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Abstract. We generalize Amitsur’s construction of central simple algebras over a field

F which are split by field extensions possessing a derivation with field of constants F to

nonassociative algebras: for every central division algebra D over a field F of character-

istic zero there exists an infinite-dimensional unital nonassociative algebra whose right

nucleus is D and whose left and middle nucleus are a field extension K of F splitting D,

where F is algebraically closed in K.

We then give a short direct proof that every p-algebra of degree m, which has a purely

inseparable splitting field K of degree m and exponent one, is a differential extension of K

and cyclic. We obtain finite-dimensional division algebras over a field F of characteristic

p > 0 whose right nucleus is a division p-algebra.

Introduction

In 1954, Amitsur [2] observed that all associative central division algebras over a field
F of characteristic zero can be constructed using differential polynomials. His construction
method can be considered as an analogue to the the well known crossed product construction,
except that he uses splitting fields K of the algebras, where the base field F is algebraically
closed in K, instead of their algebraic splitting fields. Some of his results also work for
p-algebras, i.e. over base fields of characteristic p > 0.

In this paper, we consider algebras which are also obtained from differential polynomials,
but which are nonassociative.

These algebras are constructed using the differential polynomial ring K[t; δ], where K is a
field and δ a derivation on K and were defined by Petit [14]: given a differential polynomial
f ∈ K[t; δ] of degree m, the set of all differential polynomials of degree less than m, together
with the addition given by the usual addition of polynomials, can be equipped with a
nonassociative ring structure using right division by f to define the multiplication as g ◦h =
gh modrf . The resulting nonassociative unital ring Sf , also denoted by K[t; δ]/K[t; δ]f , is
an algebra over the field of constants F = Const(δ) of δ. If f generates a two-sided ideal in
K[t; δ], then Sf is the (associative) quotient algebra obtained by factoring out the two-sided
principal ideal generated by f .

If f is not two-sided and δ not trivial, then the nuclei of Sf are larger than the center
F = Const(δ). In that case the left and middle nucleus are always given by K, whereas the
right nucleus reflects both the choice of f and the structure of the ring K[t; δ].
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We proceed as follows: The basic terminology and notation we use can be found in [2] and
Section 1. Section 2 rephrases some of Amitsur’s results for those algebras Sf which have a
central simple algebra as their right nucleus. For this we employ Amitsur’s A-polynomials.
In Sections 3 and 4 we show how to construct algebras Sf with a given central simple algebra
as right nucleus, first for base fields of characteristic zero, then for base fields of characteristic
p > 0: for every central simple algebra B of degree m over a field F of characteristic zero
which is split by a field extension K/F in which F is algebraically closed, there exists an
infinite-dimensional unital algebra Sf = K[t; δ]/K[t; δ]f over F with right nucleus B (and
left and middle nucleus K), see Theorem 8. In particular, for every central division algebra
D over F there exists an infinite-dimensional unital algebra Sf over F with right nucleus D
(Corollary 9).

We present a short proof that every p-algebra B of degree m over a field F of characteristic
p which is split by a purely inseparable field extension K/F of exponent one and degree m
is isomorphic to a differential extension (K, δ, d0) of K (Theorem 13), only invoking a result
on the structure of Sf and Amitsur’s [2, Lemma 20’]. Thus it is cyclic by [9, Main Theorem].

For every division p-algebra D of degree m over a field F of characteristic p which is split
by a purely inseparable field extension K/F of exponent one such that m < [K : F ], there is
a unital division algebra Sf = K[t; δ]/K[t; δ]f over F of dimension mpe with right nucleus
D and left and middle nucleus K. The smallest possible dimension l of such a division
algebra containing D as right nucleus is bounded via m2 < l ≤ mpm−1 and connected to the
number of cyclic algebras that are needed when expressing D as a product of cyclic algebras
of degree p in the Brauer group Br(F ) (Corollary 18).

