
JID:YJCSS AID:3075 /FLA [m3G; v1.211; Prn:4/04/2017; 14:25] P.1 (1-19)

Journal of Computer and System Sciences ••• (••••) •••–•••
Contents lists available at ScienceDirect

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

Model-checking for Resource-Bounded ATL with production

and consumption of resources ✩

Natasha Alechina a,∗, Brian Logan a, Hoang Nga Nguyen b, Franco Raimondi c

a School of Computer Science, The University of Nottingham, UK
b Centre for Mobility and Transport, Coventry University, UK
c Department of Computer Science, Middlesex University, UK

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 August 2016
Accepted 19 August 2016
Available online xxxx

Keywords:
Model-checking
Resources
Coalitional ability
Verification of multi-agent systems

Several logics for expressing coalitional ability under resource bounds have been proposed
and studied in the literature. Previous work has shown that if only consumption of
resources is considered or the total amount of resources produced or consumed on
any path in the system is bounded, then the model-checking problem for several
standard logics, such as Resource-Bounded Coalition Logic (RB-CL) and Resource-Bounded
Alternating-Time Temporal Logic (RB-ATL) is decidable. However, for coalition logics
with unbounded resource production and consumption, only some undecidability results
are known. In this paper, we show that the model-checking problem for RB-ATL with
unbounded production and consumption of resources is decidable but EXPSPACE-hard. We
also investigate some tractable cases and provide a detailed comparison to a variant of the
resource logic RAL, together with new complexity results.
© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC

BY license (http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Alternating-Time Temporal Logic (ATL) [1] is widely used in verification of multi-agent systems. ATL can express prop-
erties related to coalitional ability, for example, one can state that a group of agents A has a strategy (a choice of actions)
such that whatever the actions by the agents outside the coalition, any computation of the system generated by the strategy
satisfies some temporal property. A number of variations on the semantics of ATL exist: agents may have perfect recall or be
memoryless, and they may have full or partial observability. In the case of fully observable models and memoryless agents,
the model-checking problem for ATL is polynomial in the size of the model and the formula, while it is undecidable for
partially observable models where agents have perfect recall [2]. Additionally, even in the simple case of fully observable
models and memoryless agents, the complexity increases substantially if the model-checking problem takes into account
models with compact (implicit) representations [2].

In this paper, we consider an extension of perfect recall, fully observable ATL where agents produce and consume re-
sources. The properties we are interested in are related to coalitional ability under resource bounds. Instead of asking
whether a group of agents has a strategy to enforce a certain temporal property, we are interested in whether the group
has a strategy that can be executed under a certain resource bound (e.g., if the agents have at most b1 units of resource r1

✩ This work was supported by the Engineering and Physical Sciences Research Council [grants EP/K033905/1 and EP/K033921/1].

* Corresponding author.
E-mail addresses: nza@cs.nott.ac.uk (N. Alechina), bsl@cs.nott.ac.uk (B. Logan), hoang.nguyen@coventry.ac.uk (H.N. Nguyen), f.raimondi@mdx.ac.uk

(F. Raimondi).
http://dx.doi.org/10.1016/j.jcss.2017.03.008
0022-0000/© 2017 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.jcss.2017.03.008
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
http://creativecommons.org/licenses/by/4.0/
mailto:nza@cs.nott.ac.uk
mailto:bsl@cs.nott.ac.uk
mailto:hoang.nguyen@coventry.ac.uk
mailto:f.raimondi@mdx.ac.uk
http://dx.doi.org/10.1016/j.jcss.2017.03.008
http://creativecommons.org/licenses/by/4.0/

JID:YJCSS AID:3075 /FLA [m3G; v1.211; Prn:4/04/2017; 14:25] P.2 (1-19)

2 N. Alechina et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
and b2 units of resource r2). Clearly, some actions may no longer be used as part of the strategy if their cost exceeds the
bound. There are several ways in which the precise notion of the cost of a strategy can be defined. For example, one can
define it as the maximal cost of any path (computation of the system) generated by the strategy, where the cost of a path
is the sum of resources produced and consumed by actions on the path. We have chosen a different definition which says
that a strategy has a cost at most b if for every path generated by the strategy, every prefix of the path has cost at most b.
This means that a strategy cannot, for example, start with executing an action that consumes more than b resources, and
then ‘make up’ for this by executing actions that produce enough resources to bring the total cost of the path under b. It is
however possible to first produce enough resources, and then execute an action that costs more than b, so long as the cost
of the path is less than b.

There are also many choices for the precise syntax of the logic and the truth definitions of the formulas. For example,
in [3] several versions are given, intuitively corresponding to considering resource bounds both on the coalition A and
the rest of the agents in the system, considering a fixed resource endowment of A in the initial state which affects their
endowment after executing some actions, etc. In this paper we give a precise comparison of our logic with the variants
of LRAL introduced in [3], and in the process solve an open problem stated in [3]. In [4,5] different syntax and semantics
are considered, in which the resource endowment of the whole system is taken into account when evaluating a statement
concerning a group of agents A. As observed in [3], subtle differences in truth conditions for resource logics result in
the difference between decidability and undecidability of the model-checking problem. In [3], the undecidability of several
versions of the logics is proved. Recently, even more undecidability results were shown in [6]. The only decidable cases
considered in [3] are an extension of Computation Tree Logic (CTL) [7] with resources (essentially one-agent ATL) and
the version where on every path only a fixed finite amount of resources can be produced. Similarly, [4] gives a decidable
logic, PRB-ATL (Priced Resource-Bounded ATL), where the total amount of resources in the system has a fixed bound. The
model-checking algorithm for PRB-ATL runs in time polynomial in the sizes of the model and the formula, and exponential
in the number of resources and the size of the representation (if in binary) of the resource bounds. In [5] an EXPTIME lower
bound in the number resources and in the size of the representation (if in binary) of the resource bounds is shown.

The structure of this paper is as follows. In sections 2, 3, and 4, we introduce Resource-Bounded ATL with production and
consumption of resources, a model-checking algorithm for it, and prove that the model-checking problem is EXPSPACE-hard.
This part of the paper extends [8]. In section 5 we discuss two special cases with feasible model-checking, one of them being
a generalisation of the model-checking algorithm for (production-free) RB-ATL introduced in [9] to unbounded resources. In
section 6 we give a detailed comparison with the logics in [3] and show that for one of them the model-checking problem
is decidable, solving an open problem stated in [3].1

2. Syntax and semantics of RB±ATL

The logic RB-ATL was introduced in [9]. Here we generalise the definitions from [9] to allow for production as well as
consumption of resources. To avoid confusion with the consumption-only version of the logic from [9], we refer to RB-ATL
with production and consumption of resources as RB±ATL.

Let Agt = {a1, . . . , an} be a set of n agents, Res = {res1, . . . , resr} be a set of r resources, � be a set of propositions and
B =Nr∞ be a set of resource bounds where N∞ = N ∪ {∞}.

Formulas of RB±ATL are defined by the following syntax

φ,ψ ::= p | ¬φ | φ ∨ ψ | 〈〈Ab〉〉©φ | 〈〈Ab〉〉�φ | 〈〈Ab〉〉φ U ψ

where p ∈ � is a proposition, A ⊆ Agt, and b ∈ B is a resource bound. Here, 〈 〈Ab〉 〉 ©φ means that a coalition A can ensure
that the next state satisfies φ under resource bound b. 〈 〈Ab〉 〉�φ means that A has a strategy to make sure that φ is always
true, and the cost of this strategy is at most b. Similarly, 〈 〈Ab〉 〉φU ψ means that A has a strategy to enforce ψ while
maintaining the truth of φ, and the cost of this strategy is at most b.

We extend the definition of a concurrent game structure with resource consumption and production.

Definition 1. A resource-bounded concurrent game structure (RB-CGS) is a tuple M = (Agt, Res, S, �, π, Act, d, c, δ) where:

• Agt is a non-empty set of n agents, Res is a non-empty set of r resources and S is a non-empty set of states;
• � is a finite set of propositional variables and π : � → ℘(S) is a truth assignment which associates each proposition

in � with a subset of states where it is true;

1 Intuitively, the main difference between our logic (with a decidable model-checking problem) and a version of RAL from [3] where the model-checking
problem is undecidable under infinite semantics (considering only infinite computations) is that in our logic, each agent always has an option of executing
an idle action that does not consume any resources. This means that a finite strategy which conforms to a resource bound and enforces a particular
outcome can always be extended to an infinite strategy by choosing the idle action. The model-checking problem for the same version of RAL but under
finite semantics (considering finite computations) turns out also to be decidable, and a model-checking algorithm for it is obtained as an easy adaptation
of the model-checking algorithm for our logic.

JID:YJCSS AID:3075 /FLA [m3G; v1.211; Prn:4/04/2017; 14:25] P.3 (1-19)

N. Alechina et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 3
• Act is a non-empty set of actions which includes idle, and d : S × Agt → ℘(Act) \ {∅} is a function which assigns to each
s ∈ S a non-empty set of actions available to each agent a ∈ Agt. For every s ∈ S and a ∈ Agt, idle ∈ d(s, a). We denote
joint actions by all agents in Agt available at s by D(s) = d(s, a1) × · · · × d(s, an);

• c : S × Agt × Act → Zr is a partial function which maps a state s, an agent a and an action α ∈ d(s, a) to a vector of
integers, where the integer in position i indicates consumption or production of resource resi by the action (positive
value for consumption and negative value for production). We stipulate that c(s, a, idle) = 0̄ for all s ∈ S and a ∈ Agt,
where 0̄ = 0r ;

• δ : S × Act|Agt| → S is a partial function that maps every s ∈ S and joint action σ ∈ D(s) to a state resulting from
executing σ in s.

Given a RB-CGS M , we denote the set of all infinite sequences of states (infinite computations) by Sω and the set of
non-empty finite sequences (finite computation) of states by S+ . For a computation λ = s0s1 . . . ∈ Sω we use the notation
λ[i] = si and λ[i, j] = si . . . s j .

Given a RB-CGS M and a state s ∈ S , a joint action by a coalition A ⊆ Agt is a tuple σ = (σa)a∈A (where σa is the action
that agent a executes as part of σ , the ath component of σ) such that σa ∈ d(s, a). The set of all joint actions for A at state
s is denoted by D A(s). Given a joint action by the grand coalition σ ∈ D(s), σA (a projection of σ on A) denotes the joint
action executed by A as part of σ : σA = (σa)a∈A . The set of all possible outcomes of a joint action σ ∈ D A(s) at state s is:

out(s,σ) = {s′ ∈ S | ∃σ ′ ∈ D(s) : σ = σ ′
A ∧ s′ = δ(s,σ ′)}

In the sequel, we use the usual point-wise notation for vector comparison and addition. In particular, (b1, . . . , br) ≤
(d1, . . . , dr) iff bi ≤ di ∀ i ∈ {1, . . . , r}, (b1, . . . , br) = (d1, . . . , dr) iff bi = di ∀ i ∈ {1, . . . , r}, and (b1, . . . , br) + (d1, . . . , dr) =
(b1 + d1, . . . , br + dr). However, for convenience we define (b1, . . . , br) < (d1, . . . , dr) as (b1, . . . , br) ≤ (d1, . . . , dr) and
(b1, . . . , br) �= (d1, . . . , dr). We assume that for any b ∈ N, b ≤ ∞, b + ∞ = ∞ and ∞ − b = ∞. Given a function f returning
a vector, we also denote by f i the function that returns the i-th component of the vector returned by f .

