors set out a Bayesian framework
for calibration and validation based on that described in Babuska et al.
(2008) in a computational engineering context. However, the authors consider
synthetic data as opposed to in witro or in wvivo experimental data. In
Achilleos et al. (2013, 2014), a stochastic mixture model updated in a Bayesian
manner is introduced and its tumour-specific predictions are validated against
experimental data from a mouse model. In other areas of mathematical
biology, VVUQ techniques are gaining recognition, e.g. in cardiac modelling
(Pathmanathan and Gray 2013).

In order to make suitably accurate and reliable predictions, we are
required to estimate parameter values, such as reaction rates and diffusion
coefficients. Often, it is impossible to measure these parameters directly;
they must be inferred. The classical, deterministic approach is to find the
single set of parameter values that among all possible parameter choices
best matches the observed data, in some appropriate sense. There are many
available methods for determining this set, however, any approach that
yields a single choice does not fully account for any uncertainty in the
empirical data, nor any possible uncertainty regarding the mathematical model
(Allmaras et al. 2013), and as such, does not account for uncertainty in the
estimated parameters. Here, we consider a statistical (Bayesian) approach to
parameter estimation to determine a probability density function (pdf) for
the parameters, that updates any prior information we have regarding the
parameters, by incorporating new information obtained from the observed
data. In this setting, our model predictions are no longer the solution of a
deterministic mathematical model, but rather a description of the random
variable, or random field, that is a solution of the underlying stochastic model.
We refer to Allmaras et al. (2013); Aguilar et al. (2015); Kaipio and Somersalo
(2006); Tarantola (2005) for a more thorough discussion regarding Bayesian
model calibration. We remark that it is also possible to infer information
regarding parameter uncertainty in the classical inference setting, though we
consider here the Bayesian approach only.

Once the model is suitably calibrated, we validate its performance
by considering various behaviours and responses. Firstly, the model must
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reproduce observed behaviour of the physical system for appropriate parameter
values; we refer to Gelman et al. (2014a) for a thorough description of
a range of checks for model fit in a Bayesian framework. Moreover, the
output of the model must be robust to perturbations that are likely in the
context of the intended use of the model. Such validation may simply involve
direct comparison between model results and physical measurements. However,
for complex models a sophisticated statistical approach may be required,
combining hierarchical models' and multiple sources of physical data with
subjective expert judgment.

In this article, we embark upon a process of model calibration and
validation against in vitro experimental data, quantifying uncertainties in our
model predictions and assessing the robustness of our modelling assumptions
for a Gompertzian model of tumour spheroid growth (Gompertz 1825; Laird
1964). We adopt a similar procedure for prediction validation as set out
in Hawkins-Daarud et al. (2013). However, we consider additional posterior
predictive checks for our model, as described in Gelman et al. (2014a),
and further assess the sensitivity of our predictions to assumptions in our
statistical model. The primary contribution of this work is to demonstrate the
application of existing VVUQ techniques to a mathematically simple model
of tumour growth by means of an educational example. The simplicity of the
Gompertzian model permits us to neglect any issues surrounding spatial and
temporal discretizations, and focus solely on practical issues regarding the
statistical approach adopted, in a similar manner to that in Allmaras et al.
(2013); Aguilar et al. (2015). Whilst the computations presented here are not
directly applicable to the clinic, over the longer term the statistical techniques
discussed here could form the basis of a robust means of assessing quantitative
model predictions for clinical applications based on in vivo data, potentially
involving significantly more complex models.

The remainder of this article is organised as follows, in Section 2 we
introduce the underlying model of tumour growth, describe the procedure
used for collecting the experimental data, and specify the quantity of interest
we wish to predict. In Section 3 we introduce the Bayesian framework and
describe the computational techniques employed to determine the joint pdf
for the parameters in the model. We assess how well our predictive model
fits to the data employed in the calibration in Section 4, and in Section 5 we
assess the extrapolative predictive capability of our calibrated model against
a validation data set. In Section 6 we assess the robustness of our predictions
against assumptions in our statistical model, and in Section 7 we consider
the application of the techniques set out in the previous sections to multiple
experiments. To conclude this article, we depart from the pedagogical example
of the previous sections to discuss extensions to clinically relevant predictions
in Section 8 and, finally, in Section 9 we draw conclusions about the work
presented in this article, and highlight ongoing and future work.

1 i.e. we model observable outcomes conditionally on parameters which themselves are

given a probabilistic description in terms of further parameters known as hyperparameters.
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2 Problem Description

In this section we formally describe the biological modelling problem under
consideration, with minimal reference to the statistical framework employed in
subsequent sections. To this end, we first set out the mathematical model for
tumour spheroid growth considered in the remainder of this article. We then
specify details of the experimental data available for the proceeding analysis
and describe the calculation of an approximate error in the measurements.
Finally, we define the quantity of interest (Qol) we wish to predict using our
calibrated mathematical model.

2.1 Tumour Growth Model

In this work we consider a Gompertzian model of tumour spheroid growth
(Gompertz 1825; Laird 1964), in which the tumour volume V at time ¢ is
given by

V(t) = K exp <log <‘I/§> exp (—at)) : (1)

where Vj denotes the initial tumour volume at ¢ = 0, K denotes the carrying
capacity (the maximal tumour size for nutrient-limited growth), and o denotes
a growth rate related to the proliferative ability of the cells. In the deterministic
setting, each of the parameters, Vy, K, and «, takes a single constant value
for a given data set, whereas here in the uncertain setting, we view each one
as a random variable Vy, K, « : 2 — R™, where {2 denotes a suitable sample
space. Under this assumption, we note that the tumour volume V() is also a
random variable.

2.2 Experimental Data

Two-dimensional images of a tumour spheroid were captured at 14 time points
over a period of 28 days. The times at which the measurements were taken
are given in Table 6 in Appendix A. The resultant images were analysed using
SpheroidSizer (Chen et al. 2014). In particular, the length of the major and
minor axes of the spheroid, denoted ¢; and /5, respectively, were identified.
Figure 1 shows a representative image of a tumour spheroid, and a processed
image in which the boundary of the tumour is shown.

2.2.1 Partioning into Subsets

In Hawkins-Daarud et al. (2013), the notion of calibration and validation data
sets are discussed. The calibration set is employed in the calibration of the
model and the validation set is utilized to validate the calibrated model. We
adopt this same procedure here, and define two sets S¢ and Sy corresponding
to calibration and validation data respectively. For demonstrative purposes,
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(a) Spheroid (b) Spheroid (segmented)

Fig. 1: Exemplar images of a tumour spheroid. (a) The raw image. (b) The boundary of
the spheroid obtained using image segmentation software superimposed on the raw image.

however, we additionally reserve the data associated with the final time
point for a final predictive check. Ordinarily, all data would be employed in
calibration and validation. We depart from this approach here in order to
demonstrate whether our model predictions coincide with the value measured
in experiment, to make the tutorial more informative. The precise selection
of the calibration and validation data employed in this study, along with the
rationale behind their selection, is discussed in greater detail in Section 3.2.3.