1. Preliminaries

1.1. Nonassociative algebras. Let F be a field and let A be an F -vector space. A is an
algebra over F if there exists an F -bilinear map A×A→ A, (x, y) 7→ x · y, denoted simply
by juxtaposition xy, the multiplication of A. An algebra A is called unital if there is an
element in A, denoted by 1, such that 1x = x1 = x for all x ∈ A. We will only consider
unital algebras from now on without explicitly saying so.

An algebra A 6= 0 is called a division algebra if for any a ∈ A, a 6= 0, the left multiplication
with a, La(x) = ax, and the right multiplication with a, Ra(x) = xa, are bijective. If A has
finite dimension over F , A is a division algebra if and only if A has no zero divisors [17, pp.
15, 16].

Associativity in A is measured by the associator [x, y, z] = (xy)z−x(yz). The left nucleus
of A is defined as Nucl(A) = {x ∈ A | [x,A,A] = 0}, the middle nucleus of A is Nucm(A) =
{x ∈ A | [A, x,A] = 0} and the right nucleus of A as Nucr(A) = {x ∈ A | [A,A, x] =
0}. Nucl(A), Nucm(A), and Nucr(A) are associative subalgebras of A. Their intersection
Nuc(A) = {x ∈ A | [x,A,A] = [A, x,A] = [A,A, x] = 0} is the nucleus of A. Nuc(A) is an
associative subalgebra of A containing F1 and x(yz) = (xy)z whenever one of the elements
x, y, z is in Nuc(A). The center of A is C(A) = {x ∈ Nuc(A) |xy = yx for all y ∈ A}.
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1.2. Differential polynomial rings. Let K be a field and δ : K → K a derivation, i.e.
an additive map such that

δ(ab) = aδ(b) + δ(a)b

for all a, b ∈ K. The differential polynomial ring K[t; δ] is the set of polynomials

a0 + a1t+ · · ·+ ant
n

with ai ∈ K, where addition is defined term-wise and multiplication by

ta = at+ δ(a) (a ∈ K).

For f = a0 + a1t + · · · + ant
n with an 6= 0 define deg(f) = n and deg(0) = −∞. Then

deg(fg) = deg(f) + deg(g). An element f ∈ R is irreducible in R if it is not a unit and if it
has no proper factors, i.e if there do not exist g, h ∈ R with deg(g),deg(h) < deg(f) such
that f = gh.
R = K[t; δ] is a left and right principal ideal domain and there is a right division algorithm

in R: for all g, f ∈ R, g 6= 0, there exist unique r, q ∈ R with deg(r) < deg(f), such that
g = qf + r. There is also a left division algorithm in R [11, p. 3 and Prop. 1.1.14]. (Our
terminology is the one used by Petit [14]; Jacobson’s is vice versa.)

Two non-zero elements f, g ∈ R are called similar (f ∼ g) if and only if there exist
h, q, u ∈ R such that

1 = hf + qg and u′f = gu

for some u′ ∈ R. Equivalently, f and g are similar if R/Rf and R/Rg are isomorphic as
R-modules [11, p. 11]. Obviously, f ∼ g implies that deg(f) = deg(g).

1.3. The characteristic p > 0 case. Let K be a field of characteristic p and R = K[t; δ],
then

(t− b)p = tp − Vp(b), Vp(b) = bp + δp−1(b), (t− b)pe

= tp
e

− Vpe(b)

for all b ∈ K with Vpe(b) = V e
p (b) = Vp(. . . (Vp(b)) . . . ) [11, p. 17ff]. For any p-polynomial

f(t) = a0t
pe

+ a1t
pe−1

+ · · ·+ aet+ d ∈ D[t; δ]

we thus have

f(t)− f(t− b) = a0Vpe(b) + a1Vpe−1(b) + · · ·+ aeb

for all b ∈ K and define

Vf (b) = a0Vpe(b) + a1Vpe−1(b) + · · ·+ aeb.

1.4. Nonassociative algebras obtained from differential polynomial rings. Let K
be a field and f ∈ R = K[t; δ] of degree m. Let modrf denote the remainder of right division
by f . Define F = Cent(δ) = {a ∈ K | δ(a) = 0}.

