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Highlights 

 SIMS analysis confirmed the doping of Er into the In2O3 TF 

 I-V loop analysis gives reduced current memory window for In2O3:Er TF based 

device 

 High ideality factor was determined at low temperature and explained 

 Defect related photoconductivity was confirmed from low temperature measurement 

 10 K temporal response of the Au/In2O3:Er/Si confirmed removal of oxygen defects 

 

 

Abstract: 

Erbium doped Indium Oxide (In2O3:Er) thin films (TFs) were synthesised by spin-on 

technique. Secondary Ion Mass Spectrometry confirmed that Er is incorporated into the In2O3 

lattice and formed an In-O-Er layer. The current –voltage loop produced a lower loop current 

window of ~3.6 x10-4 A for In2O3:Er TF based devices. The Au/In2O3:Er/Si Schottky devices 

have lower ideality factor (~6) and higher barrier height (~0.63 eV) at 300 K than 

Au/In2O3/Si control samples. A blue shift in the main band-gap (~50 nm) was calculated for 

In2O3:Er TFs from 10 K photoresponse. The Au/In2O3:Er/Si samples show higher 

photosensitivity in the temperature range 10 K -300 K and maximum (~15 times) in the UV 

region at 10 K as compared to the Au/In2O3/Si devices. In addition, the Au/In2O3:Er/Si 

devices have better UV to visible cut-off ratio (~3 times). Excellent temporal responses were 

recorded for Au/In2O3:Er/Si in the UV region as compared to Au/In2O3/Si. 

 

Keywords: A. electronic materials; A. oxides; B. chemical synthesis; D. defects; D. electrical 

properties. 
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1. Introduction: 

Metal oxide semiconductor (MOS) thin films (TFs) are important for the fabrication of 

transparent optoelectronic devices [1]. Amongst  MOS based materials, Indium Oxide (In2O3) 

is a better transparent oxide semiconductor (TOS) material compared to other well-known 

materials such as TiO2 and ZnO because of its high carrier mobility (~43.7 cm2/V-s) [2] and 

wide direct bandgap of 3.5 – 3.7 eV [3]. The detection of ultraviolet (UV) light is also very 

important for applications in flame sensors, missile plume detectors, spatial optical 

communication devices, UV photosensors, biological and chemical sensors, laser-based 

devices etc. [4]. In spite of the encouraging results reported, the carrier concentration in MOS 

devices is difficult to control due to the presence of large numbers of oxygen vacancies and 

defects [5,6] which results in non-reliable performance of optoelectronic devices. A major 

breakthrough in this field was the epitaxial growth of single crystal TOS (Indium Gallium 

Zinc Oxide) TFs with an atomically flat surface on yttria-stabilized zirconia substrates [7]. 

However, the reduction in oxygen vacancies in TOS as well as compatibility with existing 

Silicon technology by cost-effective techniques is challenging [4]. Inorganic materials 

activated with rare earth ions (REs) have suitable spectroscopic characteristics to design 

luminescent or display materials [8]. Use of REs with TOSs is receiving much interest in 

scientific community due to the wide range of technological applications based on their 

increased transparency in the visible region (Sc or Y doped ZnO) [9], intra-ionic radiative 

transition processes (Er doped In2O3) [10], increased photosensitivity or photo-emissivity (Er 

doped SnO2 and Erbium Tin Oxide) [11], bandgap engineering (Ga3+ doped Lu3Al5O12) [12], 

enhanced photocatalytic activity (Er3+ doped β-Bi2O3) [13], defect engineering 

(Praseodymium doped GaN) [14], reduction of the oxygen and N related defects by Er [15] 

etc. Amongst these REs, Erbium (Er) is optically active f- block element and can emit photon 
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corresponding to the wavelength of ~1540 nm, which lies in the region of minimum losses 

for silica-based waveguides used in fibre optic communications [16–19] and silicon 

photonics [20]. Researchers also reported on the improved detection of UV light by Er doped 