2.2.2 Volume Calculation

In order to estimate the true length of the major and minor axes, we must
calibrate the image scale, i.e. we must establish the physical dimensions of
a single pixel in an image obtained from the microscope. To perform this
calibration, we place a rule of length 100 gm under the microscope and count
how many pixels extend along its length. In our experimental configuration,
100 pm corresponds to 40 pixels; thus the scale of each image is calculated as
s = 2.5 um per pixel. We estimate the volume of the spheroid by assuming
that the length of the third axis, /3, is given by the geometric mean of ¢; and
Ly, i.e. f3 = A/f1€5. The volume of the spheroid is then estimated by

V = %615283 = % (6182)3/2 . (2)

2.2.8 Measurement Error Model

The volume measurements introduced in the previous section are subject to
experimental noise. We assume that this noise is independently and normally
distributed with a mean of zero and a standard deviation of oy . To estimate
oy we approximate the error introduced at each of the image processing steps:
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1. Image scale calibration: The first point at which we may introduce an
error into our calculation is in the estimation of the scale, s. Assuming we
count n pixels (accurate to the nearest pixel), then the potential error in
n is given by

o, = 0.5. (3)

This results in a potential error in the calculation of s, denoted oy, given
by
0s

on

1
O = oy = %O’n = 0.03125 pm per pixel. (4)

2. Measurement of major and minor axes: We assume that the
automated segmentation procedure adopted by SpheroidSizer identifies the
tumour boundary accurate to the nearest pixel. The length of the major
and minor axes in units of pixels, d; and ds, respectively, are then subject
to a potential error of og, , = +/2. The error in 01,2 (= s-dy,2) is then given

by:
00, = 4/d} 202 + 520312. (5)

3. Inference of the length of the third axis: We assume that the true
value of {3, £%, is subject to an error, &, i.e. £5 = /{10y + . We assume
that this error has zero mean and standard deviation oy, ~ (21;762)_

The above errors are combined using conventional error propagation to obtain

the following estimate for oy :

VN, (VN L, [oV\®
UV\/(%) 0'@14‘(%) 0'@2"‘(%) 0-53' (6)

Figure 2 shows the spheroid volume at {t1,...,t14} as described above, with
error bars corresponding to +20y .

2.3 Predictive Quantity of Interest

The process of validation and uncertainty quantification is applicable only for
a specified Qol; acceptable predictive model performance for one particular
Qol does not necessarily imply acceptable performance for all possible Qol. In
particular, here we select a Qol that is of practical relevance to the real world
applications of the model. In this study we consider the tumour volume at t14
as our predictive Qol because, in clinical applications of these techniques, it
is likely that a Qol such as tumour volume at a given time may be employed
as a proxy for patient prognosis. Recalling the discussion in Section 2.2.1, for
illustrative purposes in the context of the tutorial nature of this article, we
withhold the data obtained at ¢4 from all calibration processes so that we
may compare our model prediction to experimental data.

We remark that typically, extrapolative predictions are more challenging
than interpolative predictions. Intuitively, we see that the extrapolative case
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Fig. 2: A plot showing the experimental tumour volume data at times t1,...,t14, with
error bars corresponding to +20y where oy is defined by (6).

may introduce additional phenomena that are not well modelled, causing the
prediction to have greater errors than indicated by a poorly designed validation
study. As such, when we come to define our calibration and validation data
sets, we adopt the best practice of validating our calibrated model against data
that is as close to our predictive scenario as possible. We discuss the selection
of calibration and validation data sets in greater detail in Section 3.2.3.

2.4 Overview of the Calibration and Validation Process

Now that the biological problem has been fully specified (i.e. the growth
model, experimental data and Qol), we can outline the process employed in
subsequent sections to predict the Qol and determine whether this prediction
is not invalid. Algorithm 2.1 highlights the steps taken to perform model
calibration and validation for our tumour growth example.

3 Model calibration

In this section we set out the Bayesian framework for model calibration. We
then describe the numerical algorithms used to calibrate our model, briefly
discussing the criteria we use to assess convergence of the algorithms. Finally,
we apply these numerical algorithms to calibrate the Gompertzian model given
in (1) against a subset of the experimental data described in Section 2.2.
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Algorithm 2.1 Calibration and Validation Process

1: Specify the calibration and validation data denoted S and Sy, respectively.

2: Calibrate the model using the data S¢ following the procedure set out in Section 3.

3: Assess the ability of the model to reproduce the observed data Sc following the
procedure set out in Section 4.

: Compute the PDF for the Qol using the model calibrated using S¢.

: Calibrate the model using the data Sy .

: Assess the ability of the model calibrated using Sy to reproduce the observed data Sy .

Compute the PDF for the Qol using the model calibrated using Sy .

: Validate the prediction of the Qol made in 4. following the procedure set out in Section
5.

0D U

3.1 Bayesian Calibration

We first recall that calibration refers to the process of inferring the values
of model parameters from indirect measurements. The basis of the Bayesian
approach is to enhance a subjective belief surrounding the probability of an
event via the incorporation of experimental data. This process is inherently
subjective and differs fundamentally from the frequentist approach, by which
probabilities are assigned based on the frequency of their observations
for large numbers of repeated experiments under identical conditions. The
subjective nature of probability in the Bayesian framework provides a natural
environment for assessing the chance of an event occurring when the concept
of multiple repeated experiments under identical conditions is flawed. For
instance, in a purely frequentist approach it is difficult to define an adequate
notion of probability for patient mortality in a patient-specific model, as
there can be no notion of assessing multiple patients with truly identical
conditions. There are many examples in the literature of frequentist validation,
e.g. Oberkampf and Barone (2006); in this work, however, we adopt a Bayesian
framework and discuss the frequentist standpoint no further.

Before setting out the Bayesian method, we first introduce the relevant
notation and terminology, where possible following the approach in Gelman
et al. (2014a). We denote by 0 a vector of unobserved quantities, and we denote
by y = (y1,¥2,-.-,yn) the observed data. Further, we denote conditional and
marginal pdfs by p(:]-) and p(-), respectively. In the Gompertzian model of
Section 2.1, 8 corresponds to the model parameters in (1), i.e. 8 = (Vp, K, @)
and y corresponds to the volume of the tumour spheroid obtained at the time
points in the calibration data set S¢.

The model predictions of observable outputs are related to the input
parameters by

Y= V(t;eae)a (7)

where V and e denote the measured volume of the tumour spheroid and
measurement, error, respectively. Given the parameter @ and measurement
error e, V(t; 6, e) invokes the solution of the forward problem and combination
with the measurement error to yield y, the observable variables. The
relationship between the observable outputs, in our case the volume of the
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spheroid, and model inputs at time ¢ is then denoted by
y=V(0)+e, (8)

where e denotes the error and the volume V(- ; -) is equivalent to that defined in
(1), though now viewed as a function of t and 8 = (Vj, K, a), via a simplifying
abuse of notation. We note that there are also means of quantifying systematic
discrepancies in the mathematical model, in which the data are modelled as

y=V(t;0)+)+e,

where §(t) denotes a discrepancy function. This approach may be suitable if we
neglect significant biological effects in our underlying mathematical model or
if we incur substantial discretization errors in the numerical approximation of
PDE solutions. We proceed here employing the former model, and, as such, do
not consider systematic model discrepancies explicitly. We refer to Kennedy
and O’Hagan (2001); Higdon et al. (2005); Bayarri et al. (2007) for further
details of these methodologies.

