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ABSTRACT 21 

    Studies of land cover dynamics would benefit greatly from the generation of land 22 

cover maps at both fine spatial and temporal resolutions. Fine spatial resolution images 23 

are usually acquired relatively infrequently, whereas coarse spatial resolution images 24 

may be acquired with a high repetition rate but may not capture the spatial detail of the 25 

land cover mosaic of the region of interest. Traditional image spatial–temporal fusion 26 

methods focus on the blending of pixel spectra reflectance values and do not directly 27 

provide land cover maps or information on land cover dynamics. In this research, a 28 

novel Spatial–Temporal remotely sensed Images and land cover Maps Fusion Model 29 

(STIMFM) is proposed to produce land cover maps at both fine spatial and temporal 30 

resolutions using a series of coarse spatial resolution images together with a few fine 31 

spatial resolution land cover maps that pre- and post-date the series of coarse spatial 32 

resolution images. STIMFM integrates both the spatial and temporal dependences of 33 

fine spatial resolution pixels and outputs a series of fine spatial–temporal resolution 34 

land cover maps instead of reflectance images, which can be used directly for studies 35 

of land cover dynamics. Here, three experiments based on simulated and real remotely 36 

sensed images were undertaken to evaluate the STIMFM for studies of land cover 37 

change. These experiments included comparative assessment of methods based on 38 

single-date image such as the super-resolution approaches (e.g., pixel swapping-based 39 

super-resolution mapping) and the state-of-the-art spatial–temporal fusion approach 40 

that used the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model 41 

(ESTARFM) and the Flexible Spatiotemporal DAta Fusion model (FSDAF) to predict 42 
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the fine-resolution images, in which the maximum likelihood classifier and the 43 

automated land cover updating approach based on integrated change detection and 44 

classification method were then applied to generate the fine-resolution land cover maps. 45 

Results show that the methods based on single-date image failed to predict the pixels 46 

of changed and unchanged land cover with high accuracy. The land cover maps that 47 

were obtained by classification of the reflectance images outputted from ESTARFM 48 

and FSDAF contained substantial misclassification, and the classification accuracy was 49 

lower for pixels of changed land cover than for pixels of unchanged land cover. In 50 

addition, STIMFM predicted fine spatial–temporal resolution land cover maps from a 51 

series of Landsat images and a few Google Earth images, to which ESTARFM and 52 

FSDAF that require correlation in reflectance bands in coarse and fine images cannot 53 

be applied. Notably, STIMFM generated higher accuracy for pixels of both changed 54 

and unchanged land cover in comparison with other methods. 55 

Keywords: Spatial temporal fusion; Super-resolution mapping; Endmember extraction.  56 
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1. Introduction 57 

Land cover maps are one of the most fundamental datasets used in many scientific 58 

fields and are often produced from remotely sensed images (Bartholome and Belward 59 

2005; Friedl et al. 2002). A wide variety of remote sensing systems have been 60 

developed, and hence, images are available with different spatial and temporal 61 

resolutions, thereby allowing the production of land cover maps at different spatial and 62 

temporal scales. With most satellite remote sensing systems, a trade-off typically exists 63 

between spatial and temporal resolution. In general, fine spatial resolution remote 64 

sensors can acquire images that provide spatially detailed land cover information, but 65 

their relatively coarse temporal resolution limits their usage in monitoring rapid land 66 

cover changes. By contrast, coarse spatial resolution remotely sensed images can often 67 

be acquired at a fine temporal resolution that provides a repetition rate suitable for the 68 

detection of rapid land cover changes but are unable to represent the spatial detail of 69 

the land cover mosaic. To realize the full potential of remote sensing as a source of 70 

information on land cover change, a method that allows the production of land cover 71 

maps with both fine spatial and temporal resolutions is required. Such maps could be 72 

obtained by combining all available remotely sensed images of varying spatial and 73 

temporal resolution to form a series of fine-resolution land cover maps. 74 

Recently, spatial–temporal image fusion, which aims to produce fine spatial and 75 

temporal resolution remotely sensed images from images with different spatial and 76 

temporal resolutions, has become a promising means to address the trade-off between 77 

spatial and temporal resolution (Gevaert and Garcia-Haro 2015; Zhu et al. 2016). 78 
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Spatial–temporal data fusion methods can be categorized into weighted function based 79 

methods, unmixing-based methods, and dictionary-pair learning based methods (Zhu 80 

et al. 2016). Among the weighted function based methods, the Spatial and Temporal 81 

Adaptive Reflectance Fusion Model (STARFM) proposed by Gao et al. (2006) was 82 

developed first and is one of the most popular spatial–temporal image fusion methods. 83 

By fusing coarse spatial resolution Moderate Resolution Imaging Spectroradiometer 84 

(MODIS) and fine spatial resolution Landsat sensor images, STARFM can predict 85 

Landsat-like reflectance images with the spatial resolution of Landsat and the temporal 86 

resolution of MODIS. A number of studies have suggested improvements to STARFM, 87 

including studies of forest disturbance (Hilker et al. 2009a), and in heterogeneous 88 

regions (Zhu et al. 2010), as well as in gap filling to reduce the negative effects of cloud 89 

(Gevaert and Garcia-Haro 2015). STARFM and the improved models based on it have 90 

been mainly used to detect reflectance changes caused by processes such as phenology 91 

over large areas, and used to generate dense time series of Landsat-like data (Hilker et 92 

al. 2009b), enhance land cover classification (Jia et al. 2014), and predict key 93 

environmental variations such as evapotranspiration (Anderson et al. 2011) and 94 

temperature (Hilker et al. 2009b). Other spatial–temporal image fusion models, such as 95 

the unmixing-based algorithm that extracts endmembers on the basis of linear spectral 96 

mixture model and assigns the unmixed reflectance to fine spatial resolution pixels 97 

(Huang and Zhang 2014; Zhukov et al. 1999; Zurita-Milla et al. 2009) and the 98 

dictionary-pair learning based methods, which capture features from the coarse- and 99 

fine-resolution image pairs used for predicting fine-resolution image (Huang and Song 100 
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2012), have also been proposed and applied to Landsat and MODIS images in recent 101 

years (Amoros-Lopez et al. 2013; Wu et al. 2012).  102 

Generally, spatial–temporal image fusion models aim to generate a series of 103 

continuous reflectance values instead of discrete categorical values. A further image 104 

classification step is needed to produce from the reflectance images a corresponding 105 

series of land cover maps for the study of land cover class dynamics (Jia et al. 2014). 106 

The use of these methods for generating land cover maps and monitoring land cover 107 

changes often suffers from two important limitations. 108 

First, most spatial–temporal image fusion algorithms assume that land cover type 109 

does not change during the data observation period (Fu et al. 2013; Gao et al. 2006; 110 

Zhu et al. 2010). Previous research has shown that STARFM does not deal well with 111 

abrupt land cover changes. Song and Huang (2013) showed that STARFM failed to fuse 112 

the pixel reflectance accurately in a study of land cover change in an urban area. The 113 

Enhanced STARFM (ESTARFM) is often better than STARFM for studies of 114 

heterogeneous landscapes (Zhu et al. 2010) but can be worse than STARFM for 115 

predicting abrupt changes of land cover type (Emelyanova et al. 2013). The Spatial 116 

Temporal Adaptive Algorithm for mapping Reflectance CHange (STAARCH) 117 

improves STARFM’s performance when land cover type change and disturbance exist, 118 

but it is more suitable for spatial–temporal fusion of forest land cover (Hilker et al. 119 

2009a). The Flexible Spatiotemporal DAta Fusion model (FSDAF) can predict 120 

Landsat-like reflectance values with both gradual change and land cover type change, 121 

but it cannot capture tiny changes in land cover type, such as when only a few fine 122 
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pixels experienced land cover type change and the change is invisible in the coarse-123 

resolution image (Zhu et al. 2016). Similar to STARFM, the unmixing-based spatial–124 

temporal reflectance fusion methods consider only the change in endmember spectra 125 

but not in land cover types (Huang and Zhang 2014; Zhukov et al. 1999; Zurita-Milla 126 

et al. 2009).  127 

Second, most spatial–temporal image fusion methods need one or more observed 128 

pairs of coarse- and fine-resolution images for training and require the coarse- and fine-129 

resolution remotely sensed data from different satellite sensors to be mutually 130 

comparable and correlated. All the weighted function based methods, including 131 

STARFM, ESTARFM, STAARCH, and all the dictionary-pair learning-based methods 132 

need one or more observed pairs of coarse- and fine-resolution images, which have 133 

comparable reflectance bands, for training (Gao et al. 2006; Gevaert and Garcia-Haro 134 

