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Abstract 

Purpose  

Investigate the extended release behaviour of compacts containing mixtures of hydrophilic 

HPMC and PEO in hydrating media of differing ionic strengths. 

Methods  

The extended release behaviour of various HPMC:PEO compacts was investigated using 

dissolution testing, confocal microscopy and magnetic resonance imaging, with respect to 

polymer ratio and ionic strength of the hydrating media.  

Results  

Increasing HPMC content gave longer extended release times, but a greater sensitivity to 

high ionic dissolution environments. Increasing PEO content reduced this sensitivity. The 

addition of PEO to a predominantly HPMC matrix reduced release rate sensitivity to high 

ionic environments.  Confocal microscopy of early gel layer development showed the two 

polymers appeared to contribute independently to gel layer structure whilst together 

forming a coherent and effective diffusion barrier. There was some evidence that poorly 

swollen HPMC particles added a tortuosity barrier to the gel layer in high ionic strength 



environments, resulting in prolonged extended release. MRI provides unique, non-invasive 

spatially resolved information from within the HPMC:PEO compacts that furthers our 

understanding of USP 1 and USP 4 dissolution data. 

Conclusions 

Confocal microscopy and MRI data show that combinations of HPMC and PEO have 

advantageous extended release properties, in comparison with matrices containing a single 

polymer. 

1 Introduction 

Hydrophilic matrices are a widely-used design of oral extended release dosage form. They 

can provide prolonged release for drugs with widely different solubilities, and they are 

simple and easy to formulate. A hydrophilic matrix tablet comprises a drug, standard 

tableting excipients, and a water swellable polymer which hydrates in gastric media to form 

a viscous mucilage “gel layer” at the matrix surface. This layer acts as a diffusional and 

erosional barrier to control further uptake of water into the tablet, and to limit the rate of 

drug dissolution and release. In simple terms, water soluble drugs are extended by diffusion 

through the hydrated polymer layer and poorly soluble drugs by matrix erosion [1-5].  

A wide range of swelling polymers can successfully be used in hydrophilic matrices. These 

include many natural, semisynthetic and fully synthetic polymers [1, 6]. Judicious choice of 

the polymer and properties such as matrix hydration rate and gel strength, can usually 

enable desired pharmacokinetic profiles to be achieved [1]..  Hydroxypropyl methylcellulose 

(HPMC) is the most widely-used. It is available in a variety of viscosity grades, has low 

toxicity, and there is an extensive literature database [7]. However, HPMC hydration can be 

influenced by ionic drugs, high concentrations of sugars, and inorganic salts according to 

their position in the Hofmeister lyotropic series [8]. The effects appear to be related to 

changes in water structuring and water-polymer binding but multivalent and high strength 

ionic solutions, can inhibit the formation of an effective surface barrier, and drug release is 

accelerated [9, 10].  

This study uses salt concentrations up to 1.0M NaCl. Whilst this is unlikely to occur in the 

stomach for a prolonged time, and has been proposed that salt concentrations no higher 



than 0.4M are tolerated in the fed stomach, this salt is being used as a model ionic challenge 

to mimic high and low ionic strength in the in vitro drug release studies. The effects of 

dissolved salts, sugars and other ionic species are cumulative, and mixtures containing 

multivalent salts, such as sodium citrate can be particularly potent in altering HPMC matrix 

behaviour. It has been suggested that the effects of soluble species may explain the 

occasional erratic behaviour of these dosage forms in fed state in vivo studies. Sodium 

citrate is widely used in cheese. Soft drinks can contain 0.3 to 0.4M sucrose and preserved 

foods can contain high amounts of NaCl [9, 11]. Variations in pH are likely to be less 

problematic, as HPMC and PEO have no ionisable groups and pH changes within the 

physiological range do not appear to influence HPMC or PEO matrix gel layer formation. 

However, it would be reasonable to look at the effects of varying fed stomach pH, in cases 

where the drug has pH dependent solubility [12].  

Despite their simple formulation, the internal mechanisms that contribute to drug release in 

hydrophilic matrices are complex. Dynamic processes such as polymer hydration, swelling 

diffusion and erosion, create water, drug and polymer concentration gradients within the 

gel layer. As a result, a range of in vitro imaging techniques have been utilised to better 

understand the internal processes that drive drug release behaviour [1]. Confocal 

fluorescence microscopy has shown how initial formation of a coherent gel layer is a critical 

stage in establishing the surface diffusion barrier and the subsequent extended release 

characteristics [13]. 1H NMR microscopy (magnetic resonance imaging or MRI) has been used 

to provide spatial and temporal resolved images, over longer timescales and used to 

monitor the rate of water penetration and mobility [14]. Simple optical images of sectioned 

tablets can also provide useful information on matrix behaviour when MRI cannot be used, 

for example in high salt media.   

It has been reported that PEO can provide a useful alternative to HPMC in hydrophilic matrix 

applications, and several studies have compared these two polymers [15-18].  Fasshi et al. 

have reported that PEO provides faster drug release, relating this to a lower gel strength, 

greater water uptake, and greater erosion rate of the matrix [19]. Whilst many other polymer 

combinations have been studied, the use of HPMC with PEO as a combined polymer carrier 

in hydrophilic matrices has received little attention [20-22]. In this study we investigate the 

properties of matrices containing both HPMC and PEO, with particular respect to their 



extended release behaviour, internal hydration processes and their behaviour in ionic 

solutions. 