In order to make probabilistic statements regarding € and y, we must
introduce their joint probability density function, ponr(0,%). This joint
density can be written as the product of the prior distribution on 6, denoted
Prrior (0), which corresponds to our a priori knowledge surrounding our model
parameters, and the sampling distribution psayp:(y|0), thus yielding

PioNt (03 y) = Prrior (0)p5AMPLE (y | 9) . (9)

We may view prrior(0) as a summary of our subjective beliefs surrounding the
distribution of the parameters at the outset of the calibration, which we further
enhance via conditioning on observed experimental data. As such, we condition
on y and employ Bayes’ theorem to obtain the conditional probability assigned
to the parameter, referred to as the posterior density, that is given by

rior (0 e(y|0
pl’OST(0|y) = pIR OR( P)R]ZEAEI:;) (y| )7 (].0)

pPRIOR

where piRED (y) denotes the marginal distribution

PU (g) = j Ponon (0)pesurs (4]6) 6, (11)

referred to as the prior predictive distribution. We consider the density
Psanr:(Y|0) as a function of @ rather than of y, and refer to it as the
likelihood function. The likelihood may then be interpreted as how ‘likely’
a parameter value is, given a particular outcome. The prior predictive
distribution corresponds to the marginal distribution for the observable
data obtained by averaging the likelihood over all possible parameter values
with respect to the prior density. As such, the posterior distribution then
corresponds to the enhanced degree of belief obtained via incorporation of the
observed experimental data.
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In order to make predictions regarding an unknown observable y from
the same source as y, we define the posterior predictive distribution, denoted

PRED

pP()ST (@‘y)7 by
Prost (]Y) = JPSA“TPLE(Q|0>pPOST(0|y) de, (12)

i.e. the posterior predictive distribution is the marginal distribution for new
data y conditioned on the observed data y that we obtain by averaging the
likelihood over all possible parameter values with respect to the posterior
density. We remark that all integrals are to be understood as being over the full
range of the variable, which should be clear from context. Further discussion
regarding these distributions may be found in Gelman et al. (2014a) and the
references therein.

3.2 Model Identifiability

A key consideration in model calibration is identifiability. A model is
deemed identifiable if it is possible to uniquely determine the values of the
unobservable model parameters from the experimental data. Similarly, a model
is non-identifiable if multiple parameterizations are observationally equivalent.
Identifiability is of crucial importance to the field of clinical predictions because
if a model’s parameters are not well constrained, the resulting predictions of
that model may be subject to an unacceptable degree of posterior uncertainty.
Two types of non-identifiability are distinguishable:

Structural: in which the model structure precludes the identification of
parameters irrespective of the data (see, e.g., Cobelli and DiStefano
(1980)):

Practical: in which the data is insufficient (either in terms of quality or
quantity) to identify the parameters.

While it is beyond the scope of this work either to discuss methods for
determining structural identifiability, or to provide a wider exposition of
practical identifiability, it is important to note that, given an amount of data of
a certain quality, it is not necessarily guaranteed that model parameters may
be determined unambiguously. Indeed it is often the case that experimental
data is insufficient to calibrate even modestly complex mathematical models of
biological systems. We refer the reader to Bellman and Astrom (1970); Cobelli
and DiStefano (1980); Raue et al. (2009) for further discussion.

3.2.1 Selection of Prior Distribution

We now specify the prior distribution of our parameters 6. The prior
distribution indicates the degree of belief in the values of the parameters
before any measurements are made. Where possible, the choice of prior should
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incorporate any quantitative knowledge about the parameters, but may also
incorporate subjective expert opinion.

We have no quantitative knowledge about the parameters, or additional
expert opinion, other than biologically appropriate bounds on their ranges. It
is clear from our biological understanding that Vj, K and « are all greater
than 0. Moreover, from the data presented in Figure 2 it is reasonable to
suppose that ¥y < 0.2mm? and K < 5.0mm?®. In light of these observations,
and the fact we have no further information regarding the parameter values,
we take the marginal prior distribution of each parameter to be uniform over
the interval given in Table 1, implying that prior distribution of @ is given by

6 ~ U(0,0.2) U(0.3,5) U(0,1), (13)

where U(a,b) denotes a uniform distribution over the interval (a,b). As
Prrior (0) is a pdf, it must integrate to 1 and since each parameter is uniformly
distributed it must be constant. Therefore, pprior(6) satisfies

0.2 5 1
1 = prrior f f J 1 d07 (14)
0 0.3 JO

thus implying that perior (@) is given by

1

- 5o1- (15)

Perior (9)

The bounds we have chosen for our parameters and assumption of flat

Prior Knowledge

Parameter  Units Lower Bound Upper Bound

Vo mm? 0.0 0.2
K mm?3 0.3 5.0
o s~ 0.0 1.0

Table 1: Upper and lower bounds on the parameter values employed in specification of the
prior distribution.

priors lead to a relatively uninformative prior distribution. As a consequence,
the posterior distribution will be determined primarily by the data, via the
likelihood function described in Section 3.2.2. If, however, we had some
additional knowledge regarding the parameters, we could incorporate this into
the prior distribution to (potentially) increase accuracy in our predictions.
We note that our choice of prior is not the only reasonable choice. If, for
instance, we were less certain of the upper bound on the parameters we could
impose a half-normal or half-Cauchy prior distribution. This would still impose
the biologically motivated positivity constraint on the parameters, but would
be weakly-informative in terms of determining the posterior distribution.
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Further discussion on the choice of priors may be found in, e.g., Gelman et al.
(2014a); Simpson et al. (2014).

Finally, we highlight that in the clinical setting, patient-specific data may
be sparse due to the cost of imaging etc. In this context, the use of informative
priors would provide a means of incorporating population data to potentially
increase the accuracy and reliability of a patient-specific computation, a point
to which we return to in Section 8.

3.2.2 Selection of the Likelihood

We now specify the likelihood function for the parameter 6, given data y. In
the Bayesian framework, it is the likelihood function that determines how the
underlying biological model for the tumour volume given in Section 2.1 and
the data, y (described in Section 2.2), inform the posterior distribution.

We assume that the errors in the measurement of the tumour volume at
each time point are independent and that the processes determining the true
volume are deterministic. Furthermore, we assume that the experimental noise
is normally distributed about 0, with variance o (t) (where oy (t) denotes oy
defined in (6) evaluated at time ¢). Under these assumptions, the likelihood is
given by

- V(:0)
povns y16) = zglc \/7 P ( 20\2/(ti) > . (16)

In the framework described in Section 3.1, we require that the data are
exchangeable. It is clear that the data y are not themselves exchangeable.
However, if we consider time as a covariate, then the set of pairs {(y;, ti)}}il
are exchangeable. We refer the reader to Schervish (1995) for a more thorough
discussion on exchangeability.

We have assumed the particular form of the likelihood given in (16) based
on the assumption of normally distributed measurement errors. However, this
may prove to be incorrect. As such, it is important to investigate the robustness
of any model predictions to this choice of likelihood, as this determines how
the observed data impacts our calibrated model. We address this point further
in Section 6.

3.2.8 Selection of the Calibration and Validation Sets

As discussed briefly in Section 2.2, we partition the data obtained at t1, ..., 13
into two sets, S¢ and Sy, for calibration and validation, respectively. When
specifying Sc and Sy several factors must be born in mind:

1. S¢ should be sufficiently large and contain data of sufficient quality that
the model is practically identifiable. In the context of this study, if only
data from early time points is chosen (i.e. in the early nutrient-rich growth
phase), it is possible that the parameter K may be unidentifiable as this
parameter determines the long time behaviour of the system.
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2. As with S¢, Sy should also be of sufficient size and quality to result in a
practically identifiable model.