2015; Zhu et al. 2010). These methods mainly focus on predicting Landsat-like 135 

remotely sensed images with MODIS repetition rates. However, these methods cannot 136 

deal with other satellite images, which have uncorrelated reflectance bands, and are 137 

thus limited in the use of land cover change analysis. For instance, in regional-scale 138 

land cover analysis, the detection of very-high-resolution land cover changes at high 139 

temporal resolutions is required. In general, we can obtain a series of Landsat images 140 

and a few very-high-resolution images such as panchromatic aerial photograph. The 141 

weighted function based and dictionary-pair learning based methods cannot fuse these 142 

data because the very-high-resolution images usually have different reflectance bands 143 

compared with Landsat images. 144 
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The spatial–temporal image fusion methods aim to produce fine spatial–temporal 145 

resolution reflectance images rather than land cover maps. The fused fine-resolution 146 

images have many applications, such as phenology analysis. If the aim is to generate a 147 

sequence of land cover maps from the reflectance images from which land cover change 148 

trajectories may be extracted, then a further image classification analysis is still required, 149 

which may introduce uncertainty and error in the land cover maps. First, the 150 

classification of an image series can be complex and laborious. Training statistics are 151 

required to inform classification analysis, and these may vary in quality in time due to 152 

issues such as phenology. Moreover, the classification is also problematic, with the 153 

potential for different classifiers to generate dissimilar land cover maps from the same 154 

training data. Traditional classifiers applied to mono-temporal image may also ignore 155 

the temporal information contained in a series of images and thereby produce a 156 

classification of sub-optimal accuracy. The spatial–temporal–based image classifier has 157 

the advantage in taking both the spatial and temporal links between neighboring pixels 158 

(Cai et al. 2014), but is challenging to use for voluminous image series (Liu and Cai 159 

2012; Liu et al. 2006). Finally, the spatial–temporal image fusion models generate a 160 

large volume of fine spatial–temporal resolution reflectance images as the intermediate 161 

data to be used for the production of land cover maps. This situation may represent 162 

practical challenges in terms of data access and storage. 163 

Given the concerns with the spatial–temporal reflectance fusion model for 164 

producing land cover maps, a more appropriate fusion approach could be based on 165 

directly downscaling the coarse spatial resolution image series to fine spatial resolution 166 
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land cover maps rather than reflectance images, with the aid of information derived 167 

from a few fine spatial resolution images that may be available. Chen et al. (2015) 168 

updated land cover maps from downscaled Normalized Difference Vegetation Index 169 

(NDVI) time-series data from MODIS, a current Landsat image, and a Landsat image 170 

that pre-dates it. The NDVI time-series data are used as ancillary data to extract changed 171 

pixels in the Landsat images, and the labels of changed pixels are determined using the 172 

current Landsat image. Thus, this method can update fine-resolution land cover maps 173 

with Landsat repetition rates based on available Landsat images, but cannot predict 174 

fine-resolution land cover maps with MODIS repetition rates. In addition, a major 175 

problem with this approach is that a large proportion of coarse spatial resolution image 176 

pixels may be of mixed land cover composition. A possible solution of this problem is 177 

to use the fractional land cover class composition images that can be extracted via a 178 

spectral unmixing analysis. A comparison of the obtained fraction images indicates the 179 

change, if any, in land cover that has occurred in the time period between the dates of 180 

image acquisition (Lu et al. 2004). This approach can potentially reveal important 181 

temporal land cover information, such as land cover modification and conversion 182 

(Foody 1999; Lu et al. 2011). Unfortunately, these approaches show only the change in 183 

the fraction of the area that is represented by each coarse-resolution pixel and not the 184 

geographical location of the change. Information on the location of change might be 185 

obtained through a super-resolution analysis (Li et al. 2016; Wang et al. 2015). 186 

Super-resolution land cover mapping (SRM) is a promising technique used to 187 

generate land cover maps with a finer spatial resolution than the input data and is 188 
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typically viewed as a post-processing approach applied after a spectral unmixing 189 

analysis. SRM predicts the spatial distribution of each land cover class in the area 190 

represented by each coarse spatial resolution pixel and provides more fine spatial 191 

resolution land cover information than spectral unmixing (Atkinson 2009). Various 192 

approaches have been proposed (Atkinson 2005; Ge et al. 2016; Kasetkasem et al. 2005; 193 

Ling et al. 2016; Tatem et al. 2003), and SRM has been used in many fields, including 194 

the extraction of waterlines (Foody et al. 2005), rural land cover (Tatem et al. 2003), 195 

refining the estimation of ground control point location (Foody 2002), land cover 196 

change detection (Wang et al. 2015), land cover map updating (Li et al. 2015b), and 197 

wetland inundation analysis (Li et al. 2015a). 198 

Traditionally, SRM is applied to a mono-temporal coarse spatial resolution image 199 

dataset. The SRM solution space is large because SRM predicts land cover maps with 200 

finer spatial resolution than the input data, and it can provide multiple plausible 201 

solutions that satisfy the constraints of the SRM analysis. A fine spatial resolution land 202 

cover map that pre- or post-dates the coarse spatial resolution image could be used to 203 

provide fine spatial resolution information to constrain and enhance the SRM solution 204 

(Li et al. 2015b; Ling et al. 2011; Wang et al. 2015; Xu and Huang 2014).  Although 205 

the accuracy of SRM may be increased through the use of multi-temporal data, 206 

challenges remain, especially if a time series of images are used. Often, a sequence of 207 

coarse spatial resolution images together with a few fine spatial resolution images that 208 

pre- and post-date the coarse-resolution images are available. Applying existing SRMs 209 

to each coarse-resolution image without or with only one fine spatial resolution map 210 
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that pre- or post-dates it fails to account for the temporal dependence in the image series 211 

and fails to fully exploit the available information. The construction of SRM that 212 

considers the temporal dependences of a coarse-resolution image from fine-resolution 213 

maps that pre- and post-date it is necessary for a fuller reconstruction of land cover 214 

dynamics.  215 

The objective of this paper is to propose a Spatial–Temporal remotely sensed 216 

Images and land cover Maps Fusion Model (STIMFM). The inputs to STIMFM are a 217 

series of coarse spatial resolution multi-spectral remotely sensed images and few fine 218 

spatial resolution land cover maps that pre- and post-date the coarse spatial resolution 219 

image series. The fine spatial resolution land cover maps can be obtained from various 220 

data sources, such as through classification of remotely sensed images or maps 221 

produced conventionally from field survey. As a result, the input to STIMFM is more 222 

general than that of other spatial–temporal image fusion models. Critically, STIMFM 223 

outputs a series of fine spatial–temporal resolution land cover maps, not reflectance 224 

images. In addition, STIMFM takes information on class temporal dependence that 225 

exists in different images into account and is able to deal with land cover change. 226 

STIMFM was compared with a set of alternative methods. The latter includes two SRM 227 

methods that use a mono-temporal coarse spatial resolution image as input and two 228 

spatial–temporal image fusion methods, namely, the ESTARFM which adopts the 229 

coarse spatial resolution image and two fine and coarse spatial resolution image pairs 230 

that pre- and post-date the coarse-resolution image as input, and the FSDAF which 231 

adopts the coarse spatial resolution image and one fine and coarse spatial resolution 232 
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image pair that pre- or post-date the coarse-resolution image as input.  233 

2. Methods 234 

2.1. STIMFM 235 

    A coarse spatial resolution image Y contains I × J pixels. Fine spatial resolution 236 

land cover maps of the same geographical region are Xpre and Xpost, which are 237 

temporally close to and pre- or post-date Y, respectively. Xpre and Xpost contain I × s × 238 

J × s pixels, where s is the scale or zoom factor and each coarse spatial resolution pixel 239 

contains s × s fine spatial resolution pixels. C land cover classes are present in Xpre and 240 

Xpost. The STIMFM predicts a fine spatial resolution land cover map X at the time of 241 

coarse-resolution image Y observation, and has I × s × J × s pixels, each of which has 242 

a land cover class label in C. STIMFM produces a series of fine spatial and fine 243 

temporal resolution land cover maps. It uses a series of coarse spatial resolution 244 

remotely sensed images and a few fine spatial resolution land cover maps as input (Fig. 245 

1). STIMFM comprises several main steps, including spectral endmember estimation, 246 

analysis of land cover class fraction temporal change, objective function construction, 247 

and model optimization. The STIMFM flowchart is shown in Fig. 2.  248 

 249 
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 250 

Fig. 1 Production of a series of fine spatial and temporal resolution land cover maps from a series of 251 

coarse spatial resolution remotely sensed images and a few fine spatial resolution land cover maps in 252 