The cost of a joint action σ ∈ D A(s) is defined as costA(s, σ) = ∑
a∈A c(s, a, σa) and the subscript A is omitted when

A = Agt.
Given a RB-CGS M , a strategy for a coalition A ⊆ Agt is a mapping F A : S+ → Act|A| such that, for every λs ∈ S+ , F A(λs) ∈

D A(s). A computation λ ∈ Sω is consistent with a strategy F A iff, for all i ≥ 0, λ[i + 1] ∈ out(λ[i], F A(λ[0, i])). We denote by
out(s, F A) the set of all computations λ starting from s that are consistent with F A .

Given a bound b ∈ B , a computation λ ∈ out(s, F A) is b-consistent with F A iff, for every i ≥ 0,

i∑
j=0

costA(λ[j], F A(λ[0, j])) ≤ b

Note that this definition implies that the cost of every prefix of the computation is below b.
The set of all computations starting from state s that are b-consistent with F A is denoted by out(s, F A, b). F A is a

b-strategy iff out(s, F A) = out(s, F A, b) for any state s.
Given a RB-CGS M and a state s of M , the truth of a RB±ATL formula φ with respect to M and s is defined inductively

on the structure of φ as follows:

• M, s |= p iff s ∈ π(p);
• M, s |= ¬φ iff M, s �|= φ;
• M, s |= φ ∨ ψ iff M, s |= φ or M, s |= ψ ;
• M, s |= 〈 〈Ab〉 〉 ©φ iff ∃ b-strategy F A such that for all λ ∈ out(s, F A): M, λ[1] |= φ;
• M, s |= 〈 〈Ab〉 〉�φ iff ∃ b-strategy F A such that for all λ ∈ out(s, F A) and i ≥ 0: M, λ[i] |= φ; and
• M, s |= 〈 〈Ab〉 〉φU ψ iff ∃ b-strategy F A such that for all λ ∈ out(s, F A), ∃i ≥ 0: M, λ[i] |= ψ and M, λ[j] |= φ for all

j ∈ {0, . . . , i − 1}.

Since the infinite resource bound version of RB±ATL modalities correspond to the standard ATL modalities, we will
write 〈 〈A∞̄〉 〉 ©φ, 〈 〈A∞̄〉 〉φU ψ , 〈 〈A∞̄〉 〉�φ as 〈 〈A〉 〉 ©φ, 〈 〈A〉 〉φU ψ , 〈 〈A〉 〉�φ, respectively. When the context is clear, we will
sometimes write s |= φ instead of M, s |= φ.

Note that although we only consider infinite paths, the condition that the idle action is always available and costs 0̄
makes the model-checking problem easier (we only need to find a strategy with a finite prefix under bound b to satisfy
formulas of the form 〈 〈Ab〉 〉 ©φ and 〈 〈Ab〉 〉φU ψ , and then the strategy can make the idle choice forever).

As an example of the expressivity of the logic, consider the model in Fig. 1 with two agents a1 and a2 and two re-
sources r1 and r2. Let us assume that c(sI , a1, α) = 〈−2, 1〉 (action α produces 2 units of r1 and consumes one unit of r2),
c(s, a2, β) = 〈1, −1〉 and c(s, a1, γ) = 〈5, 0〉. Then agent a1 on its own has a strategy to enforce a state satisfying p under
resource bound of 3 units of r1 and 1 unit of r2 (M, sI |= 〈 〈{a1}〈3,1〉〉 〉� U p): a1 has to select action α in sI which requires
it to consume one unit of r2 but produces two units of r1, and then action γ in s that requires 5 units of r1 which is now
within the resource bound since the previous action has produced 2 units. All outcomes of this strategy lead to s′ where

JID:YJCSS AID:3075 /FLA [m3G; v1.211; Prn:4/04/2017; 14:25] P.4 (1-19)

4 N. Alechina et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
Fig. 1. An example with consumption and production of resources.

p holds. After this, a1 has to select idle forever, which does not require any resources. Any smaller resource bound is not
sufficient. However, both agents have a strategy to enforce the same outcome under a smaller resource bound of just one
unit of r2 (M, sI |= 〈 〈{a1, a2}〈0,1〉〉 〉� U p): agent a2 needs to select β and a1 idle in s until the agents have gone through the
loop between sI and s four times and accumulated enough of resource r1 to enable agent a1 to perform γ in s.

3. Model checking RB±ATL

The model-checking problem for RB±ATL is the question whether, for a given RB-CGS structure M , a state s in M and
an RB±ATL formula φ0, M, s |= φ0. In this section we prove the following theorem:

Theorem 1. The model-checking problem for RB±ATL is decidable.

To prove decidability, we give an algorithm which, given a structure M = (Agt, Res, S, �, π, Act, d, c, δ) and a formula φ0,
returns the set of states [φ0]M satisfying φ0: [φ0]M = {s | M, s |= φ0} (see Algorithm 1).

Algorithm 1 Labelling φ0.
function rb±atl-label(M, φ0)

for φ′ ∈ Sub(φ0) do
case φ′ = p, ¬φ, φ ∧ ψ , 〈 〈A〉 〉 ©φ , 〈 〈A〉 〉φU ψ , 〈 〈A〉 〉�φ

standard, see [1]

case φ′ = 〈 〈Ab〉 〉 ©φ

[φ′]M ← Pre(A, [φ]M , b)

case φ′ = 〈 〈Ab〉 〉φU ψ

[φ′]M ← { s | s ∈ S∧
until-strategy(node0(s, b), 〈 〈Ab〉 〉φU ψ)}

case φ′ = 〈 〈Ab〉 〉�φ

[φ′]M ← { s | s ∈ S ∧ box-strategy(node0(s, b), 〈 〈Ab〉 〉�φ)}
return [φ0]M

Given φ0, we produce a set of subformulas Sub(φ0) of φ0 in the usual way, however, in addition, if 〈 〈Ab〉 〉γ ∈ Sub(φ0), its
infinite resource version 〈 〈A〉 〉γ is added to Sub(φ0). Sub(φ0) is ordered in increasing order of complexity, and the infinite
resource version of each modal formula comes before the bounded version. Note that if a state s is not annotated with
〈 〈A〉 〉γ then s cannot satisfy the bounded resource version 〈 〈Ab〉 〉γ .

We then proceed by cases. For all formulas in Sub(φ0) apart from 〈 〈Ab〉 〉 ©φ, 〈 〈Ab〉 〉φU ψ and 〈 〈Ab〉 〉�φ we essentially run
the standard ATL model-checking algorithm [1].

Labelling states with 〈 〈Ab〉 〉 ©φ makes use of a function Pre(A, ρ, b) which, given a coalition A, a set ρ ⊆ S and a bound b,
returns a set of states s in which A has a joint action σA with cost(s, σA) ≤ b such that out(s, σA) ⊆ ρ . Labelling states with
〈 〈Ab〉 〉φU ψ and 〈 〈Ab〉 〉�φ is more complex, and in the interests of readability we provide separate functions: until-strategy

for 〈 〈Ab〉 〉φU ψ formulas is shown in Algorithm 2, and box-strategy for 〈 〈Ab〉 〉�φ formulas is shown in Algorithm 3.
Both algorithms proceed by depth-first and–or search of M . We record information about the state of the search in a

search tree of nodes. A node is a structure which consists of a state of M , the resources available to the agents A in that
state (if any), and a finite path of nodes leading to this node from the root node. Edges in the tree correspond to joint
actions by all agents. Note that the resources available to the agents in a state s on a path constrain the edges from the
corresponding node to be those actions σA where cost(s, σA) is less than or equal to the available resources. For each node
n in the tree, we have a function s(n) which returns its state, p(n) which returns the nodes on the path and e(n) which
returns the vector of resource availabilities in s(n) as a result of following p(n). The function node0(s, b) returns the root
node, i.e., a node n0 such that s(n0) = s, p(n0) = [] and ei(n0) = bi for all resources i. The function node(n, σ , s′) returns a
node n′ where s(n′) = s′ , p(n′) = [p(n) · n] and for all resources i, ei(n′) = ei(n) − costi(s(n), σ).

Both until-strategy and box-strategy take a search tree node n and a formula φ′ ∈ Sub(φ0) as input, and have similar
structure. They first check if the infinite resource version of φ′ (i.e., φ′ where the outermost coalition modality has bound ∞̄)

JID:YJCSS AID:3075 /FLA [m3G; v1.211; Prn:4/04/2017; 14:25] P.5 (1-19)

N. Alechina et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 5
is false in the state represented by node n, s(n). (Note that the state represented by n has already been labelled by the
resource bounded subformulas φ and ψ .) If so, they return false immediately, terminating search of the current branch
of the search tree (lines 2–3 of Algorithms 2 and 3). until-strategy also returns true if the second argument ψ of φ′
is true in s(n) (lines 8–9 of Algorithm 2). Both until-strategy and box-strategy check whether the state s(n) has been
encountered before on p(n), i.e., p(n) ends in a loop. In the case of until-strategy, if the loop is unproductive (i.e., resource
availability has not increased since the previous occurrence of s(n) on the path), then the loop is not necessary for a
successful strategy, and search on this branch is terminated returning false (lines 4–5). If on the other hand the loop strictly
increases the availability of at least one resource i and does not decrease the availability of other resources, then ei(n) is
replaced with ∞, as a shorthand denoting that any finite amount of i can be produced by repeating the loop sufficiently
many times (lines 6–7 of Algorithm 2). If all resource values have been replaced by ∞, until-strategy returns true (lines
10–11), since the branch satisfies the infinite resource version 〈 〈A〉 〉φ U ψ of φ′ , and an arbitrary amount of any resource can
be accumulated along the path. For box-strategy the loop check is slightly different. If the loop decreases the amount of
at least one resource without increasing the availability of any other resource, it cannot form part of a successful strategy,
and the search terminates returning false (lines 4–5 of Algorithm 3). If a non-decreasing loop is found, then it is possible
to maintain the invariant formula φ forever without expending any resources, and the search terminates returning true
(lines 6–7).

Algorithm 2 Labelling 〈 〈Ab〉 〉φU ψ .

1: function until-strategy(n, 〈 〈Ab〉 〉φU ψ)
2: if s(n) �|= 〈 〈A∞̄〉 〉φU ψ then
3: return false

4: if ∃n′ ∈ p(n) : s(n′) = s(n) ∧ (∀ j : e j(n′) ≥ e j(n)) then
5: return false

6: for i ∈ {i ∈ Res | ∃n′ ∈ p(n) : s(n′) = s(n) ∧ (∀ j : e j(n′) ≤ e j(n)) ∧
ei(n′) < ei(n)} do

7: ei(n) ← ∞
8: if s(n) |= ψ then
9: return true

10: if e(n) = ∞̄ then
11: return true
12: ActA ← {σ ∈ D A(s(n)) | cost(s(n), σ) ≤ e(n)}
13: for σ ∈ ActA do
14: O ← out(s(n), σ)

15: strat ← true
16: for s′ ∈ O do
17: strat ← strat∧
18: until-strategy(node(n, σ , s′), 〈 〈Ab〉 〉φU ψ)

19: if strat then
20: return true
21: return false

If none of the if statements evaluates to true, then, in both until-strategy and box-strategy, search continues by
considering each action available at s(n) in turn. For each action σ ∈ ActA, the algorithm checks whether a recursive call
of the algorithm returns true in all outcome states of σ (i.e., σ is part of a successful strategy). If such a σ is found, the
algorithm returns true. Otherwise the algorithm returns false. Note that the argument φ′ is passed through the recursive
calls unchanged: information about the resources available to the agents in s(n) as a result of following p(n) is encoded in
the search nodes.