In2O3 (In2O3:Er) TFs as compared to undoped In2O3 TFs and investigated the removal of 

oxygen-related defect states from the host In2O3 material using optical and electrical 

techniques [4]. However, it is important to find out the energy positions of the defect states 

within the bandgap of In2O3 after incorporation of Er atoms and their roles in device 

performance. Amongst all the defects identified in TOSs, oxygen vacancy is one of the most 

significant and is considered to be the dominant defect in In2O3. Oxygen vacancies in MOS 

had been investigated extensively both experimentally [21–23] and theoretically [24,25]. For 

example, low-temperature photo-capacitance and photocurrent measurements were 

performed to study defects introduced in GaAs by N incorporation [15]. However, there are 

no reports on the investigation of defects using temperature dependent current– voltage (I-V) 

characteristics, photosensitivity and low temperature temporal responses of In2O3:Er TFs, 

which is important for improving their performance as UV detectors. 

In this paper, the doping of Er into In2O3 lattice has been confirmed by Secondary Ion Mass 

Spectrometry (SIMS) analysis. We have performed I-V hysteresis, temperature dependent (10 

K- 300 K) photosensitivity, low temperature (10 K) responsivity and low temperature (10 K) 

temporal response of detectors in order to probe the energy positions of the defects present in 

undoped In2O3 and In2O3:Er TFs. The theoretical analysis of the ideality factor (η) and barrier 

height (ΦB) was performed using Schottky model by taking into consideration the presence of 

defects. Low-temperature photocurrent and temporal responses provided the information 

about the type of defects and energy level positions. 

2. Experimental Details: 

2.1 Synthesis of Undoped and Er doped In2O3 TFs and device fabrication: 
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In2O3 and In2O3:Er TFs were deposited on RCA cleaned p-type Si (100) substrates ( 

resistivity ~10 Ω-cm, MTI, USA) by spin coating technique using the chemical route [4]. The 

sol-gel for In2O3 TF was prepared by dissolving 0.5 g Indium (III) Chloride (InCl3) 

anhydrous powder (5 N purity, Sigma-Aldrich) into 30 ml of acetylacetone (purity> 99%, 

Merck) under ultrasonication (~50 0C, 15 min) and left for ageing for 24 h. It was then spin 

coated (spin NXG-P1, apexicindia) on the Si substrate (rotation speed ~1000 rpm for 1 min). 

The as-deposited film was then annealed in a muffle furnace (~400 0C for 10 min) under 

atmospheric air condition. The entire process was repeated four times in order to get a 

uniform film over the substrate with final annealing at ~400 0C for 30 min. To prepare 

In2O3:Er solution, 0.04 g Erbium (III) Oxide nanopowder (purity≥ 99.9%, Aldrich) was 

dissolved in 10 ml sulfuric acid (H2SO4) by ultrasonication (~50 0C, 15 min) and finally 

added to the previously prepared InCl3 solution. This doped solution was ultrasonicated (~50 

0C, 15 min) and left for 48 h for ageing. The In2O3:Er sol-gel was then spin-coated on a p-Si 

substrate (rotation speed ~6000 rpm for 2 min) followed by 10 min open air annealing (~400 

0C) for four times with final annealing at ~400 0C for 30 min as has already been described. 

Gold (Au) was evaporated through circular holes of an aluminum mask, which was placed on 

top of the samples to form the upper electrode (diameter ~2 mm) contact of the Schottky 

devices by thermal evaporation method. Indium was used as an Ohmic contact on the 

backside of p-Si substrate. Both the undoped In2O3 (Au/In2O3/Si) and Er doped In2O3 devices 

(Au/In2O3:Er/Si) were prepared using the same procedure. 