Definition 1. (cf. [14, (7)]) The vector space

Rm = {g ∈ K[t; δ] |deg(g) < m}

together with the multiplication

g ◦ h = gh modrf
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is a unital nonassociative algebra Sf = (Rm, ◦) over

F0 = {a ∈ K | ah = ha for all h ∈ Sf}.

F0 is a subfield of K [14, (7)] and it is easy to check that F0 = Cent(δ). The algebra
Sf is also denoted by R/Rf [14, 16] if we want to make clear which ring R is involved in
the construction. In the following, we call the algebras Sf Petit algebras and denote their
multiplication simply by juxtaposition. Without loss of generality, we may assume that f is
monic, since Sf = Sg for all g = af with a ∈ K×.

Using left division by f and the remainder modlf of left division by f instead, we can
define the multiplication for another unital nonassociative algebra on Rm over F , called fS

or R/fR. We will only consider the Petit algebras Sf , however, since every algebra fS is
the opposite algebra of some Petit algebra (cf. [14, (1)]).

Right multiplication with 0 6= g ∈ Sf is given by Rg : Sf −→ Sf , h 7→ hg, and is a
left K-module endomorphism. Left multiplication Lg : Sf −→ Sf , h 7→ gh is an F -module
endomorphism [14], and if we view Sf as a right module over Nucr(Sf ), a right Nucr(Sf )-
module endomorphism.

Clearly Sf has no zero divisors if and only if Rg and Lg are injective.

Theorem 1. (cf. [14, (2), p. 13-03, (5), (6), (7), (9), (14)]) Let f ∈ R = K[t; δ].
(i) If Sf is not associative then Nucl(Sf ) = Nucm(Sf ) = K and

Nucr(Sf ) = {g ∈ Rm | fg ∈ Rf}.

The right nucleus of Sf is Amitsur’s invariant ring of f .
(ii) The powers of t are associative if and only if tmt = ttm if and only if t ∈ Nucr(Sf ) if
and only if ft ∈ Rf.
(iii) If f is irreducible then Nucr(Sf ) is an associative division algebra.
(iv) Let f ∈ R be irreducible and Sf a finite-dimensional F -vector space or free of finite
rank as a right Nucr(Sf )-module. Then Sf is a division algebra.
Conversely, if Sf is a division algebra then f is irreducible.
(v) Sf is associative if and only if f is a two-sided element (i.e., generates a two-sided ideal
Rf). In that case, Sf is the usual quotient algebra K[t; δ]/(f).
(vi) f is irreducible if and only if Sf is a right division algebra over F (i.e., each non-zero
element in Sf has a left inverse: there is z ∈ Sf such that zh = 1), if and only if Sf has no
zero divisors.

Recall that a polynomial f ∈ R = K[t; δ] is bounded if there exists 0 6= f∗ ∈ R, such that
Rf∗ = f∗R is the largest two-sided ideal of R contained in Rf .

If f ∈ R is bounded then f is irreducible if and only if Nucr(Sf ) has no zero divisors if
and only if Nucr(Sf ) is an associative division algebra (cf. [8, Proposition 4] which sums up
classical results from [10]). [5, Theorem 4] yields:

Theorem 2. Let f ∈ R be irreducible. Then f is bounded if and only if Sf is free of finite
rank as a Nucr(Sf )-module. In this case, Sf is a division algebra.
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Proof. The first part of the statement is [5, Theorem 4]. Since f irreducible, Sf is a right
division algebra and Lh is injective for all h ∈ Sf , h 6= 0, as observed in [14, Section 2.,
(7)]. The second part then follows from the fact that Sf is free of finite rank as a Nucr(Sf )-
module, which means the injective Nucr(Sf )-linear map Lh is also surjective. �

R = K[t; δ] has finite rank over its center if and only if K is of finite rank over Ct =
{a ∈ K | at = ta} if and only if all polynomials of R are bounded and if for all f of degree
non-zero, deg(f∗)/deg(f) is bounded in Q (f∗ being the bound of f) [6, Theorem IV]. Since
here Ct = Const(δ) = F , we conclude:

Proposition 3. Assume that one of the two following equivalent conditions hold:
(i) R = K[t; δ] has finite rank over its center;
(ii) K/F is a finite field extension.
Then every f ∈ R is bounded. In particular, if f is irreducible then Sf is a division algebra.