STIMFM. 253 

 254 

 255 

Fig. 2 Flowchart of STIMFM. 256 

2.2. Spectral endmember estimation 257 
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    In STIMFM, endmembers that are representative of the spectra of pure land cover 258 

classes are estimated for coarse spatial resolution remotely sensed images. Endmember 259 

spectra need to be extracted for each coarse spatial resolution image in the dataset as 260 

differences may be expected in a time series due to issues such as phenology or 261 

variation in image acquisition properties (e.g., angular viewing geometry). Although 262 

many endmember extraction algorithms are available, they are not directly used in 263 

STIMFM because spectral endmembers are difficult to extract accurately from coarse 264 

spatial resolution remotely sensed images due to the small proportion of pure pixels 265 

that are typically contained. Information for the estimation of endmembers is instead 266 

provided by the fine spatial resolution land cover maps that pre- and post-date the 267 

coarse spatial resolution image time series. 268 

    The land cover classes are defined in the fine spatial resolution land cover maps. 269 

For each coarse spatial resolution remotely sensed image, the linear mixture model 270 

(LMM) is applied in STIMFM to estimate endmember spectra. With the LMM, the 271 

spectral response of each coarse spatial resolution pixel is viewed as being composed 272 

of a weighted linear sum of the endmember spectra within that pixel, in which the 273 

weights are determined by the relative areal proportions of each endmember (Settle and 274 

Drake 1993). On the basis of the linear mixing assumption, the spectral signature yij for 275 

the coarse spatial resolution pixel (i,j) in Y can be represented by 276 

iij jEy f                            (1) 277 

where yij is a B × 1 spectral vector. B is the number of spectral bands. E is a B × C 278 

matrix that represents the endmembers used for Y. fij is the C × 1 vector that represents 279 
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fractions of all endmembers in the pixel (i,j) in Y.  280 

    Theoretically, to solve for E with B × C unknown variables, at least B × C 281 

equations are required. l (l>C) coarse pixels are collected to compose a system of linear 282 

mixture equations 283 

   1 2 1 2, , , ,l lE， ，y y y f f f
                        (2)

 284 

where yl is the spectral signature for the l-th coarse spatial resolution pixel in Y, and fl 285 

is the fraction vector of different classes in the l-th coarse spatial resolution pixel in Y. 286 

E can be solved on the basis of the inversion of Eq. (2) by computing a least squares 287 

best fit solution 288 

2

1

[ ] arg min
l

n n

n

f


 
  

 
E y                     (3) 289 

where yn is the n-th coarse spatial resolution pixel's spectral signature in Y, and fn is the 290 

fraction vector in the n-th coarse spatial resolution pixel in Y. 
2
  is the L2 norm of 291 

the residual vector. "argmin" means the minimizing argument of the function. 292 

A number of coarse spatial resolution pixels in Y with known endmember fractions 293 

are sought to solve Eq. (3). For each class, the focus is a set of coarse-resolution pixels 294 

that have the least changed fractions of that class during the time period covered by Xpre 295 

and Xpost. To avoid the collinearity problem in the use of LMM (van der Meer and Jia 296 

2012), m coarse-resolution pixels that have the highest fraction of a given class (i.e., 297 

the m purest coarse-resolution pixels of the class) among the selected set of coarse-298 

resolution pixels are used. All the m × C coarse spatial resolution pixels are used for 299 

endmember estimation in Eq. (3), which can be solved by computing a least squares 300 

best fit solution. Assuming the fractions of the m × C coarse spatial resolution pixels 301 
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are unchanged, the fractions of these coarse pixels in Xpre or Xpost are used as a substitute 302 

of those in Y. The fractions in Xpre and Xpost are produced through a spatial degradation 303 

process by dividing the number of fine spatial resolution pixels of each class by the 304 

total number of fine spatial resolution pixels in a coarse spatial resolution pixel (i.e., s2).  305 

2.3. Analysis of land cover class fraction temporal change 306 

    With the estimated endmembers, class fraction images that represent the area 307 

percentage of a pixel occupied by each endmember can be extracted from coarse spatial 308 

resolution image Y using the estimated endmember spectra E and on the basis of the 309 

mean square error minimization criterion of the LMM 310 

2

[ ] arg minij ij ijf yf                       (4) 311 

0 1, 1, ,ijcf c C                          (5)          312 

1

1
C

ijc

c

f


                            (6) 313 

where 
T

1 2, , ,ij ij ij ijCf f f   f , and fijc is the fraction value of the c-th endmember in 314 

coarse spatial resolution pixel (i,j) in Y. 315 

The fraction images produced from the coarse spatial resolution image by spectral 316 

unmixing, as well as those produced by spatially degrading the fine spatial resolution 317 

land cover maps that pre- and post-date the coarse spatial resolution image, provide the 318 

land cover trajectory at the acquisition times of Xpre, Y, and Xpost. The change of class 319 

fractions in each coarse spatial resolution pixel represents the temporal transitions 320 

between classes in the period between the dates of image acquisition. If the class 321 

fractions remain unchanged between the coarse-resolution image and fine-resolution 322 
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map that pre- or post-dates it, then the fine spatial resolution pixel class labels may 323 

probably also be unchanged during this period. In this case, the images are temporally 324 

correlated. By contrast, if the class fractions changed drastically between two images, 325 

then the fine spatial resolution pixels may have changed during this period. Thereby, 326 

the images are temporally uncorrelated. As a result, the temporal dependence between 327 

different images can be analyzed on the basis of the change in fractions in each coarse 328 

spatial resolution pixel.  329 

    Assume aijk is the k-th ( 21, ,k s ) fine spatial resolution pixel in the coarse 330 

spatial resolution pixel (i,j) ( 1, ,i I , 1, ,j J ) in the land cover map X, aijk,pre 331 

and aijk,post are the k-th fine spatial resolution pixel in coarse spatial resolution pixel (i,j) 332 

in the maps Xpre and Xpost, and c(aijk), c(aijk,pre), and c(aijk,post) are land cover class labels 333 

for fine spatial resolution pixels aijk, aijk,pre, and aijk,post, respectively. The temporal 334 

dependence or correlation between fine spatial resolution pixels aijk,pre and aijk during 335 

Xpre and Y observation period or between fine spatial resolution pixels aijk and aijk,post 
336 

during Y and Xpost observation period, which is dependent on the class labels of aijk,pre 
337 

and aijk or the class labels of aijk and aijk,post [Eqs. (7)–(8)] and the change in fractions in 338 

this coarse pixel measured by wij,pre and wij,post [Eqs. (9)–(10)], can be characterized as 339 

, ,( ), ( )( )ij pre ijk ijk prew c a c a  or , ,( )( ), ( )ij post ijk ijk postw c a c a . 340 

   ,

,

if
( ), (

1
( )

0 otherwis
)

e

ijk ijk pre

ijk ijk pre

c a c a
c a c a








              (7) 
341 

  ,

,

1
( )

0 oth

if ( )
( ), (

wise
)

er

ijk ijk post

ijk ijk post

c a c a
c a c a






 .

             (8)
 342 

On the basis of the Kronecker delta function, Eqs. (7)–(8) return a value of 1 if the fine 343 
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spatial resolution pixel in different images have an unchanged class label, thereby 344 

indicating that different image pixels are temporally correlated, and a value of 0 if the 345 

fine spatial resolution pixel in different images have changed class labels, thereby 346 

indicating that the different image pixels are temporally uncorrelated.  347 

    The changes in fractions in coarse-resolution pixel (i,j) during Xpre and Y 348 

observation period and during Y and Xpost observation period are measured by wij,pre 349 

and wij,post on the basis of the Gaussian model in Eqs. (9)–(10)  350 

 2

, ,  expij pre ij ij prew  = f f
                              

(9) 351 

 2

, ,  expij post ij ij postw  = f f
                            

(10) 352 

where fij,pre and fij,post are the land cover fraction vector in coarse pixel (i,j) in Xpre and 353 

Xpost produced by spatially degrading Xpre and Xpost according to the scale factor s. wij,pre 354 

and wij,post indicate the strength of temporal dependence between fine pixels in coarse 355 

pixel (i,j) during Xpre and Y observation period or during Y and Xpost observation period. 356 

wij,pre and wij,post decrease with the increase in the change of fractions in Eqs. (9)–(10).  357 