2.2 Characterisation techniques: 

Time-of-Flight Secondary Ion Mass Spectrometry (ToF-SIMS) (PHI TRIFT V nano TOF, 

Physical Electronics, USA) was performed using dual beam configuration on the undoped 

and In2O3:Er TFs to analyse the depth profiles (using a stylus-based profilometer). A caesium 

(Cs2+) primary ion beam of 0.3 A beam current and 3.0 keV net impact energy was used as a 
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sputtering ion source to etch the sample surface within a raster size of 600 m x 600 m, 

whereas a Gallium (Ga) gun was used to analyse the secondary ions. The SIMS aperture 

settings were used to restrict secondary ion analysis within the square area within the raster 

region of 40 m x 40 m using liquid metal (Ga) ion gun. This SIMS configuration is used to 

determine appropriate composition of the TFs [26]. The I–V characteristics of Au/In2O3/Si 

and Au/In2O3:Er/Si were investigated using a Keithley 2401 source meter and 300 W Ozone 

free xenon arc lamp (650-0047). The photocurrent spectra of both detectors were recorded at 

low temperature using an open beam configuration through a monochromator (120-9055, 

Science tech Inc., Canada) and a He cryostat (Advanced Research System). 

3. Results and discussion: 

3.1 SIMS analysis and depth profiling interpretation: 

Fig. 1 shows the semi-logarithmic plot of the number of counts of different ions against 

sputter time and counts vs depth profiles, where the time scale is converted into depth 

(nanometers) by using a stylus-based profilometer. The inset of Figs. 1(a) and 1(b) shows the 

CCD images of the TF surface. The undoped In2O3 TF displays high surface roughness (inset 

of Fig. 1(a)), which contains small grains all over the TF surface. The In2O3:Er TF (inset of 

Fig. 1(b)) surface becomes smoother, which was also characterised previously using scanning 

electron microscopy (SEM) [4]. 
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Fig. 1: Sputter time vs. number of counts for (a) undoped In2O3 TF (CCD image in inset) and (b) In2O3:Er TF 

(CCD image in inset); depth (in nm) of the TF vs. number of counts for (c) undoped In2O3 TF and (d) In2O3:Er 

TF. 

 

 

The sputter time vs the number of counts spectrum can be divided into three different regions 

[27]. The region-I is marked for non-equilibrium sputtering of the Cs2+ ions on the undoped 

and In2O3:Er TF surfaces, where the number of counts of In, O and In, O, Er etc. decreases 

rapidly for undoped (Fig. 1(a)) and In2O3:Er TFs (Fig. 1(b)), respectively. With the increasing 

sputter time, in the region-II equilibrium sputtering was achieved. In this region, the 

incoming sputter ions became equal to the outgoing sputter ions [27]. Therefore, there is a 

slow decrease in the counts of In (from 27603 to 1286), In2+O and O for undoped In2O3 TF 

which confirms the formation of stable In2O3 TF layer (Fig. 1(a)). In the case of In2O3:Er TF, 

in region-II, In (from 19123 to 1368) and In2+O ion yield decreases sharply from maximum 
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value while approaching towards the In2O3:Er TF-Si substrate interface (Fig. 1(b)). However, 

the counts of Er and Er+O are almost parallel to the sputtering time axis in region-II. This 

observation indicates that Er incorporated into In2O3 TF lattice replaces some In and O atoms 

and form an inhomogeneous In-O-Er layer on the substrate. The background level is 

indicated by region-III, where diffusion of the dopant species (Er) does not occur and counts 

of the In element is recorded. The depth profile of undoped TF counts for the elements shows 

almost parallel variation with depth axis from 5-70 nm, which proves the formation of 

homogeneous In2O3 TF layer over the region (Fig. 1(c)). In the case of In2O3:Er TF (Fig. 

1(d)), the counts for Er and Er+O are stable, whereas the In and In2+O contents decrease 

rapidly from 5 nm to 70 nm depth.  Therefore, the diffusion of Er into In2O3 lattice basically 

forms a non-stoichiometric layer of thickness around 65 nm. Beyond the 70 nm depth, the 

background concentration of In atoms was recorded. The spectra for Si ions appeared due to 

the Si substrate. The depth profile identifies the diffusion of Er and In atoms into the Si 

substrate, which may be due to the chemical reaction between the precursors and the Si 

substrate during the open air annealing process at 400 0C. 