Note that if K/F is a finite field extension then the derivation δ is trivial, or K has
characteristic p > 0.

We will assume throughout the paper that f ∈ K[t; δ] has deg(f) = m ≥ 2 (if f has
degree m = 1 then Sf

∼= K) and that δ 6= 0. Without loss of generality, we could only look
at monic f , but will do so only when explicitly mentioned.

2. Nonassociative algebras whose right nucleus is a central simple algebra

We use the terminology from [2] with the only exception that that in our definition of
K[t; δ], we look at polynomials with the coefficients written on the left, not on the right-
hand-side as in [2]. All results, however, work analogously in this case.

By [13, Theorem 4.2], given a field extension K/F in characteristic zero, F is the field of
constants of a derivation of K if and only if F is algebraically closed in K.

In this section, let K be a field of characteristic 0. Let δ be a derivation of K with
F = Const(δ) and f ∈ R = K[t; δ]. The finite-dimensional associative F -algebra Nucr(Sf )
is called the invariant ring of f by Amitsur [2, p. 260], in recent literature it is also referred
to as the eigenspace of f .

Let V be an K-vector space. An additive map T : V −→ V , such that T (αv) = αT (v) +
δ(α)v for all v ∈ V and α ∈ K, is called a pseudo-linear transformation on V . Given a
basis of V , a pseudo-linear transformation T on V is given by a matrix. Moreover, (V, T )
is isomorphic to K[t; δ]/f(t)K[t; δ] for some f(t) ∈ K[t; δ] which is called the characteristic
polynomial of T [2, p. 250]. The characteristic polynomial is uniquely determined up to
similarity and any polynomial f(t) is the characteristic polynomial of some pseudo-linear
transformation (V, T ) (simply define V = K[t; δ]/K[t; δ]f(t) and T (p(t) + K[t; δ]f(t)) =
tp(t) +K[t; δ]f(t)).

Let (V, T ) and (V ′, T ′) be two pseudo-linear transformations with characteristic poly-
nomials f, g ∈ K[t; δ] where deg(f) = m and deg(g) = n. Then there is a pseudo-linear
transformation T × T ′ on the tensor product V ⊗ V ′ defined via

(T × T ′)(u) =
∑

i

T (vi)⊗ wi +
∑

i

vi ⊗ T ′(wi)
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for all u =
∑

i vi ⊗ wi ∈ V ⊗ V ′.
Furthermore, let f, g ∈ K[t; δ] where deg(f) = m and deg(g) = n, and T and T ′ be the

pseudo-linear transformation defined using f and g. Then the resultant f × g of f and g is
any characteristic polynomial of T ×T ′, so that f ×g is a polynomial of degree nm uniquely
determined up to similarity [2, p. 255].

A differential polynomial f ∈ K[t; δ] of degree m is called an A-polynomial if there is some
f̃ ∈ K[t; δ] of degree n such that the resultant f × f̃ is similar to emn, the characteristic
polynomial of the pseudo-linear transformation corresponding to the zero mn×mn matrix
[2, p. 263].

Amitsur’s results tell us when Nucr(Sf ) is a central simple algebra:

Theorem 4. [2, Lemma 17, 18, 19, Theorem 17, Corollary, Lemma 22] Let f, g ∈ K[t; δ]
with deg(f) = m ≥ 2 and deg(g) = n ≥ 2.
(i) Nucr(Sf ) has dimension m2 if and only if f is an A-polynomial.
(ii) If f is an A-polynomial then Nucr(Sf ) is a central simple algebra of degree m which is
split by K.
(iii) If f and g are A-polynomials then so is h = f × g and

Nucr(Sh) = Nucr(Sf )⊗F Nucr(Sg).