3. In line with the hierarchy of data described in NRC (2012); Oden et al.
(2010a,b); Hawkins-Daarud et al. (2013), Sy should be of higher quality in
the sense that the data is obtained for an experimental setup as close
as possible to the predictive case. In our application, this corresponds
to including volume data in Sy obtained at a time closer to t14 than is
included in S¢.

In practical terms, we recommend a preliminary study employing, synthetic
data, in order to assess:

1. The identifiability of the model given various choices of S¢ and Sy;

2. Whether the validation procedure that results from a given choice of Sy is
capable of discerning models, the predictions of which are not acceptable
in the context of their intended real-world use.

In light of these considerations, we consider S¢ = {t1,...,t12} and Sy =
Sc v {ti13}. We note that there are no strict rules regarding the selection of
calibration and validation data. In the reporting of validation experiments
the selection of data must be made explicit. The sparsity of data available in
this tutorial presents particular challenges, as we would ideally have disjoint
calibration and validation sets. However, if we impose this constraint, we
typically arrive at the situation where either the calibration or validation
posterior is dominated by the prior due to lack of data, thus leading to
validated predictions of questionable practical use due to a large posterior
uncertainty.

3.3 Sampling of the Posterior Distribution

While for certain combinations of prior distribution and likelihood it is possible
to obtain analytical expressions for the posterior distribution, in general this
is not the case. As such, we are often required to sample from the posterior
distribution ppesr(@|y) via a discrete approximation. This sampling process
represents a significant computational challenge for complex models with a
large number of inferred parameters. For the problem at hand, it is possible
for us to sample the posterior distribution employing a regular grid in the
parameter space, cf. Hawkins-Daarud et al. (2013); Gelman et al. (2014a).
However, we employ here a member of the popular family of methods for
sampling the posterior distribution, known as Markov chain Monte Carlo
(MCMC), so as to demonstrate how one may perform calibration for a more
complex model.

It is beyond the scope of the current work to fully describe the theory
associated with MCMC. As such, we refer the interested reader to Gilks et al.
(1996); Chib and Greenberg (1995); Kaipio and Somersalo (2006); Gelman
et al. (2014a) and the references contained therein, for a more complete
discussion. We do, however, present a brief overview of the Metropolis-Hastings
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MCMC algorithm, and an adaptive variant employed here. The key idea
behind MCMC is to generate a Markov chain whose stationary distribution
corresponds to the posterior distribution (10) in our Bayesian formulation. We
refer the reader to Norris (1998) for an introduction to Markov chains. The
Metropolis-Hastings algorithm (Hastings 1970) itself is a generalisation of a
method first employed in Metropolis and Ulam (1949); Metropolis et al. (1953);
the algorithm is shown in Algorithm 3.1. We forgo a discussion regarding
selection of the proposal distribution J; and initial distribution pg and instead
refer the reader to the references provided above. In order to enhance the rate

Algorithm 3.1 Metropolis-Hastings

1: Draw 0° such that p (00) > 0 from an initial distribution po (@) based on sampling from
a regular grid, or some other crude estimate.

: for i = 1, imax do

Sample a proposal 8% from a proposal distribution at time 7, .J; (0*|9i_1).

p(6%|y)/Ji(6%|0" 1)

p(0i1ly)/Ji (07— 1]0%)"
Set 0% to @* with probability min{1,r}, or 8~ otherwise.

end for

Calculate the ratio r =

at which the chains generated by the Metropolis-Hastings algorithm converge
to the posterior distribution, various classes of adaptive algorithms have been
proposed, see e.g. Andrieu and Thoms (2008) and the references therein. In
this work, we employ Andrieu and Thoms (2008, Algorithm 4), which permits
more rapid movement through regions in parameter space of low probability. A
MATLAB implementation of this algorithm applied to the Gompertzian model
of tumour growth is available in Connor (2016). In Algorithm 3.2, we provide
pseudocode describing the generic form of the algorithm employed here, where
N(-,-) denotes a multivariate normal distribution. As Algorithm 3.2 proceeds,
the proposal distribution is adapted to achieve more rapid convergence. Again,
we forgo discussion regarding precise choices for 5 and the updates for A;, u;,
and X; and refer the reader to Andrieu and Thoms (2008).

Algorithm 3.2 Generic Adaptive MCMC

1: Draw 0° such that p (00) > 0.

2: for i = 1, imax do

3:  Sample a proposal 8* from a proposal distribution N (Oi_l, )\i_lﬂi_l).
4 Calculate the ratio 8 (defined in a similar manner to r in Alg. 3.1).

5 Set 6% to 8* with probability min{1, 3}, or 81 otherwise.

6:  Compute \;, u;, and X;.

7: end for

Intuitively, the MCMC algorithms presented correspond to generating
sequences of points in parameter space by iteratively suggesting movement
to new points in parameter space via a proposal distribution, whereby a
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movement is accepted or rejected on the basis of the relative likelihood of
the current and proposed points. It is in the computation of the acceptance
ratios 7 in Algorithm 3.1 and S in Algorithm 3.2 that we may observe the
dependence of the output from the algorithm on the experimental data, via the
computation of the likelihood. Moreover, we may observe the potentially huge
computational cost, in that each evaluation of the acceptance ratio necessitates
a model evaluation. For the simple model considered in the current study this
is not too demanding; however, if we were to consider a time dependent PDE
model this would represent a significant cost.

As MCMC is an iterative algorithm, we must consider its convergence in
the sense of whether the generated points are distributed according to the
posterior distribution, as this clearly affects the reliability of any resultant
analysis. In particular, if the iterative process has not proceeded for a
sufficiently long period of time, then the simulations may not be representative
of the target distribution. In order to diminish any dependence on the
starting values we discard a number of early iterations as warm-up. Moreover,
we compute multiple chains so that we may monitor whether ‘in’ chain
variation is approximately equal to ‘between’ chain variation as an indicator
of convergence.

We now describe, following Gelman et al. (2014a), how we assess the
convergence of the algorithm. Let m denote the number of chains and n
denote the length of each chain, and for each scalar estimand v we identify the
simulations as 1;;, for 1 <i < n and 1 < j < m. We now define the between-
and within-chain variances, denoted B and W, respectively, as

‘) (17)

j=1
and .
_ l Z (18)
m =
where

_ 1 & 3 1 &
wj:ﬁ;wijv wag and 3?:

The marginal posterior variance of the estimand var(y|y) may then be
estimated by a weighted average of W and B,

-1 1
z +=B. (19)
n

3

var (vly) ==

In order to monitor convergence of the algorithm, we estimate the factor by
which the scale of the current distribution for ¥ might be reduced if the
simulations were continued for the limit n — oo using the quantity

é _ var (w‘y) (20)
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A large value of R indicates that further simulations may improve the inference
about the target distribution of 1. As such, we specify a tolerance Tor, such
that if R < ToL for some i < i,ax, We view the chains as having converged to
the stationary distribution. Regarding the choice of the number of chains and
Imax, We refer the reader to the aforementioned references discussing MCMC.

In the proceeding examples we perform computations employing the
following:

— We count the first 10,000 iterations as ‘warm up’ and do not include these
points in the sample;

— We compute 3 chains (m = 3);

— We compute at least 25,000 iterations, but no more than 160,000 iterations
(25,000 < n < 160,000); and

— We specify the ToL as 1.05.