3.2 Presence of memory: 

The ten (10) successive loops of I - V characteristics were taken for both Au/In2O3/Si and 

Au/In2O3:Er/Si devices to investigate the state of defects present in the material. Fig. 2 

demonstrates the 1st and 10th loop of such I-V curves for both devices for DC voltage sweep 

between +2 V and +5 V. The path 1 and path 2 indicate the currents for the up-sweep and 

down-sweep between +2 V and +5 V. Fig. 2 (inset) shows the number of I-V loops vs current 

window curve. The current window for the Au/In2O3/Si device reduces from a maximum of 

8.6 x10-3 A (1st loop) to 1 x 10-4 A (10th loop) and for Au/In2O3:Er/Si device it reduces from 

3.6 x10-4 A (1st loop) to 1.7 x10-5 A (10th loop) at an applied bias of +3 V. Therefore, the 1st 

and 10th current loops indicates that the current window reduction ratios are ∆I ~86 and ∆I 
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~21 for Au/In2O3/Si and Au/In2O3:Er/Si devices, respectively. Larger current loop memory of 

the Au/In2O3/Si device is observed due to the presence of huge oxygen related 

 

Fig. 2: 1st and 10th loop of I-V curves for both Au/In2O3/Si and Au/In2O3:Er/Si devices for applied dc voltage of 

operations between +2 V and +5 V; the number of I-V loops vs. current window curve (inset). 

defects [28,29] into the lattice and at the Au/In2O3 Schottky interface. Under the forward bias 

condition, the undoped In2O3 TF produces ionisation due to the availability of huge free 

carriers (~8 x 1016 cm-3) [4], which enhances the depletion width at the junction and finally 

charge storage of the device. On the other hand, incorporation of Er into the In2O3 matrix 

reduces the oxygen-related defect states and traps at the metal-semiconductor interface. The 

carrier compensation process reduces the free carrier concentration (~5 x 1012 cm-3) of the 

In2O3:Er material [4]. Therefore, under the forward bias, the carriers are unable to produce 

high ionisation and subsequently the depletion width reduces as compared to Au/In2O3/Si 

device. Hence, the charge storage capability of the Au/In2O3:Er/Si device, which possesses 

small current window, is reduced. The number of ionisation carriers is reduced successively 

after each loop for both devices and therefore the reduction in current memory window is 
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obtained. A large current loop reduction ratio of ∆I ~86 is obtained for Au/In2O3/Si as 

compared to Au/In2O3:Er/Si device (∆I ~21) due to the availability of huge free carriers for 

ionization in the 1st loop, which was largely reduced in the 10th loop for the Au/In2O3/Si 

device. These observations suggest that Er doping of In2O3 decreases the oxygen-related 

defect states. 

3.3 Temperature dependent characteristics: 

The temperature dependent dark ln I -V characteristics of the Au/In2O3/Si and Au/In2O3:Er/Si 

devices are shown in Fig. 3(a). It is observed that the reverse saturation current (Is) exhibits 

small increase with temperature (T) from 4.2 x 10-6 A (at 10 K) to 9.7 x 10-6 A (at 300 K) for 

the Au/In2O3/Si device. On the other hand, the Is increases rapidly with increasing 

temperature for the Au/In2O3:Er/Si device from 1.2 x 10-9 A (at 10 K) to 2.1 x 10-6 A (at 300 

K). The 300 K ideality factor (η) of the Au/In2O3/Si device is calculated to be higher (η ~12) 

than that of Au/In2O3:Er/Si device (η ~6) as obtained from the forward I-V characteristics 

shown in Fig. 3(b) using the equation 𝜂 =
𝑞

𝑘𝑇
[

𝜕𝑉

𝜕(𝑙𝑛 𝐼)
] (where, 𝑞 is the electronic charge, 𝑘 is 

the Boltzmann constant, 𝑇 is the temperature and 
𝜕(𝑙𝑛 𝐼)

𝜕𝑉
 is the slope of the linear fit of the ln I 

vs V curve between 0.5 V and 1 V). The presence of large numbers of oxygen-related defect 

states at the interface of metal-semiconductor increases the carrier tunneling by hole trapping 

process into the device [30], which in turn enhances the ideality factor. At low temperature 