2. Materials and methods  

2.1 Materials 

Caffeine anhydrous, magnesium stearate, Congo red, concentrated hydrochloric acid (37%), 

and sodium chloride were obtained from Sigma-Aldrich (Gillingham, UK). Lactose 

monohydrate fast flo NF was supplied by Foremost Farms (Baraboo, USA). HPMC was 

Methocel® K100M CR Premium (BN: Y1090212N01) with a methoxyl content of 22.7% and 

hydroxypropoxyl 10.4%. PEO was POLYOX WSR 303 coagulant PEO NF (BN: 2F1755S5C3). 

Both polymers were kind gifts from Colorcon Ltd (Dartford, UK). All materials were used as 

received. 

2.2 Matrix manufacture  

Matrix tablets were prepared by direct compression of powder blends containing by weight 

10% caffeine anhydrous, 30% polymer, 59.5% lactose and 0.5% magnesium stearate. The 

polymer content was HPMC:PEO combinations at weight ratios of 10:0, 8:2, 6:4, 4:6, 2:8 or 

0:10. Powder blends were prepared by mixing without magnesium stearate for 20 minutes 

at 47rpm in a shaker-mixer (Turbula, Willy A. Bachofen Maschinenfabrik AG, Basel, 

Switzerland), then, and mixing with the magnesium stearate for a further five minutes. 

Matrices were manufactured by dry compression at a force of 8kN on a rotary tablet press 

(Riva Piccola rotary press, Buenos Aeros, Argentina), to form 8mm diameter round flat-faced 

tablets of 250±3mg. 

2.3 Dissolution testing and calculation of dissolution kinetic parameters 

Matrix drug release kinetics were investigated by dissolution testing in USP apparatus I 

(baskets) at 100rpm (Prolabo, Dissolutest, France)> experiments were undertaken at 

37±0.5oC, in 900ml deionised deaerated water with or without added NaCl and pH adjusted 

to 1.2 with HCl.  Drug release was monitored at 273nm in 10mm quartz flow-through cells, 

using a closed-loop Agilent automated dissolution system (Agilent 8453, Agilent 

Technologies, Stockport, UK). The caffeine concentration in each sample was calculated by 

the Agilent software with reference to a standard calibration curve.  



Dissolution-time curves were fitted to the power law (equation 1)  [23] ,  a widely used 

empirical drug release model for evaluating the kinetics and mechanism of drug release. 

     
𝑀𝑡

𝑀∞
= 𝑘𝑡𝑛   Equation 1  

𝑀𝑡 𝑀∞⁄  is the fraction of drug released at time t, calculated by dividing the mass of drug 

released at time 𝑡 by the amount of drug released as 𝑡 approaches infinity. 𝑘 is the kinetic or 

rate constant, and n is the diffusional exponent for drug release. The value of the exponent 

varies according to the release mechanism and the geometry of the dosage form and it has 

been used to broadly describe the drug release mechanism (Table 1)  [24]. Drug release data 

between 10%-70% was fitted to this equation [25]. 

T80 values (the time taken for 80% drug release) were used a simple measure of extended 

release and were obtained by interpolation of the release curves [26]. 

Geometry 

Case I: 

Fickian diffusion 

controlled transport 

Intermediate/ 

anomalous 

transport 

Case II: 

Swelling controlled 

transport 

Super 

Case II 

transport 

Slab           𝑛 = 0.5 0.5 < 𝑛 < 1.0           𝑛 = 1.0 𝑛 > 1.0 

Cylinder           𝑛 = 0.45 0.45 < 𝑛 < 0.89           𝑛 = 0.89 𝑛 > 0.89 

Sphere           𝑛 = 0.43 0.43 < 𝑛 < 0.85           𝑛 = 0.85 𝑛 > 0.85 

Table 1: The effect of changing dosage form geometry on 𝒏 (diffusional exponent) values for different drug 

transport mechanisms [24].  

 

2.4 Magnetic resonance imaging (MRI) 

Experiments were performed on a Bruker AV-400 spectrometer with a vertical 9.4 T 

superconducting magnet and micro-imaging facilities. A 25mm birdcage radio frequency (r.f.) 

coil operating at proton (1H) frequency of 400.23 MHz was used. The T2-pRARE (T2-

preconditioned Rapid Acquisition with Relaxation Enhancement) pulse sequence was used  

to produce spin-spin relaxation time (T2) maps, for tablet matrices undergoing drug release 

in a USP 4 dissolution cell [27-29].  



T2-pRARE images were acquired with, a 64 (x-read) × 64 (y-phase) data array with a field of 

view of 25 mm × 25 mm, yielding an in-plane pixel resolution of 391 μm × 391 μm. The slice 

thickness of these images was 1 mm. The location of the horizontal (xy) MRI slice was taken 

through the middle of the tablet which was determined from initial ‘pilot’ vertical slices (zx) 

taken at the start of the experiment using the Bruker Biospin ParavisionTM 4.1 software 

interface.  