Lemma 1. Algorithm 1 terminates.

Proof. All the cases in Algorithm 1 apart from 〈 〈Ab〉 〉φU ψ and 〈 〈Ab〉 〉�φ can be computed in time polynomial in |M| and
|φ|. The cases for 〈 〈Ab〉 〉φU ψ and 〈 〈Ab〉 〉�φ involve calling the until-strategy and box-strategy procedures, respectively, for
every state in S . In order to prove that these procedures terminate, we are going to show that there is no infinite sequence
of calls to until-strategy or box-strategy.

Assume to the contrary that n1, n2, . . . is an infinite sequence of nodes in an infinite sequence of recursive calls to until-

strategy or box-strategy. Then, since the set of states is finite, there is an infinite subsequence ni1 , ni2 , . . . of n1, n2, . . .
such that for all j, s(ni j) = s for some state s (the state is the same for all the nodes in the subsequence). We show that
then there is an infinite subsequence n′

1, n′
2, . . . of ni1 , ni2 , . . . such that for k < j, e(n′

k) ≤ e(n′
j). The proof is very similar

to the proof of Lemma f in [10, p. 70] and proceeds by induction on the number of resources r. For r = 1, since e(n) is
always positive, the claim is immediate. Assume the lemma holds for r and let us show it for r + 1. Then there is an infinite
subsequence m′

1, m
′
2, . . . of ni1 , ni2 , . . . where for all resources i ∈ {1, . . . , r} ei(m′

k) ≤ ei(m′
j) for k < j. Clearly there are two

nodes m′ and m′ in this sequence such that er+1(m′) ≤ er+1(m′) (since there are only finitely many positive integers
j1 j2 j1 j2

JID:YJCSS AID:3075 /FLA [m3G; v1.211; Prn:4/04/2017; 14:25] P.6 (1-19)

6 N. Alechina et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
Algorithm 3 Labelling 〈 〈Ab〉 〉�φ.

1: function box-strategy(n, 〈 〈Ab〉 〉�φ)
2: if s(n) �|= 〈 〈A∞̄〉 〉�φ then
3: return false

4: if ∃n′ ∈ p(n) : s(n′) = s(n) ∧ (∀ j : e j(n′) ≥ e j(n)) ∧
(∃ j : e j(n′) > e j(n)) then

5: return false

6: if ∃n′ ∈ p(n) : s(n′) = s(n) ∧ (∀ j : e j(n′) ≤ e j(n)) then
7: return true
8: ActA ← {σ ∈ D A(s(n)) | cost(s(n), σ) ≤ e(n)}
9: for σ ∈ ActA do

10: O ← out(s(n), σ)

11: strat ← true
12: for s′ ∈ O do
13: strat ← strat∧
14: box-strategy(node(n, σ , s′), 〈 〈Ab〉 〉�φ)

15: if strat then
16: return true
17: return false

which are smaller than er+1(m′
1)). Hence e(m′

j1
) ≤ e(m′

j2
). The same argument can be repeated to show that there is a node

m′
j3

in the sequence such that e(m′
j2
) ≤ e(m′

j3
), etc. Hence, if there is an infinite sequence of nodes corresponding to an

infinite sequence of recursive calls, then there is an infinite subsequence of that sequence of nodes, where the nodes in
the subsequence have the same state and the same or growing resource availability. The existence of the latter subsequence
would constitute a contradiction, because comparable resource availability vectors for nodes with the same state will lead to
termination after finitely many steps (so there cannot be an infinite sequence of recursive calls). To see why this is so, con-
sider the simpler case of box-strategy first. In Algorithm 3, when in a node n we discover that previously we encountered
a node n′ such that s(n) = s(n′) and e(n′) ≤ e(n), we return true. So the box-strategy will terminate after encountering just
one pair of nodes with the same state where the second node has the same or higher resource availability. Hence, there
cannot be an infinite sequence of calls to the box-strategy. Consider until-strategy. Given a subsequence n1, n2, . . . , nr

(where r is the number of resource types) of nodes with the same state such that e(ni) ≤ e(ni+1), either e(ni) = e(ni+1)

(and Algorithm 2 returns false) or e(ni) ≤ e(ni+1) with e j(ni) < e j(n j+1) for some j and one or more resource types are
reset to ∞. When all resource types are reset to ∞, Algorithm 2 returns true. In either case, the existence of such a sub-
sequence implies termination after finitely many steps, which contradicts our original assumption that there is an infinite
sequence of recursive calls. Hence, Algorithm 1 terminates. �

Before we prove correctness of until-strategy and box-strategy, we need some auxiliary notions. Let n be a node where
one of the procedures returns true. We will refer to tree(n) as the tree representing the successful call to the procedure. In
particular, if the procedure returns true before any recursive call is made, then tree(n) = n. Otherwise the procedure returns
true because there is an action α ∈ ActA such that for all s′ ∈ out(s(n), α) the procedure returns true in n′ = node(n, α, s′).
In this case, tree(n) has n as its root and trees tree(n′) are the children of n. We refer to the action α as nact (the action that
generates the children of n). For the sake of uniformity, if tree(n) = n then we set nact to be idle. Such a tree corresponds to
a strategy F where for each path n · · ·m from the root n to a node m in tree(n), F (s(n) · · · s(m)) = mact .

A strategy F for satisfying 〈 〈Ab〉 〉φU ψ is U -economical for a node n if, intuitively, no path generated by it contains a loop
that does not increase any resource. A strategy is �-economical for a node n if, intuitively, no path generated by it contains
a loop that decreases some resources and does not increase any other resources. Formally, a strategy F is U -economical for
n if

• F satisfies 〈 〈Ae(n)〉 〉φU ψ at s(n), i.e., F is a e(n)-strategy and ∀λ ∈ out(s(n), F), ∃i ≥ 0 : λ[i] |= ψ and λ[j] |= φ for all
j ∈ {0, . . . , i};

• The path p(n) · n is already U -economical, i.e., ∀n′ ∈ p(n) · n, n′′ ∈ p(n′) : s(n′′) = s(n′) ⇒ e(n′′) � e(n′);
• Every state is reached by F U -economically, i.e., for each computation s0s1 . . . sk . . . ∈ out(s(n), F) and each j <

k ≤ i where i is the smaller index such that si satisfies ψ , s j = sk ⇒ cost(s j . . . sk) � 0̄ with cost(s j . . . sk) =∑
l= j,...,k−1 cost(λ[l], F (λ[0, l])); and

• Every state is reached by F U -economically with respect to the path p(n), i.e., for every computation s0s1 . . . sk . . . ∈
out(s(n), F), ∀n′ ∈ p(n) : s(n′) = sk ⇒ e(n′) � e(n) − cost(s0 . . . sk).

A strategy F is �-economical if:

• F satisfies 〈 〈Ae(n)〉 〉�φ at s(n), i.e., F is a e(n)-strategy and ∀λ ∈ out(s(n), F), ∀i ≥ 0 : λ[i] |= φ;
• The path p(n) · n is already �-economical, i.e., ∀n′ ∈ p(n) · n, n′′ ∈ p(n′) : s(n′′) = s(n′) ⇒ e(n′′) ≯ e(n′);

JID:YJCSS AID:3075 /FLA [m3G; v1.211; Prn:4/04/2017; 14:25] P.7 (1-19)

N. Alechina et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 7
Fig. 2. Tree T and T ′ = prune(T ,m).

• Every state is reached by F �-economically, i.e., for each computation s0s1 . . . sk . . . ∈ out(s(n), F) ∀ j < k : s j = sk ⇒
cost(s j . . . sk) ≯ 0̄;

• Every state is reached by F �-economically with respect to the path p(n), i.e., for every computation s0s1 . . . sk . . . ∈
out(s(n), F), ∀n′ ∈ p(n) : s(n′) = sk ⇒ e(n′) ≯ e(n) − cost(s0 . . . sk).

Note that any strategy F satisfying 〈 〈Ae(n)〉 〉φU ψ (〈 〈Ae(n)〉 〉�φ) at s(n) can be converted to an economical one by elimi-
nating unproductive loops, as stated by the following proposition.

Proposition 1. There is a strategy to satisfy 〈 〈Ae(n)〉 〉φU ψ (resp., 〈 〈Ae(n)〉 〉�φ) at s(n) iff there is an U -economical (resp., �-economical) strategy to satisfy 〈 〈Ae(n)〉 〉φU ψ (resp., 〈 〈Ae(n)〉 〉�φ) at s(n).

Next we prove correctness of until-strategy. The next lemma essentially shows that replacing a resource value with ∞
in Algorithm 2 is harmless. For the inductive step of the proof, we need the following notion. Given a tree tree(n), we call
its pruning, denoted as prune(tree(n), m1, . . . , mk), the tree obtained by removing all children of some nodes m1, . . . , mk that
have only leaves as children in tree(n).

Lemma 2. Let n = node0(s, b) be a node where until-strategy returns true. Let f be a function that for each leaf n′ of tree(n) returns
f (n′) ∈ Nr such that f i(n′) = ei(n′) if ei(n′) �= ∞ (f i(n′) can be any natural number if ei(n′) = ∞). Then, there is a strategy F such
that for every leaf n′ of the tree induced by F , e(n′) ≥ f (n′) holds.

Proof. By induction on the structure of tree(n).

Base Case: Let tree(n) contain only its root. The proof is obvious for any strategy.
Inductive Step: Let us consider a pruning T of tree(n). By the induction hypothesis, any tree T ′ that has a less complex

structure than T has a strategy to generate at least f (n′) ∈Nr ≤ e(n′) for all leaves n′ of T ′ .
In the following, given nodes n, n1, . . . , nk , we denote by n(n1, . . . , nk) the depth-1 tree which has n as its root and
n1, . . . , nk as the immediate leaves of n.
Let m(m1, . . . , mk) be an arbitrary depth-1 sub-tree of T (see Fig. 2). By removing m1, . . . , mk from T , we obtain a
pruning T ′ of T .
Let n · · ·m ·mi be a path in T from the root n to one of the leaves mi . For each resource r the availability of which turns
to ∞ at mi , there must be a node, denoted by wr(mi), in the path n · · ·m ·mi which is used to turn the availability of
r to ∞ at mi , that is, wr(mi) is such that s(wr(mi)) = s(mi), ei(wr(mi)) ≤ ei(mi) for each i, and er(wr(mi)) < er(mi).
We may repeat the path from wr(mi) to mi several times to generate enough resource availability for r. We call the
path from wr(mi) to mi together with all the immediate child nodes of those along the path the column graph from
wr(mi) to mi . Each time, an amount of gr = er(m) − costr(mact) − er(wr(mi)) is generated. Then, the minimal number
of times to repeat the path from wr(mi) to mi is hr(mi) = � fr (mi)−(er (m)−costr (mact))

gr
�.