(10 K) the maximum η value of ~685 and ~574 are calculated for the Au/In2O3/Si and 

Au/In2O3:Er/Si devices, respectively. With the increase in temperature from 10 K to 300 K, 

there is an exponential decay of η as shown in Fig. 3(b). The η vs. T curves for both undoped 

(η1) and doped (η2) devices are best fitted with the equations: η1 = 𝑦0 + 𝐴𝑒
(−𝑇

𝑡1
⁄ )

+

 𝐵𝑒
(−𝑇

𝑡2
⁄ )

 and η2 = 𝑦0
′ + 𝐶𝑒

(−𝑇
𝑡3

⁄ )
 respectively, where 𝑦0 =15.4, A= 1397.7, B =238.8, 𝑡1= 

9.26, 𝑡2 = 47.7 and 𝑦0
′  = 16.7, C =1929.4, 𝑡3= 8.1. The η values of Au/In2O3/Si and 
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Au/In2O3:Er/Si devices decrease rapidly from 10 K to 70 K and 40 K (Fig. 3(b)), 

respectively. After that temperature for both devices, η is almost linear with the increase of 

temperature.  The 
𝜂𝑘𝑇

𝑞⁄  vs. 𝑘𝑇
𝑞⁄  curve is plotted (Fig. 3(b)(inset)) to find out the actual 

current conduction mechanism and the origin of high η values for the diodes at low 

temperature [31]. For the Au/In2O3/Si and Au/In2O3:Er/Si devices, the intercepts of the linear 

fits of  
𝜂𝑘𝑇

𝑞⁄  vs. 𝑘𝑇
𝑞⁄  curves to the 

𝜂𝑘𝑇
𝑞⁄  axis are at ~637 meV and at ~521 meV, 

respectively. These intercepts are known as the tunneling parameters of the Schottky diode 

[31,32]. The tunneling parameter values are ≫ 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑣𝑜𝑙𝑡𝑎𝑔𝑒 (𝑘𝑇
𝑞⁄ ) , which basically 

initiates the free carrier generation due to field emission (FE) in the devices [33]. On the 

other hand, very low barrier height at 10 K of 16 meV and 22 meV are calculated for both 

Au/In2O3/Si and Au/In2O3:Er/Si devices, respectively (Fig. 3(b)). A linear increase in barrier 

height (ΦB) is observed with increasing temperature up to 0.63 eV and 0.66 eV, respectively 

for Au/In2O3/Si and Au/In2O3:Er/Si devices at 300 K (Fig. 3(b)). Therefore, at low 

temperatures, the electrons overcome the low barrier height by collecting the energy from the 

applied electric field and tunnel through the barrier. But, at high temperatures, the carriers 

collect energy from thermal agitation and applied electric field to overcome the large barrier 

height, which is known as thermionic field emission (TFE) process. The increase in η and a 

decrease in ΦB of the diode at low temperatures might be due to the structural defects in the 

semiconductor, inhomogeneous doping, interface roughness and inhomogeneity of the 

thickness of the layer which were previously explained experimentally and theoretically [32–

35]. In our case, the TFs were fabricated using spin coating technique, which involves 

considerable surface roughness and non-uniformity in the thickness of the TFs on the 

substrate. Similar type of temperature-dependent electrical properties of Pt Schottky contacts 
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to n-type GaN was successfully explained by Phark et al with the help of TE and TFE models 

[36]. 

 

Fig. 3: (a) Temperature dependent dark ln I -V characteristics of the Au/In2O3/Si and Au/In2O3:Er/Si devices 

(inset); (b) temperature vs. ideality factor and barrier height curves fitted with non-linear curves, 
𝜂𝑘𝑇

𝑞⁄  vs. 

𝑘𝑇
𝑞⁄  curves (inset); (c) (

1

𝜂
− 1) vs. (2kT)-1  and (2kT)-1 vs. barrier height (ΦB) plots fitted with straight lines. 