Any further details required to reproduce our computations may be found in
the complete code and data employed in the current work, available in the
online resource Connor (2016).

3.4 Model Calibration for the Gompertzian Model

We proceed now by calibrating the Gompertzian model of tumour growth
described in Section 2.1 with the experimental data described in Section 2.2.
Figure 3 shows discrete approximations of the marginal posterior distributions
for 6, obtained from draws of the posterior distribution generated by the
adaptive MCMC algorithm, Algorithm 3.2. This corresponds to samples from
the distribution defined in (10) obtained under the assumption of prior
distribution (15) and likelihood (16). From this figure, we see that the marginal
posterior distributions for Vj, K, and « are unimodal, and are centred around
values that are not close to the bounds we imposed in the definition of the
prior distributions (thus indicating our assumption on the prior distribution
is not inherently inconsistent with the data). Moreover, there are no issues
surrounding identifiability of the parameters.

4 Model-Data Consistency

In Section 3 we calibrated the Gompertzian model introduced in Section 2.1,
i.e. we obtained a posterior distribution ppesy(€|y) that combines our prior
knowledge surrounding the unobservable parameters pprior(€) and observed
data y in the calibration data set Sc. The first stage of the validation
procedure we set out in this work is to verify whether outputs from the
calibrated model are consistent with the observed calibration data. Or
rather, does the calibration data look plausible under the posterior predictive
distribution? In this section, we describe a selection of data misfit tests
that seek to ascertain whether there are systematic differences between the
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Fig. 3: Approximations of a range of marginal and joint posterior pdfs for Vg (mm3),
K (mm?’), and « (s_l) obtained via application of Algorithm 3.2 implemented in Connor
(2016) to compute the joint posterior distribution (10). These approximations are computed
employing the prior distribution (15) and likelihood (16), together with the calibration data
Sc. The vertical line corresponds to the mean of the marginal posterior distribution for each
parameter.

calibrated model outputs and the calibration data. We first describe graphical
checks, and then describe more quantitative posterior predictive p-values test.
We apply each methodology to our calibrated model from Section 3. We refer
the reader to the bibliographic note in Gelman et al. (2014a, Chp. 6) for further
references.

As noted in Hawkins-Daarud et al. (2013); NRC (2012), it is important to
realise that we may never fully validate a model. The strongest statement we
can make is that under certain tests, the model has not been invalidated. This
observation is key when interpreting the implications of passing the model
fit tests described in this section, or the model validation checks described in
Section 5.

In each of the tests described below, we require the concept of replicated
data, i.e. data that could have been observed, or data that could be obtained
were we to perform the experiment again. Again, we follow the notation of
Gelman et al. (2014a), and distinguish between the replicated data y"P and the
notation for general predictive outcomes y. We take the distribution for y™P
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to be the current state of knowledge in the posterior predictive distribution,
ie.

DL (7P y) = f Possirer (57°P18) Dross (8y) d6. (21)

4.1 Graphical Checks

The main idea of graphical checks is to display the observed data with
replicated data obtained from the calibrated model in order to assess whether
there are any systematic discrepancies between the real and simulated data.
In Gelman et al. (2014a), the authors describe three kinds of graphical display
(direct, summary or parameter inference, and model-data discrepancy);
however, given the relative simplicity of the model here we consider only direct
display of the data against a collection of replications.

Figure 4 shows 5000 replications drawn from the posterior predictive
distribution. From the figure, it appears as though there are no large systematic
discrepancies between our observed data y and the replicated data y™P.

Volume (m
o
[o¢]

O 1 1 1
0 5 10 15 20 25 30

Time (days)

Fig. 4: Experimental data for times {t1,...,t12} and errors bars showing +20y,, together
with 5000 replications obtained from the posterior predictive distribution for the calibration
model. Replication data obtained by evaluating (1) at 5000 points drawn from the posterior
distribution (10) obtained via application of Algorithm 3.2 with prior distribution (15) and
likelihood (16), with the calibration data Sc.
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4.2 Posterior Predictive p-Values

In measuring the discrepancy or degree of fit of the model to the data, it
is necessary to define appropriate test quantities that we may check. A test
quantity, or discrepancy measure, T(y, ), is a scalar summary of parameters
and data that we may use as a standard for comparing data to predictive
simulations. These quantities are analogous to test statistics in classical
statistical testing.

Posterior predictive p-values in the Bayesian framework are defined as the
probability that the test quantity for the replicated data y™P is more extreme
than for the observed data, i.e.

pp =Pr(T (y™,0) =T (y,0)ly),
= ffHT(yreP,9)>T(y,e)pSAx1PLE (yreple) Prost (0|y) dy"* de, (22)

where I 4 denotes the indicator function for event A.

We view a model as being questionable if pg takes a value that is close to
0 or 1, indicating that it would be unlikely to observe y in the replications of
the data, if the model were true. Extreme values for pp indicate significant
discrepancies in the model that need to be addressed by expanding the model
appropriately or altering assumptions in the model. However, finding an
extreme value for pg and deeming the model as suspect should not signal the
end of the analysis. It will often be the case that the nature of the failure will
suggest improvements to the model or identify certain data that are subject
to additional error.

For our application, we consider the tumour volume at {t1,to,...,t12} as
the test quantities. In Table 2, we show the Bayesian p-values obtained for the
tumour volume at each time point, for the posterior predictive distribution.
We observe that there are no extreme values for pg, and, as such, conclude
that our model is not inconsistent with the observed data.

Time B 0.01 < pp <0.99 Time PB 0.01 < pp <0.99
t1 0.5162 True tr 0.2462 True
to 0.2440 True ts 0.1214 True
t3 0.7544 True tg 0.4610 True
ta 0.2830 True tio 0.6300 True
ts 0.3108 True t11 0.6512 True
te 0.2360 True ti2 0.5634 True

Table 2: Posterior predictive p-values at each time point computed employing the
calibration model.
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5 Model validation and prediction

Now that the calibrated model of Section 3 has passed the data consistency
checks set out in Section 4, we investigate its predictive properties by
attempting to validate it against a validation model that has been calibrated
using the validation data, Sy . Recall that validation is the process of
determining the degree to which a model represents the real world in the
context of its real world uses. In this section, we explain how we validate our
model by comparing the calibrated model against the validation model, based
on the procedure set out in Hawkins-Daarud et al. (2013), and demonstrate
its application to our example.

5.1 Model Validation Procedure

The validation data, Sy, contains additional information regarding the
behaviour of the physical system that should lead to a more accurate model
of tumour growth. We denote the data in the validation set by yVAL. The first
stage of the validation process is to calibrate the Gompertzian model of tumour
growth described in Section 2.1 against the validation data set to obtain a
validation posterior density, denoted pyak. (6]yVAL), and validation posterior
predictive distribution, denoted p¥ak, (glyVAL), which are defined analogously
to (10) and (12), respectively, but are instead calculated employing the data
in Sv.