The acquisition bandwidth was 200,000 Hz and the maximum strength of read gradient, 

phase gradient and slice gradient were 0.19 T/m, 0.31 T/m and 0.14 T/m with a RARE factor 

of 64. Two averages were obtained for each experiment. T1 weighting was eliminated by 

using a recovery time of 10 s between each 90o excitation pulse. The temporal resolution of 

the images was approximately 3 minutes. In accordance with the work of Chen et al., a 

phase encoding start value of -0.22 was chosen to maximise the quantitative nature of the 

images [27]. 

To alleviate artefacts in the spin-spin relaxation time images that arise from fluid motion 

around the tablet, the images were acquired in the split echo acquisition mode and the 

signals from the even (effective echo time = 23.34 ms, 25.34 ms, 29.34 ms, 53.34 ms, 85.34 

ms, 277.34 ms, 533.34 ms, 1045.34 ms) and odd echoes (effective echo time = 23.02, 25.02 

ms, 29.02 ms, 53.02 ms, 85.02 ms, 277.02 ms, 533.02 ms, 1045.02 ms) were added together 

after Fourier transformation of each group of echoes. T2 relaxation maps were produced by 

analysing the raw data off line using in-house software. 

MRI studies of NaCl solutions could not be undertaken in the spectrometer because the 25 

mm birdcage r.f. coil used in this study cannot be tuned to working 1H frequency in the 

presence of excess dielectric influences. 

A schematic of the combined MRI/UV-vis. experimental set-up is shown in Figure 1. A 

standard USP-IV flow-through dissolution cell (internal diameter 22.6 mm) (Sotax, 

Switzerland) was mounted within the magnetic resonance spectrometer, and used for the 

tablet dissolution study following the method of Zhang et al. [28] . The medium was 500 mL 

water adjusted to pH 1.2 as described above, with UV detection of drug at 273nm. A flow 

rate of 8 ml/min (peristaltic pump 205S, Watson Marlow, USA) and a temperature of 37oC 



was maintained. The tablet was placed vertically in the USP-IV dissolution cell, with its cross-

section selected as the imaging plane.  

The drug release profile was measured on-line with the UV-Vis spectrometer (Spectronic 

Unicam, UK) with a quartz cell (path length = 5 mm). Absorption was measured at a 

wavelength of 273 nm at a resolution of 1 nm and the concentration of caffeine in solution 

was calculated using a prepared calibration curve with caffeine concentrations between 

0.005 mmol/L and 0.15 mmol/L.  The measurements were carried out using VisionLite 

software (Thermo Scientific).  

2.5 Confocal laser scanning microscopy: 

The formation and development of the initial gel layer at the radial periphery of the tablet 

matrix were studied by the method of Bajwa et al. [13]. A Bio-Rad MRC-600 confocal 

microscope (Hemel Hempstead, UK) equipped with a 15mW Krypton Argon laser, a Nikon 

Optiphot upright microscope, and 4x/0.13NA plan air objectives was used. The experimental 

geometry (figure 2) shows how the tablet was fixed between two Perspex discs held by 

three acrylic screws in a Fixed Observational Geometry (FOG) sample cell, as designed by 

Bettini et al [30]. The FOG cell was placed within a temperature controlled (37±1°C) vessel 

and immersed in a hydration fluid containing 0.008%w/v Congo red, a cellulose-active 

fluorophore which highlights hydrated HPMC within the gel layer (24). Instrument settings 

were: excitation laser line 488nm, BHS filter block (Ex 488/Em >510nm), confocal aperture 

5.0, black level 5.1 (on a scale of 0-255) and a gain level (image brightness) setting of 9.1. 

Images were obtained at intervals up to 15 minutes. 

2.6 Digital optical imaging 

The matrix tablet was fixed using double sided tape to a 22x22mm glass cover slip, and 

placed into 900ml media containing NaCl (0M, 0.4M and 1.0M) with a paddle speed of 

50rpm to simulate the tablet dissolution process. Tablets were taken from the media, and 

placed under the digital camera after 0.5, 1, 2, 4, 6 and 8 hours hydration. Images of the 

hydrated tablets, before and after axial sectioning, were obtained against a black 

background, under standardised lighting conditions, using a Cool Snap Pro cf camera (Media 

CyberneticsTM) fitted with a Nikon AF Micro Nikkor 600 mm macro lens.  



 

 



 

Figure 1: Schematic diagram showing the experimental geometry for MRI imaging. The loaded USP- 4 flow 

cell was inserted into the spectrometer inside the rf coil. The hydration medium was maintained at 37±1°C.  

 

 

 

Figure 2: Schematic diagram showing the Fixed Observational Geometry cell used for confocal imaging.  

The hydration medium was maintained at 37±1°C.  
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3 Results and Discussion 

3.1 In-vitro drug release  

3.1.1 Dissolution curves 

Figure 3 shows matrix dissolution test results for different ratios of HPMC and PEO. Total 

polymer content was maintained at 30% w/w throughout. The NaCl concentration in the 

dissolution medium was varied in order to show the effect of ionic strength on drug release. 