(iv) If f and g are A-polynomials then

Nucr(Sf ) ∼= Nucr(Sg)

if and only if f ∼ g(t+ a) ∼ g(t)× t+ a for some a ∈ K. In particular,

Sf
∼= Sg implies that f ∼ g(t+ a) ∼ g(t)× t+ a

for some a ∈ K.
(v) Suppose f is an A-polynomial. Then

Nucr(Sf ) ∼= Matm(F )

if and only if one of the following holds:

• f ∼ em × t+ c for some c ∈ K;
• f decomposes into irreducible factors and at least one factor is linear of the form
t+ c for some c ∈ K (then f ∼ em × t+ c).
In particular, then the irreducible factors of f are all similar to t+ c.

Let L/K be a field extension such that δ extends to L. Then L[t; δ] is an Ore extension
of K[t; δ] and the constant field F = Const(δ|K) of δ = δ|K is contained in the constant
field C = Const(δ). If L = K · C is the composite field of K and C, we say L is a constant
extension of K. It is clear that for f ∈ K[t; δ],

Nucr(K[t; δ]/K[t; δ]f) ⊂ Nucr(L[t; δ]/L[t; δ]f).

Theorem 5. Let f ∈ K[t; δ] be of degree m and L/K a field extension such that δ extends
to L and C = Const(δ). Suppose that L is a constant extension of K.
(i) If f is an A-polynomial then f ∈ L[t; δ] is an A-polynomial and

Nucr(L[t; δ]/L[t; δ]f) ∼= Nucr(K[t; δ]/K[t; δ]f)⊗F C.
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(ii) Suppose B = Nucr(Sf ) is a central simple algebra of degree m over F with f ∈ K[t; δ].
Then C splits B if and only if f has a left or right root in L, i.e. f = (t − a)g(t) ∈ L[t; δ]
or f = g(t)(t− a) ∈ L[t; δ].

In particular, then Sf ⊗F C has right nucleus Matm(C).

This follows from [2, Theorem 20] and [2, Corollary, p. 270].

Remark 6. Since every automorphism of a nonassociative algebra maps the right nucleus
onto itself, for every A-polynomial f which is not two-sided, each H ∈ AutF (Sf ) satisfies
H|B ∈ AutF (B) when restricted to the central simple algebra B = Nucr(Sf ), thus H|B is
an inner automorphism of B. By an analogous argument, also H|K ∈ AutF (K).

3. Algebras whose right nucleus is split by an extension in which F is

algebraically closed

Let F be a field of characteristic 0.

Theorem 7. [2, Lemma 20] (i) Every central simple algebra B of degree m over F which is
split by a field extension K/F in which F is algebraically closed, is isomorphic to Nucr(Sf )
for some f ∈ K[t; δ] of degree m and a suitable δ with F = Const(δ). The differential
polynomial f is an A-polynomial.
(ii) Every central division algebra D of degree m over F is isomorphic to Nucr(Sf ) for some
f ∈ K[t; δ] of degree m and a suitable differential field (K, δ).

Note that (ii) follows from (i), since for every central division algebra D over F , the
function field K(X) of the Severi-Brauer variety X of D splits D ([2, p. 245] or [3]), and we
can always find a derivation δ on K(X) with F = Const(δ), as F is algebraically closed in
K(X).

As an immediate consequence of Theorem 7 and Remark 6, we now get the following
results:

Theorem 8. For every central simple algebra B of degree m over F which is split by a field
extension K/F in which F is algebraically closed, there is a derivation δ on K with field of
constants F and a differential polynomial f ∈ K[t; δ] of degree m, such that

Sf = K[t; δ]/K[t; δ]f

is an infinite-dimensional algebra over F with right nucleus B and left and middle nucleus
K. Every automorphism H ∈ AutF (Sf ) extends an inner automorphism of B.

We conclude from [2, p. 246]:

Corollary 9. For every central division algebra D of degree m over F , there exists a field
extension K/F in which F is algebraically closed, a derivation δ on K with field of constants
F , and a differential polynomial f ∈ K[t; δ] of degree m, such that

Sf = K[t; δ]/K[t; δ]f

is an infinite-dimensional algebra over F with right nucleus D, and left and middle nucleus
K. K splits D and every automorphism H ∈ AutF (Sf ) extends an inner automorphism of
D.
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The fact that D is a division algebra does not imply that f is irreducible, so Sf might
not be a right division algebra.