Note that we need to repeat at each mi for each resource r the path from wr(mi) to mi hr(mi) times. To record the
number of times the path has been repeated, we attach to each mi a counter ĥr(mi) for each r and write the new
node of mi as mĥ(mi)

i .

Initially, ĥr(mi) = 0 for all r and for all nodes mi . A step (see Fig. 3) of the repetition is done as follows: let mĥ(mi)

i be

some node such that ĥr(mi) < hr(mi). Let mĥ(m j)

j be the sibling of mĥ(mi)

i (j �= i). We extend from mĥ(mi)

i the column
graph from wr(mi) to mi ; each new m j (j �= i) is annotated with ĥ(m j) (same as before) and the new mi is annotated
with ĥ(mi) except that ĥr(mi) is increased by 1. We repeat the above step until ĥr(mi) = hr(mi) (it must terminate
due to the fact that hr(mi) < ∞ for all r and mi).

JID:YJCSS AID:3075 /FLA [m3G; v1.211; Prn:4/04/2017; 14:25] P.8 (1-19)

8 N. Alechina et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
Fig. 3. Repeating steps to generate resources.

Fig. 4. w(m) of m in tree(n).

At the end, we obtain a tree where all leaves mĥ(mi)

i have ĥr(mi) = hr(mi) for all r, hence the availability of r is at
least fr . Let E(m) be the extended tree from m.
Let F T ′ be the strategy generated by T ′ . We extend F T ′ with E(m) for every occurrence of m′ in F T ′ such that
s(m′) = s(m), and denote this extended strategy F E

T ′ . For all leaves m′ in E(m) other than mi , let sub(T , m′) be some
sub-tree of T starting from a node m′′ such that s(m′′) = s(m′). Then, we extend F E

T ′ with sub(T , m′) for every
occurrence of m′ in F E

T ′ . We finally obtain a tree F T which satisfies the condition that all leaves l have resource
availability of at least f (l). �

Corollary 1. If until-strategy(node0(s, b), 〈 〈Ab〉 〉φU ψ) returns true then s |= 〈 〈Ab〉 〉φU ψ .

Lemma 3. If until-strategy(n, 〈 〈Ab〉 〉φU ψ) returns false, then them there is no strategy satisfying 〈 〈Ae(n)〉 〉φU ψ from s(n) that is
U -economical for n.

Proof. We prove the lemma by induction on the height in the recursion tree of until-strategy calls.

Base Case: If false is returned by the first if-statement, then s(n) �|= 〈 〈A〉 〉φU ψ ; this also means there is no strategy satisfying
〈 〈Ae(n)〉 〉φU ψ from s(n).
If false is returned by the second if-statement, then any strategy satisfying 〈 〈Ae(n)〉 〉φU ψ from s(n) is not economical.

Inductive Step: If false is not returned by the first two if-statements, then, for all actions σ ∈ ActA, there exists s′ ∈
out(s(n), σ) such that until-strategy(n′, 〈 〈Ab〉 〉φU ψ) (where n′ = node(n, σ , s′)) returns false. By induction hypoth-
esis, there is no strategy satisfying 〈 〈Ae(n′)〉 〉φU ψ from s(n′) that is U -economical for n′ . Assume to the contrary
that there is a strategy satisfying 〈 〈Ae(n)〉 〉φU ψ from s(n) that is U -economical for n. Let σ = F (s(n)), then σ ∈ ActA.
Obviously, for all s′ ∈ out(s(n), σ), F ′(λ) = F (s(n)λ) is an economical strategy from n′ = node(n, σ , s′). This is a con-
tradiction; hence, there is no strategy satisfying 〈 〈Ae(n)〉 〉φU ψ from s(n) that is U -economical for n. �

Corollary 2. If until-strategy(node0(s, b), 〈 〈Ab〉 〉φU ψ) returns false then s �|= 〈 〈Ab〉 〉φU ψ .

Now we turn to Algorithm 3 for labelling states with 〈 〈Ab〉 〉�φ. First we show its soundness.

Lemma 4. Let n = node0(s, b). If box-strategy(n, 〈 〈Ab〉 〉�φ) returns true then s(n) |= 〈 〈Ab〉 〉�φ .

Proof. Recall that, for each node m in tree(n), we denote by sub(tree(n), m) the sub-tree of tree(n) rooted at m. For each
leaf m of tree(n), let w(m) denote one of the nodes in p(m) such that s(w(m)) = s(m) and e(w(m)) ≤ e(m) (see Fig. 4).

JID:YJCSS AID:3075 /FLA [m3G; v1.211; Prn:4/04/2017; 14:25] P.9 (1-19)

N. Alechina et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 9
Fig. 5. One step in constructing the strategy.

Let us expand tree(n) as follows:

• T 0 is tree(n);
• T i+1 is T i where all its leaves m are replaced by sub(tree(n), w(m)) (see Fig. 5).

Let T = limi→∞ T i , then T is a strategy for 〈 〈Ab〉 〉�φ. �
Lemma 5. If box-strategy(n, 〈 〈Ab〉 〉�φ) returns false, then there is no strategy satisfying 〈 〈Ae(n)〉 〉�φ from s(n) that is �-economical
for n.

Proof. We prove the lemma by induction on the height in the recursion tree of box-strategy calls.

Base Case: If false is returned by the first if-statement, then s(n) �|= 〈 〈A〉 〉�φ; this also means there is no strategy satisfying
〈 〈Ae(n)〉 〉�φ at s(n).
If false is returned by the second if-statement, then any strategy satisfying 〈 〈Ae(n)〉 〉�φ at s(n) is not �-economical.

Inductive Step: If false is not returned by the first two if-statements, for all actions σ ∈ ActA, there exists s′ ∈ out(s(n), σ)

such that box-strategy(n′, 〈 〈Ab〉 〉�φ) (where n′ = node(n, σ , s′)) returns false. Assume to the contrary that there is a
strategy F satisfying 〈 〈Ae(n)〉 〉�φ from s(n) that is �-economical for n. Let σ = F (s(n)), then σ ∈ ActA. Obviously, for
all s′ ∈ out(s(n), σ), F ′(λ) = F (s(n)λ) is a strategy �-economical for n′ = node(n, σ , s′). This is a contradiction; hence,
there is no strategy satisfying 〈 〈Ae(n)〉 〉�φ from s(n) that is �-economical for n. �

Then, we have the following result directly:

Corollary 3. If box-strategy(node0(s, b), 〈 〈Ab〉 〉�φ) returns false then s �|= 〈 〈Ab〉 〉�φ .

4. Lower bound

In this section we show that the lower bound complexity for the model-checking problem for RB±ATL is EXPSPACE, by
reducing from the reachability problem of Petri Nets. Note that the exact complexity of the reachability problem of Petri
Nets is still an open question (although it is known to be decidable and EXPSPACE-hard, [10]). The exact complexity of
the RB±ATL model-checking problem is also unknown. Note that an upper bound for the RB±ATL model-checking problem
would also be an upper bound for the reachability problem of Petri Nets due to the reduction below. Even an Ackermannian
upper bound for this problem is still open [11]. This suggests that determining an upper bound for the RB±ATL model-
checking problem is also a hard problem.

A Petri net is a tuple N = (P , T , W , M) where:

• P is a finite set of places;
• T is a finite set of transitions;
• W : P × T ∪ T × P →N is a weighting function; and
• M : P →N is an initial marking.

A transition t ∈ T is M-enabled iff W (r, t) ≤ M(r) for all r ∈ P . The result of performing t is a marking M ′ where
M ′(r) = M(r) − W (r, t) + W (t, r), denoted as M [t〉 M ′ .

JID:YJCSS AID:3075 /FLA [m3G; v1.211; Prn:4/04/2017; 14:25] P.10 (1-19)

10 N. Alechina et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
Fig. 6. Structure IN,M ′ .

A marking M ′ is reachable from M iff there exists a sequence

M0 [t1〉 M1 [t2〉 . . . [tn〉 Mn

where M0 = M and n ≥ 0 such that Mn ≥ M ′ (where M ≥ M ′ iff M(r) ≥ M ′(r) for all r ∈ P). It is known that the lower
bound for the complexity of this version of the reachability problem (with Mn ≥ M ′ rather than Mn = M ′) is EXPSPACE [10,
p. 73].

We present a reduction from an instance of the reachability problem of Petri Nets to an instance of the model-checking
problem of RB±ATL.

Given a net N = (P , T , W , M) and a marking M ′ , we construct a RB-CGS IN,M′ = ({1}, P , S, {p}, π, Act, d, c, δ) (see Fig. 6)
where:

• S = {s0} ∪ T ∪ {s, e};
• π(p) = {s};
• Act = {idle, good} ∪ {t−, t+ | t ∈ T };
• d(s0, 1) = {idle, good} ∪ {t− | t ∈ T };
• d(s, 1) = d(e, 1) = {idle};
• d(t, 1) = {idle, t+} for all t ∈ T ;
• c(x, 1, idle) = 0̄ for all x ∈ S;
• c(s0, 1, good) = M ′;
• cr(s0, 1, t−) = W (r, t) for all r ∈ P and t ∈ T ;
• cr(t, 1, t+) = −W (t, r) for all r ∈ P and t ∈ T ;
• δ(x, idle) = e for all x ∈ S \ {s};
• δ(s, idle) = s;
• δ(s0, good) = s;
• δ(s0, t−) = t for all t ∈ T ;
• δ(t, t+) = s0 for all t ∈ T .

The following is straightforward:

Lemma 6. Given a net N = (P , T , W , M) and a marking M ′ , M ′ is reachable from M iff IN,M′ , s0 |= 〈 〈1M〉 〉� U p.

Proof. (⇒): Assume that M ′ is reachable from M , then there exists a sequence

M0 [t1〉 M1 [t2〉 . . . [tn〉 Mn

where M0 = M and n ≥ 0 such that Mn ≥ M ′ .
Then, we consider the following strategy F for agent 1:

• F (s0) = t−
1 , note that M ≥ c(s0, 1, t−

1) and δ(s0, t−
1) = t1;

• F (s0t1) = t+
1 , note that M − (c(s0, 1, t−

1) + c(t1, 1, t+
1)) = M1 ≥ 0̄ and δ(t1, t+

1) = s0;
• F (s0t1s0) = t−

2 , note that c(s0, 1, t−
2) ≤ M1, M − (c(s0, 1, t−

1) + c(t1, 1, t+
1) + c(s0, 1, t−

2)) = M1 − c(s0, 1, t−
2) ≥ 0̄ and

δ(s0, t−
2) = t2;

• F (s0t1s0t2) = t+
2 , note that M − (c(s0, 1, t−

1) + c(t1, 1, t+
1) + c(s0, 1, t−

2) + c(t2, 1, t+
2)) = M2 ≥ 0̄ and δ(t2, t+

2) = s0;
.
.
.

JID:YJCSS AID:3075 /FLA [m3G; v1.211; Prn:4/04/2017; 14:25] P.11 (1-19)

N. Alechina et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 11
• F (s0t1s0t2 . . . s0tn) = t+
n , note that M − (c(s0, 1, t−

1) + c(t1, 1, t+
1) + c(s0, 1, t−

2) + c(t2, 1, t+
2) + . . . + c(s0, 1, t−

n) +
c(tn, 1, t+

n)) = Mn ≥ M ′ ≥ 0̄ and δ(tn, t+
n) = s0; and

• F (s0t1s0t2 . . . s0tns0) = good, note that c(s0, 1, good) = M ′ , M − (c(s0, 1, t−
1) +c(t1, 1, t+

1) +c(s0, 1, t−
2) +c(t2, 1, t+

2) + . . .+
c(s0, 1, t−

n) + c(tn, 1, t+
n) + c(s0, 1, good)) = Mn − M ′ ≥ 0̄ and δ(s0, good) = s.