Although the salt concentrations used here are considered abnormally high for physiological 

and dietary relevance, NaCl is being used here as a model ionic challenge, to elicit 

Hofmeister effects that might occur at lower concentrations of multivalent ions and drugs [8, 

31-34]. 

All dissolution curves appeared to be similar in shape, except for matrices containing 

predominately HPMC. Matrices containing HPMC or an 8:2 ratio of HPMC:PEO showed 

extended release failure at high salt concentrations, and those containing 6:4 HPMC:PEO 

showed changes in their extended release profiles at the highest salt concentrations.  

To examine comparative trends across the range of polymer ratios, values of T80 and power 

law kinetic parameters (k and n) were calculated as previously described.   

3.1.2 T80 values 

T80 values are shown in Table 2 to provide a simple measure of extended release.  They 

show how, in the absence of added NaCl, HPMC matrices exhibited slower drug release than 

PEO matrices. In the presence of up to 0.4M NaCl, matrices containing HPMC and 8:2 

HPMC:PEO, show increased T80 values, but at 0.8M these matrices exhibit a marked 

acceleration of  drug release. This effect has been previously reported in other HPMC matrix 

formulations [9] and has been attributed to the failure of an effective gel layer diffusion 

barrier, during the early stages of matrix hydration, as a result of inhibition of polymer 

swelling through Hofmeister effects [35, 36]. 

In contrast, PEO matrices retained their capability to extend drug release at all salt 

concentrations. PEO hydration is reported to be sensitive to salts [35-38], but in these 

investigations the threshold concentration was clearly much higher for PEO than for HPMC. 

Dose dumping was not observed in PEO matrices and increasing NaCl concentration 

increased T80 from 237 minutes at 0M NaCl, to 292 minutes in 1.0M NaCl. Matrices 



containing HPMC:PEO polymer combinations showed decreased extended release times as 

the amount of PEO was increased, but by using a ratio of at least 6:4 HPMC: PEO the salt-

induced rapid release of HPMC matrices was also abolished. Overall, the effect of mixing 

these two polymers appeared to be additive rather than synergistic. 

3.1.3 Power Law analysis 

Table 3 shows the calculated power law parameters. Correlation coefficient values (r2) close 

to 0.999 show that the power law was a reasonable fit to the dissolution curves over the 

range 10-70%. In media containing up to 0.4M NaCl, matrices exhibit diffusion exponent 

values (n) between 0.68 to 0.81. Values between 0.45 to 0.89 indicate an ‘anomalous non-

Fickian transport’ drug release mechanism  in which drug release involves a coupling of drug 

diffusion with polymer relaxation [39]. Matrices in higher NaCl media, also had n values in 

this range. In matrices that disintegrated (8:2 HPMC: PEO or HPMC in 0.8M NaCl or above) n 

values were >0.89 a mechanism known as case II transport that depends on polymer 

relaxation rate. 

3.1.4 A comparison of mixed and single polymer matrices 

The results in Table 2 suggest that matrices containing a 4:6 HPMC:PEO ratio provide a good 

compromise between maximising extended release, and minimising drug release variability 

across the salt concentration range. The 4:6 HPMC:PEO matrix was therefore chosen for 

further investigations to better understand drug release behaviour. Figures 4 show a 

comparison of this mixed polymer matrix with those containing the single polymers, and it 

allows us to examine the dissolution curves in greater detail. In 0M and 0.4M NaCl (figure 4 

A and B), all three formulations provide similar drug release kinetics over the first 120 

minutes, only then do the profiles diverge. The greater prolongation of drug release in 

HPMC matrices was therefore an effect only exerted in the later stages of dissolution. In 

1.0M NaCl (figure 4 C) the HPMC matrix exhibited accelerated drug release, whilst the PEO 

and 4:6 mixed polymer matrices maintained extended release profiles. Strangely, the mixed 

polymer matrix provided greater extended release than PEO alone, suggesting that the PEO 

was not only protecting the HPMC from salt sensitivity, but that the HPMC was also able to 

contribute to extended release. 



  

  

  
 

Figure 3: Release of caffeine from hydrophilic matrix tablets as a function of polymer composition and 

sodium chloride concentration in the dissolution medium (pH=1.2). All matrices contain 30%w/w polymer. 

USP apparatus 1, 100 rpm, 900 ml, 37±0.5°C. Mean (n=3)± 1SD. 
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 NaCl concentration in dissolution medium 

 
0 0.2M 0.4M 0.6M 0.8M 1.0M 

HPMC 320 336 341 282 120 12 

HPMC:PEO 8:2 312 330 330 346 116 22 

HPMC:PEO 6:4 285 320 317 314 270 240 

HPMC:PEO 4:6 270 308 311 308 305 317 

HPMC:PEO 2:8 270 293 292 297 306 321 

PEO 237 257 267 278 289 292 

 

Table 2:  T80 values (minutes) with respect to polymer composition and sodium chloride concentration. 

T80 (the time for 80% drug release) was obtained from interpolation of the drug release curves.  Values in bold 

italics highlight T80 extended release greater than 6 hours. 