Corollary 10. If the differential polynomial f in Corollary 9 is irreducible, then Sf is an
infinite-dimensional right division algebra over F and therefore does not have zero divisors.

If f is an irreducible A-polynomial, it is not bounded by Theorem 2.

Example 11. Suppose F = R. The only central division algebra over R is D = (−1,−1)R.
The function field K of the projective real conic given by x2 +y2 +z2 = 0 is a field extension
of R in which R is algebraically closed and that splits D. There exists a derivation δ on K

with R = Const(δ). Thus there is an A-polynomial f ∈ K[t; δ] of degree 2, such that

Sf = K[t; δ]/K[t; δ]f = K ⊕Kt

is an infinite-dimensional unital algebra over R with right nucleus (−1,−1)R, and left and
middle nucleus K.

For B = Matm(R) and any field extension K ′ of R in which R is algebraically closed, with
a derivation δ on K ′ such that R = Const(δ), there is a reducible A-polynomial f ∈ K ′[t; δ]
of degree m, such that

Sf = K ′[t; δ]/K ′[t; δ]f

is an infinite-dimensional unital algebra over R with right nucleus B and left and middle
nucleus K ′.

4. Algebras whose right nucleus is a p-algebra

Let now K be a field of characteristic p > 0 together with a derivation δ on K. Put
R = K[t; δ] and F = Const(δ). There are two cases which can occur: either δ is an algebraic
derivation, or δ is transcendental which means [K : F ] = ∞. We assume that δ is an
algebraic derivation of degree pe with minimum polynomial

g(t) = tp
e

+ c1t
pe−1

+ · · ·+ cet ∈ F [t]

of degree pe. Then K = F (u1, . . . , ue) = F (u1) ⊗F · · · ⊗F F (ue) with up
i = ai ∈ F for all

i ∈ {1, . . . , e}, and [K : F ] = pe, that is K is a finite purely inseparable field extension of
exponent one and Kp ⊂ F ⊂ K. The center C(R) of R is F [z] with z = g(t)− d0, d0 ∈ F ,
and the two-sided elements in R have the form uh(t) with u ∈ K×, h(t) ∈ C(R).

Recall that a central simple algebra B = Matr(D) over a field F of characteristic p is a
p-algebra if it has index pn, equivalently, if its exponent is a power of p [11, p. 154].

Note that for f(t) = g(t)− d ∈ F [t] (so f(t) is two-sided in this case),

(K, δ, d) = K[t; δ]/K[t; δ]f(t)

is an associative central simple F -algebra called a differential extension of K and treated in
[11, p. 23]. K is a maximal subfield of (K, δ, d).

Theorem 12. [2, Lemma 20’] Let B be a p-algebra of degree m over F which is split by a
purely inseparable extension K of exponent one (i.e., has exponent p), such that m ≤ [K : F ].
Then

B ∼= Nucr(Sf )
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for some f ∈ K[t; δ] of degree m and a suitable δ with F = Const(δ).

We start by looking at the case that m = [K : F ] = pe and immediately obtain (i) and
(ii) in the following result on p-algebras by employing only Theorem 1 (v) from Petit [14]
and Amitsur’s Theorem 12 (only the fact that then B is cyclic uses Hood’s Main Theorem
[9, Main Theorem]):

Theorem 13. Let B be a p-algebra of degree m over F which is split by a purely inseparable
field extension K of exponent one with m = [K : F ].
(i) There is an algebraic derivation δ on K of degree m with minimum polynomial g(t) such
that the center of K[t; δ] is F [z] with z = g(t)− d0, d0 ∈ F , and

B = (K, δ, d0)

with f(t) = g(t)− d0. B is a cyclic algebra.
(ii) F [t]/(f) is a subfield of B of degree pe over F if and only if f is irreducible in F [t].
(iii) f ∈ K[t; δ] is irreducible if and only if B is a division algebra.
(iv) B ∼= Matpe(F ) if and only if there is b ∈ K such that

d0 = Vg(b) = Vpe(b) + c1Vpe−1(b) + · · ·+ ceb.