Since s |= p, it is straightforward that F is a strategy satisfying 〈 〈1M 〉 〉� U p from s0.
(⇐): Assume that s0 |= 〈 〈1M〉 〉� U p, then there exists a strategy F which satisfies 〈 〈1M 〉 〉� U p from s0.
Since there is only one agent, out(s0, F) contains a single path s0 . . . s Obviously, e cannot be visited on the prefix

s0 . . . s; hence s0 . . . s must have the form s0t1s0t2 . . . tns0s for some t1, . . . , tn ∈ T . Furthermore,

• F (s0) = t−
1 , c(s0, 1, t−

1) ≤ M ,
• F (s0t1) = t+

1 , c(s0, 1, t−
1) + c(t1, 1, t+

1) ≤ M ,
.
.
.

• F (s0t1 . . . tn−1s0) = t−
n , c(s0, 1, t−

1) + c(t1, 1, t+
1) + . . . + c(s0, 1, t−

n) ≤ M ,
• F (s0t1 . . . tn−1s0tn) = t+

n , c(s0, 1, t−
1) + c(t1, 1, t+

1) + . . . + c(s0, 1, t−
n) + c(tn, 1, t+

n) ≤ M , and
• F (s0t1 . . . tn−1s0tns0) = good, c(s0, 1, t−

1) + c(t1, 1, t+
1) + . . . + c(s0, 1, t−

n) + c(tn, 1, t+
n) + M ′ ≤ M .

Therefore,

• t1 is M-enabled, let M1 = M − (c(s0, 1, t−
1) + c(t1, 1, t+

1)),
• t2 is M1-enabled, let M2 = M1 − (c(s0, 1, t−

2) + c(t2, 1, t+
2)) = M − (c(s0, 1, t−

1) + c(t1, 1, t+
1) + c(s0, 1, t−

2) + c(t2, 1, t+
2)),

.

.

.

• tn is Mn−1-enabled, let Mn = Mn−1 − (c(s0, 1, t−
n) + c(tn, 1, t+

n)) = M − (c(s0, 1, t−
1) + c(t1, 1, t+

1) + . . . + c(s0, 1, t−
n) +

c(tn, 1, t+
n)) ≥ M ′ .

Hence, we have M [t1〉 M1 [t2〉 . . . [tn〉 Mn . As Mn ≥ M ′ , M ′ is reachable from M . �
We have the following result:

Corollary 4. The lower bound for the model-checking problem complexity of RB±ATL is EXPSPACE.

5. Feasible cases

In the previous section, we have seen that the model-checking problem for RB±ATL is EXPSPACE-hard. There are, how-
ever, several tractable special cases of the model-checking problem. Here we consider two of them: model-checking RB±ATL
with a single resource, and model-checking RB-ATL (RB±ATL with only consumption of resources).

5.1. Model-checking RB±ATL with a single resource

For the case when |Res| = 1, the problem whether M, s |= φ0 is decidable in PSPACE.

Theorem 2. The upper bound for the model-checking problem complexity of RB±ATL with a single resource is PSPACE.

Proof. All the cases in Algorithm 1 apart from 〈 〈Ab〉 〉φU ψ and 〈 〈Ab〉 〉�φ can be computed in time polynomial in |M| and
|φ|. The cases for 〈 〈Ab〉 〉φU ψ and 〈 〈Ab〉 〉�φ are more computationally expensive. They involve calling the until-strategy and
the box-strategy procedures, respectively, for every state in S . The procedures explore the model in a depth-first manner,
one path at a time. Their space requirement corresponds to the maximal length of such a path. Note that unlike depth-first
search, until-strategy and box-strategy in the general case (multiple resources) do not terminate when they encounter a
loop, that is a path containing two nodes with the same state: . . . , n1, . . . , n2 where s(n1) = s(n2), since in the general case
e(n1) and e(n2) may be incomparable. However, for a single resource, it will always be the case that either e(n1) = e(n2),
or e(n1) < e(n2), or e(n1) > e(n2). Inspection of until-strategy and box-strategy shows that they will return in all of these
cases. Hence, we never need to keep a stack of more than |S| nodes, which requires polynomial space. �

The result above can be generalised to the case when |Res| > 1, but the formula φ0 is of a special form, where at most
one resource is non-∞ in each bound. To be precise, φ0 is such that in each resource bound b occurring in it, for at most
one resource i, bi �= ∞.

JID:YJCSS AID:3075 /FLA [m3G; v1.211; Prn:4/04/2017; 14:25] P.12 (1-19)

12 N. Alechina et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
5.2. Model-checking RB-ATL

In this section, we briefly revisit the problem of model-checking RB-ATL (the logic where only consumption of resources
is considered). The syntax of RB-ATL is the same as the syntax of RB±ATL, and the models are the class of RB-CGS with
no production of resource (all action costs are non-negative). We will refer to such models as RB-CGS− . A symbolic model-
checking algorithm for that logic was introduced in [9] (without infinite resource bounds). Here we re-state the algorithm
and discuss upper and lower bounds for the complexity of RB-ATL model-checking.

The algorithm uses an abbreviation split(b) that takes a resource bound b and returns the set of all pairs (d, d′) ∈
N∞ ×N∞ such that:

1. d + d′ = b;
2. di = d′

i = ∞ for all i ∈ {1, . . . , r} such that bi = ∞; and
3. d has at least one non-0 value.

We assume that split(b) is partially ordered in increasing order of the second component d′ (so that if d′
1 < d′

2, then (d1, d′
1)

precedes (d2, d′
2)).

The algorithm is similar to the symbolic model-checking algorithm for ATL given in [1]. The main differences from the
algorithm for ATL is the addition of costs of actions, and, instead of working with a straightforward set of subformulas
Sub(φ0) of a given formula φ0, we work with an extended set of subformulas Sub+(φ0). Sub+(φ0) includes Sub(φ0), and in
addition:

• if 〈 〈Ab〉 〉�φ ∈ Sub(φ0), then 〈 〈Ad′ 〉 〉�φ ∈ Sub+(φ0) for all d′ such that (d, d′) ∈ split(b);
• if 〈 〈Ab〉 〉φUψ ∈ Sub(φ0), then 〈 〈Ad′ 〉 〉φUψ ∈ Sub+(φ0) for all d′ such that (d, d′) ∈ split(b).

We assume that Sub+(φ0) is partially ordered in the increasing order of complexity and of resource bounds (so e.g., for
b ≤ b′ , 〈 〈Ab〉 〉�ψ precedes 〈 〈Ab′ 〉 〉�ψ).

Theorem 3. Given an RB-CGS− M = (Agt, Res, S, �, π, Act, d, c, δ) and an RB-ATL formula φ0 , there is an algorithm which returns
the set of states [φ0]M satisfying φ0: [φ0]M = {s ∈ S | M, s |= φ0}, which runs in time O (|φ0|2r+1 × |M|2) where r is |Res|, assuming
that the components of the resource bounds are encoded in unary.2

Proof. Let Pre as before be a function which given a coalition A, a set ρ ⊆ S and a bound b returns a set of states s in
which A has a move σA with cost cost(s, σA) ≤ b such that out(s, σA) ⊆ ρ . Note that Pre(A, ρ, b) can be computed in O (|δ|).
We assume that δ is already stored in a data structure where entries for δ(s, σ) are grouped together by state s. Then for
each state s in S , partition the set of transitions σ from s into buckets where σA is the same joint action by A. This can be
done in one pass over transitions from s. For each bucket, if the cost of σA is at most b, check whether δ(s, σ ′) for all σ ′ in
this bucket is in ρ . If yes, add s to Pre(A, ρ, b). Observe that each transition in δ is only traversed twice (once to put it in a
bucket, and once to check its outcome).

Consider Algorithm 4 (where 0̄
∞← b is a vector whose ith component is ∞ if the ith component of b is ∞, and 0

otherwise). Note that |split(b)| is O (βr), where β is the largest component occurring in b. If φ0 contains operators with
bounds containing components other than 0 and ∞, |Sub+(φ0)| is O (|φ0| × βr), or O (|φ0| × |φ0|r) provided that vector
components are encoded in unary. The main loop is executed for each formula in Sub+(φ0). The outer foreach loops for
〈 〈Ab〉 〉φU ψ and 〈 〈Ab〉 〉�φ are executed O (|split(b)|) = O (|φ0|r) times, and the inner while loops are executed at most |S|
times calling an O (|δ|) function Pre. This gives complexity of the whole algorithm O (|φ0| × |φ0|r × |φ0|r × |S| × |δ|) =
O (|φ0|2r+1 × |M|2). �
6. Comparison with RAL

In this section, we compare RB±ATL with the logics introduced in [3], in particular with the logic pr-rf-RAL’. In [3],
it is shown that the model-checking problem for pr-rf-RAL’ with infinite semantics is undecidable. The decidability of the
model-checking problem for pr-rf-RAL’ with finite semantics is stated in [3] as an open problem. Here we show that model-
checking for pr-rf-RAL’ with finite semantics is decidable.

6.1. The logic pr-rf-RAL’

The logical language pr-rf-RAL’ is a proponent-restricted and resource-flat version of RAL without the release operator
(for a complete description of RAL and its variants, we refer the reader to [3] and its technical report version [12]; in fact
the name pr-rf-RAL’ comes from [12]).

2 It is possible to give an algorithm which is linear in |M|, by reducing the problem to AND-OR search as in [1] and in addition keeping track of the costs
of paths. Such a linear algorithm is assumed for the complexity result stated in [9].

JID:YJCSS AID:3075 /FLA [m3G; v1.211; Prn:4/04/2017; 14:25] P.13 (1-19)

N. Alechina et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 13
Algorithm 4 Model-checking RB-ATL.
function rb-atl-label(M, φ0)

for φ′ ∈ Sub+(φ) do
case φ′ = p, ¬φ, φ ∧ ψ

standard, see [1]

case φ′ = 〈 〈Ab〉 〉 ©φ [φ′]M ← Pre(A, [φ]M , b)

case φ′ = 〈 〈Ab〉 〉φU ψ where b is such that for all i, bi ∈ {0, ∞}:
ρ ← [false]M ; τ ← [ψ]M ;
while τ � ρ do

ρ ← ρ ∪ τ ; τ ← Pre(A, ρ, b) ∩ [φ]M

od
[φ′]M ← ρ

case φ′ = 〈 〈Ab〉 〉φU ψ where b is such that for some i, bi /∈ {0, ∞}:
ρ ← [false]M ; τ ← [false]M

foreach d′ ∈ {d′ | (d, d′) ∈ split(b)} do
τ ← Pre(A, [〈 〈Ad′ 〉 〉φUψ]M , d) ∩ [φ]M

while τ � ρ do
ρ ← ρ ∪ τ ; τ ← Pre(A, ρ, ̄0 ∞← b) ∩ [φ]M

od
od
[φ′]M ← ρ

case φ′ = 〈 〈Ab〉 〉�φ where b is such that for all i, bi ∈ {0, ∞}:
ρ ← [true]M ; τ ← [φ]M

while ρ � τ do
ρ ← τ ; τ ← Pre(A, ρ, b) ∩ [φ]M

od
[φ′]M ← ρ

case φ′ = 〈 〈Ab〉 〉�φ where b is such that for some i, bi /∈ {0, ∞}:
ρ ← [false]M ; τ ← [false]M

foreach d′ ∈ {d′ | (d, d′) ∈ split(b)} do
τ ← Pre(A, [〈 〈Ad′ 〉 〉�φ]M , d) ∩ [φ]M

while τ � ρ do
ρ ← ρ ∪ τ ; τ ← Pre(A, ρ, ̄0 ∞← b) ∩ [φ]M

od
od
[φ′]M ← ρ

return [φ0]M

The syntax of pr-rf-RAL’ is defined using endowment functions (or just endowments) rather than resource bounds. An
endowment is a function η : Agt × Res → N ∪ {∞}. We will sometimes write ηa(r) instead of η(a, r). Let En denote the set
of all possible endowments.