2.4. Spatial–temporal SRM model 358 

    Given the coarse spatial resolution image Y, the fine spatial resolution maps Xpre 359 

and Xpost, STIMFM aims to predict the fine spatial resolution land cover map X at the 360 

time of Y observation. The optimal STIMFM result X, given Y, Xpre , and Xpost, can be 361 

formulated by applying the maximum a posteriori rule in Bayesian framework, i.e., by 362 

solving the maximization problem: 363 
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  

 

arg max , ,

1
   arg max exp , ,

posterior

pre post

posterior

pre post

P

U
Z



      

X X Y X X

X Y X X
             (11) 364 

where Z is a normalizing constant.  , ,posterior

pre postP X Y X X  is the posterior 365 

probability of X, given Y, Xpre, and Xpost.  , ,posterior

pre postU X Y X X  is the posterior 366 

energy function of X, given Y, Xpre , and Xpost. The solving of (11) is complicated 367 

because it involves the optimization of a global distribution model of the entire image. 368 

Based on the Markov random field approach, the searching of the optimal X is 369 

equivalent to minimization the posterior energy function, which can be specified to 370 

model the spatial and temporal dependencies of pixel on its spatial and temporal 371 

neighborhoods (Cai et al. 2014; Li et al. 2014). 372 

  ( ), , = ( ) ( , )spectraposterior

pre

l spati

post pre p

al temporal

ostU U UU  X Y X X Y X X X X X  (12)              373 

where ( )spectralU Y X  is spectral constraint function that represents the inconsistency 374 

between Y and X, ( )spatialU X  and ( , )pre post

temporalU X X X  are the spatial and temporal 375 

constraint functions, respectively. 376 

2.4.1 Spectral constraint function 377 

    The spectral constraint function is used to link the fine spatial resolution land cover 378 

map X with the observed coarse spatial resolution image Y. The spectral response of a 379 

coarse spatial resolution pixel in Y is composed of a weighted linear sum of endmember 380 

spectral responses within that pixel in the fine spatial resolution map X on the basis of 381 

the LMM. A synthetic coarse spatial resolution pixel spectral signature is developed for 382 

a coarse spatial resolution pixel on the basis of the endmember spectral signatures and 383 

the fraction of each endmember according to the LMM. The STIMFM spectral 384 
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constraint function aims to minimize the L2 norm of the residual vector between the 385 

observed and synthetic coarse spatial resolution spectral signatures 386 

2

1 1

( ) ij

I J
spectral

ij

i j

U f
 

 Y X y                  (13) 387 

where the class fraction vector 
ijf

 
is calculated by dividing the number of fine-388 

resolution pixels of different classes in coarse-resolution pixel (i,j) by s2 in X, which is 389 

estimated and iteratively updated from STIMFM. 
ijf

 
is the synthetic spectra for 390 

coarse-resolution pixel (i,j) on the basis of the LMM.  391 

2.4.2 Spatial constraint function 392 

    The spatial constraint function is used to describe the spatial pattern of land cover 393 

distribution. In STIMFM, the maximal spatial dependence model that aims to maximize 394 

the spatial dependence between neighboring fine spatial resolution pixels was used for 395 

its simplicity and effectiveness (Atkinson 2009). For a fine spatial resolution pixel 
ijka , 396 

the spatial dependence is quantified with respect to its neighboring fine spatial 397 

resolution pixels. The STIMFM spatial constraint function is computed as 398 

 
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(14) 399 

where N(aijk) is the spatial neighborhood that includes all fine spatial resolution pixels 400 

inside a square window whose center is aijk (aijk itself is not included), and al is a 401 

neighboring fine spatial resolution pixel of aijk in N(aijk). The size of the neighborhood 402 

N(aijk) is W.  ,ijk ld a a
 
is the Euclidean distance between aijk and al. c(al) is the land 403 

cover class label for fine spatial resolution pixel al.  ( ), ( )ijk lc a c a  equals 1 if c(aijk) 404 

and c(al) are the same and 0 otherwise. S  is the spatial weight parameter. - S  is 405 
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multiplied because the STIMFM objective function seeks the minimal value as the 406 

optimal solution. 407 

2.4.3 Temporal constraint function 408 

    The STIMFM temporal constraint function is used to measure the temporal 409 

dependence between the predicted fine spatial resolution map X and the input fine 410 

spatial resolution maps Xpre and Xpost. The class label of fine spatial resolution pixel aijk 411 

is temporally correlated to fine spatial resolution pixel aijk,pre and aijk,post in the maps Xpre 412 

and Xpost depending on the class labels of aijk, aijk,pre and aijk,post and the strength of 413 

temporal dependences measured by the weights wij,pre and wij,post. T  is the temporal 414 

weight parameter. The STIMFM temporal constraint function is written as 415 

     
2

, ,, ,

1 1 1

( , )= ( ), ( ) ( ), ( )pre post ij pre pre i
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(15) 416 

2.5. Model initialization and optimization 417 

    An initial fine spatial resolution land cover map is used as input to STIMFM at the 418 

outset. The initialization map is produced according to the land cover class fraction 419 

images estimated from a coarse spatial resolution image. The fine spatial resolution 420 

pixels are randomly allocated class labels in a manner that maintains the class 421 

proportional information conveyed by a prior spectral unmixing analysis (Kasetkasem 422 

et al. 2005). The class labels in the initial fine spatial resolution land cover map are then 423 

updated iteratively. Here, the Iterative Conditional Mode (ICM)  was applied to 424 

update the fine spatial resolution pixel class labels. ICM converges when no pixel class 425 
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labels change during two successive iterations or when a predefined number of 426 

iterations have been undertaken. 427 

3. Experiments and results 428 

    The proposed STIMFM was evaluated in three experiments. The first used Landsat 429 

multi-spectral images and the National Land Cover Database (NLCD) land cover maps 430 

(Landsat–NLCD). The second used MODIS and Landsat multi-spectral images 431 

(MODIS–Landsat). The third used Landsat and Google Earth Images (Landsat–GEI). 432 

For a rigorous assessment, several traditional approaches were used for comparison, 433 

including the Pixel Swapping based SRM (PS_SRM) (Atkinson 2005), the Spatial 434 

Regularization based SRM (SR_SRM) (Ling et al. 2014), the ESTARFM (Zhu et al. 435 

2010), and the FSDAF model (Zhu et al. 2016). 436 

    PS_SRM and SR_SRM use only a mono-temporal coarse spatial resolution image 437 

as input and hence do not exploit the temporal information in the land cover. By contrast, 438 

ESTARFM uses a coarse spatial resolution image and pairs of coarse and fine spatial 439 

resolution images that pre-and post-date it as input. ESTARFM is based on the 440 

assumption that remotely sensed data from different satellite sensors observed on the 441 

same, or at least very close, date are mutually comparable and correlated, and uses the 442 

correlation to blend multi-source data and minimize the system biases. The FSDAF, 443 

which is based on spectral unmixing analysis and a thin plate spline interpolator, is also 444 

used for comparison. It requires only one pair of fine and coarse spatial resolution 445 

images that pre- or post-date the coarse-resolution image. 446 

    ESTARFM and FSDAF output a fine spatial resolution reflectance image rather 447 
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than a land cover map. The fine spatial resolution image produced may then be 448 

classified. Two types of classification methods were applied. The first one is the 449 

Maximum Likelihood Classifier (MLC), which is one of the statistical classifiers that 450 

relies on the second-order statistics of a Gaussian probability density function for the 451 

distribution of the feature vector of each class. In MLC, a pixel is allocated to the class 452 

with which it has the highest likelihood of membership (Richards and Jia 1999). The 453 

produced final fine spatial resolution land cover maps by MLC, which are referred to 454 

as ESTARFM_MLC and FSDAF_MLC, were compared with STIMFM. 455 

    The second used classification method is the automated Land Cover updating 456 

approach based on integrated change detection and classification methods (LCupdating) 457 

produced by Chen et al. (2012). MLC used only the fused fine-resolution image as input 458 

but ignored the available fine-resolution image and land cover map that pre- or post-459 

dates the coarse-resolution image. LCupdating was applied to the fused image from 460 

ESTARFM and FSDAF by incorporating the fine-resolution remotely sensed image and 461 

land cover map that pre-date the coarse-resolution image. LCupdating first detects 462 

changes between the input and fused fine-resolution images from ESTARFM or 463 

FSDAF and then predicts the changed pixel labels in the fused image based on the 464 

Markov random field based classifier. The ESTARFM and FSDAF incorporating 465 

LCupdating methods (ESTARFM_LCupdating and FSDAF_LCupdating) were 466 

compared with STIMFM. 467 

The parameters of these different methods were set according to results reported 468 

in the literature and through trial and error. The STIMFM spatial weight parameter S  469 

http://219.142.121.4/Faculty/CXH/code_lib/lcupdating_pro.pro
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and temporal weight parameter 
T  

were set to 0.05. The neighborhood window size 470 

W in the STIMFM spatial constraint function was set to 2×s-1 (Tolpekin and Stein 471 