Proof. (i) If m = [K : F ] then there is a differential polynomial f ∈ K[t; δ] of degree m and
a suitable δ such that B ∼= Nucr(Sf ) by Theorem 12. Here B is an associative subalgebra of
Sf of dimension m2 and Sf has dimension m2 as well. Therefore Sf = B is associative and
f ∈ K[t; δ] must be a two-sided differential polynomial of degree m, i.e. B = K[t; δ]/(f) is
a quotient algebra (Theorem 1 (v)). Without loss of generality we may assume f is monic.
Thus f ∈ C(R) and since f has degree m = pe, we obtain that f(t) = g(t) − d0 and so
B = (K, δ, d0). K is a purely inseparable field extension of F which is an (even maximal)
subfield of B splitting B, therefore B is cyclic [9, Main Theorem].
(ii) Since here f(t) ∈ F [t], we know that F [t]/(f) is a subfield of B of degree pe over F if
and only if f is irreducible in F [t].
(iii) is [8, Proposition 4] and (iv) is a consequence from (i) together with Theorem [11,
Theorem 1.3.27]. �

Remark 14. Let us briefly put the previous result into context:
(i) Let A be a central simple p-algebra of degree pn over F . It is a well known classical result
that A is cyclic over F if and only if A has a subfield K such that K is a purely inseparable
extension of F and K is a splitting field for A (this is [9, Main Theorem], which removed
Albert’s restriction that K be simple from [1, Theorem (7.27)]).
(ii) Mammone characterized the central simple algebras split by a purely inseparable field
extension K of exponent one in [12]: in particular, if B is a central simple algebra over F
of degree m = pe containing K where [K : F ] = m, then B is a differential crossed product,
that means B contains a K-basis of the form {zi1

1 · · · zin
n | 0 ≤ ik ≤ p− 1} satisfying a kind

of commutativity law with elements of K which involves a set of n F -derivations of K. The
algebra B then yields elements bi = zp

i and uij = zizj − zjzi in K. Conversely, given sets
B = {bi | i = 1, . . . , n} and U = {uij : i, j = 1, . . . , n} satisfying certain relations involving
F -derivations of K, then (U,B) arises from such a differential crossed product.
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In case m < [K : F ] = pe we obtain a nonassociative algebra of dimension mpe containing
B as right nucleus:

Theorem 15. Let B be a p-algebra of degree m over F which is split by a purely inseparable
extension K of exponent one such that m < [K : F ].
(i) There is an algebraic derivation δ and a differential polynomial f ∈ K[t; δ] of degree m
such that

Sf = K[t; δ]/K[t; δ]f

is an algebra over F of dimension mpe with right nucleus B, left and middle nucleus K,
and nucleus Nuc(Sf ) = B ∩K an intermediate field of K/F , unequal to K.
(ii) f is irreducible if and only if B is a division algebra, if and only if Sf is a division
algebra.
(iii) Every automorphism H ∈ AutF (Sf ) extends an inner automorphism of B and an
automorphism of K.

Proof. (i) The existence of a suitable f follows from Theorem 12 and the statements on the
left and middle nuclei from Theorem 1. Since f is not two-sided, K is not contained in the
right nucleus of Sf , i.e. not contained in B [15, Theorem 9]. Thus Nuc(Sf ) = B ∩ K is
properly contained in K, so that it is an intermediate field of the field extension K/F .
(ii) By Proposition 3 and Theorem 1, f is irreducible if and only if B is a division algebra,
if and only if Sf is a division algebra.
(iii) An automorphism of Sf extends both an inner automorphism of B and an automorphism
of K by Remark 6. �

Corollary 16. Let D be a division p-algebra of degree m over F which is split by a purely
inseparable extension K of exponent one such that m < [K : F ]. Then there is an irreducible
polynomial f ∈ K[t; δ] of degree m such that Sf is a division algebra over F of dimension
mpe with right nucleus D, left and middle nucleus K, and nucleus D ∩K an intermediate
field of K/F , unequal to K.