The next stage of the validation is to test whether the validation posterior
predictive distribution passes the model-data consistency checks described in
Section 4. If so, we proceed by testing whether the knowledge gained from the
new data is very different from that obtained in the calibration experiments. To
this end, we denote the pdf for our predictive quantity of interest, as described
in Section 2.3, and obtained by calibrating the model with Sz and Sy, by po
and py respectively. We say that the model is not invalidated if

M (pc,pv) < THRESHOLD, (23)

where M is some appropriate metric, and THRESHOLD denotes a validation
threshold we specify a piori. That is to say, our model is not invalidated
if the posterior predictive distributions of our quantity of interest for the
calibration and validation models are close in some appropriate sense. We
recall our earlier remark that this is the strongest statement we might make,
and further highlight that this statement is valid for our specified Qol only.

While there are many other appropriate choices of metric, in Hawkins-
Daarud et al. (2013) the authors consider

M (pc,pv) = sup |Fo'(y) — Fy''(y)], (24)
y€[y1,72]

where Fo and Fy denote the cumulative distribution functions (cdfs) of the
calibration and validation models, respectively, and v; and ~» are chosen to
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exclude comparison of the tails of the distributions. Alternatively one could
test the information gain from the additional data using such measures as
the Kullback-Leibler divergence (Kullback and Leibler 1951). In addition to
the metrics referenced in Hawkins-Daarud et al. (2013), we remark that it
is possible to compare the empirical cdfs for the calibration and validation
model via a two-sample Kolmogorov-Smirnov (KS) test (Massey 1951;
Miller 1956). Furthermore, techniques for estimating out-of-sample predictive
accuracy of the model may be applied as a possible means of comparing the
calibration and validation models. In particular, formulae such as the Akaike
information criterion (AIC) (Akaike 1973), deviance information criterion
(DIC) (Spiegelhalter et al. 2002), and Watanabe-Akaike (or widely-available)
information criterion (WAIC) (Watanabe 2010) provide means of estimating
the predictive accuracy of the model in an approximately unbiased manner (see
Gelman et al. (2014b) for a detailed discussion of these techniques). However,
we seek to make extrapolative predictions, so the AIC, DIC, and WAIC are
less applicable than if we were making interpolative predictions.

In this work, we compare the validation and calibration posterior predictive
pdfs for the Qol via the test statistic of the two-sample KS test, in which the
tails of the distributions are discounted (for details, see Connor (2016)), i.e.
the quantity

Ma(pe,pv) = swp |[Fole) — Fo(@)], (25)
x€[m,m2]
for suitably chosen {n1,72}. Furthermore, we set THrREsHOLD to 10%. In
Section 7, we propose a possible method for selecting THRESHOLD to maximize
predictive accuracy of the validation procedure by means of comparison to
multiple repeated experiments 2.

Other possible validation procedures have been discussed in the literature
(e.g. one-step forecast with re-estimation, multi-step forecast with/without
re-estimation, 3-way cross-validation etc.). A complete discussion of these
techniques is beyond the scope of this work; as such, we refer the reader to
Arlot and Celisse (2010) and NRC (2012) and the references therein for a
thorough review.

5.2 Validation of Gompertzian Model

The first stage in the validation of our calibrated model described in Section
3 is to obtain the validation model by calibrating the Gompertzian model of
tumour growth, as described in Section 2.1, against the validation data Sy .
When calibrating the validation model we employ the same prior distribution
(13) and likelihood function (16) as for the calibrated model of Section 3.
As we chose flat priors for the parameters and the posterior marginal pdfs
in Figure 3 were far from the bounds on the parameters imposed through the
prior, there is no reason to choose an alternative prior for the validation model.

2 While repeated experiments are not available in the patient-specific clinical setting, we
may view this as data from multiple individual patients in a similar population.
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Furthermore, we chose the same likelihood function because here we wish to
assess whether the knowledge gained from the validation data differs from that
in the calibration experiments, rather than the sensitivity of the predictions
to choice of likelihood function, a point we address in Section 6.

Figure 5 shows discrete approximations of the marginal posterior
distributions for € obtained from draws of the posterior distribution generated
by the adaptive MCMC algorithm, based on the validation dataset Sy . As
was also the case for the calibrated model, we see that the distributions are
unimodal and are not close to the bounds imposed in the definition of the
prior.
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Fig. 5: Approximations of a range of marginal and joint posterior pdfs for Vo (mm3),
K (mmg), and « (s_l) obtained with the validation data Sy . Results obtained via same
methods as those in Figure 3. Vertical line indicates the mean of the marginal posterior
distribution for each parameter.

Now we have obtained our validation model, we perform the same tests
of model fit as for the calibration model outlined in Section 4, i.e. we assess
whether the validation data is likely to occur as a replication obtained via
the validation model posterior predictive distribution. Figure 6 presents 5000
replications of the data drawn from the posterior predictive distribution of the
validation model, shown together with the experimental data and error bars
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corresponding to +20y . Once more, we see no large structural discrepancies
between the replications and the experimental data. In Table 3 we present
the Bayesian p-values for the tumour volume at each of the 13 time points
in the validation data set. As with the calibration data, we see no extreme
p-values, and hence conclude that the posterior predictive distribution is not
inconsistent with the observed experimental data.

0 5 10 15 20 25 30
Time (days)

Fig. 6: Experimental data for times {t1,...,t13} with error bars showing +20v, together
with 5000 replications obtained from the posterior predictive distribution for the validation
model. Replication data obtained by evaluating (1) at 5000 points drawn from the posterior
distribution (10) obtained via application of Algorithm 3.2 with prior distribution (15) and
likelihood (16), with the validation data Sy .

Time PB 0.01 < pp <0.99 Time PB 0.01 < pp <0.99

t1 0.4976 True ts 0.1134 True
to 0.2316 True tg 0.4554 True
t3 0.7720 True tio 0.6350 True
ta 0.2838 True t11 0.6530 True
ts 0.3138 True t12 0.5548 True
te 0.2334 True t13 0.5964 True
tr 0.2400 True

Table 3: Posterior predictive p-values at each time point computed employing the
validation model.

Given that we have judged our validation model as suitably fitting the
validation data based on the graphical checks and the posterior predictive p-
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values, we proceed now to compare the posterior predictive distributions for
the Qol set out in Section 2.3, i.e. we assess whether the predictive properties
of our model are suitable for the proposed application. Figure 7 shows a
comparison of the experimental data and errors, along with model predictions
of the calibration and validation models (represented by the mean, with error
bars corresponding to twice the standard deviation), and the experimental
data for the tumour spheroid at t14.
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Fig. 7: Summary of all experimental data, errors, and model predictions. The data presented
at the final time point has been artifically perturbed so that both model predictions and
the experimental data are visible.

Figure 8 shows a discrete approximation of the posterior predictive pdf for
our Qol obtained with both the validated calibration model and the validation
model. In addition, as a comparison, we have also included the value of our Qol
obtained from experiment. From Figure 8 we see that the observed tumour
volume at t14 appears likely under the posterior predictive distribution, i.e.
the model has made a good prediction for the data we have excluded in the
calibration and validation procedure.

The value of the test statistic Ma(pc, pyv ) computed for the calibration and
validation models was approximately 6%, and as such, we deem the model not
invalidated under the procedure set out above.

6 Sensitivity Analysis

While we have shown in Section 5 that our calibration model is not
invalid under the validation procedure set out above, we have made several
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Fig. 8: Posterior predictive pdf for the Qol obtained employing the calibration and
validation models, with spheroid volume obtained at t14.

assumptions in the development of the statistical model which could be
replaced with others that appear equally valid a priori. For instance, there
are many appropriate choices for error measurement model, other than that
detailed in Section 2.2.3, which may affect the predictive capability of the
calibrated model. Similarly, the choice of normally distributed errors for the
likelihood function, and the choice of prior, all hold influence over the model
predictions.