2009). The number of unchanged coarse pixels, m, in STIMFM endmember estimation 472 

was set to 100. 473 

 474 

3.1 Landsat–NLCD experiment 475 

3.1.1 Data preparation 476 

This experiment used Landsat Thematic Mapper (TM) multi-spectral images and 477 

NLCD land cover maps. The NLCD is a land cover classification scheme of Albers 478 

Equal Area projection, which has been applied consistently at a spatial resolution of 479 

30 m across the conterminous USA primarily on the basis of Landsat satellite data. 480 

NLCD maps for the years 2001, 2006, and 2011 were used in this experiment. The 481 

NLCD 2001 was based primarily on a decision tree classification of 2001 Landsat 482 

satellite data. The NLCD 2006 and 2011 were based primarily on a decision tree 483 

classification from 2006 and 2011 Landsat satellite data, and also quantified land cover 484 

change from 2001 to 2006 and 2006 to 2011 (Homer et al. 2015; Jin et al. 2013; Xian 485 

et al. 2009). The original sixteen classes were reclassified into eight classes (Fig. 3). 486 

Subset land cover maps, each with a size of 2000 × 2000 pixels (centered at  34°4′00″N 487 

and 79°27′00″W), were acquired from NLCD 2001, 2006, and 2011 [Fig. 3(b–d)]. 488 

 489 
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 490 

Fig. 3 Input and result maps for the entire study area in the Landsat–NLCD experiment. 491 

 492 

A Landsat TM image (path 016, row 036) acquired on April 9, 2006 in the study 493 

area was downloaded from the United States Geological Survey (USGS). This Landsat 494 

image was re-projected to the Albers Equal Area projection, and six spectral bands at 495 

the spatial resolution of 30 m (the 120 m thermal infrared band was excluded) were 496 

used to extract the same 2000 × 2000 pixel area that was identified in the NLCD maps 497 

[Fig. 3(a)]. The subset image was calibrated to surface reflectance (Gao et al. 2006; 498 

Masek et al. 2006) and then spatially degraded to simulate a coarse spatial resolution 499 

multi-spectral image using a scale factor s=8 [Fig. 3(f), 240 m] with a mean filter. The 500 

NLCD 2006 [Fig. 3(c)] was used as the reference map used for accuracy assessment. 501 

The pixels that changed land cover class from 2001 to 2011 accounted for 12.08% of 502 

all fine spatial resolution pixels. 503 

For analyses with the PS_SRM and SR_SRM, only the degraded multi-spectral 504 

image [Fig. 3(f)] was needed as input. For the STIMFM, the required input included 505 

the degraded multi-spectral image [Fig. 3(f)] and the NLCD 2001 and NLCD 2011 land 506 

cover maps [Fig. 3(b), 3(d)]. For ESTARFM, pairs of fine and coarse spatial resolution 507 

multi-spectral images that temporally pre- and post-date the 2006 coarse-resolution 508 
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remotely sensed image were needed. To obtain the required data, a Landsat TM image 509 

acquired on April 17, 2001 and a Landsat TM image acquired on April 7, 2011 were 510 

also downloaded, re-projected, subsetted, and calibrated. The original 30 m spatial 511 

resolution reflectance images with six spectral bands (the 120 m thermal infrared band 512 

was excluded) were spatially degraded to simulate their corresponding coarse spatial 513 

resolution multi-spectral images at scale factors s=8, respectively. Therefore, the input 514 

to the ESTARFM_MLC and ESTARFM_LCupdating included fine and coarse spatial 515 

resolution multi-spectral image pairs in 2001 and 2011 and the coarse spatial resolution 516 

multi-spectral image for 2006. The input to FSDAF_MLC and FSDAF_LCupdating 517 

included fine and coarse spatial resolution multi-spectral image pairs in 2001 and the 518 

coarse spatial resolution multi-spectral image in 2006. In ESTARFM_LCupdating and 519 

FSDAF_LCupdating, the NLCD 2001 fine-resolution land cover map was also used as 520 

the base data. 521 

 522 

3.1.2 Results 523 

 524 

Fig. 4 Input and result maps for the zoomed area in the Landsat–NLCD experiment. 525 
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    The land cover maps produced from the different methods are shown in Fig. 3 for 526 

the entire area and in Fig. 4 for the zoomed area [320 × 320 pixel area in Fig. 3(a)]. In 527 

the zoomed area, the PS_SRM map contained many speckle-like artifacts [Fig. 4(g)]. 528 

This situation arises because the spectral unmixing may determine a small fractional 529 

cover of a class that is actually absent in a coarse-resolution pixel, and this fraction 530 

must be maintained in the result. The SR_SRM map contained fewer speckle-like 531 

artifacts than PS_SRM, because SR_SRM relaxed the constraint of land cover fraction 532 

maintenance [Fig. 4(h)]. However, the maximal spatial dependence model used in 533 

SR_SRM also led to rounded land cover patches. Compared with PS_SRM and 534 

SR_SRM, more spatial detail of the land cover mosaic was retained in the ESTARFM, 535 

FSDAF, and STIMFM maps. Many speckle-like artifacts in the ESTARFM_MLC [Fig. 536 

4(i)] and FSDAF_MLC [Fig. 4(k)] maps existed because MLC is a per-based 537 

classification method, and the spatial context information was not used. 538 

ESTARFM_MLC and FSDAF_MLC incorrectly classified cases that have similar 539 

reflectance values, such as “forest”, “herbaceous”, and “wetlands”, in the result maps 540 

[Figs. 4(i), (k)]. 541 

 542 

Fig. 5 Landsat, ESTARFM and FSDAF images in the zoomed area for the Landsat–NLCD experiment. 543 

In contrast to ESTARFM_MLC and FSDAF_MLC, ESTARFM_LCupdating [Fig. 544 

4(j)] and FSDAF_LCupdating [Fig. 4(l)] quantified the land cover changes between 545 

2001 and 2006 and generated land cover maps that were more similar to the reference 546 
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map [Fig. 4(c)]. The labels of pixels that were detected as unchanged by LCupdating 547 

were preserved in the ESTARFM_LCupdating and FSDAF_LCupdating maps. The 548 

labels of changed pixels were determined based on the Markov random field based 549 

classifier, which considers the contextual information in classification. Thus, most 550 

speckle-like artifacts were eliminated in ESTARFM_LCupdating and 551 

FSDAF_LCupdating. However, many changed pixel labels were incorrectly predicted 552 

by ESTARFM_LCupdating and FSDAF_LCupdating. “Herbaceous” was incorrectly 553 

labeled as “developed” in the ESTARFM_LCupdating highlighted by the black circle 554 

[Fig. 4(j)], and the linear-shaped “developed” in the FSDAF_LCupdating highlighted 555 

by the black circle was disconnected [Fig. 4(l)]. The predicted reflectance for pixels of 556 

changed land cover for “herbaceous” and “planted/cultivated” in ESTARFM [e.g., 557 

those highlighted by the red circle in Fig. 5(f)] was dissimilar to that in the Landsat 558 

2006 reference image [Fig. 5(b)] because ESTARFM cannot capture abrupt land cover 559 

changes (Zhu et al. 2010), and the predicted reflectance of linear-shaped “developed” 560 

land cover was similar to that of “planted/cultivated” in the FSDAF image highlighted 561 

by the red circle in Fig. 5(g), because FSDAF cannot capture tiny land cover changes 562 

(Zhu et al. 2016). By contrast, the STIMFM land cover map as shown in Fig. 4(m) was 563 

quite similar to the reference map, and the detailed land cover patterns were well 564 

represented. STIMFM correctly predicted the class labels not only for almost all pixels 565 

of unchanged land cover but also for most of those pixels for which land cover class 566 

had changed, such as those highlighted in the red circle in Fig. 5(d). 567 

 568 
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Table 1 569 

Overall accuracies (OAs) and accuracies of different methods in predicting PULC and PCLC in the 570 