According to Schmitsdorf et al [37], the linear variation of Schottky barrier height with 

temperature is due to the presence of barrier irregularity, which may create double Gaussian 
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distributions of the barrier heights at the junction [32,38]. Fig. 3(c) shows the 

(
1

𝜂
− 1) vs. (2kT)-1 and (2kT)-1 vs. ΦB plots, which are fitted by two different lines of different 

slopes instead of a single straight line for the Au/In2O3/Si and Au/In2O3:Er/Si devices. The 

rapid changes in slope of the linear fits are occurring at 70 K for both devices. These two 

different slopes at the lower and higher temperature range represents the distinct activated 

process due to the existence of two Gaussian distributions [38] of barrier heights at the 

interface between TF and Schottky metal (Au) contact. At high temperatures the carriers 

overcome the higher barrier height and at low temperatures the carriers can only overcome 

the lower barrier height. 

3.4. Temperature dependent photosensitivity and function of defects: 

The dark current for the devices is plotted in Fig. 4(a) at an applied voltage of -2 V and at 

different temperatures from 10 K to 300 K. At 300 K the current produced by the Au/In2O3/Si 

device (-5.34 x 10-6 A) was higher than Au/In2O3:Er/Si device (-3.83 x10-6 A). The higher 

free carrier concentration (~8 x 1016 cm-3) of undoped In2O3 TF as compared to In2O3:Er TF 

(~5 x 1012 cm-3) produces large current in the undoped device [4]. With the decrease in 

temperature from 300 K to 10 K, the resistance of the undoped In2O3 TF decreased linearly 

due to the continuous trapping of the free carriers into the defect states. On the other hand, 

small amount of defects present in the In2O3:Er TF suddenly trapped the minority free 

carriers existing in the system at around ~280 K. Below this temperature, down to 10 K the 

Au/In2O3:Er/Si TF device possesses almost constant current because of the non-availability 

of free carriers in the film. Hence, the In2O3:Er TF possesses low current conductivity all 

over the temperature range. The photosensitivity (light current/dark current) of the devices 

were examined under UV light excitation (wavelength =340 nm) at different temperatures 

ranging from 10 K to 300 K (Fig. 4(b)). In the case of Au/In2O3/Si device, the sensitivity 

decreased gradually from 300 K to 140 K, which may be due to the Auger scattering of the 
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photogenerated carriers and residual carriers inside the TF. After 140 K the maximum 

electrons (due to low kinetic energy) are trapped into the defects and only the photoexcited 

carriers reach the electrodes effectively. In addition, those electrons trapped near the 

conduction band edge defects states are easier to promote to the conduction band by photon 

excitation for conduction process. Therefore, the photosensitivity of the device again 

increases from 140 K to 10 K. The increased photosensitivity of the Au/In2O3/Si device is a 

further evidence of defect states that are present in the material. For the Au/In2O3:Er/Si 

device the photosensitivity is almost linear up to 

 

Fig. 4: (a) The dark current of the devices at an applied bias of -2 V against different applied temperature from 

10 K to 300 K; (b) photosensitivity (light current/dark current) of the devices under UV light excitation 

(wavelength =340 nm) at different temperature ranging from 10 K to 300 K. 

 

100 K, which may be due to the non-availability of the excess free carriers in the conduction 

band even after photon excitation. Beyond this temperature, a sudden rise in photosensitivity 

has been observed at ~70 K, which may be due to the Peierls phase transition [39]. A Peierls 

transition is basically defined as a metal insulator transition, when it reaches the Peierls 

temperature (Tp). Above Tp, the atoms are all equally spaced with the lattice constant ‘a’. 