 

 NaCl concentration in the dissolution medium 

  
0 0.2M 0.4M 0.6M 0.8M 1M 

HPMC k 1.634 1.531 1.262 2.105 0.495 N\A 

 
n 0.689 0.693 0.727 0.655 1.067 N\A 

 
r2 0.9969 0.9961 0.9953 0.9980 0.9743 N\A 

HPMC:PEO k 1.071 1.245 1.649 1.261 0.122 N\A 

8:2 n 0.767 0.731 0.680 0.726 1.363 N\A 

 
r2 0.9955 0.9961 0.9969 0.9967 0.9633 N\A 

HPMC:PEO k 1.065 1.305 1.085 1.058 0.954 2.200 

6:4 n 0.780 0.724 0.761 0.760 0.797 0.658 

 
r2 0.9973 0.9983 0.9983 0.9996 0.9990 0.9984 

HPMC:PEO k 1.149 1.233 1.254 0.986 1.148 0.741 

4:6 n 0.768 0.741 0.736 0.777 0.753 0.807 

 
r2 0.9990 0.9974 0.9993 0.9991 0.9992 0.9993 

HPMC:PEO k 0.936 1.236 1.172 1.127 1.055 1.005 

2:8 n 0.800 0.744 0.753 0.759 0.767 0.765 

 
r2 0.9989 0.9992 0.9994 0.9994 0.9995 0.9992 

PEO k 0.854 0.915 1.174 0.884 1.045 0.796 

 
n 0.802 0.807 0.760 0.801 0.766 0.813 

 
r2 0.9991 0.9986 0.9993 0.9990 0.9990 0.9987 

 

Table 3: Kinetic parameters obtained from fitting the Power law equation to the drug release curves. 

Rate constants (k), exponent value (n), goodness of fit ( r2).  Data from figure 3. 
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Figure 4: Release of caffeine from single and 4:6 HPMC:PEO mixed polymer matrices in 0M (A), 0.4M (B) and 

1.0M (C) NaCl dissolution medium (pH=1.2). All matrices contain 30%w/w polymer. USP apparatus 1, 100 rpm, 

900 ml, 37±0.5°C. Mean (n=3)± 1SD.  
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3.2 Magnetic resonance imaging studies of internal hydration behaviour  

Figure 5 shows axial, 1mm thick cross-sectional images obtained from matrices swelling in 

the USP 4 cell in the MRI spectrometer. These spatially resolved images are colour-coded for 

T2 relaxation times and provide semi-quantitative visual maps for comparisons of polymer 

swelling behaviour, gel layer formation and the progress of internal hydration [27, 28]. The 

areas coded black relate to the driest regions of the matrix, and can be used to assess the 

relative shrinkage of the ‘dry’ core. 

 

 

Figure 5: MRI cross-sectional images of matrix hydration over 9 hours. T2 relaxation time maps of HPMC, 

HPMC:PEO 4:6 and PEO hydrophilic matrices in USP 4 dissolution cell in 500 ml water adjusted to pH 1.2, 

8ml/min., T=T 37±1°C. Each image is 25 mm in diameter.  Colour coding for T2 is shown in the colour bar.  

The images show substantially different hydration characteristics in HPMC and PEO matrices. 

The HPMC matrix:  (i) adopts a dumb-bell shape in the early stages; (ii) shows anisotropic 

swelling in the early stages; (iii) exhibits relatively slow water ingress and (iv) retains a 

matrix shaped hydrated mass of gelled polymer at 9 hours. Features (i) and (ii) are typical 

behaviour for HPMC-based matrices [27] with the dumb-bell shape and axial swelling arising 

from uniaxial relaxation of elastic energy stored during compression [40]. 
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In contrast, the PEO matrix shows: (i) less dimensional changes than HPMC during the first 

hour of hydration; (ii) Isotropic swelling behaviour; (iii) a more rapid water ingress into the 

matrix and (iv) the complete dissolution of the matrix at 9 hrs.  Features (i) and (ii) reflect 

the low levels of elastic energy stored during PEO deformation, whereas (iii) and (iv) are 

consistent with the higher water affinity of PEO [41]. This arises because PEO has no 

hydrophobic substituents whereas Methocel K100M HPMC (USP type 2208) has 22% 

methoxyl substitution. 

Images of the 4:6 HPMC:PEO matrix show hydration behaviour intermediate between 

HPMC and PEO: (i) a reduced axial swelling in comparison with HPMC; (ii) a reduced water 

ingress with respect to PEO and (iii) a matrix that retains some integrity at 9 hrs. This 

evidence suggests that substituting HPMC in the PEO formulation slows water penetration, 

and at the end of the test has a highly hydrated matrix that retains some shape. Both 

features may give the matrix a greater longevity, consistent with the results of dissolution 

testing (Figure 4A).  Calculation of dissolution parameters from the later part of the 

dissolution curve show that HPMC containing matrices exhibit n values consistent with 

diffusion dominated release, whereas PEO matrices exhibit n values that suggest a greater 

contribution from surface erosion (Table 4). This would account for the disappearance of 

the PEO gel mass at the end of the dissolution test. 

3.2.1 Correlating in-line USP-4 drug release curves with MRI data. 

Figure 6 shows the results from the on-line UV-vis analysis of the effluent stream from the 

MRI/USP-4 dissolution cell used to obtain the images depicted in figure 5.   