In robust Bayesian analysis, a prediction is viewed as robust if it does
not depend sensitively on the assumptions and inputs on which the model is
based. Robust Bayesian methods address the difficulty associated with defining
precise priors and likelihoods (Berger 1984; Pericchi and Peréz 1994; Insua and
Ruggeri 2000; Lopes and Tobias 2011). It is beyond the scope of this work to
perform a full robustness analysis. However, possible means of making the
present analysis more robust include replacing the normally distributed errors
in the likelihood with a Student’s t—distribution, or a more flexible likelihood
such as a mixture of normals.

As an example, we focus here on the inference of the length of third axis /3,
in the error calculation. In Section 2.2.3, we assume a given standard deviation
in £3. This will affect the resultant variation in our model predictions, possibly
increasing the posterior uncertainty in the prediction of the Qol. In order to
test the sensitivity of our prediction to this assumption, we now introduce
an additional parameter, s., which we refer to as the experimental scale,
that may be calibrated with experimental data. That is, we now consider
0 = (Vo,K,q,s.). This parameter is introduced into the likelihood via an
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alternative definition of the variance 6%, which we define as

. VN, (VN L, [oVN®
UV\/(%) 0'@14‘(%) a€2+<%) 0-637 (26)

where Gy, = S.({1 — ¢2). Assuming that the prior distribution for s. is
U[1 x 1077,0.5], we may compute the posterior marginal distribution for s,
as shown in Figure 9. From this figure, we can observe a modal value that is
of the order 1073, thus indicating we may have overestimated the variation
in ¢35 (as previously, there was an implicit definition that s, = 1/2, given the
Gompertzian model for tumour growth and our experimental data. We proceed
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Fig. 9: Posterior marginal pdf (unscaled) for the experimental scale parameter, se.

now by assessing the fit of our enhanced model calibrated on S¢ to the data and
the validity of this model. This process is performed as described in Sections
4 and 5. Figure 10 shows 5000 replications with the experimental data and
error bars corresponding to +26y/, in which we fix s, at its modal value. Here,
we see much tighter error bars on the experimental data, and greatly reduced
variation in the replications when compared to Figure 4. However, here we
observe that the data at tg lies outside of the replications. This is a concern;
however, as we wish to predict late time behaviour, we place greater emphasis
on the fact that the data and replications appear consistent for tg to tio.
Table 4 shows the Bayesian p-values for the data, based on the replications
shown in Figure 10. The p-values confirm the inconsistency at ts and further
highlight additional inconsistency at t3, which is not visible in the graphical
data. However, we again proceed on the basis of the intended use of the model.
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Fig. 10: Experimental data for times {t1,...,t12} with error bars showing +24y, employing
the modal value for se, together with 5000 replications obtained from the posterior predictive
distribution for the calibration model with experimental scale estimate for tumour volume.

Time B 0.01 < pp <0.99 Time PB 0.01 < pp <0.99
t1 0.2500 True tr 0.1312 True
to 0.0538 True ts 0.0006 False
t3 0.9992 False to 0.7858 True
tq 0.5422 True t10 0.9396 True
ts 0.6720 True t11 0.8500 True
te 0.2066 True t12 0.2216 True

Table 4: Posterior predictive p-values at each time point computed employing the
calibration model.

We now perform the validation procedure set out in Section 5 for this enhanced
model. Figure 11 shows a summary of all data, errors, and model predictions
(cf. Figure 7) and Figure 12 shows the posterior predictive pdf for the Qol
for the calibration and validation models (cf. Figure 8). The key difference we
observe in this model, compared to the original, is the reduction in posterior
variation of the Qol. However, when we evaluate the test statistic, we see
Ms(pe,pv) ~ 12% and, as such, we deem this prediction invalid under the
choice of THRESHOLD employed in Section 5.

As the focus of this work is to provide a pedagogical example, we proceed
no further with this analysis; in practice, one might continue the analysis
by investigating the sensitivity of all assumptions in the model (perhaps
comparing models, via Bayes factors (Gelman et al. 2014a) for instance).
However, we remark that this example serves to highlight potential difficulties
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associated with obtaining accurate and reliable models in more complex
settings, and the importance of reliable interpretation of any analysis.
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Fig. 11: Summary of all experimental data, errors, and model predictions for model with
with experimental scale estimate for tumour volume. The data presented at the final time
point has been artifically perturbed so that both model predictions and the experimental
data are visible.

7 Selection of Threshold

When the experimental data on which the previous sections were based was
collected, 9 additional experiments were carried out on other spheroids from
the same cell line. In this section, we use the data obtained from those
additional experiments to assess the validity of our calibration model with
experimental scale in a more informed manner. To this end, we adopt a
simple learning approach based on assessing the accuracy of models obtained
from calibration against additional sets of experimental data. Figure 13 shows
data obtained from 9 additional experiments, which we now employ to tune
THRESHOLD.

In this work, we judge a model to be valid (that is to say, not invalid)
if the test statistic of the two-sample KS test applied to the calibration
and validation posterior predictive PDFs of our Qol is not greater than
some threshold, Tk s. Previously, we have employed the notation THRESHOLD
for this quantity; we now depart from this notation to highlight that this
is now a parameter that may be tuned to enhance the accuracy of the
modelling/validation procedure set out here. Separately, a prediction obtained
from a calibrated model is judged to be good if, after the Qol is measured
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Fig. 12: Posterior predictive pdf for the Qol obtained employing the calibration and
validation models with experimental scale estimate for tumour volume, together with
spheroid volume obtained at t14.

experimentally, that measurement value lies within the credible interval of the
predicted Qol (details of how the credible interval is calculated can be found
in Connor (2016)). In an ideal validation procedure, valid models would result
in good predictions, whereas invalid models would not. As such, we seek here
to jointly maximize

i) The number of not invalid models for which the observed QoI falls within
the credible interval of the predicted Qol, and

ii) The number of invalid models for which the observed QoI falls outside the
credible interval of the predicted Qol,

by tuning the threshold, Txs. Table 5 describes the terms associated with all
four possible combined outcomes of the prediction-experimental comparison.

Qol Credible | Qol not Credible
Model not invalid | True Positive False Positive
Model invalid False Negative True Negative

Table 5: Possible outcomes relating to validation process and experimental data.

We now proceed by performing the model calibration procedure using both
the calibration and validation data sets, Sc and Sy, respectively, for each
of the nine additional experimental data sets. For each experimental data
set (discounting those for which the model is unable to adequately replicate
the calibration data) we compare the calibration and validation posterior
predictive PDFs of the Qol, calculating the two-sample KS test statistic.
Further, for each model we check whether the measured Qol lies within the
credible interval of the calibration posterior predictive PDF of the Qol. We
then select Txs € [0, 1], to maximize the accuracy of the prediction, defined
by

(# True Positive) + (# True Negative)
(Total # experiments) '

Accuracy = (27)
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Fig. 13: Summaries of all experimental data, errors, and model predictions obtained from
repeat experiments (cf. Figures 7 and 11). The legend for these plots is identical to that in
Figures 7 and 11. The data presented at the final time point has been artifically perturbed
so that both model predictions and the experimental data are visible.