Formulas of pr-rf-RAL’ are defined as follows:

φ,ψ ::= p | ¬φ | φ ∧ ψ | 〈〈A〉〉η©φ | 〈〈A〉〉η�φ | 〈〈A〉〉ηφ U ψ

where p ∈ �, A ⊆ Agt, A �= ∅ and η ∈ En.
Formulas of pr-rf-RAL’ are interpreted on resource-bounded models (RBM) which are RB-CGS (i.e., CGS structures ex-

tended with resources) whose transitions are in general not total, i.e., at a state, an agent is not required to have any
available actions. This means that there may be a state in an RBM model which does not have any successor. An RBM is
defined as follows:

Definition 2. An RBM is a tuple M = (Agt, Q , �, π, Act, d, o, Res, t) where Agt, Act, Q , �, Res, and o are defined as Agt, Act
except that idle is not required to be in Act, S , �, Res, and δ, respectively, in Definition 1 and:

• π : Q → ℘(�) specifies propositional valuation;
• d : Agt × Q → ℘(Act) specifies available actions;
• t : Act × Res → Z for an action α ∈ Act and a resource r ∈ Res specifies the consumption of r by α if t(α, r) ≤ 0 or the

production of r by α if t(α, r) > 0. Let cons(α, r) = − min{0, t(α, r)} and prod(α, r) = max{0, t(α, r)}.

Resource availability is modelled by resource-quantity mappings (rqm) ρ : Res → Z ∪ {∞}.
Given a RBM M , Q ≤ω = Q ω ∪ Q + denotes the set of all finite and infinite sequences over Q . A sequence λ ∈ Q ≤ω is a

path in M iff there exist transitions in M between adjacent states in λ. A finite or infinite sequence λ = (q0, η0), (q1, η1), . . .
over Q × En is a resource-extended path (r-path) in M iff q0, q1, . . . is a path in M .

Given a coalition A, an endowment η and an rqm ρ , an (A, η)-share for ρ is a function sh : A × Res → N where:

• ∀r ∈ Res : ρ(r) > 0 ⇒ ∑
a∈A sh(a, r) = ρ(r);

• ∀a ∈ A, r ∈ Res : ηa(r) ≥ sh(a, r).

JID:YJCSS AID:3075 /FLA [m3G; v1.211; Prn:4/04/2017; 14:25] P.14 (1-19)

14 N. Alechina et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
Let Share(A, η, ρ) denote the set of all possible (A, η)-shares for ρ . It is straightforward that Share(A, η, ρ) is always finite
and it is ∅ if

∑
a∈A ηa(r) < ρ(r), i.e., resource endowment for agents in A is not enough to create a share.

As defined in [3], a path is maximal if it cannot be extended due to unavailability of resources. Given an endowment η
and a strategy F A for a coalition A, a maximal r-path λ = (q0, η0), (q1, η1), . . . of M is an (η, F A)-path starting from a state
q0 iff:

• η0 = η;
• ∀a ∈ A, r ∈ Res, i ≥ 0, i < |λ| : ηi

a(r) ≥ 0;
• ∀i ≥ 0, i < |λ| − 1 : ∃σ ∈ D(qi) such that:

– F A(q0 . . .qi) = σA ;
– o(qi, σ) = qi+1;
– ∃shi ∈ Share(A, η, ρ) : ∀a ∈ A, r ∈ Res : ηi+1

a (r) = ηi
a(r) + prod(σa, r) − shi(a, r) where ρ is such that ρ(r) = ∑

a∈A −
cons(σa, r).

Then, out(q0, η, F A) denotes the set of all (η, F A)-paths starting from a state q0. As shown in [3], out(q0, η, F A) is never
empty. In the worst case, out(q0, η, F A) contains a single r-path (q0, η).

Given an RBM M and a state q, the truth of pr-rf-RAL’ formulas is defined inductively as follows (we omit the proposi-
tional cases):

• M, q |=ral 〈 〈A〉 〉η©φ iff ∃F A : ∀λ ∈ out(q, η, F A) : |λ| ≥ 2 ∧ M, λ[1] |=ral φ;
• M, q |=ral 〈 〈A〉 〉η�φ iff ∃F A : ∀λ ∈ out(q, η, F A) : |λ| = ∞ ∧ ∀i ≥ 0 : M, λ[i] |=ral φ;
• M, q |=ral 〈 〈A〉 〉ηφU ψ iff ∃F A : ∀λ ∈ out(q, η, F A) : ∃i ≥ 0, i < |λ| : M, λ[i] |=ral ψ ∧ ∀ j ≥ 0, j < i : M, λ[j] |=ral φ.

The definition above gives finite semantics of pr-rf-RAL’. Infinite semantics is obtained if the condition “for all λ ∈
out(q, η, F A)” above is replaced with “for all infinite λ ∈ out(q, η, F A)”.

Theorem 4. [3,12] The model-checking problem for pr-rf-RAL’ with infinite semantics is undecidable.

The problem whether model-checking for pr-rf-RAL’ with finite semantics is decidable is left open in [3]. Below we
show that it is in fact decidable by adapting the model-checking algorithm for RB±ATL. Before we do this, we investigate
the differences between pr-rf-RAL’ and RB±ATL in more detail. In particular we consider whether we can obtain a logic
equivalent to pr-rf-RAL’ by simply removing the restriction that agents always have at least the idle action available from
the semantics of RB±ATL.

6.2. The logic RB±ATL-nt

As models for pr-rf-RAL’ are not total in general, we facilitate a comparison with RB±ATL by introducing a variant
RB±ATL-nt of RB±ATL where we remove the requirement of total transitions in Definition 1. In other words, RB±ATL-nt
has the same syntax as RB±ATL yet a broader class, namely RB-CGS-nt, of models which do not need to be total. In
particular, in Definition 1, Act does not need to include idle and d : S × Agt → ℘(Act) may be mapped to an empty set or to
a set not containing idle.

Obviously, any RB-CGS model is an RB-CGS-nt but not vice versa. Since RB-CGS-nt models are not total in general, at a
state s, the set D A(s) of possible joint actions by a coalition A and the set of possible outcomes of a joint action σA ∈ D A(s)
may be empty.

Given a RB-CGS-nt model M , a strategy F A for a coalition A ⊆ Agt, a finite computation λ ∈ S+ is consistent with F A iff
for all i ∈ {0, . . . , |λ| −2}: λ[i +1] ∈ out(λ[i], F (λ[0, i])) and DAgt(λ[|λ| −1]) = ∅, i.e., there is a deadlock at the last state of λ.
We denote by out f (s, F A) the set of all consistent finite computations of F A starting from s. Then, the set of all consistent
finite and infinite computations of F A from s is defined as:

outnt(s, F A) = out(s, F A) ∪ out f (s, F A)

Under a resource bound b ∈ B , a computation λ ∈ outnt(s, F A) can be only carried out until an index imax ∈ N∞ (see
Fig. 7) iff:

i∑
j=0

cost(λ[j], F A(λ[0, j])) ≤ b for all i < imax

and

imax∑
cost(λ[j], F A(λ[0, j]))� b if imax �= ∞
j=0

JID:YJCSS AID:3075 /FLA [m3G; v1.211; Prn:4/04/2017; 14:25] P.15 (1-19)

N. Alechina et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 15
Fig. 7. λ is restricted by b.

Let us denote λ(b) = λ[0, imax] and we call λ(b) maximal with respect to b. Then, the set of all b-consistent (finite or
infinite) computations of F A starting from state s is defined as follows:

outnt(s, F A,b) = {λ(b) | λ ∈ outnt(s, F A)}
Note that this definition implies that the cost of every prefix of a b-consistent computation is below b and outnt(s, F A, b)

may contain finite computations. Furthermore, outnt(s, F A, b) is always non-empty, as in the worst case, it contains a single
computation s.

The semantics of RB±ATL-nt formulas is defined as follows (the atomic case and Boolean connectives are defined in the
standard way):

• M, s |=nt 〈 〈Ab〉 〉 ©φ iff ∃ strategy F ′
A such that for all λ ∈ outnt(s, F ′

A, b): |λ| ≥ 2 and M, λ[1] |= φ;

• M, s |=nt 〈 〈Ab〉 〉�φ iff ∃ strategy F ′
A such that for all λ ∈ outnt(s, F ′

A, b) and i ≥ 0: |λ| = ∞ and M, λ[i] |= φ; and

• M, s |=nt 〈 〈Ab〉 〉φU ψ iff ∃ strategy F ′
A such that for all λ ∈ outnt(s, F ′

A, b), ∃i ≥ 0: i < |λ|, M, λ[i] |= ψ and M, λ[j] |= φ

for all j ∈ {0, . . . , i − 1}.

If the condition “for all λ ∈ outnt(s, F ′
A, b)” is replaced with “for all infinite λ ∈ outnt(s, F ′

A, b)” in the truth definition of
RB±ATL-nt, we obtain RB±ATL-nt with infinite semantics. Note that in a RB-CGS model M , if F A is a b-strategy for a
coalition A, we have that out(s, F A) = out(s, F A, b) = outnt(s, F A) = outnt(s, F A, b). We have the following result:

Lemma 7. Given a RB-CGS model M, M, s |= φ′ iff M, s |=nt φ′ under finite semantics.

Proof. (⇒) is obvious. For (⇐), the proof is by induction on the structure of φ′ .
If φ′ = 〈 〈Ab〉 〉�φ, we have that outnt(s, F ′

A) = outnt(s, F ′
A, b) because |λ| = ∞ for all λ ∈ outnt(s, F ′

A, b); thus, F ′
A is a

b-strategy.
If φ′ = 〈 〈Ab〉 〉 ©φ, let us consider the following strategy for A:

F A(λ) =
{

F ′
A(λ) if ∃λ′ ∈ S+ ∪ Sω : λλ′ ∈ out(s, F ′

A,b)

idle otherwise.

It is straightforward that F A is a b-strategy to satisfy M, s |= 〈 〈Ab〉 〉 ©φ at s.
If φ′ = 〈 〈Ab〉 〉φU ψ , the proof is similar to the above case, hence it is omitted here. �
The above result shows that over the class of RB-CGS models, RB±ATL and RB±ATL-nt with finite semantics are equiva-

lent. Furthermore, we have the following result:

Theorem 5. The model-checking problem for RB±ATL-nt with finite semantics is decidable.