The fact that f is irreducible in Corollary 16 follows from Proposition 3. Note that every
division p-algebra over F split by K has degree m ≤ [K : F ], so that Theorem 13 (iii) and
Corollary 16 cover all possible cases for a division p-algebra.

We could ask for the algebra Sf of smallest possible dimension which contains a given
central simple algebra B as a right nucleus. This is equivalent to asking for a purely in-
separable extension K of exponent one splitting B of smallest possible degree [K : F ] = pe

satisfying m < [K : F ], which in turn is connected to the question how many cyclic algebras
are needed when saying that B is similar to a product of cyclic algebras of degree p in the
Brauer group Br(F ).

Theorem 17. Let B be a p-algebra over F of degree m, index d = pn and exponent p, such
that m = r2pn < pd−1. Then there is a purely inseparable extension K of exponent one with
[K : F ] = pd−1, and a differential polynomial f ∈ K[t; δ] of degree m such that

Sf = K[t; δ]/K[t; δ]f
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is an algebra over F of dimension mpd−1 with right nucleus B and the properties listed in
Theorem 15.

Proof. Let B be a p-algebra of index pn and exponent p. Then there is a purely inseparable
field extension K/F of exponent one with K = F (u1, . . . , ud−1), up

i = ai ∈ F , and [K : F ] =
pd−1, which splits B [7, Theorem 1.1.]. We have m = r2d = r2pn for some r ≥ 1.

We need m = r2pn ≤ [K : F ] = pd−1 to be able to apply Theorem 12. By Theorem
12 this implies that B ∼= Nucr(Sf ) for some f ∈ K[t; δ] of degree m and a suitable δ with
F = Const(δ). Since each f ∈ K[t; δ] is bounded by Proposition 3, B = Nucr(Sf ) is a
division algebra if and only if f is irreducible [8, Proposition 4], if and only if Sf is a division
algebra. �

We obtain that for a division algebra D, the smallest possible dimension l of a division
algebra Sf containing D as right nucleus satisfies m2 < l = mpe ≤ mpm−1:

Corollary 18. Let D be a division p-algebra of degree m and exponent p over F . Then
there is a purely inseparable extension K of exponent one with [K : F ] = pm−1, and an
irreducible differential polynomial f ∈ K[t; δ] of degree m such that

Sf = K[t; δ]/K[t; δ]f

is a division algebra over F of dimension mpm−1 with right nucleus D and the properties
listed in Theorem 15.

Proof. There is a purely inseparable field extension K = F (u1, . . . , um−1) of exponent one,
up

i = ai ∈ F , and [K : F ] = pm−1, which splits D [7, Theorem 1.1.].
We need m = pn ≤ [K : F ] = pm−1 to be able to apply Theorem 12. This holds for

all prime p and n ≥ 1 as it is equivalent to n ≤ pn − 1, i.e. to n + 1 ≤ pn, which is true
for all prime p and n ≥ 1. Therefore there is a purely inseparable field extension K/F of
exponent one with m ≤ [K : F ] = pm−1 which splits D. By Theorem 12 this implies that
B ∼= Nucr(Sf ) for some f ∈ K[t; δ] of degree m and a suitable δ with F = Const(δ). Since
D is a division algebra and f bounded, f is irreducible and Sf is a division algebra. �
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[8] J. Gòmez-Torrecillas, Basic module theory over non-commutative rings with computational aspects of

operator algebras. With an appendix by V. Levandovskyy. Lecture Notes in Comput. Sci. 8372, Algebraic

and algorithmic aspects of differential and integral operators, Springer, Heidelberg (2014) 23-82.

[9] J. M. Hood, Central simple p-algebras with purely inseparable subfields. J. Algebra 17 (1971) 299-301.

[10] N. Jacobson, The Theory of Rings, AMS, Providence, RI, 1943

[11] N. Jacobson, “Finite-dimensional division algebras over fields.” Springer Verlag, Berlin-Heidelberg-New

York, 1996.

[12] P. Mammone, Remarques sur les produits croisés différentiels. Acad. Roy. Belg. Bull. Cl. Sci. (5) 68
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