We may then use the tuned threshold, Txg, to assess the validity of the
model obtained by calibrating the Gompertzian model against the initial
experimental data set in a more informed manner. Through this process of
evaluating the accuracy for multiple experiments for which data for the Qol
is available, we are able to ameliorate some of the arbitrary nature associated
with the choice of THRESHOLD.

Figure 14 demonstrates the variation of accuracy with Tkg, having
neglected experiments 4, 6, and 7 on the basis of model-data consistency
checks (as described in Section 4). We may observe that accuracy is optimized
for values of Tk g between 7% and 18%. Moreover, if we choose THRESHOLD of
15%, then the calibration model obtained in Section 6 is now not invalid. This
seems reasonable given the experimentally measured value for our predictive
Qol and the PDF obtained from the calibration and validation models, as
compared in Figure 12.
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Fig. 14: Accuracy of the validated model for varying Tk s. Vertical dashed lines highlight
the region for which the greatest accuracy is obtained.

7.1 Summary of the Calibration and Validation Process

In the preceding sections we have set out a process of calibration and
validation, which, for an individual experiment, may be summarised as follows.
Firstly, we calibrate a mathematical model against partitioned experimental
data, employing the Bayesian approach, to obtain so-called calibration and
validation posterior predictive distributions for a biological quantity of interest.
We then compare these two distributions using an appropriate metric to assess
the validity of our calibration model predictions. The THRESHOLD employed
in the validation procedure is chosen based on an elementary optimization
procedure that compares model predictions to experimental data obtained for
the biological quantity of interest for similar, prior experiments. Figure 15
presents a flow chart highlighting the process described in this work.

The method outlined above is immediately transferable to more clinically
relevant applications. In particular, the simple learning technique introduced
in the previous section could be valuable in a clinical setting, in which model
predictions of tumour growth (and response to therapy) could be compared
with clinical outcomes to judge the accuracy and validity of a prediction for
a range of THRESHOLD values. Such comparisons could then be used, as in our
simple example, to improve the acceptance criterion for not invalid models
for future patients. With further data, then, we could better establish which
model predictions we should trust and which we should discard.
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Fig. 15: Schematic diagram demonstrating the calibration and validation process.

8 Discussion

In Sections 2 - 7 we have presented a simple example of calibration, validation
and uncertainty quantification for predictive modelling of tumour growth in a
Bayesian framework. For this discussion, however, we depart from the example
presented above and further discuss the wider application of these techniques,
with a view to making patient-specific predictions in the clinic for the purpose
of therapy planning.

As highlighted in Pathmanathan and Gray (2013), it is of vital importance
to assess the reliability and accuracy of any model that might be used in
a safety-critical application in the clinic. The Bayesian framework provides
advantages over the frequentist framework in that it requires no notion of
repeated experiments on an identical population, which is problematic for
patient-specific predictions. Moreover, it provides advantages over methods
which result in a single value for model parameters as opposed to distributions,
even if confidence intervals for the parameters are supplied. A point we have
not yet addressed in this article is the importance of presenting appropriate
information regarding uncertainty to decision makers. While expectations
and variances (covariances) provide full descriptions in the case of Gaussian
random variables (fields), if the distribution is far from Gaussian this may
be potentially insufficient. Furthermore, as the complexity of the underlying
mathematical model increases, for instance to nonlinear partial differential
equations, calibration to a single parameter value appears inadequate, as there
may be significant skew or long tails in the distribution of the outputs, as a
result of the nonlinearity, which could affect decisions. As such, we question
whether in order to make well-informed clinical decisions, more information
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regarding the uncertain outputs of the model is required than is attainable via
classical means of calibration.

That is not to say these methods are without flaws. It may be the case
that there is insufficient data available to properly identify the distributions
of the parameters given complex models and expensive and/or noisy data
acquisition (via medical imaging for instance). In fact, for even the simplest
models (such as that considered here) it is likely that there would be insufficient
data to parameterize a personalised patient model. For example, there may
be only two data points available: the tumour volume at diagnosis and pre-
treatment. In such case, the Bayesian approach provides a natural framework
for incorporating population data via an informative prior, as described in
Achilleos et al. (2013, 2014), or via expert opinion to constrain the priors.

In addition to the validation and uncertainty quantification procedures
described here, in a clinical setting there is a vital need for verification of the
computational model. We highlight two forms of verification here: software
verification (i.e., is the computational model correctly implemented?), and
solution verification (i.e., is the solution of the computational model sufficiently
close to the solution of the mathematical model?). For the model considered
in this work there are analytical solutions to the deterministic problem, and
thus verification is not of vital importance. However, for more sophisticated
models requiring the solution of PDEs verification is extremely important. It
is beyond the scope of the current work to discuss verification fully, and we
refer to NRC (2012) for a more complete introduction to these fields.

The computational cost of the methods and model implemented in the
course of this work is low. However, as the complexity of the underlying
mathematical model increases, so does the computational cost. As such, the
construction of surrogate models via Gaussian process emulation (Kennedy
and O’Hagan 2001), (generalized) polynomial chaos expansions (Ghanem
and Spanos 1991; Ghanem and Red-Horse 1999; Ghanem 1999; Xiu and
Karniadakis 2002, 2003; Najm 2009; Babuska et al. 2004), or stochastic
collocation (Xiu and Hesthaven 2005; Tatang et al. 1997; Nobile et al.
2008a,b; Babuska et al. 2007) for instance, and model reduction techniques are
extremely important. Again, it is beyond the scope of this work to review these
fields (we refer to NRC (2012) and the references therein for a full discussion).

If computational models are to be integrated into clinical practice in order
to make personalised predictions about tumour growth and treatment for
models of greater complexity than that presented here, successful application
of verification and emulation techniques will be of critical importance,
in addition to the calibration, validation and uncertainty quantification
techniques described here.

9 Conclusions

In this article we have presented an educational example in which we
calibrate a simple mathematical model of tumour growth against experimental
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data subject to measurement errors, and subsequently validate the model
predictions. Moreover, we present an elementary learning approach for
determining the validation threshold to maximize the predicitive accuracy of
the model. Despite the simplicity of the mathematical model, and the fact the
experimental data was obtained in vitro; we feel that this example illustrates
clearly how these methods might be applied to patient-specific models in the
clinic.

There are many natural extensions to the work in this article. For
example, the techniques we have presented could be applied to more complex
models of tumour growth and spatially-resolved MRI and PET data from
cancer patients undergoing treatment (Baldock et al. 2013). The use of more
complex models will likely require the incorporation of surrogate models
and/or model reduction. Finally, it is natural to consider the application
of verification techniques in addition to the calibration, validation and
uncertainty quantification described here.
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Appendix A Measurement Times

The times at which measurements were taken in the experiments described in Section 2.2
are given in Table 6.

Time Point Time Time Point Time
t1 65h (2.7d) ts 328h (13.7d)
to 92h  (3.8d) tg 376h  (15.7d)
t3 112h  (4.7d) t10 449h  (18.7d)
ta 159h  (6.64d) t11 497h  (20.7d)
ts 207h  (8.6d) t12 545h  (22.7d)
te 257h  (10.7d) t13 595h  (24.8d)
tr 303h (12.6d) t14 664h  (27.7d)

Table 6: Times at which measurements of the spheroids were taken, measured after an
initial seed of 2000 tumour cells per spheroid were implanted at ¢ = 0.
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