Below Tp, a distortion happens and the periodicity doubles to ‘2a’, because of electron-

phonon interactions in the conduction band. This process is called dimerization and happens 
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spontaneously when the material is cooled down. As a result the atoms form chains in one 

direction, which enhance the electric conductivity of the material suddenly. In this case the 

Peierls temperature (Tp) was found at ~70 K.  The compensated carriers then become free at 

70 K due to high internal thermal fluctuation in the In2O3:Er lattice, which was not observed 

for the highly defective undoped In2O3 TF. Similar effects have also been observed for the 

In2O3-SiOx heterostructure based 1D system at 160 K [40]. The sensitivity of the 

Au/In2O3:Er/Si device falls suddenly at 60 K and again a small rise is detected up to 10 K. It 

is important to point out that over the whole temperature range the photosensitivity of 

Au/In2O3:Er/Si device shows greater value as compared to Au/In2O3/Si device (at -2 V bias) 

with maximum of ~200 times at 70 K. Furthermore, the Au/In2O3/Si device shows small 

variation in photosensitivity (~1.09 times), whereas the In2O3:Er TF produced significant 

deviation in photosensitivity (~50 times) between the highest (300 K) and the lowest (10 K) 

points of temperature. This fact again demonstrates that the photoconduction process in 

undoped In2O3 TF and In2O3:Er TF is quite different. Trap states, which emit electrons under 

photon excitation, play a major role in the undoped In2O3 TF material for the whole 

temperature range. However, a little variation in photosensitivity has been observed between 

300 K and 10 K due to the presence of large residual current (dark current). Again, the 

In2O3:Er TF is almost free from defects, so trap related photoconduction is not observed up to 

60 K. Whereas at a very low temperature from 50 K to 10 K the small concentration of 

defects near the conduction band edge starts to de-trap the electrons (similar to Au/In2O3/Si 

device) under photon excitation. But this process has produced massive variation in 

photosensitivity of the doped device due to the presence of small residual current. Finally, it 

can be concluded that the In2O3:Er TF is not completely free from defects, and shallow traps 

in In2O3 play a major role in photoconduction for In2O3:Er TF at very low temperature. 

3.5 Low-temperature responsivity and defect states: 

ACCEPTED M
ANUSCRIP

T



The wavelength dependent (300 nm -500 nm) responsivity of the devices was measured at 10 

K to find out the energy positions of trap states in the material. Fig. 5(a) displays the 

responsivity curves for both devices under the applied reverse bias of -5 V, respectively. The 

Au/In2O3/Si device shows a sharp rise in photoresponsivity (50.36 A/W) from near band edge 

transition at 380 nm (~ 3.26 eV), due to the presence of trap states as previously reported by 

the authors [4]. At 10 K, there is no significant detection related to the main band gap (at 350 

nm) of In2O3. The transition at 410 nm was also detected for defect level in the undoped 

material [41]. But in the case of Au/In2O3:Er/Si device, a broadband from 330 nm - 370 nm 

(~3.75 eV- 3.35 eV) was obtained. The authors reported previously that the band gap of 

highly Er doped In2O3 TF shifted to 324 nm (~3.82 eV) [4]. Therefore, the photoconductivity 

of the In2O3:Er TF based device at 330 nm (~3.75 eV) is related to the main band transition. 

Above that wavelength the shallow level defect transitions produced photoconductivity up to 

370 nm (~3.35 eV). All possible transitions for both devices are represented schematically in 

Figs. 5(b) and 5(c). These explain the key role of minor defects that are present into the 

In2O3:Er TF during low-temperature photoconduction. The In2O3:Er has a dominant defect at 

410 nm (~3.02 eV), and its responsivity spectrum is shown in Fig. 5(a). But the ratio of 

maximum responsivity in the UV region to the responsivity in the visible region at 410 nm is 

higher (~3) for Au/In2O3:Er/Si device as compared with Au/In2O3/Si device (~1.1). 

Therefore, it may be concluded that Er had definitely reduced the density of defects into the 

In2O3 up to a certain level, which improved the UV-Visible rejection ratio of the In2O3:Er TF 

based detector. 
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Fig. 5: (a) Responsivity (A/W) vs wavelength (nm) curves for Au/In2O3/Si and Au/In2O3:Er/Si devices under the 

applied bias of -5 V; schematic band diagram with the different transitions for (b) undoped In2O3 TF and (c) 

In2O3:Er TF. 