 

 
Figure 6:  Release of caffeine from the on-line MRI/UV-vis apparatus for individual tablets of HPMC, 4:6 

HPMC:PEO and PEO in pH 1.2 water based dissolution medium.  All matrices contain 30% w/w polymer. USP 

apparatus 4, 8ml/min, 500 ml, 37±1°C. Mean (n=3)± 1SD.  

 

The images for HPMC and 4:6 HPMC: PEO at 30 < t < 180 minutes (figure 5) demonstrate a 

difference in the rate of disappearance of the dry core (black coloured area within the 

tablet) with a rank order PEO > 4:6 HPMC:PEO > HPMC.  However, there is little visible 

difference in the overall size of the gel layer for HPMC and 4:6 HPMC:PEO samples (red 

coloured areas up to t = 120 minutes).  The equivalent USP 4 data (figure 6) are too noisy at 

this stage to give a statistically meaningful interpretation of the observed drug release rates 

with respect to the MRI images shown in figure 5. Figure 5 shows a transition in the 

appearance of the gel layer occurs at t = 180 minutes.  At t = 300 minutes there is a distinct 

change in the physical distribution of T2 values for HPMC and 4:6 HPMC:PEO tablets, with 

4:6 HPMC:PEO showing a greater proportion of higher T2 values for the water (red/yellow 

colouring) and is indicative of system with a greater water/polymer mobility which inturn 

correlates with a greater amount of drug release. This observation is further supported by 

the HPMC and 4:6 HPMC:PEO MRI images at t = 420 minutes and 540 minutes.  For t > 300 

mins figure 5 also shows an increase in tablet surface area when comparing 4:6 HPMC:PEO 

with HPMC. The changes in gel layer morphology (assed using theT2 values) and physical 

surface area for HPMC and 4:6 HPMC:PEO for t > 300 minutes correlates well with the on-
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line USP 4 dissolution data shown in figure 6 which shows an enhanced drug release for the 

4:6 HPMC:PEO system relative to HPMC alone for 300 < t < 540 mins.  For PEO tablets, there 

is a dramatic change in the T2 values at t = 300 minutes indicating a system that has a higher 

polymer mobility compared to the HPMC and 4:6 HPMC:PEO samples.  The onset of an 

additional erosion mechanism of the PEO matrix is also clearly evident for t > 300 minutes 

and both the higher T2 values and erosion result in a higher rate of drug release relative to 

the HPMC/4:6 HPMC:PEO tablets; this behaviour again correlates well with the on-line USP 4 

shown in figure 6.  Despite a small time offset, the coupled MRI/USP 4 observations 

discussed above are qualitatively consistent with the independent USP 1 drug release data 

shown in figure 4A, and thus highlight the power of MRI in translating the physical reasons 

for the differences in standard USP type drug release curves. 

 

 

 
 
 
 
 
 
Table 4: Dissolution parameters calculated over the range 60-95% drug release. Parameters calculated from 
dissolution data in figure 4. 

 Time between 
T60-T95%  
(minutes) 

Power law exponent 
 n  

HPMC matrix 360 0.41 

4:6 HPMC:PEO matrix 270 0.45 

PEO matrix 180 0.63 



3.3 Confocal fluorescence microscopy studies of early gel layer formation and growth 

Confocal microscopy imaging was used to compare early gel layer initiation and 

development. Studies were undertaken in media containing 0 M, 0.4 M and 1.0 M NaCl. 0.4 

M NaCl represents the longest extended release obtained for HPMC matrices, and 1.0M was 

an extreme concentration that resulted in burst release. 

3.3.1 Early gel development in media without sodium chloride 

Figure 7 shows typical gel formation in media without NaCl. The extent of gel growth can be 

seen from the dashed line, which represents the unhydrated tablet perimeter. HPMC 

matrices exhibit an uninterrupted high intensity fluorescent boundary at the gel layer 

periphery, where highly swollen and disentangling polymer allows easy access of binding 

sites to the fluorophore [13, 42]. A pattern of fluorescence is also identifiable within the inner 

regions of the hydrated gel layer, and is more heterogeneous because the fluorophore has 

penetrated initially through tablet capillaries, which then become blocked [13]. The 

fluorophore also highlights the emerging gel layer in the PEO matrix, but the fluorescent 

intensity was lower, and more uniformly distributed. This suggested the rapid diffusion 

through, and a lack of specific binding, of Congo red in the gel layer, However fluorescence 

intensity was clearly discernible above background.  

This contrast in fluorescent intensity, between the PEO and HPMC matrices, was useful in 

distinguishing these two polymers in the gel layer of the 4:6 HPMC:PEO matrix. This showed 

regions of high intensity, most likely swelling HPMC particles, separated and interspersed by 

swollen regions of low fluorescence, which most likely represent the PEO.  There was no 

evidence of significant polymer mixing, even in the most hydrated outermost part of the gel 

layer.  

In addition, the outer part of the gel layer shows HPMC particles are highly swollen, whilst 

the inner regions show only outlines of HPMC particles which are poorly swollen because 

they have only a marginally higher fluorescence. This may have arisen from poor 

fluorophore penetration but we feel this is unlikely because of the freedom with which 

Congo red can diffuse through swollen PEO. This result raises the possibility that PEO swells 

preferentially in the inner regions of the gel, and dominates the water availability, whilst at 



the outer surface of the gel layer, HPMC particles can swell freely. The suppression of HPMC 

swelling by a different grade of PEO has been reported previously [21].  