Landsat–NLCD experiment. 571 

 OA PULC PCLC 

PS_SRM 41.61 41.54  42.13  

SR_SRM 49.10 49.01  49.77  

ESTARFM_MLC 33.57 35.10  22.44  

ESTARFM_LCupdating 88.28 94.89 40.18 

FSDAF_MLC 33.60 34.29 28.60 

FSDAF_LCupdating 89.50 96.15 41.08 

STIMFM 94.89 99.24  63.27  

 572 

The overall accuracies of different methods are shown in Table 1. The result maps 573 

were compared with the NLCD 2006. The overall accuracy of STIMFM is higher than 574 

those obtained from the other methods. Table 1 also shows the accuracies of pixels of 575 

changed and unchanged land cover (PULC means the percentage of correctly labeled 576 

pixels of unchanged land cover among all pixels of unchanged land cover, and PCLC 577 

means the percentage of correctly labeled pixels of changed land cover among all pixels 578 

of changed land cover) obtained from the different methods. For PS_SRM and 579 

SR_SRM, which applied a mono-temporal remotely sensed image, no obvious 580 

difference was found between PULC and PCLC values. For ESTARFM, FSDAF, and 581 

STIMFM applied to multi-temporal data, the PULC values were higher than the PCLC 582 

values. These results indicate that extracting changed land cover information is more 583 

difficult than extracting unchanged land cover information from ESTARFM, FSDAF, 584 

and STIMFM. STIMFM integrates the temporal dependence model in its objective 585 

function, and the fine spatial resolution pixel class labels are temporally dependent on 586 
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those in the pre- and post-dated fine-resolution land cover maps. If the fine-resolution 587 

pixel class labels are unchanged during the observation period, then STIMFM could 588 

make the best use of pixel class labels in the fine-resolution maps that pre- and post-589 

date the coarse-resolution image. Thus, the accuracies for classes with unchanged class 590 

labels are high. By contrast, if the fine-resolution pixel class labels have changed during 591 

the observation period, then STIMFM could not make the best use of pixel class labels 592 

in the fine-resolution maps that pre- and post-date the coarse-resolution image, and the 593 

accuracies for classes with changed class labels are relatively low. The PULC was 594 

higher than 99%, and the PCLC was higher than 63% for STIMFM; these values are 595 

higher than those obtained from the other methods. 596 

 597 

3.2 MODIS–Landsat experiment 598 

3.2.1 Data preparation 599 

The study area was located near Sorriso (12°33′00″S and 55°42′00″W) in Mato 600 

Grosso State, Brazil. This area was mainly covered by tropical forests but has suffered 601 

from deforestation in recent years (Hansen et al. 2008). This experiment used eleven 602 

coarse spatial resolution MODIS images and two fine spatial resolution land cover 603 

maps that pre- and post-date the coarse spatial resolution image series as input and 604 

outputs eleven fine-resolution land cover maps with MODIS repetition rates to show 605 

the fine spatial and temporal deforestation process in the study area. Landsat Enhanced 606 

Thematic Mapper Plus (ETM+) images (path 226, row 069) acquired on 2002/06/08 607 

and 2002/09/12 were downloaded from USGS [Fig. 6(d) and (f)]. Data in six bands (the 608 
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120 m thermal infrared band was excluded) at the 30 m spatial resolution with the 609 

Universal Transverse Mercator projection were used and calibrated to surface 610 

reflectance values (Gao et al. 2006; Masek et al. 2006). One cloud-free Landsat ETM+ 611 

image acquired on 2002/07/10 was used for accuracy assessment [Fig. 6(e)]. A total of 612 

thirteen eight-day surface reflectance MODIS product (MOD09A1) datasets that 613 

comprise seven spectral bands (620 nm–2055 nm) with a spatial resolution of 463 m 614 

acquired from 2002/06/02 to 2002/09/13 were downloaded from USGS (Walker et al. 615 

2012). The MODIS images were re-projected into the UTM coordinate system and 616 

resampled to a spatial resolution of 450 m using the nearest neighbor interpolation, and 617 

were adopted as the coarse spatial resolution multi-spectral images required for the 618 

analyses. The study area covers 300 × 300 MODIS pixels, which correspond to 4500 × 619 

4500 Landsat pixels, with a scale factor s=15.  620 

 621 

 622 

Fig. 6 MODIS, Landsat images, and reference maps in the MODIS–Landsat experiment from 623 

2002/06/08 to 2002/09/12. 624 

 625 

The three Landsat images were classified to produce land cover maps with a 30 m 626 
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spatial resolution [Fig. 6(g)–(i)]. Two land cover classes, forest and nonforest, were 627 

considered in this experiment. The endmembers of each class were manually selected 628 

from each Landsat image, and MLC was applied to generate the fine spatial resolution 629 

forest/nonforest reference maps. The fine-resolution change maps that produced by a 630 

per-pixel comparison of maps in Fig. 6(g)–(i) are shown in Fig. 6(j)–(k). The pixels that 631 

changed land cover class from 2002/06/08 to 2002/09/12 accounted for 4.30% of all 632 

fine spatial resolution pixels. 633 

STIMFM used the MODIS multi-spectral image series from 2002/06/10 to 634 

2002/09/05 and the 2002/06/08 and 2002/09/12 fine spatial resolution land cover maps 635 

in Fig. 6 (g) and (i) as input and predicted a series of land cover maps at 30 m spatial 636 

resolution with MODIS repetition rates during this period. The accuracy was assessed 637 

using the 2002/07/10 land cover map [Fig. 6(h)]. The STIMFM was compared with 638 

PS_SRM, SR_SRM, ESTARFM_MLC, ESTARFM_LCupdating, FSDAF_MLC, and 639 

FSDAF_LCupdating using the 2002/07/10 land cover map in Fig. 6(h) for assessment. 640 

In these methods, the eight-day composite MODIS image [2002/07/04–2002/07/11 in 641 

Fig. 6(b)] was used as the coarse-resolution image. Aside from this data, ESTARFM 642 

used the eight-day composite MODIS images [2002/06/02–2002/06/09 in Fig. 6(a) and 643 

2002/09/06–2002/09/13 in Fig. 6(c)] and Landsat multi-spectral images [2002/06/08 in 644 

Fig. 6(d) and 2002/09/12 in Fig. 6(f)] as input, and FSDAF used the eight-day 645 

composite MODIS image [2002/06/02–2002/06/09 in Fig. 6(a)] and Landsat multi-646 

spectral image [2002/06/08 in Fig. 6(d)] as input. In ESTARFM and FSDAF, the 647 

MODIS bands 1–4 and 6–7 were used in ESTARFM and FSDAF, because no similar 648 
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spectral band of Landsat image was observed from MODIS band 5. The 2002/06/08 649 

fine spatial resolution land cover map in Fig. 6(g) was also inputted in the 650 

ESTARFM_LCupdating and FSDAF_LCupdating.  651 

3.2.2 Results 652 

 653 

  654 
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Table 2 655 

Overall accuracies (OAs) and accuracies of different methods in predicting PULC and PCLC in the 656 

MODIS–Landsat experiment. The MODIS image used in different methods was the eight-day composite 657 

data from 2002/07/04 to 2002/07/11. 658 

 OA PULC PCLC 

PS_SRM 88.14 89.29 62.52 

SR_SRM 89.28 90.42 63.73 

ESTARFM_MLC 95.17 96.90 56.71 

ESTARFM_LCupdating 96.32 98.07 57.42 

FSDAF_MLC 95.07 96.72 58.23 

FSDAF_LCupdating 96.61 98.37 57.38 

STIMFM 98.27 99.69 66.67 

 659 

    The OA, PULC, and PCLC values obtained from the application of the different 660 

methods are shown in Table 2. The overall accuracies obtained from the PS_SRM and 661 

SR_SRM were lower than 90%, whereas the overall accuracies of ESTARFM_MLC, 662 

ESTARFM_LCupdating, FSDAF_MLC, and FSDAF_LCupdating were higher than 663 

95%. These findings indicate that the classification from fine-resolution image 664 

extracted by spatial–temporal fusing of coarse and fine-resolution images can better 665 

improve the accuracy compared with SRM applied to a mono-temporal coarse-666 

resolution image. The OA value for STIMFM was 98.27%, which is higher than all the 667 

other methods. The PCLC values were lower than the PULC values for ESTARFM, 668 

FSDAF, and STIMFM methods, which is similar to those in the Landsat–NLCD 669 

experiment. The STIMFM has the highest PULC value, which was 99.69%, and the 670 

highest PCLC value, which was 66.67%, among all the methods.  671 
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 672 

Fig. 7 Input, reference, and result images and maps for the zoomed area at different years for the MODIS–673 

Landsat experiment. The MODIS image used in different methods was the eight-day composite data 674 

from 2002/07/04 to 2002/07/11. 675 

 676 

The reference, input, and result images and maps in the zoomed area are shown in 677 

Fig. 7. A part of the forest patch (highlighted by a blue circle in regions A and B in Fig. 678 