Proof. The model-checking algorithm for RB±ATL can be easily adapted to a model-checking algorithm for RB±ATL-nt.
The only change required is in the case of 〈 〈Ab〉 〉 ©φ, the function Pre(A, ρ, b) is redefined as Pre(A, ρ, b) = {s ∈ S |
∃σA ∈ D A(s) : cost(s, σA) ≤ b ∧ out(s, σA) ⊆ ρ ∧ out(s, σA) �= ∅}. Here, we additionally require that out(s, σA) �= ∅. until-

strategy and box-strategy do not change; observe that if the set Act A of available actions is empty, the algorithms return
false. �

JID:YJCSS AID:3075 /FLA [m3G; v1.211; Prn:4/04/2017; 14:25] P.16 (1-19)

16 N. Alechina et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
Fig. 8. Comparing resource endowments and bounds.

6.3. Comparing pr-rf-RAL’ and RB±ATL-nt

At the semantical level, every RBM M = (Agt, Q , �, π, Act, d, o, Res, t) can be converted straightforwardly into an RB-
CGS-nt M ′ = (Agt, Res, Q , �, π ′, Act, d, c, δ) where:

• π ′(p) = {q ∈ Q | p ∈ π(q)} for all p ∈ �;
• c(q, a, α) = (−t(α, r))r∈Res for all q ∈ Q , a ∈ Agt, α ∈ Act; and
• δ = o.

At the syntactical level, pr-rf-RAL’ and RB±ATL-nt are rather different. While pr-rf-RAL’ enables specifying the ability
of a coalition under a resource endowment, RB±ATL-nt allows one to specify the ability of a coalition within a resource
bound. Let us consider an example, as depicted in Fig. 8, in order to clarify the difference between endowments and
bounds. In this example, our model has two agents a and b and one resource. From state s, agents a and b can only
perform α and β , respectively, which cost −c and c (for some c > 0), respectively. As their joint action is cost-free, we have
that s |=nt 〈 〈{a, b}0〉 〉 © p. However, given an empty endowment η0 = {a �→ 0, b �→ 0}, there is no possible share from this
endowment to cover the cost c of action β; i.e., s �|=ral 〈 〈{a, b}〉 〉η0 ©p. This is because (s, η0) is the only r-path from s under
η0 and it is shorter that the computation s, t under 0. In general, we have the following result:

Lemma 8. Given a RBM model M, for any state q0, coalition A ⊆ Agt, strategy F A , endowment η0 and bound b = (
∑

a∈A η0
a (r))r∈Res,

if (q0, η0), (q1, η1), . . . , (qk, ηk) is the prefix of some r-path in out(q0, η0, F A), then q0q1 . . .qk is also the prefix of some computation
in outnt(q0, F A, b).

Proof. The proof is done by induction on k; additionally, we also show that (
∑

a∈A ηk
a(r))r∈Res = b − ∑k−1

j=0 cost(q j,

F A(q1 . . .q j)).

Base case k = 0: The proof is trivial.
Induction step: Assume that (q0, η0), (q1, η1), . . . , (qk+1, ηk+1) is the prefix of some r-path in out(q0, η0, F A). Then, so is

(q0, η0), (q1, η1), . . . , (qk, ηk). By induction hypothesis, we have that q0 . . .qk is the prefix of some computation in
outnt(q0, F A, b) and (

∑
a∈A ηk

a(r))r∈Res = b − ∑k−1
j=0 cost(q j, F A(q1 . . .q j)).

As (q0, η0), (q1, η1), . . . , (qk+1, ηk+1) is a prefix, Share(A, ηk, (
∑

a∈A cons(F A(q0 . . .qk)a, r))r∈Res) �= ∅, i.e.,
∑

a∈A ηk
a(r) ≥∑

a∈A cons(F A(q0 . . .qk)a, r) for all r ∈ Res; hence
∑

a∈A ηk+1
a (r) ≥ ∑

a∈A prod(F A(q0 . . .qk)a, r) ≥ 0.
We also have (

∑
a∈A ηk+1

a (r))r∈Res = (
∑

a∈A(ηk
a(r) + prod(F A(q0 . . .qk)a, r) − shk(a, r)))r∈Res = (

∑
a∈A(ηk

a(r) +
prod(F A(q0 . . .qk)a, r) − cons(F A(q0 . . .qk)a, r)))r∈Res = b − ∑k

j=0 cost(q j, F A(q1 . . .q j)). As
∑

a∈A ηk+1
a (r) ≥ 0 for all

r ∈ Res, b − ∑k
j=0 cost(q j, F A(q1 . . .q j)) ≥ 0̄, i.e.,

∑k
j=0 cost(q j, F A(q1 . . .q j)) ≤ b, hence q0 . . .qk+1 is also a prefix of

some computation in outnt(q0, F A, b). �
As suggested by the function ηb which translates resource bounds into endowments (introduced in [12] by Bulling and

Farwer to relate their framework to RBCL [13]), pr-rf-RAL’ formulas can also be converted into RB±ATL-nt formulas by
a translation function tr where an endowment η is converted to a bound (

∑
a∈A ηa(r))r∈Res . The function tr is defined

inductively as follows (propositional cases are omitted):

• tr(〈 〈A〉 〉η©φ) = 〈 〈A(
∑

a∈A ηa(r))r∈Res 〉 〉 ©tr(φ);
• tr(〈 〈A〉 〉η�φ) = 〈 〈A(

∑
a∈A ηa(r))r∈Res 〉 〉�tr(φ); and

• tr(〈 〈A〉 〉ηφU ψ) = 〈 〈A(
∑

a∈A ηa(r))r∈Res 〉 〉tr(φ) U tr(ψ).

Here, resource bounds are sums of individual endowments for each resource. The example in Fig. 8 and Lemma 8 show that
satisfiability is not preserved by the translation function tr. In order to obtain preservation of satisfiability, it is necessary
to relax the requirement in the definition of computations in RBM models. In particular, the last condition is relaxed as
follows:

• ∃shi ∈ Share(A, η, ρ) : ∀a ∈ A, r ∈ Res : ηi+1
a (r) = ηi

a(r) + prod(σa, r) − shi(a, r) where σA = F A(q0 . . .qi) and ρ(r) =∑
a∈A(cons(σa, r) − prod(σa, r)).

JID:YJCSS AID:3075 /FLA [m3G; v1.211; Prn:4/04/2017; 14:25] P.17 (1-19)

N. Alechina et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 17
Comparing the original condition, the production of resource in a step is also considered to cover for the consumption in
the same step by adding it into the share function. Let us call RBM models with this relaxed condition relaxed RBM models.
We have the following result:

Lemma 9. Given a relaxed RBM model M, for any state q0, strategy F A , endowment η0 and bound b = (
∑

a∈A ηa(r))r∈Res, then:

• if (q0, η0), (q1, η1), . . . ∈ out(q0, η0, F A), then q0q1 . . . ∈ out(q0, F A, b);
• conversely, if q0q1 . . . ∈ outnt(q0, F A, b); then ∃η1, η2 . . . such that (q0, η0), (q1, η1), . . . ∈ out(q0, η0, F A).

Proof. The claim directly follows from Lemma 8. �
Let pr-rf-RAL” be pr-rf-RAL’ interpreted over relaxed RBM models. We have the following result:

Lemma 10. Given a relaxed RBM model M, M, s |=pr-rf-RAL” φ′ iff M ′, s |=nt tr(φ′).

Proof. Let us prove the direction from left to right. The other direction is similar. The proof is done by induction on the
structure of φ′ . The base case is trivial, hence omitted here.

In the induction step, the cases of propositional connectives are trivial, hence they are also omitted. Let us consider the
following three cases.

φ′ = 〈〈A〉〉η©φ: Let b = (
∑

a∈A ηa(r))r∈Res and F A be the strategy to satisfy φ′ at s. For every q0q1 . . . ∈ outnt(s, F A, b) where
s = q0, by Lemma 9, there are η1, η2 such that (q0, η0)(q1, η1) . . . ∈ out(s, η, F A). As M, s |=ral 〈 〈A〉 〉η©φ, we have that
M, q1 |=ral φ. By induction hypothesis, M ′, q1 |=nt tr(φ). Hence, M ′, s |= 〈 〈Ab〉 〉 ©tr(φ).

φ′ = 〈〈A〉〉ηφU ψ : Let b = (
∑

a∈A ηa(r))r∈Res and F A be the strategy to satisfy φ′ at s. For every q0q1 . . . ∈ outnt(s, F A, b)

where s = q0, by Lemma 9, there are η1, η2 such that (q0, η0)(q1, η1) . . . ∈ out(s, η, F A). As M, s |=ral 〈 〈A〉 〉ηφU ψ , we
have that ∃i ≥ 0 such that M, q j |=ral φ for all j < i and M, qi |=ral ψ . By induction hypothesis, M ′, q j |=nt tr(φ) for all
j < i and M, qi |=ral ψ . Hence, M ′, s |= 〈 〈Ab〉 〉tr(φ) U tr(ψ).

φ′ = 〈〈A〉〉η�φ: Let b = (
∑

a∈A ηa(r))r∈Res and F A be the strategy to satisfy φ′ at s. For every q0q1 . . . ∈ outnt(s, F A, b) where
s = q0, by Lemma 9, there are η1, η2 such that (q0, η0)(q1, η1) . . . ∈ out(s, η, F A). As M, s |=ral 〈 〈A〉 〉ηφU ψ , we have
that (q0, η0)(q1, η1) . . . is infinite and M, q j |=ral φ for all j ≥ 0. By induction hypothesis, M ′, q j |=nt tr(φ) for all j ≥ 0.
Hence, M ′, s |= 〈 〈Ab〉 〉�tr(φ). �

The above lemma shows that over the class of relaxed RBM models, RB±ATL-nt and pr-rf-RAL” with finite semantics
are equivalent. Similar to the above result, it is also straightforward that RB±ATL-nt with infinite semantics is equivalent to
pr-rf-RAL” with infinite semantics:

Lemma 11. Given a relaxed RBM model M, under the infinite semantics, M, s |=pr-rf-RAL” φ′ iff M ′, s |=nt tr(φ′).

Proof. The proof is the same as the proof of Lemma 10 except we only consider infinite computations. �
Note that the proof for the undecidability of pr-rf-RAL’ in [3] with infinite semantics can be applied for pr-rf-RAL” with

infinite semantics. Hence, we have the following result:

Lemma 12. Model-checking pr-rf-RAL” with infinite semantics is undecidable.

Then, we have the following consequences:

Corollary 5. Model-checking RB±ATL-nt with infinite semantics is undecidable.

Since model-checking RB±ATL-nt with finite semantics is decidable, we have:

Lemma 13. Model-checking pr-rf-RAL” with finite semantics is decidable.

Furthermore, the same result can also be established for pr-rf-RAL’:

Theorem 6. Model-checking pr-rf-RAL’ with finite semantics is decidable.