All matrices showed the rapid formation of a gel diffusion barrier, with little evidence of 

significant liquid penetration of the core. The effectiveness of this diffusion barrier in the 

mixed HPMC:PEO matrix, suggests that both polymers contribute to a continuous and 

coherent gel layer.  

PEO matrices exhibited a greater overall swelling than other matrices, supporting the idea 

that the gel layer may become more rapidly established as a result of the greater water 

affinity of this polymer  

3.3.1 Early gel layer development in sodium chloride solutions  

Figure 8 shows images of gel layer formation in 0.4M NaCl. They show a similar pattern of 

swelling and early gel layer development to matrices hydrating without NaCl.   

Figure 9 shows images of matrices hydrated in 1M NaCl. This extreme concentration was 

chosen to disrupt HPMC particle coalescence and this is clearly seen in the extensive swollen 

mass of individual particles that have replaced the gel layer. This pattern signifies failure to 

establish a diffusion barrier that can block water penetration [10] and in the dissolution tests, 

these HPMC matrices released drug rapidly (Table 2). In contrast, the PEO matrix shows gel 

layer formation progressing normally, apparently unaffected by the high salt concentration 

and in the dissolution tests, these matrices retained their extended release properties 

(Table 2).  

In the mixed HPMC: PEO matrices, HPMC particles within the emerging gel layer exhibit low 

fluorophore uptake. They appear to be surface stained but not highly swollen. This suggests 

that these HPMC regions are poorly hydrated as a result of the high salt concentration. 

However, gel layer diffusion barrier properties remain intact and dissolution tests in 1.0 M 

NaCl show this matrix has better extended release characteristics than a matrix based on 

PEO alone. This suggests that the poorly hydrated HPMC might add a tortuosity factor to the 

diffusional release of drug through the gel layer, acting in a similar way to insoluble 

inclusions such as microcrystalline cellulose [43]. This might account for the slower release 

profiles of mixed matrices seen in the dissolution tests (figure 4 C). 
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Figure 7: Early gel layer growth in the absence of NaCl. Confocal fluorescence imaging at Ex 488/Em510 nm. 

Experiments conducted at 37±1 °C using NaCl media containing 0.008% w/v Congo red as a visualisation aid. 

Images coded for fluorescence intensity using a continuous grey scale (White highest, black lowest). 
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Figure 8: Early gel layer growth in 0.4M NaCl. Confocal fluorescence imaging at Ex 488/Em510 nm. 

Experiments conducted at 37±1 °C using NaCl media containing 0.008% w/v Congo red as a visualisation aid. 

Images coded for fluorescence intensity using a continuous grey scale (White highest, black lowest). 
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In 1.0M NaCl  
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Figure 9: Early gel layer growth in 1.0M NaCl Confocal fluorescence imaging at Ex 488/Em510 nm. 

Experiments conducted at 37±1 °C using NaCl media containing 0.008% w/v Congo red as a visualisation aid. 

Images coded for fluorescence intensity using a continuous grey scale (White highest, black lowest). 
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3.4 Internal matrix structure studied by digital optical imaging  

3.4.1 Matrices hydrating in the absence of sodium chloride 

Figure 10 shows digital images of matrices hydrated up to 8 hours. Images were taken 

before and after sectioning to confirm that sectioning had not changed the dimensions of 

the hydrated matrix. Only in the case of two very weak gels were matrices distorted by 

sectioning and in these cases, matrix dimensions were measured from the unsectioned 

matrix, and sectioning was then used to confirm the presence or absence of a core. The 

images clearly show the swelling front that demarcates the hydrated gel layer from the ‘dry’ 

core, and we can also observe the overall shape of the matrix as hydration proceeds. Image 

analysis was used to quantify the thickness of the gel layer and visible core in the axial 

direction, form these images.   

Figures 10 and 11 show the HPMC matrix undergoing hydration. It can be seen that: (i) the 

overall dimensions of the matrix grow over the whole 8 hour period; (ii) gel and core 

dimensions change little up to 4 hours; (iii) the gel layer then grows substantially with 

considerable loss of core between 6 and 8 hours; (iv) after 8 hours, the majority of matrix is 

gel, but which has sufficient gel strength to maintain a matrix shape. In contrast, the PEO 

matrix shows: (i) a more substantial loss of core after only 2 hours; (ii) swollen gel 

compensates for the loss of core and the matrix maintains its overall dimensions up to 4 

hours, (iii) thereafter the matrix collapses, indicating that the gelled matrix after 6 hours is 

mechanically weak.  

The 4:6 HPMC: PEO matrix appears to behave in a similar way to the HPMC matrix: (i) the 

gel and core dimensions are maintained up to 4 hours, (ii) there is reduced core at 6 hours 

but matrix dimensions are retained, (iii) after 8 hours the core has disappeared and the 

matrix shows a reduction in size.  