7) changed to nonforest from 2002/06/08 to 2012/07/10 [Fig. 7(j)], and a part of the 679 

forest patch (highlighted by a blue circle in region C in Fig. 7) changed to nonforest 680 

from 2002/07/10 to 2012/09/12 [Fig. 7(k)]. The PS_SRM map contained many speckle-681 

like artifacts [Fig. 7(o)], and SR_SRM contained land cover patches with oversmoothed 682 

rounded boundaries [Fig. 7(p)]. In the ESTARFM and FSDAF fused images [Fig. 7(l), 683 

(q)], the pixels of unchanged land cover considerably resemble those in the reference 684 
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Landsat image, whereas the pixels of changed land cover (highlighted by blue circles 685 

in Fig. 7) were noticeably different from those in the reference Landsat image [Fig. 686 

7(e)]. As a result, these pixels of changed land cover were erroneously classified in the 687 

ESTARFM_MLC, ESTARFM_LCupdating, FSDAF_MLC, and FSDAF_LCupdating 688 

results [Figs. 7(m), (n), (r), and (s)]. By contrast, most of the changed and unchanged 689 

pixels are correctly allocated by STIMFM [Fig. 7(t)], thereby showing the ability of the 690 

proposed STIMFM model in the reconstruction of land cover trajectories for pixels of 691 

both changed and unchanged land cover. The land cover changes in Fig. 8 were 692 

extracted by comparing the STIMFM predicted maps and input fine-resolution land 693 

cover map that pre-dates the coarse images [Fig. 6(g)]. The colors in Fig. 8 indicate the 694 

date when the pixels begin to change. The forest area decreased gradually, whereas the 695 

nonforest area increased in Fig. 9. With STIMFM, the detailed spatial extent 696 

information and the change of areas for different classes can be extracted, thereby 697 

showing the effectiveness of the proposed method.   698 

  699 
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 700 

Fig. 8 30 m spatial extent of land cover change with MODIS repetition rates derived from STIMFM. The 701 

colors represent the date when pixels begin to change. “unchan or prev chan” marked as white color 702 

means unchanged or previously changed before 2002/06/08.  703 

 704 

 705 

Fig. 9 Forest and nonforest areas extracted using STIMFM in the MODIS–Landsat experiment.  706 

 707 

 708 

3.3 Landsat–GEI experiment 709 

The study area was located in Wuhan (30°27′30″N and 114°32′30″E), Hubei 710 

province, China. This area underwent rapid urbanization in 2010–2016. This 711 

experiment used eleven cloud-free 30 m spatial resolution Landsat-8 Operational Land 712 

Imager (OLI) multi-spectral images (path 123, row 039) from 2013 to 2015 and two 713 
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5 m spatial resolution land cover maps acquired in 2012 and 2016 as input. Eleven 5 m 714 

resolution land cover maps during 2013–2015 were predicted to show the fine spatial 715 

and temporal urbanization process in the study area. The acquired eleven Landsat OLI 716 

images were downloaded from USGS. The first seven bands of OLI image with a spatial 717 

resolution of 30 m were selected. Two GEIs acquired on 2012/04/26 and on 2016/02/20 718 

[Figs. 10(a), (b)] with a spatial resolution of 5 m were re-projected into the UTM 719 

coordinate system and digitized into the 5 m land cover maps [Figs. 10(c), (d)]. Four 720 

land cover classes, namely, water, vegetation, bareland, and urban, were found in the 721 

fine-resolution maps. The study area covers 320 × 450 Landsat pixels, which 722 

correspond to 1920 × 2700 fine-resolution pixels in Figs. 10(c) and (d), with a scale 723 

factor s = 6. The land cover change map from 2012/04/26 to 2016/02/20 is shown in 724 

Fig. 10(e). The pixels that changed land cover class accounted for 23.49% of all fine 725 

spatial resolution pixels from 2012/04/26 to 2016/02/20. 726 

  727 
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 728 

Fig. 10 Google Earth images, land cover maps and change maps in the Landsat–GEI experiment. 729 

 730 

STIMFM was used to produce the eleven 5 m resolution land cover maps with 731 

Landsat repetition rates during 2013–2015 using the eleven cloud-free Landsat images 732 

and two 5 m land cover maps on 2012/04/26 and 2016/02/20 as input. The STIMFM 733 

accuracy was assessed using a 5 m fine-resolution land cover map, which was produced 734 

according to a GEI at the spatial resolution of 5 m acquired on 2014/12/06 [Fig. 11(b)]. 735 

This GEI is the only fine-resolution one available in the study area during 2012–2016 736 

and was re-projected into the UTM coordinate system and digitized to the reference 737 

land cover map [Fig. 11(c)]. STIMFM was compared with PS_SRM and SR_SRM, 738 

which were applied to a single-date Landsat OLI image acquired on 2014/10/06 [Fig. 739 

11(a)]; this image is temporally closest to the GEI in 2014 [Fig. 11(b)]. ESTARFM and 740 

FSDAF were not used for comparison because they require the coarse- and fine-741 

resolution images to have comparable and correlated reflectance bands, whereas 742 

Landsat and GEI have different spectral bands and the GEI can hardly be transformed 743 
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into reflectance images, which are correlated to the Landsat images. 744 

 745 

Table 3 746 

Overall accuracies (OAs) and accuracies of different methods in predicting PULC and PCLC in the 747 

Landsat–GEI experiment. The Landsat image used for assessment in the different methods was acquired 748 

on 2014/10/06.  749 

 OA  PULC PCLC 

PS_SRM 72.71 76.22 61.13 

SR_SRM 73.73 77.29 61.99 

STIMFM 94.31 99.61 76.81 

 750 

The OA accuracies were lower than 74% for PS_SRM and SR_SRM and increased 751 

to 94.31% for STIMFM (Table 3). The PULC value was higher than 99%, and the 752 

PCLC value was higher than 76% for STIMFM; these values were obviously higher 753 

than those for PS_SRM and SR_SRM. The PULC values were higher than the PCLC 754 

values for STIMFM because STIMFM could make the best use of unchanged pixel 755 

labels in the fine-resolution maps that pre- and post-date the Landsat images in land 756 

cover mapping.  757 

 758 
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 759 

Fig. 11 Landsat image, Google Earth image, reference and result maps in the Landsat–GEI experiment. 760 

The Landsat image used in the different methods was acquired on 2014/10/06. 761 

    The PS_SRM contained many speckle-like artifacts [Fig. 11(d)]. Many speckle-762 

like artifacts were smoothed to rounded patches in SR_SRM [Fig. 11(e)]. The linear-763 

shaped urban objects were discrete in PS_SRM and SR_SRM and connected in 764 

STIMFM [Fig. 11(f)]. In STIMFM, most speckle-like artifacts and rounded patches 765 

were eliminated, and the spatial pattern of most patches was close to the reference map 766 

[Fig. 11(c)]. The 5 m spatial extent of land cover change with Landsat repetition rates 767 

derived from STIMFM is shown in Fig. 12, in which the explicit time of land cover 768 

change and the detailed spatial extent of urbanization process at fine spatial and fine 769 

temporal resolutions are obvious. Fig. 13 shows the areas of different classes extracted 770 

using STIMFM. The water, vegetation, and bareland areas decreased, whereas the 771 

urban area increased from April 2012 to May 2013. The areas of different classes 772 

remained almost unchanged from May to September 2013. Since October 2013, the 773 

vegetation area decreased, whereas the water, bareland, and urban areas increased.  774 
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 775 

Fig. 12 5 m spatial extent of land cover change with Landsat repetition rates derived from STIMFM. The 776 

colors represent the date when pixels begin to change. “unchan or prev chan” marked as white color 777 

means unchanged or previously changed before 2012/04/26. 778 

 779 

 780 

Fig. 13 Areas of different classes extracted using STIMFM in the Landsat–GEI experiment.  781 
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 782 

4. Discussion 783 

    Results show that STIMFM is a promising approach for the production of a series 784 

of fine spatial–temporal resolution land cover maps, which were achieved by fusing a 785 

series of coarse spatial resolution remotely sensed images with a limited set of fine 786 

spatial resolution land cover maps. The mapping accuracies of STIMFM reached 787 

relatively high levels in all three experiments. Compared with popular state-of-the-art 788 

SRM algorithms that are generally applied on mono-temporal remotely sensed image, 789 

STIMFM can produce land cover maps of a much higher accuracy as expected, because 790 

fine spatial resolution land cover temporal information is incorporated into its analysis. 791 