JID:YJCSS AID:3075 /FLA [m3G; v1.211; Prn:4/04/2017; 14:25] P.18 (1-19)

18 N. Alechina et al. / Journal of Computer and System Sciences ••• (••••) •••–•••
Algorithm 5 Labelling 〈 〈A〉 〉ηφU ψ .
1: function until-strategy(n, 〈 〈A〉 〉ηφU ψ)
2: if s(n) �|= 〈 〈A〉 〉∞̄φU ψ then
3: return false

4: if ∃n′ ∈ p(n) : s(n′) = s(n) ∧ (∀a ∈ A, r ∈ Res : η(n′)(a, r) ≥ η(n)(a, r) then
5: return false

6: for (a, i) ∈ {(a, i) ∈ A × Res | ∃n′ ∈ p(n) : s(n′) = s(n)∧
(∀b ∈ A, j ∈ Res : η(n′)(b, j) ≤ η(n)(b, j)) ∧
η(n′)(a, i) < η(n)(a, i)} do

7: η(n)(a, i) ← ∞
8: if s(n) |= ψ then
9: return true

10: if η(n) = ∞̄ then
11: return true
12: ActA ← {σ ∈ D A(s(n)) | ∑a∈A cons(s(n), σa) ≤ ∑

a η(n)(a)}
13: for σ ∈ ActA do
14: O ← out(s(n), σ)

15: strat ← true
16: for s′ ∈ O do
17: shstrat ← false
18: for sh ∈ Share(A, η(n), ∑a∈A cons(s(n), σa)) do
19: shstrat ← shstrat ∨
20: until-strategy(node(n, σ , sh, s′), 〈 〈A〉 〉ηφU ψ)

21: if shstrat then
22: break
23: strat ← strat ∧ shstrat
24: if strat then
25: return true
26: return false

Semantics RB±ATL RB±ATL-nt pr-rf-RAL” pr-rf-RAL’

Finite D D D D
Infinite D U U U [3]

Fig. 9. Decidability and undecidability results.

Proof. We adapt further the model-checking algorithm for RB±ATL-nt (which in turn is an adaptation of the one for
RB±ATL) by replacing the role of resource bounds for a coalition with endowments for each agent in the coalition.
In particular, each node in a search tree consists of a state, an endowment (where η(n) returns the endowment of a
node n) and a finite path of nodes from the root leading to this node. We also adapt the function node to take into
account shares where node(n, σA, sh, s′) returns a node n′ where s(n′) = s′ , p(n′) = [p(n) · n] and for all a ∈ A and r ∈ Res:
η(n′)(a, r) = η(n)(a, r) + prod(σa, r) − sh(a, r). The adaptation of Algorithm 2 is shown in Algorithm 5. In this algorithm, apart
from the exchange of bounds with endowments, we also add an or-search for shares in lines 18–22. A similar adaption can
be applied to Algorithm 3 and the detail is omitted here. �

Fig. 9 summarises the above decidability and undecidability results for the model-checking problems for RB±ATL,
RB±ATL-nt, pr-rf-RAL” and pr-rf-RAL’ where D stands for decidable and U for undecidable. Note that RB±ATL is decidable
in both semantics due to the fact that both semantics are indistinguishable thanks to idle.

7. Conclusion

We have presented a model-checking algorithm for RB±ATL, a logic with resource production, which makes RB±ATL
exceptional in the landscape of resource logics, for most of which the model-checking problem is undecidable [3,6]. We
compared RB±ATL with a similar logic (a variant of RAL, [3]) to understand the differences between the two logics and
why the model-checking problem for RB±ATL is decidable while the model-checking problem for pr-rf-RAL’ with infinite
semantics is undecidable. As a by-product of this comparison, we show that the model-checking problem for pr-rf-RAL’ with
finite semantics is decidable, solving a problem left open in [3].

Although the model-checking problem for RB±ATL is decidable, it is EXPSPACE-hard. In future work, we plan to imple-
ment model-checking algorithms for feasible fragments of RB±ATL in the model-checker MCMAS [14].

Acknowledgment

We thank the anonymous reviewer for their very thorough, detailed and constructive feedback.

JID:YJCSS AID:3075 /FLA [m3G; v1.211; Prn:4/04/2017; 14:25] P.19 (1-19)

N. Alechina et al. / Journal of Computer and System Sciences ••• (••••) •••–••• 19
References

[1] R. Alur, T. Henzinger, O. Kupferman, Alternating-time temporal logic, J. ACM 49 (5) (2002) 672–713.
[2] N. Bulling, J. Dix, W. Jamroga, Model checking logics of strategic ability: complexity, in: Specification and Verification of Multi-agent Systems, Springer,

2010, pp. 125–159.
[3] N. Bulling, B. Farwer, On the (un-)decidability of model checking resource-bounded agents, in: Proceedings of the 19th European Conference on

Artificial Intelligence (ECAI 2010), in: Frontiers in Artificial Intelligence and Applications, vol. 215, IOS Press, 2010, pp. 567–572.
[4] D. Della Monica, M. Napoli, M. Parente, On a logic for coalitional games with priced-resource agents, Electron. Notes Theor. Comput. Sci. 278 (2011)

215–228.
[5] D. Della Monica, M. Napoli, M. Parente, Model checking coalitional games in shortage resource scenarios, in: Proceedings of the 4th International

Symposium on Games, Automata, Logics and Formal Verification (GandALF 2013), in: EPTCS, vol. 119, 2013, pp. 240–255.
[6] N. Bulling, V. Goranko, How to be both rich and happy: combining quantitative and qualitative strategic reasoning about multi-player games (extended

abstract), in: F. Mogavero, A. Murano, M.Y. Vardi (Eds.), Proceedings of the 1st International Workshop on Strategic Reasoning, SR 2013, in: EPTCS,
vol. 112, 2013, pp. 33–41.

[7] E.M. Clarke, E.A. Emerson, A.P. Sistla, Automatic verification of finite-state concurrent systems using temporal logic specifications, ACM Trans. Program.
Lang. Syst. 8 (2) (1986) 244–263.

[8] N. Alechina, B. Logan, H.N. Nguyen, F. Raimondi, Decidable model-checking for a resource logic with production of resources, in: Proceedings of the
21st European Conference on Artificial Intelligence (ECAI 2014), IOS Press, 2014, pp. 9–14.

[9] N. Alechina, B. Logan, H.N. Nguyen, A. Rakib, Resource-bounded alternating-time temporal logic, in: Proceedings of the 9th International Conference
on Autonomous Agents and Multiagent Systems (AAMAS 2010), IFAAMAS, 2010, pp. 481–488.

[10] W. Reisig, Petri Nets: An Introduction, EATCS Monographs on Theoretical Computer Science, vol. 4, Springer, 1985.
[11] J. Leroux, Acceleration for Petri nets, in: D.V. Hung, M. Ogawa (Eds.), Proceedings of the 11th International Symposium on Automated Technology for

Verification and Analysis, ATVA 2013, in: Lecture Notes in Computer Science, vol. 8172, Springer, 2013, pp. 1–4.
[12] N. Bulling, B. Farwer, On the (Un-)Decidability of Model Checking Resource-Bounded Agents, Tech. Rep. IfI-10-05, Clausthal University of Technology,

2010.
[13] N. Alechina, B. Logan, H.N. Nguyen, A. Rakib, A logic for coalitions with bounded resources, in: Proceedings of the 21st International Joint Conference

on Artificial Intelligence (IJCAI 2009), vol. 2, IJCAI/AAAI, AAAI Press, 2009, pp. 659–664.
[14] A. Lomuscio, H. Qu, F. Raimondi, MCMAS: a model checker for the verification of multi-agent systems, in: A. Bouajjani, O. Maler (Eds.), Proceedings

of the 21st International Conference on Computer Aided Verification (CAV 2009), in: Lecture Notes in Computer Science, vol. 5643, Springer, 2009,
pp. 682–688.

http://refhub.elsevier.com/S0022-0000(17)30036-3/bib416C75722F2F3A303261s1
http://refhub.elsevier.com/S0022-0000(17)30036-3/bib64617374616E692B3130s1
http://refhub.elsevier.com/S0022-0000(17)30036-3/bib64617374616E692B3130s1
http://refhub.elsevier.com/S0022-0000(17)30036-3/bib42756C6C696E672F4661727765723A313061s1
http://refhub.elsevier.com/S0022-0000(17)30036-3/bib42756C6C696E672F4661727765723A313061s1
http://refhub.elsevier.com/S0022-0000(17)30036-3/bib44656C6C614D6F6E6963612F2F3A313161s1
http://refhub.elsevier.com/S0022-0000(17)30036-3/bib44656C6C614D6F6E6963612F2F3A313161s1
http://refhub.elsevier.com/S0022-0000(17)30036-3/bib44656C6C614D6F6E6963612F2F3A313361s1
http://refhub.elsevier.com/S0022-0000(17)30036-3/bib44656C6C614D6F6E6963612F2F3A313361s1
http://refhub.elsevier.com/S0022-0000(17)30036-3/bib42756C6C696E672F476F72616E6B6F3A313361s1
http://refhub.elsevier.com/S0022-0000(17)30036-3/bib42756C6C696E672F476F72616E6B6F3A313361s1
http://refhub.elsevier.com/S0022-0000(17)30036-3/bib42756C6C696E672F476F72616E6B6F3A313361s1
http://refhub.elsevier.com/S0022-0000(17)30036-3/bib436C61726B652F2F3A383661s1
http://refhub.elsevier.com/S0022-0000(17)30036-3/bib436C61726B652F2F3A383661s1
http://refhub.elsevier.com/S0022-0000(17)30036-3/bib416C656368696E612F2F3A313461s1
http://refhub.elsevier.com/S0022-0000(17)30036-3/bib416C656368696E612F2F3A313461s1
http://refhub.elsevier.com/S0022-0000(17)30036-3/bib416C656368696E612F2F3A313061s1
http://refhub.elsevier.com/S0022-0000(17)30036-3/bib416C656368696E612F2F3A313061s1
http://refhub.elsevier.com/S0022-0000(17)30036-3/bib5265697369672E31393835s1
http://refhub.elsevier.com/S0022-0000(17)30036-3/bib4C65726F75783A313362s1
http://refhub.elsevier.com/S0022-0000(17)30036-3/bib4C65726F75783A313362s1
http://refhub.elsevier.com/S0022-0000(17)30036-3/bib42756C6C696E672F4661727765723A313062s1
http://refhub.elsevier.com/S0022-0000(17)30036-3/bib42756C6C696E672F4661727765723A313062s1
http://refhub.elsevier.com/S0022-0000(17)30036-3/bib416C656368696E612F2F3A303962s1
http://refhub.elsevier.com/S0022-0000(17)30036-3/bib416C656368696E612F2F3A303962s1
http://refhub.elsevier.com/S0022-0000(17)30036-3/bib4C6F6D757363696F2F2F3A303961s1
http://refhub.elsevier.com/S0022-0000(17)30036-3/bib4C6F6D757363696F2F2F3A303961s1
http://refhub.elsevier.com/S0022-0000(17)30036-3/bib4C6F6D757363696F2F2F3A303961s1

	Model-checking for Resource-Bounded ATL with production and consumption of resources
	1 Introduction
	2 Syntax and semantics of RB±ATL
	3 Model checking RB±ATL
	4 Lower bound
	5 Feasible cases
	5.1 Model-checking RB±ATL with a single resource
	5.2 Model-checking RB-ATL

	6 Comparison with RAL
	6.1 The logic pr-rf-RAL'
	6.2 The logic RB±ATL-nt
	6.3 Comparing pr-rf-RAL' and RB±ATL-nt

	7 Conclusion
	Acknowledgment
	References