These experiments illustrate how the addition of HPMC can change the hydration behaviour 

of a PEO matrix, to provide a longer retention of the core, and an increased gel strength 

which better maintains the matrix shape at later time points.  

Whilst recognising that conditions are different with the dissolution test, these results 

suggest an explanation for the extended release properties and rank order (HPMC > 

4:6 >PEO matrix) observed at later times in the dissolution tests. At earlier times, all 



matrices are similar in size and shape, and they possess a significant core. The similarity in 

surface area may explain their similar drug release kinetics during the early stages of 

dissolution.  At later hydration times, however, dimensional changes were related to 

polymer composition. PEO matrices significantly erode, but substitution of HPMC with PEO 

in the 4:6 HPMC:PEO matrix show an increased thickness of the gel layer at 6 hours, which is 

again consistent with the observations from the MRI images shown in figure 5.  This would 

result in more prolonged diffusional release. This pattern may explain the drug release 

profiles in figure 4 and the longer k values in table 4. 

The retention of an internal core is a critical feature in maintaining extended drug release in 

hydrophilic matrices [1]. In HPMC-containing matrices, the imaging results suggest 

acceleration in core hydration at 6 hours. We speculated that this may arise from internal 

weakening of the core allowing faster penetration of water. In PEO matrices, this effect was 

observed after only 2 hours.   
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Figure 10: Digital images of sectioned HPMC PEO and 4:6 HPMC:PEO matrices showing the hydration 

behaviour over 8 hours in the absence of NaCl. Experiments conducted at 37±1 °C, in pH 1.2 media.  
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Figure 11: Changes in gel and core dimensions in matrices hydrating in the absence of NaCl. Data obtained 

from image analysis of digital images of sectioned matrices hydrated at 37±1 °C in pH 1.2 media. 
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3.4.2 Matrices hydrating in sodium chloride solutions  

Figures 12 and 13 show sectioned matrices and gel/core thickness data for matrices 

hydrating in 0.4M NaCl. The hydration pattern was very similar to matrices hydrating in the 

absence of NaCl.  Figures 14 and 15 show the same data for matrices hydrated in 1.0 M NaCl.  

Under these extreme salt concentrations, the HPMC matrix had disintegrated before the 

one hour time point, but the PEO and 4:6 HPMC:PEO matrices appeared to be unaffected. 

The PEO matrix exhibits an enhanced gel thickness at 6 hours (figure 15), but still shows a 

significant collapse at 8 hours. The combined polymer matrix behaves like the PEO matrix in 

resisting the effects of extreme salt concentration, but there was no final collapse, and it 

maintained the overall dimensions of the matrix throughout the test. This provides evidence 

for enhanced gel strength, with HPMC clearly adding in some way to the robustness of the 

gel layer. 
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Figure 12: Digital images of sectioned HPMC PEO and 4:6 HPMC:PEO matrices showing the hydration 

behaviour over 8 hours in 0.4M NaCl  . Experiments conducted at 37±1 °C, in pH 1.2 media. 
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Figure 13: Changes in gel and core dimensions in matrices hydrating in 0.4M NaCl. Data obtained from image 

analysis of digital images of sectioned matrices hydrated at 37±1 °C in pH 1.2 media.  
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Figure 14: Digital images of sectioned HPMC PEO and 4:6 HPMC:PEO matrices showing the hydration 

behaviour over 8 hours in 1.0M NaCl  . Experiments conducted at 37±1 °C, in pH 1.2 media. 
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Figure 15: Changes in gel and core dimensions in matrices hydrating in 1.0M NaCl. Data obtained from image 

analysis of digital images of sectioned matrices hydrated at 37±1 °C in pH 1.2 media.  
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4 Conclusions  

Hydroxypropyl methylcellulose (HPMC) and polyethylene oxide (PEO) combinations can be 

used in hydrophilic matrices, to produce extended release dosage forms that combine the 

advantages of both polymers. The HPMC content of mixed polymer matrices provided 

longer extended release, reduced water penetration and matrix erosion, and increased the 

gel strength (seen particularly in the later stages of drug release) in comparison with a 

matrix containing PEO alone. The PEO content of the mixed polymer matrix reduced the 

matrix ionic strength sensitivity, in comparison to a matrix containing high proportions of 

HPMC. Mixed polymer matrices formed good gel layer diffusion barriers at all polymer ratios. 

In very high ionic strength media (1.0M NaCl) where an HPMC matrix would disintegrate, 

the HPMC within the mixed polymer gel layer appeared to contribute to the extended 

release properties of the gel layer, possibly through adding tortuosity to the diffusional path 

of drug through the gel layer.  MRI experiments correlate well with the optical microscopy 

data and their interpretation and provide additional information for different tablet 

formulations; MRI highlights the differences in hydration dynamics and subsequent gel layer 

formation which, in turn, allowed the behaviour of the UV-vis. drug release curves from USP 

1 and USP 4 dissolution tests to be understood.  

This work suggests that in future applications, mixed HPMC:PEO matrices may have a 

greater extended release robustness, in stomach environments containing foods with a high 

salt content mixed with other salts or soluble species that supress HPMC hydration . This 

would be especially so in circumstances where the matrices themselves have been 

formulated with high levels of ionic buffers, counter-ions or salts. 
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