Compared with ESTARFM and FSDAF, STIMFM predicted the labels of both changed 792 

and unchanged pixels with higher accuracy in the Landsat–NLCD and MODIS–793 

Landsat experiments. In the Landsat–GEI experiment, STIMFM predicted a sequence 794 

of fine spatial–temporal resolution land cover maps from eleven Landsat images and 795 

two GEIs, to which ESTARFM and FSDAF that require correlation in reflectance bands 796 

in coarse and fine images cannot be applied. 797 

    Although ESTARFM, FSDAF, and STIMFM aim to extract high spatial–temporal 798 

resolution information, they have important differences that affect practical application. 799 

First, they have different assumptions and thus use different inputs. ESTARFM and 800 

FSDAF require coarse- and fine-resolution remotely sensed images from different 801 

satellite sensors observed at the same or similar date to have comparable and highly 802 
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correlated reflectance bands. Thus, only a limited set of images can be used in 803 

ESTARFM and FSDAF, such as Landsat and MODIS, thereby limiting the application 804 

of ESTARFM and FSDAF. For instance, panchromatic aerial photographs with a very 805 

high spatial resolution cannot be used with Landsat image with a 30 m resolution to 806 

generate fine-resolution land cover maps with Landsat repetition rates from ESTARFM 807 

and FSDAF because the aerial photographs and Landsat images have different spectral 808 

bands. By contrast, STIMFM does not require similar coarse and fine spatial resolution 809 

images, but directly considers the relationship between the land cover classes 810 

themselves and not their spectral response. The coarse spatial resolution images are 811 

unmixed to land cover fractions, and STIMFM is built on the analysis of land cover 812 

spatial and temporal dependences in the different images instead of analyzing the 813 

relationship of pixel spectral values in different images. In addition, ESTARFM and 814 

FSDAF require one or more observed pairs of coarse- and fine-resolution images 815 

acquired at the same or similar date for training, whereas STIMFM does not need the 816 

coarse-resolution images at the acquisition data of the fine-resolution maps as input.  817 

Second, ESTARFM, FSDAF, and STIMFM have different outputs; the output of 818 

ESTARFM and FSDAF are multi-spectral reflectance images, whereas the output of 819 

STIMFM are land cover maps. If the aim is to generate spectral images, then 820 

ESTARFM and FSDAF are suitable. For instance, unlike the STIMFM result, the 821 

ESTARFM and FSDAF result can be used in the analysis of phenology change. 822 

STIMFM produces land cover maps with discrete class labels and is more suitable in 823 

monitoring the spatial distribution pattern and temporal change trajectory of land cover 824 
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classes at a fine spatial and temporal resolution. Although the reflectance images output 825 

from ESTARFM and FSDAF can be further classified to produce land cover maps, 826 

problems still exist. To generate fine spatial resolution land cover map series, 827 

ESTARFM and FSDAF should generate a series of fine spatial resolution multi-spectral 828 

reflectance images, thereby requiring massive storage for these intermediate data when 829 

the study area is large. In addition, the generation of land cover maps from these image 830 

series requires a large amount of training data, which are difficult to collect in practice. 831 

The classification of reflectance images is also often underdetermined and contains a 832 

large solution space. By contrast, STIMFM is modeled based on the spatial–temporal 833 

character of pixel class labels. It does not produce intermediate fine spatial resolution 834 

multi-spectral image series, and the endmembers could be automatically estimated for 835 

each coarse spatial resolution image on the basis of optimization approach. The 836 

STIMFM has a simple objective function and comprises only few parameters and is 837 

thus relatively easy to use. As a result, STIMFM is more suitable in the reconstruction 838 

of fine spatial and temporal resolution land cover maps compared with ESTARFM and 839 

FSDAF. 840 

    Although STIMFM provides a great opportunity to enhance studies of land cover 841 

and its dynamics, its performance is dependent on several factors. In STIMFM, the 842 

analysis of land cover class fraction temporal change is conducted by comparing the 843 

coarse-resolution fraction images produced from spatial degrading the input fine-844 

resolution maps and from spectral unmixing of the coarse-resolution image. First, 845 

fraction images extracted from spectral unmixing probably have errors and 846 
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uncertainties, which will affect the land cover fraction temporal change analysis in 847 

STIMFM. The linear mixture model is used to estimate the endmembers and generate 848 

fraction images for class fraction change analysis in STIMFM. However, this approach 849 

is not always ideal, because the mixing may be nonlinear. Some nonlinear mixture 850 

models may be applied to decrease the fraction image error and improve the class 851 

fraction temporal change accuracy. Second, the accuracy of the fine-resolution land 852 

cover maps that pre- and post-dated the coarse-resolution images also affect the 853 

STIMFM accuracy. The overall accuracy of STIMFM decreases with the increase in 854 

the number of incorrect pixel labels in the input fine-resolution land cover maps because 855 

STIMFM labeled the unchanged pixels according to the labels in the fine-resolution 856 

maps. In addition, the incorrect pixel labels in the fine-resolution maps would decrease 857 

the accuracy in the class fraction temporal change analysis and thus decrease the 858 

STIMFM accuracy. Advanced classifiers such as object-based classifiers should be 859 

used to extract accurate land cover maps from the fine-resolution images used as 860 

STIMFM input. Third, the co-registration between the fine-resolution land cover maps 861 

and the coarse-resolution images plays a key role because misregistration would lead 862 

to inaccurate detection of fraction changes of each class in each coarse pixel. Advanced 863 

methods such as the sub-pixel scale co-registration method should be developed and 864 

applied in STIMFM.    865 

    The STIMFM performance is also affected by the model functions and parameters. 866 

First, in the STIMFM spatial constraint function, the a priori land cover spatial 867 

distribution model has a major role in the prediction of fine spatial resolution land cover 868 
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spatial pattern. The land cover maximal spatial dependence model is used as the a priori 869 

land cover spatial pattern information in STIMFM for its simplicity. However, this a 870 

priori information is used for all classes although they may actually have different 871 

spatial patterns and is most suitable for the situation in which land cover patches are 872 

larger than the coarse spatial resolution pixel size. More a priori information could be 873 

introduced to characterize the spatial pattern of the classes in STIMFM. Second, the 874 

STIMFM performance is dependent on the spatial and temporal weights S  
and T . 875 

When the spatial weight S  
is relatively large, STIMFM would decrease the influence 876 

of temporal information, and the STIMFM result would be dominated by the spatial 877 

constraint function and resemble the SR_SRM result. By contrast, when the temporal 878 

weight T  
is relatively large, the STIMFM result would be dominated by the fine 879 

spatial resolution maps that temporally pre- and post-dated the coarse-resolution 880 

images, and the spatial pattern of land cover patches would be difficult to reconstruct 881 

in the result maps. The optimal S  value can be automatically estimated through 882 

quantification of the effects of land cover class spectral separability (Li et al. 2016; 883 

Tolpekin and Stein 2009), whereas the estimation of optimal T  
value has not been 884 

studied to our knowledge. In this paper, the optimal S  
and T  

values were 885 

determined through many trials. In practice, a subset of coarse spatial resolution images 886 

and fine spatial resolution maps are usually available, and these data can be used to 887 

estimate the optimal S  
and T values in STIMFM. Finally, a selected number (m × 888 

C) of purest coarse-resolution pixels are used to estimate the endmembers E in Y. In 889 

practice, m can be set in the range about 100–200 if Y is a multi-spectral image.  890 
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 891 

5. Conclusion 892 

In this paper, a novel spatial–temporal remotely sensed images and land cover 893 

maps fusion model was proposed. This model aims to produce a series of fine spatial–894 

temporal resolution land cover maps from a series of coarse spatial resolution remotely 895 

sensed images and a few fine spatial resolution land cover maps. In STIMFM, the 896 

endmember spectra of different land cover classes are estimated automatically for each 897 

coarse spatial resolution image with the aid of available fine spatial resolution land 898 

cover maps. Using the estimated endmember spectra, an objective function, which 899 

incorporates the pixel spectral and land cover spatial and temporal information, is 900 

constructed. The output of STIMFM is achieved by solving the optimization problem. 901 

The performance of STIMFM was explored using three experiments and 902 

compared with that of several popular state-of-the-art algorithms. The STIMFM has 903 

comparable efficiency with ESTARFM and FSDAF in terms of computing time. 904 

STIMFM can produce land cover maps with higher accuracies than those algorithms 905 

used for comparison. The overall accuracies of STIMFM are higher than 94% in all 906 

experiments reported. Results indicate that STIMFM is a promising approach for 907 

generating land cover maps and estimating land cover change at both fine spatial and 908 

temporal resolutions. Although issues that would benefit from further research exist, 909 

this novel land cover fusion method provides a great opportunity to enhance studies of 910 

land cover and its dynamics. 911 

 912 
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