Fig. 6 shows the temporal response of the undoped In2O3 (Fig. 6(a)) and In2O3:Er TF based 

detector (Fig. 6(b)) at 10 K under white light, red light (640 nm) and UV light (340 nm) 

illumination at an applied bias voltage of -5 V. The incident light dependent current-time (I-t) 

characteristics of the detectors have been measured with the light on/off switching irradiation 

with a time interval of 5 s. Under white light illumination, the calculated rise (Tr) and fall (Tf) 

times for Au/In2O3/Si and Au/In2O3:Er/Si devices are ~135 ms and ~130 ms, and ~132 ms 

and ~125 ms, respectively. The Au/In2O3:Er/Si device has a faster response as compared to 
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Au/In2O3/Si device, which may be due to the removal of defects. Both devices were 

illuminated by 640 nm wavelength of light (as it is reported that the oxygen-related defect 

state can produce optical transition process at the same energy level) [42] to verify the 

oxygen defect related photoconductivity. 

 

Fig. 6: Time-dependent photocurrent for the detectors at 10 K under white light, red light (640 nm) and UV light 

(340 nm) illumination at the biasing voltage of -5 V for (a) Au/In2O3/Si and (b) Au/In2O3:Er/Si devices. 

The undoped In2O3 TF device shows the usual behaviour under 640 nm light on/off switching 

irradiation, with Tr ~ 108 ms and Tf ~ 106 ms. The Au/In2O3:Er/Si device did not respond to 

the illumination of 640 nm, which may be due to the removal of corresponding oxygen-

related defects. The corresponding transitions are shown in Figs. 5(b) and 5(c). The light 

on/off switching irradiation experiment was performed for Au/In2O3/Si and Au/In2O3:Er/Si 

devices under 340 nm near the band gap energy. The doped device (Tr ~400 ms, Tf ~245 ms) 

shows superior performance as compared to the undoped In2O3 TF device (Tr ~501 ms, Tf ~2 

s). We can conclude from the above observations that the Au/In2O3:Er/Si device acts as good 

UV detector, which selectively detects UV light with higher response speed and also the 

oxygen-related defect states at 640 nm has been removed. However, some of the defects still 

remain (410 nm, as pointed out from responsivity spectrum) in the material after Er doping of 

the In2O3 lattice. 
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4. Conclusion: 

In conclusion, we have successfully synthesised undoped and In2O3:Er TFs by a simple, cost-

effective sol-gel, spin-on technique. The doping of Er in the In2O3 lattice was confirmed by 

the formation of an inhomogeneous In-O-Er layer using SIMS analysis. The reduction ratio in 

current window for In2O3:Er TF was lesser than undoped In2O3 TF due to the reduction of 

oxygen defects present in the In2O3 parent host. The calculated low saturation current (~2.1 x 

10-6 A) and ideality factor (η~6) of Au/In2O3:Er/Si device as compared to Au/In2O3/Si device 

(~9.8 x 10-6 A and η~12), could indicate the removal of defect states by Er from In2O3 lattice. 

The forward I–V characteristics are analysed on the basis of standard TE and TFE theory and 

on the assumption of a double Gaussian distribution of the barrier heights. According to TFE 

theory it has been shown that η decreases while ΦB increases with increasing temperatures. 

The presence of large density of defects play a major role in the photoconduction process in 

the whole temperature range for Au/In2O3/Si device, whereas a much smaller number of 

shallow level defects assist in the photoconduction at very low temperatures from 50 K -10 K 

for Au/In2O3:Er/Si device. The In2O3:Er TF shows a ~50 nm (~0.5 eV) blue shift in main 

bandgap transition as compared to undoped In2O3 TF at 10 K. The In2O3:Er based detector 

shows higher UV to visible cut off ratio (~3 times) and improved temporal response in the 

UV region due to removal of defects. Finally, Au/In2O3:Er/Si device performed better and 

reliably as UV detector despite that some defects still remain in the In2O3 lattice. 
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